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Abstract
SARS-CoV-2 Omicron surged as a variant of concern in late 2021. Subsequently, several distinct
Omicron variants have appeared and overtaken each other. We combined variant frequencies and infection
estimates from a nowcasting model for each US state to estimate variant-specific infections, attack rates,
and effective reproduction numbers (Rt). BA.1 rapidly emerged, and we estimate that it infected 47.7% of
the US population between late 2021 and early 2022 before it was replaced by BA.2. We estimate that
BA.5, despite a slower takeoff than BA.1, infected 35.7% of the US population, persisting in circulation
for nearly 6 months. Other Omicron variants - BA.2, BA.4, and XBB - together infected 30.7% of the US
population. We found a positive correlation between the state-level BA.1 attack rate and social
vulnerability and a negative correlation between the BA.1 and BA.2 attack rates. Our findings illustrate
the complex interplay between viral evolution, population susceptibility, and social factors during the
Omicron emergence in the US.
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Introduction
Nearly four years since the World Health Organization declared the COVID-19 outbreak as a pandemic,
SARS-CoV-2 caused more than 778 million confirmed cases globally and more than 6.9 million deaths
(1). The emergence of genetically distinct SARS-CoV-2 variants of concern (VOC) posed a major
challenge for control programs and greatly extended the length and health impact of the pandemic.

Following the emergence of the first major VOC, Alpha, in late 2020 (2), new VOCs have arisen and
resulted in successive waves of infection (3,4). Alpha co-circulated with both Beta and Gamma variants
(first detected contemporaneously in late 2020 in South Africa and Brazil (5,6), respectively); these
variants were subsequently replaced after the emergence and spread of the Delta variant (7) in mid-2021.
The emergence of the Omicron variant, first detected in South Africa and Botswana in November 2021
(8,9) was followed by rapid global spread and the replacement of the Delta variant.

Large-scale genomic sequencing of SARS-CoV-2 isolates collected from individuals with detected
COVID-19 disease has been instrumental in documenting the evolution of successive VOC in many
settings (5,7,9–11). However, a considerable fraction of SARS-CoV-2 infections do not result in
documented disease (12–15), especially after the introduction of vaccines and the development of partial
immunity associated with previous infection (16–18). Understanding the dynamics of transmission and
strain replacement requires methods to infer time trends in variant-specific infections. Here, we combine
nationwide SARS-CoV-2 sequencing data from GISAID with infection estimates from a Bayesian
nowcasting model to better characterize the rise and fall of Omicron variants in the United States (US)
between late 2021 and March 2023.

Results
Quantifying variant-specific infections by combining variant frequency and infection
estimates

The emergence and spread of multiple SARS-CoV-2 variants has been a hallmark of the COVID-19
pandemic. Combining 3,103,250 SARS-CoV-2 genomic sequences (Figs. S1-S3) and infection estimates
from a nowcasting model (covidestim (19); Fig. 1A), we estimated daily infections by each major variant
of Omicron (BA.1*, BA.2*, BA.4*, BA.5*, and XBB*) from each US state and the District of Columbia
from December 2021 to March 2023 (Fig. 1).

Reported cases, hospitalizations, and deaths provide an incomplete picture of the status of the COVID-19
pandemic since the majority of infections are asymptomatic. We address this by using infection estimates
from covidestim (19), a nowcasting model that generates daily infection estimates while correcting for
under-reporting and notification delays (Fig. 1A). We then sorted the SARS-CoV-2 sequences for all 50
states and the District of Columbia and binned the lineages into variant categories - BA.1*, BA.2*,
BA.4*, BA.5*, and XBB* (Table S1). Combining these two sets of analytic outputs, we calculated the
daily frequencies of each Omicron variant (Fig. S1). We used this information to estimate the number of
daily variant-specific infections via a spline interpolation (Fig. 1B). For more details see Materials and
Methods.
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We identified three peaks of infections in 2022 associated with the prevalence of distinct variants, one
period in the winter, one in spring to early summer, and one in the late fall (Fig. 1A). The first Omicron
period (BA.1*, December 2021 - January 2022) caused an estimated 4.2 million (95% credible interval
[CrI] = 2.6-6.0 million) infections per day at its peak (about 1.25% of the US population being infected
per day) (Fig. 1B, Tables 1 and S2). In total, we estimate that BA.1* caused approximately 169 million
infections (95% CrI = 97-249 million) in the US during this wave (Table 1). The second Omicron period
started in April 2022 (>2% frequency) with the emergence of Omicron BA.2* and lasted until November
2022 (<2% frequency) with the initial emergence of BA.4* and BA.5*. These variant-specific surges
peaked at ~625,000 (BA.2*), ~140,000 (BA.4*), and ~800,000 (BA.5*) infections per day in the US.
Finally, the third Omicron period, from November 2022 to March 2023, was driven by a resurgence of
BA.5* and the emergence of the recombinant variant, XBB*, which peaked at ~500,000 and ~300,000
infections per day in the US, respectively.

At the state level, we estimated that the daily BA.1* infections peaked at ~548,000, ~422,000, ~318,000,
and ~281,000, for California, Texas, Florida, and New York, respectively. Similar to our national
estimates, at these peaks over 1% of the state population was being infected per day. We summarize the
total and peak daily infections for each Omicron variant for all 50 states, the District of Columbia, and the
whole country (Tables 1, S2, and S3).

Fig. 1. Time series of daily Omicron variant infections across the entire United States.
The left y-axis, in black, is the state-level, and the right y-axis, in red, is the national scale. Note that the scale of the
y-axis differs between time series for each variant. The red shading is the 95% Credible Interval (CrI) for the
national estimate. The state-level 95% CrI for each of the variant infection estimates are provided in Table S3.
A) Time series of infection estimates for all variants. The gray lines are infection estimates per state and the red line
is the mean infection estimates per day for the whole US.
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B) Time series of infection estimates for each variant. The gray lines are infection estimates per state and the red
lines are the mean of infection estimates per day for the whole US. The scales differ by each variant subplot, as each
variant had a different size of total infection per day.

Table 1. Variant-specific Attack Rate, Peak, and Total Infections for the United States
Variant Categories

Omicron
BA.1*

Omicron
BA.2*

Omicron
BA.4*

Omicron
BA.5*

Omicron
XBB*

Overall

Attack Rate mean (max, min)

47.7%
(57.2%,
37.9%)

17.2%
(29.6%,
6.4%)

4.4% (6.7%,
2.3%)

35.7%
(47.9%,
24.3%)

9.1% (15.6%,
3.4%)

Peak Infections

Peak number
of daily
infections
(95% CrI)

4,204,319,
(2,558,883,
6,012,892)

625,656,
(366,130,
1,065,860)

140,772,
(81,506,
243,055)

799,728,
(462,471,
1,368,620)

303,653,
(172,254,
518,757)

Total Infections

Total
infections(95
% CrI)

169,296,672
(96,811,952,
249,315,168)

57,105,922
(30,272,041,
88,933,250)

15,557,243
(8,172,750,
24,319,495)

131,313,161
(69,034,994,
205,025,830)

31,476,061
(16,254,246,
49,538,781)

404,749,058
(220,545,98,
617,132,524)

Omicron variant attack rates for each state

We used the daily infections to calculate the percent of the population estimated to have been ever
infected during each variant wave (variant-specific attack rates) for each US state (Figs. 2 and S4).
During the BA.1* wave, states with the highest attack rates - Kentucky (57.2%), Alabama (56.5%), and
Louisiana (56.3%) - were concentrated in the southeast, while we estimate the lowest attack rates from
Iowa (38.3%), South Dakota (38.0%), and Idaho (42.1%). The highest and lowest state attack rates for the
other Omicron variants were as follows: BA.2* highest in Hawaii (30%), lowest in South Dakota (6%);
BA.4* highest in North Carolina (6.8%), lowest in Vermont (2.3%); BA.5* highest in Kentucky (48%),
lowest in Vermont (24%); XBB* highest in Rhode Island (15.6%), lowest is Arkansas (3.4%; Fig. 2B,
S4). While Kentucky often had high attack rates and Vermont and South Dakota generally had lower
attack rates, we did not detect consistent geographical patterns for each Omicron variant.
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Fig. 2. Distribution of attack rate estimates across the United States for each Omicron variant.
A) Attack rate distribution and state-level attack rate estimates. Each dot is a state attack rate estimate, and the
boxplots show the distribution of attack rate values across all states.
B) Maps of the attack rate estimates. For all the Omicron variants we show the US map, with Alaska and Hawaii
placed below. Color on the state map indicates the state-level attack rate value of each variant.

Variant-specific effective reproduction numbers estimated from across the US

We estimated Omicron variant-specific effective reproductive numbers (Rt) for each state to gain insight
into variant transmission (Fig. 3). We produced variant-specific estimates of Rt across all states by
applying the EpiEstim R package (20,21) functions to our variant-specific daily infection estimates (Fig.
1B). For Omicron BA.1*, the median Rt across all states started as high as 3 (1.5, 3) (Table S5), while the
Rt estimates for the other variants were smaller. We found similar longitudinal Rt estimates for BA.4* and
BA.5*, indicating that they were generating similar numbers of secondary cases in the US and thus able to
co-exist for several months. This observation suggests that there are variant-specific factors that can
impact their relative transmissibility (e.g. immune escape, infectivity), but there are important population
factors that also impact infection incidence.
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Fig. 3. Time series of variant-specific effective reproductive numbers across all states.
On each facet is depicted the time series for all US states and its confidence interval to the Rt estimate. The red line
is the national average overall states. To help the visualization we apply over each state Rt time series a locally
estimated scatterplot smoothing function (LOESS). The y-axes showing the Rt values are independently scaled for
each variant to highlight changes over time.

Variant-specific associations between attack rates and social vulnerability

To investigate whether SARS-CoV-2 transmission is associated with population level social vulnerability,
we examined correlations between our estimated outcomes and the CDC social vulnerability index (SVI)
metric (22). Comparing the state SVI (Fig. 4A) to the attack rates for each variant, weighted by the state
population sizes (Fig. 4B), we found that the Omicron BA.1* (correlation coefficient R = 0.56). BA.4* (R
= 0.3), and BA.5* (R = 0.31) attack rates positively correlate with the SVI (Fig. 4B). The BA.2* and
XBB* emergences occurred immediately following the two largest Omicron waves, BA.1* and BA.5*,
respectively. We, therefore, hypothesized that while individuals living in states with higher SVIs have
higher exposure rates, they are less susceptible to infection during variant emergence immediately
following exposure to a previous novel variant wave.

To test the hypothesis that states with higher SVI had higher exposure rates, we compared the Omicron
BA.1* attack rates to those for BA.2* (peaked ~4 months after BA.1) and BA.5* (peaked ~6 months after
BA.1). We calculated a negative correlation between the BA.1* and BA.2* attack rates (R = -0.31, 95%
CI [-0.54, -0.04]; Fig. 4C) and a positive correlation between BA.1* and BA.5* (R = 0.39, 95% CI [0.13,
0.6]; Fig. 4D). States like Kentucky, Louisiana, and Alabama, which are on the higher end of the SVI
scale, had attack rates that were relatively low for BA.1*, low for BA.2* attack rates, and high for BA.5*.
Four states that did not fit the negative BA.1*-BA.2* correlations were South Dakota, Iowa, Idaho, and
Nebraska, all of which had low SVI values and relatively low attack rates for both variants. Thus our
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analysis supports our hypothesis that variant waves are driven by opposing forces of social vulnerability
that govern exposure rates and population susceptibility following previous outbreaks.

Fig. 4. Correlation between variant attack rates and the social vulnerability index.
A) Map of the SVI for all states, colors correspond to the SVI scores.
B) Scatterplot between attack rates by variant category and the SVI. Sizes are equivalent to the size of the state
population and colors correspond to the variant categories as in the Panel B of Fig. 1.
C) Scatterplot between the attack rate of Omicron BA.1* and Omicron BA.2*, colors correspond to the SVI quartile,
and size is proportional to the state population size. Correlation between the attack rates.
D) Scatterplot between the attack rate of Omicron BA.1* and Omicron BA.5*, colors correspond to the SVI quartile,
and size is proportional to the state population size. Correlation between the attack rates.

Discussion
We investigated the Omicron variant-specific infection dynamics across all US states, estimating daily
infections, attack rates, and effective reproduction numbers. By combining sequencing data with infection
estimates, we aimed to disambiguate infection dynamics during periods of strain replacement and when
variants were co-circulating, revealing features of the epidemic that could not be inferred from the
reported epidemiological data alone.

We found that Omicron variants were responsible for approximately 404 million (95% CrI = 221-617
million) infections across the US from December 2021 to March 2023, including approximately 169
million during the BA.1* wave. The transmission dynamics of variants differed markedly: BA.1*
emerged as a genetically distinct (3,23–25) variant which caused large rapid epidemics, especially in
states with a higher degree of social vulnerability. Subsequent Omicron variants, while able to both
co-circulate and eventually outcompete extant strains, spread at lower levels and often for longer
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durations, exhibiting much weaker association with social vulnerability measures than the BA.1* variant.
These findings reveal the complex interplay between viral evolution, population susceptibility (driven by
previous infections and population-level immunity), and social factors that affect the risk of exposure and
infection.

The validity of our estimated variant-specific infections, attack rates, and effective reproduction numbers
depends on several assumptions (20,21,26,27). The state-level estimates of total infections (i.e. not
stratified by variant) were obtained from a published Bayesian nowcasting model which used publicly
available time series of COVID-19 case notifications, hospitalizations, and deaths, accounting for
effective population immunity. These estimates are calibrated to hospitalization and death data,
accounting for delays associated with disease progression and estimates of infection hospitalization and
infection fatality ratios (17). The model maintains two sets of assumptions, before and after the
introduction of the Omicron variants. The pre-Omicron model does not allow for reinfection or waning of
immunity, while the Omicron-era model allows for waning of immunity after infection. Because the
underlying mathematical model uses a weekly spline function to model the transmission rates, no explicit
assumptions were made about the transmissibility of each variant. Rather, the model allows the
transmissibility of circulating variants to vary over time, while the infection-hospitalization ratio remains
fixed. By using publically available SARS-CoV-2 sequencing data from GISAID to estimate variant
frequencies at the state level, we were able to disaggregate the total number of infections into
variant-specific incidence in the current analysis. As such, we assumed the sequencing was done at
random within states. We also note that our analysis of the association between state-level attack rates and
state-level SVI has the potential for ecological fallacy and should thus be interpreted with caution.

Our findings align with data from blood donors (28) and another modeling study in China (29). The
prevalence of anti-spike and anti-nucleocapsid antibodies (infection-induced and hybrid-induced) in the
blood donor sample rose from 20.9% in April - June 2021 (Pre-Omicron), to 54.6% in January - March
2022, and then to 70.3% in July - September 2022. The latter two periods align with our estimates of the
Omicron BA.1* and BA.5* waves. After the Omicron BA.5* wave, we estimate a cumulative attack rate
of 83.4% of the US population. The China study estimates after the BA.5* introduction in a naive
population, that 97% of the population had been infected. The overall attack rate we estimate is larger
than the US population, which is explained by reinfections over the Omicron variant waves.

Our findings provide evidence that the dynamic evolution of SARS-CoV-2 variants is a result of the
interplay between exposure and immunity to the virus (3,18,30,31). The pandemic's history has been
marked by the initial emergence of highly transmissible variants (3,7,27,32) and the Omicron era is
marked with immune escape characteristics (3,30,33), necessitating ongoing adaptations in public health
responses. By quantifying infection rates, attack rates, and effective reproduction numbers for different
variants across all states, we provide valuable insights that can guide preparedness and resource
allocation.

Materials and Methods

First, we describe the processing of lineage information and how the lineages were summarized into
categories. Second, we describe how the variant-specific infection estimates are produced by joining the
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infection estimate time series and variant frequency time series. Third, we describe the use of a modified
version of EpiEstim tools to estimate the Rt for each of the variants. Lastly, we describe the joint analysis
of the attack rate estimates and social vulnerability index scores.

Data Sources

The GISAID database contains more than 16 million genomes, of which approximately one-third come
from US genomic surveillance efforts (11). We processed the metadata and generated counts and
frequencies of each variant lineage. Frequencies of variants have been used as a surveillance tool by the
Centers for Disease Control and Prevention (CDC) and can give information on new invading variants.
The GISAID metadata contains the Pango lineage nomenclature system classification of the genome. We
can further distribute lineage information into variant categories by aggregating the major parental
lineages and their sublineages into the same category. We categorized those lineages into major lineages
categories (which we refer to as “Omicron variants”), such as Omicron BA.1* to incorporate Omicron
BA.1 and its sublineages, Omicron BA.2* to Omicron BA.2 and its sublineages, and so on (Table S1).

We used the published covidestim model data to render weekly variant-specific estimates of infection
from December 1, 2021 until May 1, 2023. This model back-calculates infections from the observed case,
death, vaccination and hospitalization reports, using assumptions on reporting and progression delays, and
a variable probability of case reporting over time. From the beginning of the pandemic until December 1,
2021, reinfections were not assumed to occur and the model was based on case and death reports. After
December 1, 2021, infections are back-calculated from case and hospitalization reports, to accommodate
the reduced mortality rate under Omicron variants. Furthermore, vaccination reports and assumed waning
of immunity are included in the assumptions, and the serial interval and infection mortality rate
assumptions are adjusted to match the new disease dynamics (17). The model output is a median of the
infection estimates and its 95% credible interval (CrI).

Lineages collapsing into major lineage categories

We pre-processed the metadata downloaded from GISAID and categorized the Pango lineages into 8
major categories: ‘Omicron BA.1*’, ‘Omicron BA.2*’, ‘Omicron BA.3*’, ‘Omicron BA.4*’, ‘Omicron
BA.5*’, ‘Omicron XBB*’, ‘Other Recombinant’ and ‘Other’, see Table 1 for details on each lineage and
its sublineage alias. As for the categories such as ‘Omicron BA.3*’, ‘Other Recombinant’, and ‘Other’,
had less than 2% in frequency and we suppressed them from the main analysis. We collapsed all the
sub-lineages into major categories, the following table summarizes our categorization. From the
categorization, we count and calculate the frequency of each of these categories in every state and week.
See Fig. S1 in the supplementary material for the counts of genomic sequences for the whole US during
the studied period, Dec 2021 to May 2023, into the 8 previously mentioned categories.

Variant-specific estimates by joining genomic frequencies and infection estimate

We summarized the genomic sequence data to align with the Covidestim weekly infection estimates. From
weekly counts, we calculate the frequency of each of the major variant categories described above. This
process guarantees compatibility between the dates of metadata and infection estimates. We filter out
frequencies below 2% on a week. By multiplying the frequencies of each category at each state by the
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number of total infections estimated for each state weekly, we produce estimates of the infections per
variant in each state per week. We round the number of infections estimated to an integer number of
infections.

In a formula, we have:

𝐼
𝑣,𝑠

(𝑡) =  𝐼
𝑠
(𝑡)𝑓

𝑣,𝑠
(𝑡),

Where the infection estimate time series for the variant v at state s, , is given by the infection𝐼
𝑣,𝑠

(𝑡)

estimate time series of total infection at state s, , times the frequencies time series of each variant s𝐼
𝑠
(𝑡)

within the state s, With every week.𝑓
𝑣,𝑠

(𝑡).  𝑓
𝑣,𝑠

(𝑡) > 0. 02

We interpolate the weekly time series using a b-spline function to produce a daily time series of
infections. We repeated the same procedure to the 2.5th and 97.5th quantiles of the infection estimates
generated by Covidestim. We report the 2.5th and 97.5th quantiles of the posterior distribution trajectories
as the lower and upper bound, respectively, for the 95% credible interval (CrI) of the infection estimates.
To compare the incidence estimates by each variant, we calculated the cumulative incidence over the
epidemic of each variant for all states. The incidence is given as the percent of the population ever
infected with the variant in the state.

Effective reproduction number estimates

The daily time series of each variant in each state was then given to the ‘estimate_R()’ function from the
R package EpiEstim. To avoid non-converging problems with the model employed by EpiEstim, we only
parse time series with more than ten days of continuous infection estimates. The model is parametrized
using an uncertain Serial Interval (SI) setting, estimating the serial intervals of SARS-CoV-2 (Omicron
variant specific) by drawing from two (truncated) normal distributions for the mean and standard
deviation of the SI. The truncated normal distribution of the SI is then parametrized with a mean of 3.5
(1–6 days).

Variant-specific attack rate

From the variant-specific infection estimates we can calculate the variant-specific attack rate (AR), i.e. the
proportion of state-population ever infected on each variant v wave. We calculate the AR by summing all
the infections for a specific variant v at state s over the period of the study:

𝐴𝑅
𝑣,𝑠

 =  
𝑡=0

𝑇
𝑚𝑎𝑥

∑ 𝐼𝑛𝑐
𝑣,𝑠

(𝑡)( ) *  100

Where is the incidence of variant v at state s, given by:𝐼𝑛𝑐
𝑣,𝑠

(𝑡)

𝐼𝑛𝑐
𝑣,𝑠

(𝑡) =
𝐼

𝑣,𝑠
(𝑡)

𝑝𝑜𝑝
𝑠

( ) * 105 

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2024. ; https://doi.org/10.1101/2023.11.07.23298178doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.07.23298178
http://creativecommons.org/licenses/by-nc-nd/4.0/


Rt ratios per variant for each state

We calculated the Rt ratio for pairs of variants to compare the Rt values between each variant across states
(Fig. S6). We created pairs based on temporal succession; for time points with two or more variants
co-circulating, we divided the succeeding variant time series by the preceding variant time series (Fig.
S6A). In all pairs of succession, we found the average Rt ratio was greater than 1 as expected, consistent
with the observation that succeeding variants were capable of invasion (Fig. S6B and Fig. S5).

We estimate the advantage of one variant over another by taking the Rt ratios during their period of
coexistence. From the Rt ratios, we can classify two different periods to the succession of Omicron
variants. Periods of complete clearance of the previous variants are marked with higher Rt ratios, as for
the Rt between BA.2*/BA.1* and XBB/BA.5* (Fig. 3.). Conversely, we see periods of coexistence of
more than one variant have smaller Rt ratios, e.g., the ratios between BA.4*/BA.2*, BA.5*/BA.2* and
BA.5*/BA.4*. The median Rt values of BA.2*, across the US, were almost 20% higher than the Rt values
of BA.1*, and to XBB* distribution of Rt values it was more than 20% bigger than the Rt values of
BA.5*. In summary, variants with comparable higher Rt (BA.2* and XBB*) values to their predecessor,
can completely invade the dominant variants. See Fig. S6. for the Rt ratios for all states.

Assessing the association between state-wide Social Vulnerability Index and variant-specific
AR

The social vulnerability index (SVI) is a metric compiled by the CDC summarizing the social conditions
that may affect the outcome in the face of disasters, such as infectious disease outbreaks (22) (Fig. 4). The
SVI is a summary metric, incorporating 4 main domains: socioeconomic status; household characteristics;
racial and ethnic minority status; and housing type and transportation. States that are high on the SVI
scale tend to have larger populations and are primarily concentrated in the southern half of the US (Fig.
4A). Originally the index was compiled at the census tract and county level; we have aggregated them by
state to be able to use it with the state-level estimates of infections by variant.

We calculated the correlation between the SVI and the state-level variant-specific AR using Pearson
correlation. For each of the variant-specific correlations between the SVI and the AR, we calculate
statistical significance with Bonferroni correction for multiple testing.

Data availability

The findings of this study are based on metadata associated with 3,103,250 sequences available on
GISAID from September 1st, 2021 up to April 22, 2023, and accessible at
https://doi.org/10.55876/gis8.231023hd (GISAID Identifier: EPI_SET_231023hd). All genome sequences
and associated metadata in this dataset are published in GISAID’s EpiCoV database. To view the
contributors of each sequence with details such as accession number, Virus name, Collection date,
Originating Lab and Submitting Lab, and the list of Authors, visit https//doi.org/10.55876/gis8.231023hd

The covidestim model uses publicly available data on case and death reports from Johns Hopkins
University and the CDC, vaccination data from the CDC and hospitalization data from Healthdata.gov
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(34–36). The script to join these data sources is available on Github
(https://www.github.com/covidestim/covidestim-sources), and the full description on how the data is
modeled is available in the linked publications (16,17,19).
Both the input data to the model, and the produced estimates used for this analysis are available on Github
(https://www.github.com/covidestim/data-archive).

Code availability

The pipeline used to calculate the variant-specific infections, attack rates, Rt, Rt ratio, and SVI comparison
is available on the following GitHub repository: https://github.com/rafalopespx/Variant_infections_rate
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Supplementary Material

Fig. S1. Flowchart of the process of joining genomic and epidemiological data streams. From the
genomic sequences metadata GISAID and infection estimates from covidestim, we produced infection
estimates by multiplying the frequencies of each Omicron variant by the infection estimates. Those
estimates are then imputed to EpiEstim functions to produce variant-specific effective reproduction
numbers, Rt, and state attack rates.

Fig. S2. Number of genomic sequences per variant category per week during the period of
December 1st, 2021 to May 1st, 2023, to the whole country. From the GISAID metadata, we calculate
the amount of sequences deposited to the database per week, during the analyzed period. Each bar is a
week of the period and the filling of the bar is the frequency of each variant during that week. It is
possible to see the pattern of succession of variants over the year.
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Fig. S3. Number of genomic sequences per variant category per week during the period of
December 1st, 2021 to May 1st, 2023, to all individual states. From the GISAID metadata, we calculate
the amount of sequences deposited to the database per week per state, during the analyzed period. Each
bar is a week of the period and the filling of the bar is the frequency of each variant during that week. It is
possible to see the pattern of succession of variants over the year.
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Fig. S4. Frequency from the raw number of genomic sequences per variant category, during the
period ranging from December 1st, 2021 to May 1st, 2023, over all the individual states. From the
GISAID metadata, we calculate the amount of sequences deposited to the database per week, during the
analyzed period. Each bar is a week of the period and the filling of the bar is the frequency of each variant
during that week. It is possible to see the pattern of succession of variants over the year.
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Fig. S5. Attack rate per each variant category for all individual states. Bar chart to the
variant-specific attack rates estimates in the layout of the US states. Each chart is the attack rates of the
variants with the corresponding color. The double-letter state abbreviation is displayed on the right side of
each subchart.
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Fig. S6. Effective reproduction number (Rt) ratios to each pair of succeeding variants by each state
overall. The Rt ratio is calculated by dividing the average Rt of the predecessor variant by the successor
variant. When the slope rises it means the entering variant has a larger value of average Rt over the
predecessor variant.

20

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2024. ; https://doi.org/10.1101/2023.11.07.23298178doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.07.23298178
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S7. The ratio between variant-specific Rt boxplot and dots to the state-specific ratios. Dots are the
state-level Rt ratio and the boxplot is the distribution over all the states. The pairs of variants are chosen as the
succeeding history of variants throughout 2022. After the BA.1* wave and before the XBB* Introduction to the US,
the Rt ratios are pretty similar, which was a period of coexistence of variants. The BA.2*/BA.1* and BA.5*/XBB*
are significantly higher, and mark the complete clearance of the previous variant, respectively BA.1* and XBB*.

Table S1. Categorization of Pango lineages and sublineages alias

Category ‘Omicron
BA.1*’

‘Omicron
BA.2*’

‘Omicron
BA.3*’

‘Omicron
BA.4*’

‘Omicron
BA.5*’

‘Omicron
XBB*’

‘Recombinant’ ‘Other’

Pango
lineage

BA.1 or
B.1.1.529
.1

BA.2 or
B.1.1.529.
2

BA.3 or
B.1.1529.
3

BA.4 or
B.1.1.529
.4

BA.5 or
B.1.1.529
.5

XBB X, excluding
XBB

Any
other

Sublineag
es alias

BD.1 B["G" "H"
"J" "L"
"M" "N"
"R" "S"
"Y"] or

No alias
for
sublineage
s

C[“S”] or
D[“C”]

B["E" "F"
"K" "Q"
"T" "U"
"V" "W"
"Z"] or

No alias
for
sublineag
es

No alias for
sublineages

No
alias for
subline
ages
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C["A" "B"
"H" "J"
"M" "V"]
or
D["D" "S"
"V"] or
E["J" "P"]
or F[“J”]

C["C"
"D" "E"
"F" "G"
"K" "L"
"N" "P"
"Q" "R"
"T" "U"
"W" "Y"
"Z"] or
D["A"
"B" "E"
"F" "G"
"H" "J"
"K" "L"
"M" "N"
"P" "Q"
"R" "T"
"U" "W"
"Y" "Z"]
or
E["A"
"C" "D"
"E" "F"
"H" "N"
"Q" "R"
"S" "T"
"V" "W"
"Y" "Z"]
or
F["A" "B"
"C" "F"]
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Table S2. Peak of infections by variant categories
Variant Categories

Omicron BA.1* Omicron BA.2* Omicron BA.4* Omicron BA.5* Omicron XBB*

USA

Peak (95% CrI) 4,204,319,
(2,558,883,
6,012,892)

625,656,
(366,130,
1,065,860)

140,772,
(81,506,
243,055)

799,728,
(462,471,
1,368,620)

303,653,
(172,254,
518,757)

State

Alabama 80,182 (47,369,
112,479)

6,723 (3,580,
10,492)

4,875 (2,530,
7,635)

16,326 (8,527,
25,631)

6,530 (3,381,
10,225)

Alaska 9,613 (5,302,
14,510)

2,068 (1,117,
3,182)

465 (253, 713) 2,942 (1,595,
4,514)

858 (455,
1,330)

Arizona 103,856
(63,738,
143,861)

14,316 (7,904,
21,918)

2,715 (1,494,
4,127)

21,139 (11,237,
32,554)

6,405 (3,408,
9,832)

Arkansas 50,336 (31,764,
69,471)

2,400 (1,369,
3,573)

1,186 (681,
1,770)

8,830 (5,071,
13,182)

1,831 (1,076,
2,703)

California 557,489
(341,862,
782,556)

95,148 (52,830,
145,546)

18,138 (10,020,
27,667)

125,358
(69,079,
193,731)

37,647 (20,103,
57,546)

Colorado 76,557 (48,741,
105,504)

12,656 (7,609,
18,493)

2,259 (1,308,
3,341)

13,696 (7,733,
20,466)

5,427 (3,099,
8,177)

Connecticut 43,946 (27,318,
60,374)

11,349 (6,507,
16,918)

1,516 (863,
2,265)

6,990 (3,850,
10,572)

7,253 (4,116,
10,801)

Delaware 13,451 (8,461,
18,504)

3,039 (1,792,
4,442)

438 (255, 646) 2,243 (1,313,
3,280)

1,265 (741,
1,843)

District of
Columbia

11,091 (6,650,
15,720)

1,720 (890,
2,753)

355 (183, 560) 1,682 (902,
2,633)

1,199 (606,
1,926)

Florida 321,120
(180,568,
464,205)

80,828 (34,453,
140,930)

20,522 (8,922,
35,349)

93,418 (39,452,
161,334)

31,583 (13,684,
54,676)

Georgia 159,773
(89,313,
230,749)

16,147 (8,423,
25,120)

6,634 (3,272,
10,511)

31,122 (15,669,
49,259)

9,163 (4,558,
14,450)

Hawaii 19,096 (12,542,
26,064)

6,743 (4,053,
9,836)

525 (318, 758) 3,921 (2,392,
5,658)

1,721 (963,
2,601)

Idaho 17,949 (10,225,
26,484)

2,507 (1,379,
3,798)

1,014 (564,
1,525)

4,328 (2,361,
6,496)

1,997 (1,053,
3,064)

Illinois 146,721
(86,668,
212,686)

33,088 (16,835,
53,212)

5,987 (3,059,
9,572)

35,119 (17,565,
56,728)

16,852 (8,469,
27,173)

Indiana 84,919 (48,758,
124,303)

9,738 (5,462,
14,721)

2,672 (1,482,
4,044)

18,132 (10,096,
27,476)

5,728 (3,213,
8,654)

Iowa 32,368 (18,300,
48,088)

4,887 (2,620,
7,553)

1,468 (796,
2,252)

7,617 (4,105,
11,718)

4,089 (2,149,
6,364)
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Variant Categories

Omicron BA.1* Omicron BA.2* Omicron BA.4* Omicron BA.5* Omicron XBB*

Kansas 38,318 (22,887,
54,483)

3,556 (2,064,
5,272)

2,150 (1,251,
3,193)

6,125 (3,522,
9,115)

3,056 (1,696,
4,627)

Kentucky 58,941 (35,903,
82,128)

9,077 (5,092,
13,689)

2,421 (1,345,
3,635)

18,105 (9,887,
27,601)

4,984 (2,780,
7,498)

Louisiana 76,514 (48,412,
106,023)

9,231 (5,308,
13,842)

3,466 (1,935,
5,290)

15,276 (8,585,
23,280)

5,480 (3,074,
8,324)

Maine 10,704 (5,563,
16,480)

6,207 (3,173,
9,679)

561 (293, 865) 3,648 (1,894,
5,573)

3,295 (1,702,
5,118)

Maryland 83,356 (53,404,
113,293)

16,156 (9,322,
24,307)

2,484 (1,375,
3,819)

13,879 (7,680,
21,416)

8,350 (4,498,
13,044)

Massachusetts 86,114 (54,662,
120,852)

24,465 (14,110,
36,772)

2,681 (1,450,
4,137)

13,242 (7,307,
20,031)

12,965 (6,938,
20,023)

Michigan 117,269
(73,085,
164,533)

30,366 (16,847,
46,137)

3,041 (1,673,
4,658)

25,556 (13,749,
39,398)

12,241 (6,687,
18,714)

Minnesota 63,291 (36,011,
91,500)

15,655 (8,310,
24,233)

3,226 (1,756,
4,934)

13,960 (7,403,
21,740)

7,029 (3,604,
11,194)

Mississippi 44,990 (26,330,
64,764)

3,129 (1,585,
5,019)

2,975 (1,553,
4,674)

9,379 (4,820,
15,136)

2,236 (1,120,
3,606)

Missouri 80,372 (44,259,
118,202)

10,223 (5,393,
15,688)

4,489 (2,371,
6,929)

15,092 (8,016,
23,262)

6,564 (3,359,
10,232)

Montana 12,415 (7,200,
17,745)

2,320 (1,286,
3,478)

893 (490,
1,339)

2,594 (1,435,
3,897)

1,392 (748,
2,113)

Nebraska 20,631 (10,612,
31,697)

3,127 (1,405,
5,288)

1,248 (591,
2,066)

6,412 (3,003,
10,728)

3,621 (1,673,
5,939)

Nevada 46,695 (26,554,
67,458)

7,282 (3,789,
11,436)

1,347 (670,
2,179)

11,321 (5,521,
18,289)

2,449 (1,270,
3,818)

New
Hampshire

15,072 (8,165,
22,673)

4,573 (2,122,
7,523)

658 (323,
1,050)

3,084 (1,459,
4,987)

1,910 (916,
3,086)

New Jersey 129,431
(84,798,
175,301)

25,503 (14,722,
38,458)

4,113 (2,417,
6,097)

20,953 (11,991,
31,485)

20,233 (11,420,
30,806)

New Mexico 26,044 (16,304,
36,133)

4,557 (2,648,
6,670)

899 (527,
1,311)

5,621 (3,375,
8,163)

2,151 (1,217,
3,251)

New York 279,829
(188,920,
369,299)

62,000 (35,089,
94,159)

8,599 (4,869,
13,046)

43,532 (24,380,
66,294)

33,017 (18,181,
50,426)

North Carolina 145,495
(82,058,
210,783)

23,801 (12,104,
37,938)

7,066 (3,474,
11,378)

31,189 (15,348,
50,306)

13,495 (6,808,
21,580)

North Dakota 11,563 (6,456,
17,318)

1,268 (685,
1,952)

300 (163, 460) 2,054 (1,110,
3,156)

741 (392,
1,149)

Ohio 147,527
(89,066,
210,398)

20,290 (10,936,
31,025)

4,964 (2,724,
7,685)

29,839 (16,551,
45,733)

14,609 (7,583,
22,993)
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Variant Categories

Omicron BA.1* Omicron BA.2* Omicron BA.4* Omicron BA.5* Omicron XBB*

Oklahoma 65,080 (41,002,
90,000)

4,214 (2,261,
6,481)

1,683 (917,
2,571)

11,447 (6,416,
17,522)

4,384 (2,388,
6,855)

Oregon 47,195 (25,717,
69,205)

12,278 (6,451,
18,790)

2,193 (1,138,
3,367)

11,708 (6,036,
18,016)

3,848 (1,957,
5,961)

Pennsylvania 145,978
(78,954,
217,595)

28,065 (13,808,
45,040)

4,308 (2,098,
6,965)

27,038 (13,534,
43,302)

17,905 (8,334,
29,362)

Rhode Island 16,200 (10,789,
21,801)

3,574 (2,030,
5,372)

394 (226, 596) 2,288 (1,321,
3,440)

2,493 (1,455,
3,710)

South Carolina 84,921 (53,210,
115,986)

7,929 (4,615,
11,681)

4,136 (2,368,
6,100)

14,312 (8,188,
21,169)

4,398 (2,504,
6,496)

South Dakota 12,022 (6,712,
18,005)

1,152 (624,
1,770)

424 (230, 651) 2,076 (1,112,
3,203)

1,385 (733,
2,148)

Tennessee 97,662 (59,133,
136,697)

8,670 (4,949,
12,898)

3,894 (2,156,
5,847)

20,986 (11,682,
31,856)

7,156 (4,035,
10,741)

Texas 432,525
(255,142,
619,817)

39,191 (21,317,
60,325)

16,480 (8,821,
25,662)

87,585 (47,036,
134,975)

28,519 (15,041,
44,741)

Utah 42,484 (25,153,
60,734)

6,060 (3,227,
9,442)

1,097 (576,
1,710)

6,908 (3,628,
10,773)

2,478 (1,301,
3,837)

Vermont 6,620 (3,891,
9,483)

2,692 (1,453,
4,081)

298 (161, 456) 1,190 (619,
1,841)

755 (402,
1,155)

Virginia 102,760
(61,246,
143,788)

19,659 (10,351,
30,465)

5,019 (2,677,
7,729)

21,178 (11,449,
32,737)

11,310 (5,887,
17,766)

Washington 91,418 (51,214,
133,457)

20,114 (10,647,
31,232)

2,654 (1,382,
4,094)

18,868 (9,883,
29,248)

7,000 (3,605,
10,913)

West Virginia 20,331 (12,485,
28,457)

3,877 (2,261,
5,706)

1,245 (731,
1,832)

5,565 (3,218,
8,278)

1,929 (1,084,
2,897)

Wisconsin 73,723 (46,292,
102,151)

13,150 (7,494,
19,581)

2,316 (1,311,
3,485)

12,706 (7,374,
19,070)

6,210 (3,540,
9,358)

Wyoming 7,768 (4,382,
11,443)

1,295 (701,
2,011)

705 (373,
1,092)

1,981 (1,028,
3,093)

642 (327,
1,017)
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Table S3. Total of infections by variant categories

Variant Categories

Omicron
BA.1*

Omicron
BA.2*

Omicron
BA.4*

Omicron
BA.5*

Omicron
XBB*

Overall

USA

Total (95%
CrI)

169,296,672
(96,811,952,
249,315,168)

57,105,922
(30,272,041,
88,933,250)

15,557,243
(8,172,750,
24,319,495)

131,313,161
(69,034,994,
205,025,830)

31,476,061
(16,254,246,
49,538,781)

404,749,058
(220,545,983

,
617,132,524)

State

Alabama 2,861,874
(1,635,058,
4,177,722)

544,179
(285,193,
844,863)

330,767
(171,464,
519,768)

2,020,143
(1,051,338,
3,168,515)

398,834
(206,050,
626,303)

6,155,797
(3,349,103,
9,337,171)

Alaska 352,459
(195,911,
529,614)

205,646
(110,037,
317,585)

39,112
(21,055,
60,195)

310,203
(166,720,
477,793)

49,530
(26,099,
76,996)

956,950
(519,822,
1,462,183)

Arizona 4,130,826
(2,427,603,
5,967,210)

1,133,875
(622,027,
1,724,443)

226,635
(124,644,
344,662)

2,494,519
(1,352,664,
3,811,698)

513,206
(272,650,
790,211)

8,499,062
(4,799,588,
12,638,224)

Arkansas 1,688,447
(1,033,695,
2,397,005)

241,544
(138,029,
359,964)

101,928
(58,447,
151,490)

1,132,255
(648,133,
1,684,949)

108,506
(61,526,
161,821)

3,272,680
(1,939,830,
4,755,229)

California 21,136,003
(12,466,668,
30,609,245)

7,520,873
(4,137,505,
11,481,984)

1,473,707
(810,443,
2,250,994)

17,538,623
(9,519,077,
26,911,779)

3,381,597
(1,785,804,
5,250,658)

51,050,803
(28,719,497,
76,504,660)

Colorado 2,756,928
(1,687,303,
3,934,541)

835,730
(491,156,
1,233,276)

191,483
(110,500,
285,137)

1,821,173
(1,038,622,
2,722,399)

399,929
(226,224,
603,650)

6,005,244
(3,553,805,
8,779,003)

Connecticut 1,569,268
(929,057,
2,255,856)

758,690
(429,502,
1,135,586)

160,100
(89,697,
240,626)

1,241,057
(693,543,
1,867,495)

554,894
(305,116,
841,458)

4,284,009
(2,446,915,
6,341,021)

Delaware 472,608
(291,441,
665,032)

195,164
(114,963,
285,293)

40,716
(23,645,
59,887)

312,410
(181,209,
460,305)

98,247
(55,964,
145,988)

1,119,145
(667,222,
1,616,505)

District of
Columbia

340,401
(194,464,
503,812)

132,748
(67,166,
213,078)

34,456
(17,802,
54,597)

240,165
(124,267,
379,766)

89,902
(45,761,
143,553)

837,672
(449,460,
1,294,806)

Florida 11,711,586
(5,993,825,
18,239,805)

5,599,326
(2,358,863,
9,771,925)

1,543,749
(649,617,
2,684,850)

10,907,972
(4,612,932,
18,927,995)

2,858,053
(1,186,960,
5,000,744)

32,620,686
(14,802,197,
54,625,319)

Georgia 5,970,483
(3,211,231,
8,940,093)

1,294,603
(662,919,
2,028,505)

574,768
(289,763,
905,776)

3,579,612
(1,797,762,
5,645,377)

739,308
(366,439,
1,167,363)

12,158,774
(6,328,114,
18,687,114)

Hawaii 625,830
(397,076,
876,594)

445,222
(269,746,
646,592)

41,423
(25,045,
60,124)

515,935
(310,427,
749,819)

96,317
(56,617,
141,637)

1,724,727
(1,058,911,
2,474,766)
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Variant Categories

Omicron
BA.1*

Omicron
BA.2*

Omicron
BA.4*

Omicron
BA.5*

Omicron
XBB*

Overall

Idaho 799,828
(444,196,
1,203,695)

190,366
(102,880,
289,955)

55,694
(30,286,
84,402)

575,594
(312,169,
874,200)

121,962
(62,301,
181,006)

1,743,445
(951,832,
2,633,258)

Illinois 5,847,916
(3,290,318,
8,784,671)

2,530,815
(1,279,336,
4,065,780)

596,856
(301,340,
957,139)

5,778,154
(2,900,193,
9,278,462)

1,374,849
(679,949,
2,232,869)

16,128,590
(8,451,136,
25,318,921)

Indiana 3,221,967
(1,829,221,
4,760,958)

839,650
(466,244,
1,275,657)

252,143
(138,811,
384,247)

2,438,945
(1,339,172,
3,722,982)

423,941
(232,931,
647,001)

7,176,647
(4,006,379,
10,790,845)

Iowa 1,275,381
(720,123,
1,897,523)

378,593
(203,036,
584,204)

121,793
(65,527,
187,534)

1,073,679
(574,797,
1,656,513)

231,258
(121,656,
359,809)

3,080,705
(1,685,139,
4,685,583)

Kansas 1,424,024
(841,851,
2,061,365)

284,720
(161,117,
427,681)

160,968
(91,620,
240,858)

926,594
(523,391,
1,390,894)

206,146
(112,924,
313,676)

3,002,453
(1,730,903,
4,434,474)

Kentucky 2,648,706
(1,547,191,
3,843,142)

682,532
(379,664,
1,032,476)

247,683
(136,626,
374,849)

2,292,163
(1,265,442,
3,470,302)

361,718
(199,192,
547,380)

6,232,803
(3,528,115,
9,268,149)

Louisiana 2,734,075
(1,645,151,
3,935,622)

636,355
(358,664,
963,564)

291,314
(163,063,
443,764)

2,047,575
(1,149,785,
3,110,087)

393,143
(219,074,
597,575)

6,102,463
(3,535,737,
9,050,612)

Maine 654,713
(339,428,
1,007,461)

371,078
(191,675,
575,047)

52,512
(27,311,
80,398)

532,928
(278,001,
819,018)

197,785
(102,630,
305,495)

1,809,015
(939,045,
2,787,419)

Maryland 2,820,000
(1,696,040,
4,045,519)

1,096,331
(616,390,
1,671,340)

278,753
(152,755,
430,834)

2,187,528
(1,189,163,
3,397,028)

657,040
(356,951,
1,021,456)

7,039,651
(4,011,299,
10,566,177)

Massachuset
ts

3,092,432
(1,868,552,
4,472,143)

1,604,879
(902,957,
2,430,668)

319,262
(176,225,
486,930)

2,261,196
(1,242,470,
3,457,802)

1,137,947
(611,723,
1,757,164)

8,415,716
(4,801,927,
12,604,707)

Michigan 4,952,816
(2,894,250,
7,246,614)

2,061,393
(1,129,545,
3,154,434)

412,242
(224,921,
633,289)

4,368,747
(2,370,352,
6,725,415)

845,995
(458,598,
1,300,029)

12,641,193
(7,077,666,
19,059,781)

Minnesota 2,591,210
(1,448,553,
3,843,109)

1,093,084
(577,754,
1,693,068)

314,180
(166,567,
486,261)

2,453,942
(1,282,327,
3,822,807)

489,855
(250,928,
771,749)

6,942,271
(3,726,129,
10,616,994)

Mississippi 1,573,407
(892,359,
2,332,514)

241,478
(122,767,
385,332)

210,840
(107,134,
338,364)

1,205,718
(611,261,
1,936,522)

186,844
(93,987,
299,065)

3,418,287
(1,827,508,
5,291,797)

Missouri 3,017,209
(1,630,917,
4,510,940)

806,496
(420,664,
1,245,574)

403,319
(212,460,
621,947)

2,618,917
(1,364,418,
4,052,275)

482,953
(243,735,
756,004)

7,328,895
(3,872,194,
11,186,740)

Montana 552,672
(307,515,
818,406)

146,534
(79,164,
217,360)

34,784
(19,114,
51,894)

409,039
(225,095,
614,255)

86,061
(46,618,
130,135)

1,229,091
(677,506,
1,832,050)
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Variant Categories

Omicron
BA.1*

Omicron
BA.2*

Omicron
BA.4*

Omicron
BA.5*

Omicron
XBB*

Overall

Nebraska 889,545
(441,341,
1,407,803)

243,778
(112,436,
408,810)

107,197
(49,835,
178,867)

838,085
(387,325,
1,398,469)

199,555
(90,818,
332,547)

2,278,160
(1,081,755,
3,726,496)

Nevada 1,649,140
(901,150,
2,475,719)

522,801
(264,944,
832,607)

77,892
(39,145,
124,220)

1,146,671
(576,971,
1,821,735)

201,632
(102,603,
318,942)

3,598,136
(1,884,813,
5,573,223)

New
Hampshire

658,704
(337,160,
1,029,075)

297,341
(140,342,
482,063)

52,427
(24,921,
84,876)

458,427
(216,920,
742,973)

174,359
(82,875,
283,180)

1,641,259
(802,218,
2,622,167)

New Jersey 4,166,398
(2,567,495,
5,898,823)

1,975,115
(1,138,989,
2,966,386)

432,214
(247,240,
650,756)

3,490,381
(1,982,446,
5,273,998)

1,415,747
(792,589,
2,153,908)

11,479,856
(6,728,759,
16,943,871)

New Mexico 990,992
(604,106,
1,410,887)

303,789
(176,868,
445,689)

66,143
(38,706,
96,793)

823,361
(480,457,
1,210,706)

118,664
(67,796,
177,130)

2,302,948
(1,367,933,
3,341,205)

New York 9,754,566
(5,967,424,
13,881,771)

4,476,302
(2,497,817,
6,813,589)

939,623
(521,195,
1,436,136)

7,514,728
(4,139,624,
11,510,894)

2,909,825
(1,566,864,
4,495,206)

25,595,043
(14,692,924,
38,137,596)

North
Carolina

5,853,090
(3,144,823,
8,855,603)

1,787,250
(890,503,
2,852,838)

782,476
(385,783,
1,253,920)

4,518,252
(2,221,820,
7,252,609)

1,108,001
(544,745,
1,779,068)

14,049,069
(7,187,674,
21,994,038)

North
Dakota

382,197
(213,944,
571,581)

86,442
(46,261,
133,476)

21,572
(11,632,
33,131)

303,024
(162,037,
467,779)

46,892
(24,732,
72,817)

840,127
(458,606,
1,278,784)

Ohio 5,818,872
(3,349,786,
8,594,567)

1,563,275
(849,979,
2,394,259)

495,319
(268,212,
763,645)

4,762,751
(2,556,954,
7,370,673)

996,338
(528,478,
1,547,827)

13,636,556
(7,553,409,
20,670,971)

Oklahoma 2,248,025
(1,319,921,
3,274,827)

338,515
(180,660,
525,911)

148,561
(80,257,
229,908)

1,534,067
(829,204,
2,373,991)

276,216
(147,663,
429,573)

4,545,385
(2,557,705,
6,834,210)

Oregon 1,966,175
(1,056,579,
2,952,421)

949,375
(495,031,
1,455,359)

167,175
(86,634,
256,897)

1,790,199
(924,987,
2,761,843)

272,770
(138,471,
423,957)

5,145,694
(2,701,702,
7,850,477)

Pennsylvani
a

5,902,298
(3,081,107,
9,029,812)

2,129,036
(1,040,143,
3,417,654)

544,797
(261,038,
885,234)

4,547,679
(2,162,097,
7,418,136)

1,510,504
(706,374,
2,492,527)

14,634,314
(7,250,759,
23,243,363)

Rhode Island 522,508
(327,543,
734,202)

224,726
(126,878,
340,313)

42,654
(24,463,
64,150)

360,817
(207,353,
542,063)

178,324
(100,585,
269,060)

1,329,030
(786,822,
1,949,788)

South
Carolina

2,907,774
(1,774,249,
4,094,424)

587,134
(337,807,
867,160)

325,047
(186,372,
481,047)

1,874,199
(1,075,311,
2,775,719)

339,224
(193,657,
503,640)

6,033,379
(3,567,396,
8,721,990)

South
Dakota

354,743
(199,554,
528,949)

61,199
(32,684,
94,051)

31,407
(16,871,
48,383)

260,808
(139,609,
402,383)

57,270
(26,945,
78,851)

765,427
(415,663,
1,152,617)
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Variant Categories

Omicron
BA.1*

Omicron
BA.2*

Omicron
BA.4*

Omicron
BA.5*

Omicron
XBB*

Overall

Tennessee 3,785,252
(2,243,186,
5,452,979)

689,185
(387,862,
1,034,688)

301,891
(168,824,
455,439)

2,739,678
(1,527,671,
4,130,241)

550,675
(304,500,
833,572)

8,066,681
(4,632,043,
11,906,919)

Texas 16,786,605
(9,481,126,
24,941,464)

3,849,706
(2,089,693,
5,917,738)

1,269,340
(685,900,
1,949,479)

11,113,991
(5,982,160,
17,110,465)

2,510,794
(1,326,948,
3,911,893)

35,530,436
(19,565,827,
53,831,039)

Utah 1,647,216
(933,877,
2,442,030)

499,399
(259,801,
782,467)

83,013
(43,119,
130,014)

936,637
(483,952,
1,467,963)

127,927
(65,860,
200,650)

3,294,193
(1,786,609,
5,023,124)

Vermont 288,229
(164,251,
423,930)

161,426
(87,570,
244,512)

14,947
(7,949,
22,744)

162,289
(85,393,
249,600)

39,117
(18,005,
52,357)

666,009
(363,168,
993,143)

Virginia 4,140,034
(2,385,571,
6,049,825)

1,523,745
(818,182,
2,348,379)

553,273
(293,895,
858,061)

3,105,911
(1,640,013,
4,831,727)

838,487
(439,335,
1,305,841)

10,161,450
(5,576,996,
15,393,833)

Washington 3,635,330
(2,004,883,
5,415,628)

1,679,560
(885,947,
2,594,983)

224,478
(116,931,
348,273)

2,633,232
(1,368,100,
4,092,970)

491,960
(251,280,
772,143)

8,664,560
(4,627,141,
13,223,997)

West
Virginia

944,398
(559,126,
1,365,966)

268,493
(153,651,
398,536)

100,317
(57,579,
148,931)

725,635
(413,656,
1,081,434)

145,696
(80,957,
219,783)

2,184,540
(1,264,969,
3,214,650)

Wisconsin 2,882,599
(1,730,907,
4,171,260)

936,916
(537,569,
1,402,163)

243,145
(139,211,
364,892)

2,174,552
(1,238,138,
3,276,613)

463,267
(260,437,
703,366)

6,700,478
(3,906,262,
9,918,294)

Wyoming 298,911
(163,846,
451,411)

79,505
(41,461,
124,385)

21,147
(11,156,
32,883)

212,998
(108,066,
324,394)

16,993
(3,322,
37,509)

629,554
(327,851,
943,221)
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Table S4. Attack rates by variant categories

Variant Categories

Omicron BA.1* Omicron BA.2* Omicron BA.4* Omicron BA.5* Omicron XBB*

USA mean (max, min)

47.7% (57.2%,
37.9%)

17.2% (29.6%,
6.4%)

4.4% (6.7%,
2.3%)

35.7% (47.9%,
24.3%)

9.1% (15.6%,
3.4%)

States

Alabama 56.6% 10.2% 6.1% 37.5% 7.4%

Alaska 45.4% 25.9% 4.9% 39.1% 6.2%

Arizona 54.9% 14.5% 2.9% 31.9% 6.6%

Arkansas 54.2% 7.5% 3.2% 35.2% 3.4%

California 51.5% 17.6% 3.4% 41.0% 7.9%

Colorado 46.0% 13.6% 3.1% 29.6% 6.4%

Connecticut 42.7% 19.9% 4.2% 32.6% 14.5%

Delaware 47.4% 19.0% 4.0% 30.4% 9.5%

District of
Columbia

45.8% 16.7% 4.4% 30.7% 11.4%

Florida 50.8% 21.7% 6.0% 42.8% 11.1%

Georgia 54.3% 11.2% 5.0% 31.0% 6.4%

Hawaii 42.6% 29.6% 2.8% 34.4% 6.4%

Idaho 42.1% 10.0% 2.9% 30.2% 6.9%

Illinois 43.2% 17.7% 4.2% 40.7% 9.6%

Indiana 45.7% 11.5% 3.5% 33.5% 5.8%

Iowa 38.3% 11.0% 3.6% 31.4% 6.7%

Kansas 47.0% 9.1% 5.2% 29.7% 6.6%

Kentucky 57.2% 14.2% 5.2% 47.9% 7.6%

Louisiana 56.4% 12.6% 5.7% 40.5% 7.8%

Maine 45.9% 25.8% 3.7% 37.3% 13.8%

Maryland 45.0% 16.6% 4.2% 32.7% 9.8%

Massachusetts 42.6% 21.5% 4.3% 30.2% 15.2%

Michigan 47.2% 19.0% 3.8% 40.2% 7.8%

Minnesota 44.0% 17.9% 5.1% 40.0% 7.9%

Mississippi 50.2% 7.3% 6.3% 35.9% 5.6%

Missouri 47.4% 12.3% 6.1% 39.8% 7.3%

Montana 49.8% 13.4% 3.1% 36.3% 7.6%

Nebraska 42.4% 10.9% 4.8% 37.7% 9.1%

Nevada 51.0% 15.3% 2.3% 33.8% 6.0%

New
Hampshire

44.9% 19.8% 3.5% 30.5% 11.5%

New Jersey 45.4% 20.5% 4.5% 36.2% 14.6%

New Mexico 45.7% 13.8% 3.0% 37.1% 5.3%
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Variant Categories

Omicron BA.1* Omicron BA.2* Omicron BA.4* Omicron BA.5* Omicron XBB*

New York 48.4% 21.2% 4.4% 35.4% 13.7%

North Carolina 53.0% 15.4% 6.7% 38.9% 9.5%

North Dakota 47.4% 10.4% 2.6% 36.6% 5.7%

Ohio 47.2% 12.4% 3.9% 37.3% 7.8%

Oklahoma 54.3% 7.8% 3.4% 35.4% 6.4%

Oregon 44.8% 21.3% 3.7% 39.9% 6.1%

Pennsylvania 43.7% 15.1% 3.8% 31.7% 10.4%

Rhode Island 47.7% 19.5% 3.7% 31.4% 15.6%

South Carolina 55.4% 10.8% 6.0% 34.4% 6.2%

South Dakota 37.9% 6.4% 3.3% 27.2% 7.5%

Tennessee 53.6% 9.4% 4.1% 37.5% 7.5%

Texas 55.0% 12.2% 4.0% 35.3% 7.9%

Utah 48.8% 14.2% 2.4% 26.8% 3.7%

Vermont 44.3% 24.4% 2.3% 24.3% 7.5%

Virginia 46.7% 16.5% 5.9% 33.3% 9.0%

Washington 45.8% 20.5% 2.7% 32.0% 5.9%

West Virginia 50.7% 14.1% 5.3% 38.0% 7.6%

Wisconsin 47.2% 15.0% 3.9% 34.5% 7.3%

Wyoming 48.6% 12.6% 3.4% 35.7% 6.5%

Table S5. Interval values to the Rt estimates by variant categories

Variant Categories

max (p25, p75) Omicron BA.1* Omicron BA.2* Omicron BA.4* Omicron BA.5* Omicron XBB*

median 4.23 (0.80,
1.06)

3.94 (0.88,
1.14)

2.59 (0.91,
1.10)

2.94 (0.92,
1.08)

2.35 (0.97,
1.20)

upper 7.74 (0.89,
1.27)

6.20 (0.94,
1.22)

3.97 (0.96,
1.18)

4.79 (0.96,
1.12)

3.68 (0.99,
1.32)

lower 2.13 (0.70,
0.95)

2.00 (0.82,
1.06)

1.65 (0.86,
1.04)

1.86 (0.88,
1.04)

1.56 (0.94,
1.10)
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