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Abstract 

Admixed populations offer valuable insights into the genetic architecture of complex traits. 
Such an investigation demands a delicate theory that can handle the linkage disequilibrium 
structure of admixed genomes. With additional assumptions, we show that Pritchard-
Stephens-Donnelly (PSD) can predict empirical GWAS findings. We call this the extended 
PSD (ePSD) model and evaluate the predictions using real data. When applied to real data 
of admixed genomes, the prediction of the ePSD model is very successful in explaining 
single-locus behaviors while falling short in predicting two-loci phenomena involving linkage 
disequilibrium. Our results show that a mosaic of independent single-continental segments is 
an insufficient approximation of contemporary admixed populations. A more advanced theory 
that better models linkage disequilibrium of admixed populations will be crucial to better 
understanding the genetic architecture of complex traits.  
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Introduction 

The Pritchard-Stephens-Donnelly (PSD) model has been widely used to infer the population 
structure of admixed populations1-6. In this model, population structure is a latent variable 
called the ancestral proportion (AP), also called global ancestry. Allele frequencies are then 
represented as weighted averages of ancestry-specific allele frequencies, where the 
ancestral proportion is the weights. When inferring the ancestral proportion, it is assumed 
that the loci used in the analysis are approximately independent without linkage 
disequilibrium (LD). Since the allele frequency of ancestral populations is unavailable, 
contemporary genomes of single continental origins are used as surrogates.  

While the PSD model infers the genome-wide AP of individuals, local ancestry (LA) inference 
methods predict the source population of chromosome segments7-10. These methods view 
admixed genomes as a mosaic of single continental genomes. Contemporary genomes with 
ancestry labels are used as surrogates of the ancestral genome to identify the source 
population of a segment in admixed genomes.  

Both global ancestry and local ancestry are used extensively in the study of complex traits in 
admixed populations. Global ancestry adjustment is an essential ingredient of GWAS to 
control for population structure11,12. Although principal components (PC) are generally used 
instead, it has been shown that PCs are merely a linear transformation of ancestral 
proportions, making the two adjustments equivalent13,14. Often, to handle the fine-scale 
structure of admixed genomes, LA is further included in the analysis15-18.  

The PSD model is not designed for GWAS per se. This is because GWAS relies on LD 
which is a two-loci property, while the PSD model describes the marginal distribution of a 
single locus1,2,19. Nevertheless, a simple extension to incorporate the two-loci scenario is 
found in the literature. The extension assumes that the length of the local ancestry segment 
is far longer than the range of within-continental LD18,20-23. This makes the local LD structure 
of the segment the same as the source population of a single continental origin. Technically 
speaking, it means that variants on different local ancestry segments are independent 
conditional on global ancestry. Examples include the TRACTOR GWAS pipeline for 
ancestry-specific effect estimates and several polygenic score methods tailored for admixed 
populations18,20-23. We will call the PSD model equipped with this additional assumption as 
the extended PSD (ePSD) model.  

In this work, we show that the PSD and the ePSD model can make empirical predictions on 
GWAS. The standard error of GWAS methods for admixed populations can be derived from 
the PSD model alone. The prediction is concordant with the recent empirical findings 
demonstrating the high power of the conventional GWAS (the Armitage Trend Test, ATT). 
Furthermore, it turns out that the ancestry-specific estimates of TRACTOR are mutually 
independent, allowing meta-analysis of independent cohorts to be applied to these estimates 
to improve power that circumvents the high degrees-of-freedom of the method24-26. 
Furthermore, ePSD can make predictions about the marginal effect sizes obtained from 
GWAS methods. As argued by the authors of TRACTOR through simulations, TRACTOR 
effect sizes are the same as the effect sizes that would have been obtained had the GWAS 
been performed on ancestral populations separately, provided the ePSD is correct. This 
means that TRACTOR estimates can be directly supplied to summary statistics-based 
downstream analyses without further modification. 

We verify the predictions of the models by applying them to admixed genomes of All of Us 
(AoU). We find that standard error predictions of the PSD model are extremely accurate with 
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remarkably high concordance with real data (R2 > 0.99). The proposed meta-analysis 
approach for combining TRACTOR estimates is also more powerful than the original 
TRACTOR test. However, the predictions of the ePSD model on effect sizes are found to be 
poor. We applied LDSC to summary statistics of 19 quantitative traits and measured the 
genetic correlation between European effect sizes produced from TRACTOR and standard 
GWAS of European participants of the UK Biobank. Nevertheless, heritability estimates were 
often negative, and confidence intervals were too wide to draw reliable conclusions.  

To circumvent the issue, we simulated 10,000 admixed genomes to evaluate the predictions 
of the ePSD model. The genetic correlation was extremely low when comparing marginal 
effect sizes from admixed and single-continental genomes. LD correlations were only 
moderately concordant. Finally, the length distribution of local ancestry segments highly 
overlapped the distribution of LD, contrary to the assumption of the ePSD model.   

Our results show that despite the success of the PSD model in single-locus problems like 
standard error prediction, its simple extension assuming homogeneous LD patterns limited 
within local ancestry segments fails to produce reliable predictions. As LD is a crucial 
component of the genome, the results highlight the importance of more realistic linkage 
disequilibrium modeling in admixed populations for understanding the genetic architecture of 
complex traits. 
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Results 

The Pritchard-Stephens-Donelly model and its extension 

The genotype of an individual is determined by a two-step process according to the PSD 
model. For each locus, local ancestry (LA) is first assigned according to the global ancestry 
(GA). The global ancestry is a vector of length that is equal to the number of ancestral 
populations summing up to 1. Each entry of the global ancestry is the probability in which a 
randomly selected locus in the genome has originated from a particular ancestry. Technically, 
it means that the distribution of the LA at a locus follows a multinomial distribution with 
probability equal to the GA.  

Next, the genotype of the locus is assigned according to the allele frequency of the LA of the 
locus. Once the local ancestry is fixed, the genotypes of the two haplotypes of an individual 
are assumed to be independent. Therefore, the genotype follows a binomial distribution with 
two trials, and the success probability is set to the ancestry-specific allele frequency.  

It is important to note that the model only describes the marginal distribution of a single locus, 
so the joint distribution is ignored. In practice, loci are treated as mutually independent. As 
genome-wide association study (GWAS) relies on linkage disequilibrium (LD), a property of 
the joint distribution of two loci, the original PSD model is insufficient to deal with GWAS. 
Hence, a simple extension has been implicitly and explicitly used in literature. We call this 
model the extended PSD (ePSD) model18,20-23.  

The ePSD model states that LA segments extend much further than LD within continental 
groups. This assumption is supported by the fact that admixture events occurred less than a 
few dozens of generations ago. Based on the assumption, one can assume that the local LD 
patterns around a particular locus are determined by the LA of the locus. As we expect 
markers to grab signals from adjacent causal variants, the intensity of the LD between 
markers and variants is then supposed to be equal to the LD of the ancestry of the LA 
segment. In the following sections, we investigate the consequences of both models. 

The power of various admixed GWAS methods can be predicted by the PSD model 

Distinct GWAS methods for admixed GWAS use different regression equations, so the effect 
estimates are generally not the same. Also, there is no clear agreement on the exact form of 
the parameters that are being estimated through these methods. Therefore, power, a 
function of both effect size and variance (or equivalently, the standard error), cannot be 
easily compared. Nevertheless, if we limit our scope to the variance only, a straightforward 
comparison can be derived from the PSD model. 

It is a well-known fact that the variance of the regression estimator is inversely proportional 
to the variance of the marker, but the formula becomes complicated in general with 
covariates. Fortunately, a simple analytic expression is deduced for global ancestry 
adjustment under the PSD model (equation 19 of Supplementary Note). The variance of 
the TRACTOR estimate is slightly more complicated because it involves multiple ancestry-
specific allele counts of the markers in a single regression. Under the PSD model, however, 
we show that their variances are inversely proportional to the ancestry-specific marker 
variances similar to standard GWAS applied to non-admixed genomes (equation 18 of 
Supplementary Note) . 

By comparing the theoretical predictions to the estimated standard error, we found that the 
predictions are highly concordant with real data (Figure 1a). Furthermore, the covariances 
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between ancestry-specific markers are exactly zero, allowing us to meta-analyze them as if 
they are from independent cohorts (see Methods). This method showed improved power 
over the original Tractor statistics across various quantitative traits (Figure 1b). 

ePSD fails to capture the linkage disequilibrium pattern of admixed genomes 

The authors of TRACTOR have previously shown that TRACTOR produces correct 
ancestry-specific marginal effect sizes through simulations. We provide mathematical proof 
that this observation is correct (equation 25 of Supplementary Note). To be specific, the 
ancestry-specific coefficients of the TRACTOR regression equation are a product of 
ancestry-specific (variance-normalized) LD covariance and the effect size of the underlying 
causal variant. Furthermore, the theory offers the interpretation of local ancestry coefficients 
that were previously believed to capture confounding effects. Surprisingly, local ancestry 
coefficients also capture the signal from the underlying causal variant and not from 
confounding. Dropping the marker variables from the regression gives the interpretation of 
admixture mapping coefficients, uncovering the mathematical theory of admixture mapping 
as a byproduct.  

We then attempted to verify the ePSD model through its prediction by comparing the 
ancestry-specific marginal effect sizes of TRACTOR with standard GWAS estimates from 
African and European ancestry. The standard GWAS summary statistics were obtained from 
the Pan UK Biobank (PanUKBB). Next, we applied LDSC to estimate the genome-wide 
genetic correlation of AoU and PanUKBB summary statistics (see Methods). Unlike the 
predictions of the original PSD model, the ePSD predictions fail to explain the pattern of real 
data.  

In 15 quantitative traits, the frequent appearance of negative heritability estimates produced 
invalid genetic correlations (Figure 2a). Such traits include Hb1Ac, CRP, diastolic blood 
pressure, eGFR, fasting glucose, height, platelet count, and waist-to-hip ratio. These were 
left empty in the figure. The confidence intervals were too wide to draw reliable conclusions 
even if genetic correlation was computed.  

We observed similar patterns in simulated data (see Methods). The correlations between 
TRACTOR estimates and single-continental marginal effect sizes were nearly absent 
(Figure 2b). We observed the predictions of the ePSD model to hold locally where marginal 
effect sizes at the causal loci were highly concordant (Figure 2c). Nevertheless, the 
concordance dropped with the increasing proportion of causal loci. 

Indeed, comparing LD correlations in admixed and single-continental genomes revealed only 
moderately concordant patterns (Figure 3a). We compared the ancestry-specific LD 
correlation of admixed genomes and the single-continental counterpart. Ancestry-specific LD 
correlation is the correlation between LA-adjusted ancestry-specific marker counts (as in 
TRACTOR, see Methods). These quantities are expected to be identical to the single-
continental ones under the ePSD model, and the TRACTOR effect sizes are the casual 
effect-weighted sum of these values (equation 25 of Supplementary Note).  

Although the LD correlation between physically close loci (colored in indigo) appears close to 
the diagonal, which means that they are well-preserved, the overall concordance is low. The 
Pearson correlation coefficients were 0.62 and 0.60 in African and European genomes. This 
is because the number of close loci pairs (=O(number of loci)) is much smaller than the 
number of distant pairs (=O(number of loci2), colored in yellow), which drags down the 
correlation. The overlap between local ancestry length distribution and LD coefficients also 
shows that the extent of LD is not necessarily shorter than local ancestry segments (Figure 
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3b). In sum, ePSD turns out to be a good approximation only for proximal regions on the 
genome and performs poorly genome-wide.  
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Discussion 

In this work, we mathematically derived identifiable predictions of the PSD model and its 
extension and then verified them using real data. These predictions illuminate the properties 
of a variety of GWAS methods applied to admixed genomes and suggest simple but effective 
improvements. The theory especially explains why standard GWAS regression is more 
powerful than methods that adjust local ancestry in an attempt to control for fine-scale 
population structure. On the contrary, predictions of the ePSD model turn out to be 
inaccurate, showing low agreement with real data. 

There have been several studies comparing the power of various GWAS methods applied to 
admixed cohorts27,28. The standard GWAS regression, often called the Armitage Trend Test 
(ATT), has been found to be the most powerful across settings. Our mathematical result 
reconfirms this finding by showing that the variance of the estimator is enlarged when 
adjusting local ancestry like TRACTOR. We then showed that the relative power loss of 
TRACTOR can be partially ameliorated by combining ancestry-specific estimates through 
meta-analysis because those estimates are independent under the PSD model. These 
findings were highly concordant with real data. 

Our study points out the problem of assuming that LA segments extend beyond the range of 
within-continent LD. The assumption greatly simplifies the problem by conferring 
independence between variants on different LA segments conditional on LA. In GWAS, it 
allows the isolation of the ancestry-specific marginal effect size by confining the LD within 
the LA segment23. In polygenic risk prediction, variants can be assigned ancestry-specific 
weights based solely on their segment ancestry20,22. This modeling strategy is further 
supported by our mathematical result.  

Nevertheless, the assumption fails to explain the patterns in real and simulated data. Firstly, 
heritability estimates (required for genetic correlation) were frequently negative, indicating a 
mismatch between single-continental reference LD and admixed LD. Secondly, in 
simulations, we were able to observe the overlap between the local ancestry length 
distribution and LD. This translated into a low correlation between marginal effect sizes from 
single-continental and admixed genomes. 

Then why did the assumption seem to be successful in previous studies? It is likely that the 
overly simplistic simulation design has been causing the problem. For example, the ePSD 
model is part of the simulation in the original TRACTOR paper18. Relatively more accurate 
simulation algorithms based on the classic coalescent still fail because they cannot 
reproduce long-range LD that extends beyond LA segments29. Indeed, we find in simulations 
that even a simple model of a single admixture event can produce long-range LD patterns 
that last more than 10 generations. Under more realistic models where migrations continue, 
LD is likely to last longer29,30.  

It is worth noting that the failure of the ePSD model does not entirely discourage the use of 
the methods that implicitly assume the model. For example, for risk prediction purposes, the 
practical utility and performance of a method are not disqualified by its imperfect modeling 
assumption20,22. We only raise caution on drawing scientific conclusions on a genome-wide 
scale based on the ePSD model.  

There are several caveats in our analysis. Firstly, the wide confidence intervals of genetic 
correlation analysis leave a large uncertainty in the analysis. The wide intervals stem from 
the small effective sample size of the European portion of admixed genomes and the African 
participants of the PanUKBB. Therefore, a larger cohort of admixed and African participants 
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is required to address the issue fully. Nevertheless, the simulation shows that the low genetic 
correlation found in real data is likely to remain in larger data. Secondly, the low genetic 
correlation between admixed African GWAS and standard African GWAS may come from 
their true difference. African genomes exhibit a substantially higher diversity level than other 
continental genomes31-33. Hence, the true genetic difference between the genomes may 
have caused the low genetic correlation. However, a recent study shows that the underlying 
causal effect is well preserved across ancestries21. 
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Methods 

Theory of admixture GWAS under the PSD model 

We defer the mathematical details to the Supplementary Note. 

Cohort description 

We analyzed summary statistics of one dataset of African-European admixed individuals. All 
of Us study included 31,375 individuals with African-European admixed ancestries 
determined by estimated admixture proportion and with ~0.65 million variants. Detailed steps 
of quality control and processing can be found in Hou et al21. 

Summary statistics from the Pan UK Biobank 

Summary statistics of 15 traits of UK Biobank participants of African and European ancestry 
were downloaded from the Pan UK Biobank repository (https://pan.ukbb.broadinstitute.org/). 
As the method only contained  

Meta analysis 

Fixed-effects and random-effects (RE2) meta-analysis were performed using the RE2C 
software25,26 (https://github.com/cuelee/RE2C).  

Heritability and genetic correlation estimation 

Heritability and genetic correlation estimation was performed using the linkage disequilibrium 
score regression (LDSC) software (https://github.com/bulik/ldsc, version 1.0.1). We adjusted 
the sample size according to the standard error formula (18) in the Supplementary Note. 

Simulations 

The simulations were conducted using tskit 0.5.6, msprime 1.2.0, tstrait 0.1.0, and tspop 
0.129,34. We simulated 5000, 5000, and 10000 individuals of African, European, and admixed 
African-European ancestry, respectively. We simulated the trait with �� � 1 to obtain true 
marginal effect sizes. We simulated chromosome 22 using the information from stdpopsim 
catalog35,36. The first five generations were simulated using the Wright-Fisher process and 
more upstream generations followed the coalescent29.  
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Figure legends 

Figure 1 Predictions of the PSD model evaluated in real data. a. Comparison of predicted 
and estimated standard error of regression coefficients. Top panel is for height and the lower 
panel is for body-mass index (BMI). b. Quantile-Quantile (QQ) plot GWAS results of height 
and BMI in the PAGE cohort.  

Figure 2 Predictions of the ePSD model evaluated in real and simulated data. a. The genetic 

correlation of 15 traits and their 95% confidence intervals estimated by LDSC. The error bar of high-

density cholesterol (HDL) was truncated due to the overtly wide standard error. b. marginal 
effect sizes of TRACTOR and single-continental GWAS in simulated African and European 
genomes. The color of the points indicates the density of the points. Brighter means higher 
density. All common variants (frequency >0.01) were used. c. same as b. but only causal 
variants were plotted. 

Figure 3 Direct evaluation of the ePSD model using simulated data. a. Scatterplots of local 
ancestry-adjusted LD correlation coefficient versus single-continental LD correlation 
coefficient. The color indicates the physical distance between loci. The distance was 
normalized by dividing the total length of the chromosome. b. Scatterplots of Local ancestry-
adjusted LD correlation versus physical distance were laid over the histogram of local 
ancestry segment lengths. 
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