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Abstract 

Circulating cell-free DNA (cfDNA) in the bloodstream displays cancer-derived fragmentation patterns, 

offering a non-invasive diagnostic avenue for cancer patients. However, the association between cfDNA 

fragmentation patterns and cancer progression remains largely unexplored. In this study, we analyzed this 

relationship using 214 whole-genome cfDNA samples across seven solid cancer types and revealed that 

the relation between cfDNA fragmentation patterns and cancer stages vary across cancer types. Among 

them, cfDNA fragmentation patterns in colorectal cancer (CRC) showed a strong correlation with cancer 

stages. This finding is further validated with an independent targeted cfDNA dataset from 29 CRC 

samples. Inspired by these findings, we designed "frag2stage", a machine learning model that exploits 

cfDNA fragmentation data to differentiate cancer stages of CRC. Evaluated on two independent cfDNA 

datasets, our model can distinguish cancer stages of CRC with the area under the curve (AUC) values 

ranging from 0.68 to 0.99. The results suggest that cfDNA fragmentation patterns might carry yet 

undiscovered genetic and epigenetic signals, highlighting their promising potential for broader diagnostic 

applications in oncology. 

Introduction 

Cancer staging is a major determinant of disease prognosis and a prerequisite activity in starting the 

process of the appropriate treatment and clinical management [1]. The tumor-node-metastasis (TNM) 

classification, esteemed for its consistency, simplicity, and clinically proven correlations with treatment 

outcomes, has become an indispensable tool in prognosticating solid tumors [2-4]. However, determining 

the cancer stage often requires invasive procedures, such as needle biopsies or surgeries, and in some 
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cases a biopsy may not even be accessible. To resolve these technical and logistic difficulties, alternative 

non-invasive approaches are highly desired. 

In recent decades, circulating cell-free DNA (cfDNA) technology has emerged as a 

groundbreaking non-invasive tool to access the molecular landscape of a malignancy, enabling a variety 

of diagnostics applications in oncology, such as early cancer detection, tumor profiling, treatment 

response monitoring and disease progression surveillance [5-16]. Recently, growing evidence has 

demonstrated that the cfDNA fragments derived from tumor cells (circulating tumor DNA or ctDNA) and 

the cfDNA from healthy cells are different in size. In healthy cells, the DNA wrapped around 

nucleosomes (~147bp) is more protected from nucleases than the linker DNA (~20bp) between them [17-

19], which leads to a typical cfDNA size distribution peaking at ~167bp, corresponding to the length of 

DNA wrapped around a nucleosome [20]. In cancer patients, the cfDNA fragment length can be altered, 

possibly owing to the modifications in chromatin structure caused by biological mechanisms of cancer 

cells [21-25]. Although contradictory analyses have been reported, the consensus of recent studies 

concludes the fragment size of ctDNA is overall shorter than the healthy cfDNA within the fragment 

region of mononucleosome (90bp to 220bp), with a mode of distribution at 145bp [22-24, 26]. Many 

studies have leveraged this finding using cfDNA fragment size selection techniques to improve the 

concentration of ctDNA [23, 27-28]. In silico, Mouliere et al. surveyed the ctDNA fragment size in 344 

plasma samples and reported that the cfDNA in fragment sizes between 90-150bp are enriched with the 

mutant ctDNA [27]. Cristiano et al. [29] introduced DELFI, a machine-learning approach that 

incorporates cfDNA fragmentation profiles calculated from the whole-genome sequencing (WGS), to 

discriminate cancer patients from healthy individuals. 

Despite these advancements, how the cfDNA fragmentation patterns evolve in relation to cancer 

progression remains unclear. In this study, we aim to bridge this knowledge gap by investigating the 

relationship between cfDNA fragmentation profiles and cancer TNM stages. As illustrated in Figure 1, we 

first analyzed 214 whole-genome cfDNA fragmentation profiles from seven cancer types and discovered 

a statistically significant correlation between the cfDNA fragmentation profiles and cancer stages in 

colorectal cancer. We further confirmed this association in another independent cfDNA targeted panel 

data from 29 CRC patients. Based upon this finding, we proposed “frag2stage”, a machine-learning 

model that utilizes cfDNA fragmentation profiles to distinguish CRC cancer stages. 

Methods 

CfDNA fragmentation data collection 

Whole-genome cfDNA fragmentation data 
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The whole-genome cfDNA fragmentation data, consisting of 214 cancer sequencing data spanning seven 

cancer types, were obtained from the FinaleDB database [36] (http://finaledb.research.cchmc.org/). We 

also retrieved the cfDNA fragmentation data of 242 healthy subjects as controls. This whole-genome 

sequencing (WGS) cfDNA data, originally published in Cristiano et al., had DNA sequence composition 

information removed to maintain the anonymity of sensitive genotype information and subsequently 

archived in the FinaleDB database. Detailed clinical information of these patients can be found in Table 

1. 

Targeted CfDNA panel data 

- Patient enrollment and sample collection 

To validate the findings of this study, we enrolled 29 patients with colorectal cancer, and sequenced their 

cfDNA sample with a comprehensive cancer panel. The study was approved by the Ethics Committee of 

the First Affiliated Hospital of Nanjing Medical University. All participants involved in this study have 

signed informed consent forms. All cancer patients and their TNM stages were confirmed by colonoscopy 

and pathological examination. The blood samples from the cancer patients were collected when the 

patients were at the first time of diagnosis, before tumor resection or therapy. The clinical data for all 

participants is listed in Table 2. 

- cfDNA extraction and NGS library preparation 

Blood samples, about 10 ml from each individual, were collected using the Apostle MiniMax cf-DNA 

Blood Collection Tube (Apostle; San Jose, CA, USA) and processed within seven days from the 

collection. The cfDNA extraction from 2 to 5 ml of each plasma sample was conducted using the Apostle 

MiniMax High Efficiency cfDNA isolation kit (Apostle; San Jose, CA, USA), with adherence to the 

manufacturer’s protocol with slight modifications. 

The targeted sequencing procedure was applied to the 29 cancer samples using an input cfDNA 

range of 10-50 ng. The Agilent SureSelect Cancer All-in-one (AIO) solid tumor panel (Agilent; 

Sunnyvale, CA, USA) was used for the NGS library preparation. This panel contains 151 clinically 

validated cancer-related genes spanning a total of 2,652 genomic regions. The entirety of the genome 

coverage is approximately 1.32Mb, which is about 0.044% of the human genome. The median of the 

targeted genomic regions stands at 371bp, with a significant majority (97%) of targeted regions being 

under 1Kb and a near entirety (99%) under 2Kb. We removed the targeted regions if there exists one or 

more cancer samples with a read-depth below than 10. This removal left 2,412 targeted regions (in total 

1.16Mb of the targeted region). Post-filtering, the mean read-depth for the targeted sequencing data rested 
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between 40-50x. All sequencing procedures were executed on the Illumina HiSeq 4000 platform 

(Illumina; San Diego, CA, USA). 

- Processing of targeted sequencing data and bioinformatics pipelines 

A concise overview of the data processing involved first filtering the raw sequencing data of cfDNA 

samples using fastp (v0.23.2) to remove adapter sequences. The sequencing short-reads were then aligned 

to the UCSC human reference genome hg19 through the Burrows-Wheeler aligner (BWA, v0.7.17). 

Marking of read duplicates and the local realignments were accomplished with The Genome Analysis 

Toolkit (GATK 4.1.5.0), and any short-reads with a Phred quality score less than 30 were removed from 

the dataset. The cfDNA sequencing read fragment lengths and other downstream analysis tasks were 

accomplished using the R packages GenomicAlignments and GenomicRanges. 

Results 

Construction of cfDNA fragmentation profiles  

The cfDNA fragmentation profile consists of a series of ratios to capture the cfDNA fragment patterns 

across specific genomic regions or the entire genome. Within the profile, each data point represents the 

ratio of short to long cfDNA fragments within a given genomic region. Cristiano and his colleagues [29] 

established this profile using 5Mb non-overlapping genomic segments over the whole genome. In this 

work, we used a similar scheme to construct the cfDNA fragmentation profile for the whole-genome 

cfDNA fragmentation data. We categorized the short cfDNA fragments as those with lengths from 90bp 

to 165bp, and the long cfDNA fragments as those ranging from 166bp to 250bp (Figure 2). 

For the targeted panel data, we initiated by concatenating all the targeted regions based on their 

genomic coordinates. Subsequently, we divided this amalgamated genomic area into non-overlapping 

bins, each bin at 20kb in width. Cristiano et al. suggested that a GC-content correction procedure may 

potentially reduce the bias introduced during the high-throughput sequencing [30-32].  However, 

considering the smaller bin width may lead to greater variations in the number of fragments of these bins, 

we skipped this phase to avoid many NA values introduced during the GC-correction. By comparing the 

profiles with and without GC-correction, No evident differences were observed for the cfDNA fragment 

profiles with and without GC-correction for this targeted panel data (Figure S1). 

Association analyses of cfDNA fragmentation profiles and cancer stages 

We constructed cfDNA fragmentation profiles from 214 whole-genome cfDNA cancer samples across 

seven cancer types: bile duct, breast, colorectal, gastric, lung, ovarian, and pancreatic cancers. In Figure 
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3A, we employed circos plots [35] to visualize the fragmentation profiles of these cancer types according 

to the cancer stages I, II, and III/IV. The first circos plot depicts the median fragmentation profile 

consolidated from all cancer samples. The subsequent plots illustrate the median profiles for each cancer 

type, segmented by cancer stages. As controls, we integrated the median fragmentation profiles of healthy 

individuals into these plots [36]. As shown in the first circos plot, subtle distinctions are presented among 

the median fragmentation profiles across the three cancer stages for all cancer types included. However, 

the divergence was demonstrated in the fragmentation profiles of cancer stages in each cancer type at 

varying degrees. For instance, the fragmentation profiles of colorectal cancer cascade in an order from 

healthy, transitioning to stages I, stage II, and stages III/IV. In contrast, for lung cancer, the profiles of 

stages I and II cluster closely to each other, while the profile of stage III/IV markedly distances from 

these two stages. 

The circulating tumor DNA (ctDNA) has more variability in length, and compared to cfDNA 

from healthy cells, the consensus of studies has indicated the average length of ctDNA is shorter in the 

mononucleosome range. Hence, we hypothesized that the cfDNA fragmentation profile, reflecting the 

ratios of short-to-long cfDNA fragments over genome regions, would elevate with the progression of 

disease. To test this, we applied Jonckheere's trend test to the compiled cfDNA fragmentation profiles. 

Jonckheere's trend test is a non-parametric statistical test designed to determine if there exists a significant 

trend across ordered groups. Using the fragmentation profiles from healthy samples as a reference, we 

anticipate that if the hypothesis stands, the fragmentation profiles of a specific cancer type could be in a 

sequential order – starting from the early cancer stage and advancing to the more advanced cancer stages. 

The Jonckheere's trend test enables a quantitative assessment into the correlation between cfDNA 

fragmentation patterns and the progression of cancer. 

Figure 3B summarizes the results of Jonckheere’s trend test across various cancer types, ranked 

by the p-values in an ascending order. Here, only the p-value of colorectal cancer (p-value = 0.0158) falls 

below the conventional statistical significance threshold of 0.05, suggesting a statistically significant 

association between cfDNA fragmentation profiles and the progression of cancer stages. 

Validating the association of cfDNA fragment profiles and cancer stages in CRC 

To confirm the association between cfDNA fragmentation profiles and the stages of colorectal cancer, we 

sequenced for 29 patients with colorectal cancer using a comprehensive cancer gene panel (read depth 40-

50x). This panel targets 151 clinically validated cancer-associated genes (Table S1), covering roughly 

1.32 MB or about 0.044% of the entire human genome. 
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Figure 4A denotes the cfDNA fragment length distributions of the WGS and targeted panel data. 

Although the targeted panel covers a small fraction of the human genome, the overall fragment length 

distributions between the two datasets are congruent. In addition, both datasets display the oscillated 

waves occurring every 10bp in the 100bp to 150bp range, a typical trait of cfDNA fragment length 

distribution, indicating the targeted panel data can essentially reflect the characteristics of cfDNA 

fragmentation patterns. 

To compare the cfDNA fragmentation profiles of two datasets, we constructed profiles for both 

datasets at the chromosome level (chr1 to chr22). Fig 4B and Fig 4C demonstrate the overall median 

profiles of these two datasets according to cancer stages. Although owing to different genomic coverage, 

little similarity is shown between the overall fragmentation profiles of these two datasets (Fig 4B), when 

we compare them regarding their cancer stages, these profiles are stratified in the same order with respect 

to cancer stages. The Jonckheere's trend test, applying to the fragmentation profiles of the targeted panel 

data at a bin width of 20Kb, achieved a p-value of 0.01 (Fig 3B). Above all, we conclude that for 

colorectal cancer, the cfDNA fragmentation profiles consistently align with cancer stages in order, and 

hence the cfDNA fragmentation profiles of CRC could be used as a biomarker to distinguish cancer 

stages. 

Frag2Stage: using cfDNA fragmentation profiles to classify cancer stages of CRC 

Our insights from the previous findings inspired the development of "frag2stage", a machine-learning 

model that leverages cfDNA fragmentation profiles to classify CRC cancer stages. Frag2stage utilizes a 

l1-regularized linear regression model (LASSO) to predict cancer stages from cfDNA fragmentation 

profiles. We employed a 5-fold cross-validation with 10 repeats to avoid overfitting. For imbalanced 

datasets, we adopted the up-sampling strategy, and repeated this step 50 times to offset the potential 

biases introduced from sampling. Our method was implemented in R (version 4.2.1). We used caret 

package (version 6.0.94) to control cross-validation and model training and used glmnet package (version 

4.1.8) for LASSO. 

For the whole-genome cfDNA data, our analysis encompassed two classification tasks: 

differentiating stage I from stage IV samples and distinguishing between stages I/II and stages III/IV 

samples. For the targeted panel data, we introduced an additional layer to discern stages I/II from stage IV 

samples. The whole-genome data was analyzed at a bin width of 5MB (resulting in 518 bins); while the 

targeted panel was assessed at a bin width of 20KB (56 bins). Table 3 summarizes the prediction 

performance with three metrics: AUC (Area Under Curve) of ROC (Receiver operating characteristic), 

precision (precision = true	positives
true	positives	+	false	positives

 ) and F1-score (F1 = 2 × precision	×	recall
precision	+	recall

). Figure 5A 
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illustrates the classification outcomes using the ROC curves. In detail, the frag2stage model, when 

applied to the whole-genome data, adeptly differentiates between stages I/II to III/IV and stages I to IV, 

with the AUC values of 0.73 and 0.77 respectively. For the targeted panel data, the resulting AUC values 

stood at 0.68, 0.79, and 0.99 for the classifications of stages I/II to III/IV, stages I/II to IV, and stages I to 

IV, respectively. For simplicity, we incorporate ROC-AUC values in the downstream analysis. 

Evaluation of the robustness of frag2stage 

Frag2stage is based upon cfDNA fragmentation profiles, and therefore we assessed the robustness of the 

model against two variables, the bin width of fragmentation profiles and the coverage of genomic regions 

that are used in the classification. 

To understand how the performance of our model varies with respect to genomic bin width, we 

applied frag2stage across a spectrum of widths. As illustrated in Figure, for both whole-genome and 

targeted panel datasets, the shift of prediction performance remains modest, hovering within a 0.06 

margin in the AUC values. 

Next, we tested how frag2stage would perform when only a fraction of data points in the cfDNA 

fragmentation profile are employed. This involved random selection of varying percentages of data points 

from the profiles, upon which frag2stage was applied. To reduce evaluation biases, this randomized 

sampling was repeated 50 times at each percentage (Fig 5C). For the whole-genome data, the AUC values 

across all two stage classifications drop gradually within 0.05. In contrast, the AUC values of the targeted 

panel data for all classifications remains consistent with minor fluctuations. 

In all, these analyses reveal the cfDNA fragmentation patterns are a reliable biomarker for 

distinguishing stages of colorectal cancer. Remarkably, even with minimal genomic data slices, 

frag2stage can classify cancer stages at a satisfactory precision. 

Discussion 

In this study, we explored the correlation between cfDNA fragmentation patterns and cancer TNM stages 

across seven cancer types. We discovered that the relationship between these patterns and cancer stages 

varies depending on cancer type. Tumor heterogeneity [33] and dynamic nature of cancer [34] could be 

the primary factors that contributed to this variability. Specifically, the inherent heterogeneity within 

tumors creates multiple subcellular populations, and each endowed with distinct genetic and epigenetic 

characteristics, leading to various cfDNA fragmentation patterns in different cancer types. Furthermore, 

as tumors progress, alterations in genetic composition, metabolism and other biological mechanisms may 
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evolve in distinct directions in different cancer origins, leading to diversity in this relationship. 

Additionally, the empirical nature of the TNM staging system might not invariably correlate with 

genomic alterations, introducing an additional layer of complexity. Notably, we identified a strong 

association between cfDNA fragmentation patterns and cancer stages in colorectal cancer, and this 

relationship is further confirmed by an independent targeted panel data. 

Further, we developed a machine learning model to classify cancer stages for colorectal cancer. 

We validated our model on two independent datasets and achieved promising AUC values. One intriguing 

result from our study is that our model can distinguish cancer stages using cfDNA fragmentation 

information from only a small portion of the genome, suggesting that alterations in cfDNA fragmentation 

patterns associated with the CRC progression is a university phenomenon over the whole human genome.  

With the advance of high-throughput sequencing technologies, the cost of NGS-based diagnostic 

tests has significantly decreased, making them commonplace in certain clinical settings. In this study, we 

demonstrated that cfDNA fragmentation information, derived from targeted sequencing (less than 50 US 

dollars), can distinguish the TNM stages of colorectal cancers. While we were not able to access the DNA 

genomic composition of the whole-genome data, the cfDNA fragmentation profiles still allowed us to 

differentiate between early and advanced stages. We believe the performance of our method can further 

be improved by integrating other genetic data and epigenetic data. 

To our knowledge, this is the first study to exclusively use cfDNA fragmentation data for cancer 

prognosis predictions. Our results hint at a potential non-invasive method for determining cancer stages, 

especially for colorectal cancer. As a proof-of-concept study, our findings offer a promising direction for 

liquid biopsy in cancer diagnosis and personalized medicine, setting the stage for future research and 

potential clinical applications. 

Data and code availability 

Sequencing data and codes used in this study will be available to the public on acceptance. 

Competing Interests 

X.G., F.Z., W.Z. and D.G. are shareholders of Apostle Inc and Apostle China Ltd. A patent that 

incorporates a portion of the research presented in this work has been filed. 

References 

1. Brierley, James, et al. "Global Consultation on Cancer Staging: promoting consistent understanding and 
use." Nature Reviews Clinical Oncology 16.12 (2019): 763-771. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.07.23298181doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.07.23298181


2. O'Sullivan, Brian, et al. "The TNM classification of malignant tumours—towards common understanding and 
reasonable expectations." The Lancet Oncology 18.7 (2017): 849-851. 

3. Gospodarowicz, M., et al. "History and international developments in cancer staging." Cancer prevention & 
control: CPC= Prevention & controle en cancerologie: PCC 2.6 (1998): 262-268. 

4. Greene, Frederick L., et al., eds. AJCC cancer staging handbook: TNM classification of malignant tumors. 
Springer Science & Business Media, 2002. 

5. Corcoran, Ryan B., and Bruce A. Chabner. "Application of cell-free DNA analysis to cancer treatment." New 
England Journal of Medicine 379.18 (2018): 1754-1765. 

6. Bronkhorst, Abel Jacobus, Vida Ungerer, and Stefan Holdenrieder. "The emerging role of cell-free DNA as a 
molecular marker for cancer management." Biomolecular detection and quantification 17 (2019): 100087. 

7. Reinert, Thomas, et al. "Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I 
to III colorectal cancer." JAMA oncology 5.8 (2019): 1124-1131. 

8. Ignatiadis, Michail, George W. Sledge, and Stefanie S. Jeffrey. "Liquid biopsy enters the clinic—
Implementation issues and future challenges." Nature reviews Clinical oncology 18.5 (2021): 297-312. 

9. Hamfjord, Julian, et al. "Total circulating cell-free DNA as a prognostic biomarker in metastatic colorectal 
cancer before first-line oxaliplatin-based chemotherapy." Annals of Oncology 30.7 (2019): 1088-1095. 

10. Jahr, Sabine, et al. "DNA fragments in the blood plasma of cancer patients: quantitations and evidence for 
their origin from apoptotic and necrotic cells." Cancer research 61.4 (2001): 1659-1665. 

11. Ellinger, Jörg, et al. "Apoptotic DNA fragments in serum of patients with muscle invasive bladder cancer: a 
prognostic entity." Cancer letters 264.2 (2008): 274-280. 

12. Lui, Yanni YN, et al. "Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-
mismatched bone marrow transplantation." Clinical chemistry 48.3 (2002): 421-427. 

13. Heitzer, Ellen, Lisa Auinger, and Michael R. Speicher. "Cell-free DNA and apoptosis: how dead cells inform 
about the living." Trends in molecular medicine 26.5 (2020): 519-528. 

14. Sun, Kun, et al. "Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive 
prenatal, cancer, and transplantation assessments." Proceedings of the National Academy of Sciences 
112.40 (2015): E5503-E5512. 

15. Moss, Joshua, et al. "Comprehensive human cell-type methylation atlas reveals origins of circulating cell-
free DNA in health and disease." Nature communications 9.1 (2018): 1-12. 

16. Snyder, Matthew W., et al. "Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-
of-origin." Cell 164.1-2 (2016): 57-68. 

17. Phallen, Jillian, et al. "Direct detection of early-stage cancers using circulating tumor DNA." Science 
translational medicine 9.403 (2017): eaan2415. 

18. Cohen, Joshua D., et al. "Detection and localization of surgically resectable cancers with a multi-analyte 
blood test." Science 359.6378 (2018): 926-930. 

19. Newman, Aaron M., et al. "An ultrasensitive method for quantitating circulating tumor DNA with broad patient 
coverage." Nature medicine 20.5 (2014): 548-554. 

20. Bettegowda, Chetan, et al. "Detection of circulating tumor DNA in early-and late-stage human 
malignancies." Science translational medicine 6.224 (2014): 224ra24-224ra24. 

21. Lo, YM Dennis, et al. "Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational 
profile of the fetus." Science translational medicine 2.61 (2010): 61ra91-61ra91. 

22. Mouliere, Florent, et al. "High fragmentation characterizes tumour-derived circulating DNA." PloS one 6.9 
(2011): e23418. 

23. Underhill, Hunter R., et al. "Fragment length of circulating tumor DNA." PLoS genetics 12.7 (2016): 
e1006162. 

24. Jiang, Peiyong, and YM Dennis Lo. "The long and short of circulating cell-free DNA and the ins and outs of 
molecular diagnostics." Trends in Genetics 32.6 (2016): 360-371. 

25. Van Der Pol, Ymke, and Florent Mouliere. "Toward the early detection of cancer by decoding the epigenetic 
and environmental fingerprints of cell-free DNA." Cancer cell 36.4 (2019): 350-368. 

26. Jiang, Peiyong, et al. "Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients." 
Proceedings of the National Academy of Sciences 112.11 (2015): E1317-E1325. 

27. Mouliere, Florent, et al. "Enhanced detection of circulating tumor DNA by fragment size analysis." Science 
translational medicine 10.466 (2018): eaat4921. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.07.23298181doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.07.23298181


28. Hellwig, Sabine, et al. "Automated size selection for short cell-free DNA fragments enriches for circulating 
tumor DNA and improves error correction during next generation sequencing." PloS one 13.7 (2018): 
e0197333. 

29. Cristiano, Stephen, et al. "Genome-wide cell-free DNA fragmentation in patients with cancer." Nature 
570.7761 (2019): 385-389. 

30. Burnham, Philip, et al. "Single-stranded DNA library preparation uncovers the origin and diversity of 
ultrashort cell-free DNA in plasma." Scientific reports 6.1 (2016): 1-9. 

31. Sanchez, Cynthia, et al. "New insights into structural features and optimal detection of circulating tumor DNA 
determined by single-strand DNA analysis." NPJ genomic medicine 3.1 (2018): 1-12. 

32. Benjamini, Yuval, and Terence P. Speed. "Summarizing and correcting the GC content bias in high-
throughput sequencing." Nucleic acids research 40.10 (2012): e72-e72. 

33. Marusyk, Andriy, and Kornelia Polyak. "Tumor heterogeneity: causes and consequences." Biochimica et 
Biophysica Acta (BBA)-Reviews on Cancer 1805.1 (2010): 105-117. 

34. Michor, Franziska, Yoh Iwasa, and Martin A. Nowak. "Dynamics of cancer progression." Nature reviews 
cancer 4.3 (2004): 197-205. 

35. Krzywinski, Martin, et al. "Circos: an information aesthetic for comparative genomics." Genome research 
19.9 (2009): 1639-1645. 

36. Zheng, Haizi, Michelle S. Zhu, and Yaping Liu. "FinaleDB: a browser and database of cell-free DNA 
fragmentation patterns." Bioinformatics 37.16 (2021): 2502-2503.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.07.23298181doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.07.23298181


 

 

Figure 1. Overview of this study. (1) Association analysis of cfDNA fragmentation profiles and cancer stages: we retrieved 214 

whole-genome cfDNA fragmentation data from the FinaleDB database [36], spanning 7 cancer types: bile duct, breast, 

colorectal, gastric, lung, ovarian and pancreatic cancers. The analysis indicated there exists a statistically significant association 

between cfDNA fragment profiles and cancer stages in colorectal cancer (CRC). (2) Further, we sequenced the blood samples 

from 29 colorectal cancer patients using a comprehensive cancer panel and confirmed this association in this dataset. (3) We 

developed “frag2stage”, a machine learning model to classify CRC cancer stages from the cfDNA fragmentation profiles of these 

datasets. 
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Figure 2. cfDNA fragment length distributions. (A) Comparison of cfDNA length distributions between healthy individuals 

(black, n=242) and cancer patients (red, n=214), where the ribbons denote the 95% confidence intervals. (B) Comparison of 

cfDNA length distributions across 7 cancer types. 
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Figure 3. Analyses of the correlation between cfDNA fragmentation patterns and cancer stages across various cancers. (A) 

Circos plots illustrate genome-wide cfDNA fragmentation patterns in 5Mb intervals. For each cancer's WGS data, median cfDNA 

fragmentation patterns are color-coded by stages: I (green), II (blue), and III/IV (red). Patterns from 242 healthy individuals are 

shown in black. The first plot represents median fragmentation patterns across all 214 cancer samples, while subsequent plots 

detail individual cancer types. (B) Jonckheere's trend test determines the significance of the association between fragmentation 

patterns and ordered cancer stages for each type. The test is also applied to a targeted panel dataset (highlighted in light blue). 

Cancers are ranked based on their p-values; a reference line at a 0.05 cutoff is denoted in red. 
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Figure 4. Comparison of WGS and targeted panel datasets of colorectal cancer. (A) The cfDNA fragment length distributions of 

both datasets align closely. Oscillatory patterns appear every 10bp in the range of 100bp to 150bp, with fragment length with a 

peak at 165bp. (B) Median cfDNA fragmentation profiles from both datasets are compared at the chromosomal level. (C) 

Fragmentation profiles from the two datasets, categorized by cancer stage, demonstrate similar progression trends. Despite 

differences in genome coverage and sequencing techniques between two datasets, their cfDNA fragmentation patterns 

consistently align with cancer stages. 
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Figure 5. Cancer stage prediction using frag2stage across two datasets. (A) ROC curves display the efficacy of frag2stage in 

distinguishing cancer stages based on cfDNA fragmentation profiles. For the WGS dataset, AUC values are 0.73 (stage I/II vs. 

III/IV) and 0.77 (stage I vs. IV), respectively. For the targeted panel dataset, AUCs are 0.68 (stage I/II vs. III/IV), 0.79 (stage I/II 

vs. IV), and 0.99 (stage I vs. IV), respectively. (B) Evaluating the robustness of frag2stage subject to bin width variation. The 

plots illustrate ROC values based on varying bin widths for both datasets. (C) Assessing the robustness of frag2stage against 

genome coverage variability. When applied to cfDNA fragmentation profiles with randomly selected bins at different degrees, 

the prediction performance of the WGS data drops gradually, while the targeted panel data retains consistent performance. 
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Table 1: summary of whole-genome cfDNA fragmentation data 

 Stage I Stage II Stage III Stage IV Total 

Bile Duct Cancer 3 19 0 3 25 

Breast Cancer 5 36 13 0 54 

Colorectal Cancer 7 7 5 8 27 

Gastric cancer 4 6 8 6 24 

Lung Cancer 7 11 2 0 20 

Ovarian Cancer 15 2 6 5 28 

Pancreatic Cancer 3 31 1 0 34 

 45 112 35 22 214 
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Table 2: clinical characteristics of colorectal cancer patients (targeted panel data) 

 Stage I (n=5) Stage II (n=4) Stage III (n=11) Stage IV (n=9) Total (n=29) 

Gender      

    Female 2  1  3 6 12 (41%) 

    Male 3 3 8 3 17 (59%) 

Age at diagnosis      

< 50 1 0 2 0 3 

50 - 59 0 0 2 0 2 

60 - 69 2 2 2 4 10 

70+ 2 2 5 5 14 

cfDNA (ng/uL) * 13 (12, 16) 24 (19, 29) 15 (13, 21) 44 (29, 164) 19 (13, 29) 

GC content (%) * 46.7 46.4 46.4 46.9 46.4 (46.3, 46.9) 

Location      

Ascending colon 1 2 3 5 11 

Descending colon 1 0 0 0 1 

Hepatic flexure 1 0 1 0 2 

Rectum 1 1 6 3 11 

Sigmoid colon 1 1 1 1 4 

* Median (IQR) 
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Table 3: Performance of frag2stage method on the whole-genome and targeted panel datasets 

 Whole-genome cfDNA data 

 ROC-AUC Precision F1-score 

Stage I/II vs. III/IV 0.73 (0.70-0.78) 0.71 (0.68-0.76) 0.69 (0.68-0.72) 

Stage I vs. IV 0.77 (0.70-0.83) 0.72 (0.69-0.76) 0.72 (0.70-0.73) 

Targeted panel cfDNA data 

Stage I/II vs. III/IV 0.68 (0.64-0.73) 0.78 (0.75-0.81) 0.66 (0.63-0.68) 

Stage I/II vs. IV 0.79 (0.74-0.84) 0.76 (0.72-0.80) 0.71 (0.69-0.74) 

Stage I vs. IV 0.99 (0.97-1.00) 0.95 (0.93-0.96) 0.88 (0.86-0.89) 

* Mean (95% confidence interval) 
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Supplementary materials 

Supplementary table 1: list of the 151 targeted genes of the AIO solid-tumor panel 

ABL1 AKAP13 AKT1 ALK APC ARID1A ATM BCL2 BCR BRAF 

BRCA1 BRCA2 CAMTA1 CAV1 CCND1 CCND2 CCNE1 CD274 CDC25A CDC73 

CDH1 CDK12 CDK4 CDK6 CDKN2A CDKN2B CIC CREBBP CSF1R CSMD1 

CTNNB1 CYP27B1 CYP2E1 DACH1 DDR2 DNMT3A DPYD EGFR EPCAM ERBB2 

ERBB3 ERBB4 ESR1 ETV1 ETV4 ETV6 EZH2 FBXO11 FBXW7 FGF19 

FGF3 FGF4 FGFR1 FGFR2 FGFR3 FGFR4 FHIT FOXL2 FOXN3 GNA11 

GNAQ GNAS GOPC HNF1A HRAS IDH1 IDH2 JAK2 JAK3 KDR 

KIT KLLN KMT2A KRAS KTN1 LRP1B MAP2K1 MAP2K2 MAP2K4 MAP3K8 

MAPK8 MDM2 MET MLH1 MSH2 MSH6 MSI2 MSR1 MTAP MTOR 

MTSS1 MYC MYCN MYD88 NAV1 NF1 NF2 NFE2L2 NOTCH1 NRAS 

NRG1 NTRK1 OCA2 PAX3 PDCD1LG2 PDCD2 PDGFRA PDGFRB PIK3CA PIK3CB 

PIK3R1 PKD1 PRCC PTCH1 PTEN PTPN11 PTPRT PVT1 RAF1 RARB 

RASSF10 RB1 RET ROCK2 ROS1 RPS19 RUNX2 SLCO1B3 SMAD4 SMARCB1 

SMO SRC ST7 STK11 SUZ12 TACC3 TCF4 TERT TMPRSS2 TP53 

TP63 TP73 TRIM24 TSC1 TSC2 TSHR TSPAN31 UGT1A1 VEGFA VHL 

WT1          
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Figure S1. Analyses of mean cfDNA fragment width. (A) Comparison of mean cfDNA fragment widths between healthy 

individuals (n=242) and cancer patients (n=214). (B) Comparison of mean cfDNA fragment widths of healthy individuals and 

seven cancer types. (C) Comparison of mean cfDNA fragment widths across cancer stages. (D) For each cancer type, comparison 

of mean cfDNA fragment widths across cancer stages. 
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Figure S2. Consistent correlation of cfDNA short-to-long fragment ratios pre- and post-GC-content Adjustment. (A-C) The 

correlation at genomic bin sizes of 1Kb, 10Kb, and 50Kb, respectively. Each point on the plots denotes a specific data entry in a 

cfDNA fragmentation profile. The x-axis represents the short-to-long fragment ratio prior to GC-content adjustment, while the y-

axis represents the ratio post-adjustment. 
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