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 2 

Antibodies are central to immune defenses. Despite advances in understanding the 30 

mechanisms of antibody generation, a comprehensive model of how intrinsic and external 31 

factors shape human humoral responses to viruses is lacking. Here, we apply PhIP-Seq to 32 

investigate the effects of demographic and genetic factors on antibody reactivity to more 33 

than 97,000 viral peptides in 1,212 healthy adults. We demonstrate that age, sex, and 34 

continent of birth extensively influence the viruses and viral epitopes targeted by the 35 

human antibody repertoire. Among 108 lifestyle and health-related variables, smoking 36 

exerts the strongest, yet reversible, impact on antibody profiles, primarily against 37 

rhinoviruses. Additionally, we identify strong associations between antibodies against 34 38 

viruses and genetic variants at HLA, FUT2, IGH, and IGK genes, some of which increase 39 

autoimmune disease risk. These findings offer a valuable resource for understanding the 40 

factors affecting antibody-mediated immunity, laying the groundwork for optimizing 41 

vaccine strategies.  42 

 43 

Antibodies are essential effectors of humoral immunity and serve as correlates of protection 44 

following vaccination or natural infection. The cellular and molecular processes underlying 45 

antibody production and maintenance are thought to depend on diverse factors that collectively 46 

shape the strength and longevity of the antibody repertoire. Family- and population-based studies 47 

have uncovered marked differences in antibody titers with sex and age. For example, women 48 

often exhibit higher titers against human papillomavirus (HPV)1 and Epstein-Barr virus (EBV)1,2 49 

and generally mount stronger vaccine responses than men3. Furthermore, antibodies against 50 

persistent herpesviruses like herpes simplex virus 1 (HSV-1) and cytomegalovirus (CMV) tend 51 

to increase with age, reflecting cumulative exposure1,2,4,5. In contrast, antibodies against viruses 52 

that primarily infect children (e.g., respiratory syncytial virus (RSV) and varicella-zoster virus 53 

(VZV)) or those included in immunization schedules (e.g., measles, mumps, and rubella viruses) 54 

typically persist at high levels in most adults1,2. Other non-genetic factors associated with 55 

antibody levels include socioeconomic status1,2 and smoking4.  56 

Human genetic factors also affect antibody production. Total and virus-specific antibody 57 

titers against CMV, EBV, and influenza A virus (IAV) have been shown to be heritable2,6–9. At 58 

the genome-wide scale, the HLA locus presents strong associations with antibody titers against 59 

EBV, hepatitis B virus (HBV), VZV, and molluscum contagiosum virus2,10–16. Other loci, 60 
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including IGH, STING1, and FUT2, have been associated with antibodies targeting IAV and 61 

norovirus4,17.  62 

Despite advancements in characterizing the determinants of the antiviral antibody response, 63 

most studies have focused on a limited number of viruses, hindering a comprehensive 64 

understanding of humoral immunity across the broad spectrum of viruses infecting humans18. 65 

Furthermore, while antibodies targeting a single virus can recognize numerous epitopes – the 66 

portion of an antigen recognized by the immune system – variability in epitope reactivity among 67 

individuals infected with the same virus remains poorly understood. Factors such as ethnicity19 68 

and age20 have been suggested to influence this variability, but the determinants of inter-69 

individual differences in viral antigenic specificity are yet to be discovered.  70 

In this study, we delineate the extent and drivers of variation in the epitope-specific antiviral 71 

antibody repertoire in humans using phage immunoprecipitation sequencing (PhIP-seq), a high-72 

throughput method for assessing antibody-epitope interactions21,22. PhIP-seq has been used to 73 

characterize antibody repertoire changes across various diseases5,23 and to evaluate humoral 74 

immunity against bacteria and food allergens4,24–26. A virus-specific PhIP-seq implementation, 75 

VirScan27, which spans the complete peptidome of all known human viruses, has recently 76 

allowed to investigate the impact of measles infection on antibody profiles28, immune 77 

development in neonates29, and immunodominant epitopes30,31. Here, we applied the VirScan 78 

phage library to profile over 97,000 viral peptides in 1,212 healthy adults and integrated this 79 

information with comprehensive demographic, lifestyle, and genetic data. This approach enabled 80 

us to characterize differences in the viruses, viral proteins, and epitopes targeted by individual 81 

antibody profiles and to identify key factors shaping the natural breath and epitope specificity of 82 

the human antibody repertoire against viruses.  83 

 84 

Results 85 

Extensive diversity in the antiviral antibody repertoire of healthy adults 86 

To assess the virome-wide antibody repertoire, we performed PhIP-seq on 900 plasma samples 87 

from the Milieu Intérieur (MI) cohort32, comprising individuals of European ancestry with a 88 

balanced distribution of sex and age (20-69 years; Fig. 1a). To validate findings from the MI 89 

cohort and explore population differences in humoral responses, we also applied PhIP-seq to 312 90 

samples from the EvoImmunoPop (EIP) cohort33, comprising 100 and 212 Belgian residents 91 
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born in either Central Africa or Europe, respectively, all male and aged 20 to 50 years (Fig. 1b). 92 

For both cohorts, we used the VirScan V3 library, encompassing 115,753 56-amino-acid-long 93 

peptide sequences27. After filtering for unique viral sequences, we obtained a final set of 97,978 94 

peptides representing a wide range of viral families and species (Extended Data Fig. 1a,b). PhIP-95 

seq read counts for each viral peptide were then converted into standardized Z-scores (Methods), 96 

which measure peptide-antibody interactions and have been shown to correlate strongly with 97 

antibody titers27.  98 

The total number of positive peptides per individual was normally distributed (Fig. 1c,d,f,g), 99 

averaging 881 and 1,044 peptides for MI and EIP individuals, respectively, due to differences in 100 

cohort demographics, sampling protocols, or experimental batch effects (Methods). 101 

Approximately 97% of peptides were positive in < 5% of individuals, reflecting individual-102 

specific immunity (denoted private peptides) or false positives (Fig. 1e,h), consistent with 103 

previous reports4,24,26. As a result, we conducted all subsequent analyses on peptides positive in > 104 

5% of individuals, with at least two peptides being positive from the same virus (denoted public 105 

peptides). In total, we identified 2,608 public peptides in MI and 3,210 in EIP, originating from 106 

113 viral species, with EBV, IAV, and enterovirus B being the most prevalent in both cohorts 107 

(Extended Data Fig. 1c).  108 

When investigating the reactivity of thousands of peptides simultaneously, the risk of cross-109 

reactivity must be considered, as it can lead to false positives. To address this, we used the 110 

AVARDA algorithm, which estimates the probability of antibody reactivity per virus species, 111 

accounting for sequence alignment between peptides and library peptide representation34. As 112 

expected, seroprevalence determined by AVARDA was highest for common viruses such as 113 

EBV, HSV-1, CMV, rhinoviruses A and B, and adenovirus C in both cohorts (Fig. 1i). We 114 

validated the resolution, sensitivity, and serostatus prediction accuracy of both peptide-level Z-115 

scores and virus-level AVARDA breadth scores through comparison with ELISA and Luminex 116 

assays (Methods; Supplementary Note; Supplementary Figs. 1 and 2; Table S1). Together, these 117 

analyses underscore the specificity and sensitivity of PhIP-seq results and reveal the extensive 118 

diversity of the human antibody repertoire targeting viruses causing common infections. 119 

 120 

Age and sex affect the breadth and epitope specificity of the antibody repertoire 121 
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Given the complementarity of peptide-level and AVARDA-based approaches (Supplementary 122 

Note), we explored the effects of non-genetic and genetic factors on antibody reactivity using 123 

peptide-level Z-scores and then verified whether the AVARDA breadth score for the 124 

corresponding virus was associated with the same factors. We first examined the effects of age 125 

and sex on the antiviral antibody repertoire, represented by the 2,608 public peptides and 132 126 

AVARDA scores in the MI cohort. As no significant non-linear effects of age or age × sex 127 

interactions were observed, we only considered linear effects of age and sex (Methods). Linear 128 

regression modeling revealed that age is strongly associated with antibody reactivity against a 129 

broad range of viruses (Fig. 2a), in line with previous studies4,5.  130 

Antibodies against 565 peptides significantly increased with age, primarily from 131 

herpesviruses HSV-1, HSV-2, and EBV, which can reactivate throughout life35. These 132 

associations were not due to cross-reactivity, as supported by AVARDA (Extended Data Fig. 133 

2a), and were replicated in the EIP cohort for HSV-1 and EBV (Extended Data Fig. 2b-d). The 134 

strongest age effects were observed for antibodies targeting the US6 gene product of HSV-1, the 135 

surface protein glycoprotein D (Extended Data Fig. 2e), as well as various EBV proteins 136 

including EBNA-3, -4, and -6 (Extended Data Fig. 2f). Both peptide-level Z-scores and 137 

AVARDA breadth scores also showed positive associations with age for hepatitis A virus (HAV) 138 

and aichi virus A (Fig. 2a and Extended Data Fig. 2a), the latter being a kobuvirus initially 139 

isolated during a 1989 gastroenteritis outbreak in Japan that has subsequently been detected in 140 

Europe36,37. Conversely, antibodies against 766 peptides significantly decrease with age, 141 

primarily involving rhinoviruses, enteroviruses, and adenoviruses (Fig. 2a). After accounting for 142 

cross-reactivity with AVARDA, antibodies against rhinoviruses A and B, enterovirus B and C, 143 

and adenovirus D showed a significant decrease with age (Extended Data Fig. 2a), suggesting 144 

higher exposure in younger individuals and/or faster antibody waning in older adults. 145 

Interestingly, antibodies against different IAV peptides strongly increase or decrease with 146 

age (Fig. 2a,b). Antibodies from younger individuals primarily target amino acid positions 1-100 147 

and 300-400 of hemagglutinin (HA), which are part of the highly antigenic globular head of 148 

HA38, whereas older individuals preferentially target positions 450-550, which are part of the HA 149 

stalk domain (Fig. 2c-e). A similar pattern was observed for the IAV matrix protein 1 (MP1), 150 

with younger individuals more frequently targeting positions 200-250 and older individuals 151 

targeting positions 150-200 (Fig. 2f,g). These differences were not driven by age-related 152 
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variations in exposure to different IAV subtypes, as both positive and negative associations were 153 

observed within the same IAV subtypes for HA and MP1 (Fig. 2c,f). Furthermore, although past 154 

flu vaccination was associated with higher total anti-IAV antibody titers in the MI cohort (P = 155 

2.07 × 10-14), age was only weakly associated with vaccination (logistic regression P = 0.033), 156 

supporting the view that vaccination does not contribute to the observed patterns. Notably, the 157 

AVARDA breadth score for IAV was not associated with age (Extended Data Fig. 2a), as it 158 

aggregates peptides with opposite age effects (Methods). Together, these results indicate that 159 

epitope specificity of anti-IAV humoral responses varies with age.  160 

The effects of sex on the antibody repertoire were moderate compared to those of age: 330 161 

peptides showed significantly higher antibody levels in women and 236 in men (Extended Data 162 

Fig. 3a). While associated peptides originated from various viruses, AVARDA analysis 163 

supported higher reactivity in women for antibodies against CMV, HHV-6A, and HHV-6B 164 

(Extended Data Fig. 3b). These results suggest that women have higher exposure and/or stronger 165 

humoral responses to herpesviruses compared to men, in contrast to bacterial infections, which 166 

affect the antibody levels similarly in both sexes4. We observed that antibodies of women and 167 

men tend to target different IAV and IBV proteins, with women more often targeting the HA 168 

protein (Extended Data Fig. 3c,d). Given the similar flu vaccination rates between women and 169 

men in the MI cohort (20.2% vs. 18.6%, respectively; logistic regression P = 0.51), these 170 

findings suggest inherent sex differences in humoral responses against influenza viruses. 171 

 172 

Antibody profiles markedly differ according to population of origin 173 

To investigate how geographical differences in pathogen exposure affect the antiviral antibody 174 

repertoire, we leveraged the EIP cohort, comprising individuals born in Central Africa (AFB) or 175 

Europe (EUB). While all samples were collected in Belgium, AFB had relocated to Europe 176 

shortly before sample collection (2.45 years before, on average39), implying that differences with 177 

EUB may reflect variations in early-life exposures and/or genetic ancestry. We observed marked 178 

population differences in antibody repertoires (Fig. 3a). Specifically, antibody levels against 898 179 

viral peptides were increased in EUB, predominantly from rhinoviruses, adenoviruses, and IAV 180 

(Padj < 0.05), although significance was weak when considering the AVARDA scores (Padj > 181 

0.001). In contrast, higher antibody reactivity in AFB was observed for 647 peptides, of which 182 

61% were related to herpesviruses. The higher reactivity of AFB to herpesviruses was strongly 183 
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supported by AVARDA for antibodies against CMV (Padj = 1.29 × 10-19), HHV-6A (Padj = 6.18 184 

× 10-17), HHV-6B (Padj = 1.34× 10-10), and HHV-8 (Padj = 6.93 × 10-20) (Extended Data Fig. 4a), 185 

confirming previous studies33,40,41. Notably, anti-HHV-8 antibodies were significantly higher in 186 

AFB for 68 out of 70 peptides (Extended Data Fig. 4b). Similarly, reactivity against 108 out of 187 

123 CMV peptides was greater in AFB, with the most significant antibodies targeting RL12, 188 

UL32/pp150, and UL139 (Extended Data Fig. 4c).  189 

Antibody reactivity also differed between populations for epitopes from the same virus 190 

species. While overall reactivity to EBV was similar between AFB and EUB (Padj > 0.05; 191 

Extended Data Fig. 4a), the two groups targeted different EBV peptides (Fig. 3a). Antibodies 192 

from AFB more frequently targeted the viral protein EBNA-4, whereas those from EUB 193 

preferentially targeted EBNA-6 (Fig. 3b,e). The four EBNA-4 peptides most associated with 194 

African origin are located between amino acid positions 600-800 and derive from the AG876 195 

strain, a type-2 EBV strain prevalent in Africa42 (Fig. 3b-d). Conversely, EBNA-6 peptides 196 

associated with European origin are found between amino acid positions 750-850 and derive 197 

from the GD1 and B95-8 cosmopolitan strains (Fig. 3e-g). These findings suggest that 198 

differences in epitope specificity between populations likely result from past exposure to 199 

different EBV strains. Similarly, antibodies against IAV from AFB primarily targeted NP from 200 

H1N1, whereas those from EUB favored HA from H3N2 (Extended Data Fig. 4d-f). 201 

Collectively, these results reveal population disparities in antibody reactivity against epitopes of 202 

common viruses, highlighting the limitation of using single antigens to assess seroprevalence in 203 

global epidemiological studies. 204 

 205 

Smoking exerts strong yet reversible effects on antibody reactivity against rhinoviruses  206 

To gain a more comprehensive understanding of the effects of non-genetic factors on the 207 

antiviral antibody repertoire, we leveraged the MI cohort to search for associations with a 208 

curated list of 108 variables assessing socio-economic status (SES), health-related habits, 209 

medical history, and disease-related biomarkers, while controlling for age and sex (Table S2, 210 

Methods). Besides weak associations with SES and a few health biomarkers (Fig. 4a; Table S3; 211 

Supplementary Note), the only strongly significant associations were found for tobacco smoking, 212 

which was associated with 134 peptides (Fig. 4a,b), primarily from rhinoviruses A and B and 213 

enteroviruses A-D. AVARDA analysis confirmed the significant association between cigarette 214 
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consumption and antibodies targeting rhinoviruses A and B (Padj = 1.99 × 10-4). Rhinoviruses are 215 

prevalent causes of the common cold, which is more frequent and severe in smokers, although 216 

the underlying physiological mechanisms are debated43,44.  217 

The peptide most significantly associated with smoking originates from a rhinovirus B 218 

polyprotein containing capsid proteins, with antibody levels against it showing a large increase in 219 

smokers (Padj = 3.24 × 10-10; Fig. 4c). We found that anti-rhinovirus B reactivity was not 220 

associated with smoking duration in active smokers (P = 0.454) (Fig. 4d), suggesting constant, 221 

non-cumulative exposure to rhinoviruses. Interestingly, ex-smokers exhibited similar levels of 222 

reactivity compared to individuals who never smoked (P = 0.059; Fig. 4c). Accordingly, anti-223 

rhinovirus B antibodies decreased with years after quitting smoking in former smokers (P = 5.97 224 

× 10-3; Fig. 4e). These findings collectively indicate that smoking exerts a strong, yet reversible, 225 

effect on the antibody repertoire against rhinoviruses. 226 

 227 

Germline variants in immunoglobulin genes shape the antiviral antibody repertoire 228 

To identify genetic factors affecting the antiviral antibody repertoire, we conducted a GWAS of 229 

Z-scores for the 2,608 public peptides in the MI cohort, by testing for associations with 230 

5,699,237 imputed common SNPs45 while controlling for age, sex, and genetic structure 231 

(Methods). The EIP cohort served as a replication cohort. Given the incomplete coverage of B-232 

cell receptor loci by the imputed SNPs, we performed next-generation sequencing of the IGH, 233 

IGK, and IGL genes in all MI donors at a ~35× depth of coverage, generating an additional 234 

30,503 common variants (Methods). We detected strong genome-wide significant associations 235 

for 225 viral peptides at four independent loci, including HLA, FUT2, IGH, and IGK genes (Fig. 236 

5a; Tables 1 and S4).  237 

We found significant associations between HLA variants and antibody reactivity against 112 238 

peptides from 15 viruses, including EBV, HSV-1, and adenoviruses A-F, consistent with prior 239 

studies2,4,10,11,14–16 and replicated in the EIP cohort (Prep < 0.05; Tables 1 and S4). To account for 240 

linkage disequilibrium (LD) among HLA variants and enable comparisons with previous disease 241 

studies, we imputed HLA alleles from genotype data and tested for associations between peptide 242 

Z-scores and allele dosages (Methods). This analysis revealed 85 associations (Table S5), 243 

including HLA-DRB1*04 and HLA-DQA1*03:01 with adenovirus peptides (P < 2.3 × 10-15; Fig. 244 

5b,c) and HLA-DRB1*13 with EBV peptides (P = 7.5 × 10-19; Fig. 5d). Notably, these alleles 245 
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have previously been associated with increased risk for type 1 diabetes and rheumatoid 246 

arthritis46, providing a potential explanation for the link between these immune diseases and 247 

EBV and adenovirus infections47–49. 248 

Variants near FUT2 were associated with antibodies against norovirus peptides (P = 1.10 × 249 

10-10; Extended Data Fig. 5a). Mutations in FUT2 determine the non-secretor phenotype, which 250 

is known to confer resistance to norovirus infection50 and susceptibility to type 1 diabetes and 251 

inflammatory bowel disease51,52. The most significant variants include rs601338 (P = 2.01 × 10-252 

10), the FUT2 stop mutation that commonly determines the non-secretor status53, the protective 253 

allele being associated with lower anti-norovirus antibody levels. Variants in strong LD with 254 

rs601338 also showed significant associations in the EIP cohort (Prep = 5.98 × 10-9; r² = 0.998). 255 

Additionally, we identified a novel association between variants in near-complete LD (r² = 256 

0.995) with rs601338 and antibodies against two salivirus strains in both the MI (P < 1.58 × 10-257 

14) and EIP (Prep < 1.36 × 10-10) cohorts (Extended Data Fig. 5b). Saliviruses, first discovered in 258 

2009 in diarrheal samples, are known to cause gastroenteritis54, although their target cells and 259 

entry mechanisms remain unknown. The associations between the FUT2 non-secretor status and 260 

anti-salivirus antibodies are unlikely to result from cross-reactivity with norovirus peptides, as 261 

their respective Z-scores were not correlated (Extended Data Fig. 5c,d).  262 

Genetic variation within the IGH locus was associated with 107 peptides from 21 viruses 263 

(Fig. 5a; Tables 1 and S4). This genomic region encodes the heavy chain of the antibody 264 

molecule and has previously been associated with antibody levels against various bacteria, as 265 

well as IAV and norovirus4. Our analyses expanded these findings, by identifying new 266 

associations with herpesviruses (HSV-2, EBV, CMV, HHV-6), RSV, IAV, HBV, coronavirus 267 

NL63, rubella virus, sandfly fever Sicilian virus, enteroviruses, and rhinoviruses. Interestingly, 268 

several newly identified GWAS variants influence IGHV clonal gene usage by V(D)J somatic 269 

recombination, assessed by AIRR-sequencing in a previous study55. For example, we found that 270 

a variant associated with antibodies against the rubella virus (rs1024350, P = 1.90 × 10-11) and 271 

suggestively associated with IAV (P = 5.38 × 10-10) affects IGHV1-69 usage55 (P = 1.14 × 10-16). 272 

IGHV1-69 usage is known to partially determine the quality of anti-influenza antibodies56. 273 

Another variant, rs9671760, which we found associated with antibodies against the rubella virus 274 

(P = 3.34 × 10-14; Fig 5e) and the sandfly fever Sicilian virus (P = 1.46 × 10-11; Fig 5f), regulates 275 

IGHV3-64 usage55 (P = 1.32 × 10-8).  276 
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The fourth genome-wide significant locus revealed a novel association between IGK, which 277 

encodes the κ light chain of antibodies, and antibody levels targeting adenovirus B peptides (P = 278 

1.51 × 10-23) (Extended Data Fig. 5e). Together, these findings underscore the broad impact of 279 

host genetic factors, including germline mutations in immunoglobulin genes, on humoral 280 

immune responses to multiple viruses. 281 

 282 

Demographic and genetic factors differentially affect reactivity across viral epitopes 283 

Finally, to assess the relative contributions of demographic (non-genetic) and genetic factors to 284 

the antibody repertoire, we estimated the proportion of variance explained by age, sex, smoking, 285 

and GWAS lead variants for the 2,608 public peptides. Together, these factors explained an 286 

average of 7.39% (range: [0.91% – 25.50%]) of inter-individual variation in antibody reactivity 287 

(Fig 6a). Demographic factors explained 3.81% (range: [0.007% – 20.68%]) of the variance, 288 

while genetic factors contributed to 3.44% (range: [0.48% – 23.02%]). These proportions varied 289 

substantially across viruses, consistent with earlier findings (Extended Data Fig. 6a,b). For 290 

example, antibody levels against rhinovirus peptides were predominantly affected by age (Fig. 291 

2a), those against CMV by sex (Extended Data Fig. 3a), and those against EBV by genetic 292 

variation (Table 1).  293 

We also observed substantial variation in the factors explaining the variance of peptide Z-294 

scores within the same virus. For example, the variance of antibody reactivity to the HA protein 295 

of IAV was predominantly explained by age, whereas anti-M1 antibodies were primarily 296 

affected by IGH genetic variation (Extended Data Fig. 6c). Similarly, anti-EBV antibodies 297 

targeting the EBNA-5 protein were strongly influenced by HLA genotypes, while those targeting 298 

EBNA-4 and tegument proteins varied primarily because of age (Extended Data Fig. 6d). 299 

Interestingly, a similar pattern was observed for anti-RSV antibodies, but at the level of a single 300 

protein: antibodies against different peptides of the immunogenic glycoprotein G57 were 301 

associated with either age or IGH genetic variants (Fig 6b). Age-associated peptides originate 302 

from RSV strain A, while IGH-associated peptides originate from strain B — two phylogenetic 303 

RSV lineages that differ substantially in the protein G sequence58 (Fig. 6c). Specifically, age-304 

associated antibodies primarily targeted amino acid positions 150-200 of protein G in RSV-A 305 

(Fig 6d), a pattern confirmed in the EIP cohort (Extended Data Fig. 6e) and a previous study59. In 306 

contrast, IGH-associated antibodies were predominantly directed at positions 225-275 of RSV-B 307 
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(Fig 6d), indicating strain- and position-specific genetic effects. Overall, these findings indicate 308 

that the effects of non-genetic and genetic factors largely differ among viruses, viral strains, 309 

proteins, and epitopes targeted by the human antibody repertoire. 310 

 311 

Discussion 312 

In this study, we generated a comprehensive dataset of blood plasma antibody levels against 313 

more than 97,000 viral peptides, providing a valuable resource to investigate the factors — 314 

intrinsic, environmental, and genetic — that affect the antibody repertoire in healthy adults. All 315 

results can be explored via a dedicated web-based browser (http://mirepertoire.pasteur.cloud/). 316 

Among these factors, age had the most profound and widespread effect on antibody reactivity. 317 

Age-related increases in antibody response may reflect cumulative exposure in older adults (e.g., 318 

HAV and aichi virus A), reactivation of latent viruses (e.g., HSV-1, HSV-2, EBV, and CMV), or 319 

reinfections by viruses causing recurrent infections (e.g., IAV, IBV, and RSV). Conversely, age-320 

related decreases may reflect higher exposure during young adulthood and rapid antibody 321 

waning (e.g., rhinoviruses A-C and enteroviruses B and C).  322 

Importantly, our study reveals that aging is associated with differential epitope recognition 323 

for the same viral protein. Anti-IAV antibodies of younger and older adults target different 324 

domains of the same IAV proteins, a phenomenon observed across IAV subtypes and for the 325 

IAV M1 protein, which is not typically targeted by flu vaccines. This suggests that the observed 326 

differences are not solely attributable to age-related disparities in natural or vaccine-induced 327 

exposure to diverse viral strains. Alternatively, certain structural domains of viral proteins may 328 

be less accessible to antibodies, necessitating multiple reinfections to elicit antibodies against 329 

them. This hypothesis has been proposed to explain age-related differences in neutralizing 330 

antibody titers against the globular head and stalk domains of the IAV HA protein60,61. We 331 

propose that age-dependent antigenic specificity, observed here for the first time across several 332 

IAV proteins, may be more widespread than previously recognized. Similarly, we show that sex 333 

influences epitope specificity, with women’s antibodies preferentially targeting the HA protein 334 

of IAV and IBV, relative to men, while men’s antibodies disproportionally target NP and M1. 335 

Further studies are needed to elucidate the underlying mechanisms and their implications for 336 

age- and sex-related differences in the risk of influenza infection and vaccine response. 337 
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Antibody profiles also vary markedly according to the continent of birth, likely due to 338 

differences in viral exposure27. We observed that antibodies from individuals born in Central 339 

Africa or Europe target different EBV proteins, suggesting that regional variations in EBV 340 

strains33,34 contribute to population differences in antibody responses at the epitope level. Among 341 

the environmental factors affecting the antibody repertoire, we identified a strong association 342 

between smoking and anti-rhinovirus antibodies, consistent with the higher risk of smokers for 343 

the common cold compared to non-smokers. Notably, we observed similar antibody levels 344 

against rhinoviruses in ex-smokers and never-smokers, indicating that altered viral clearance 345 

and/or heightened exposure in smokers is reversible upon smoking cessation. 346 

Finally, our GWAS confirms that HLA and IGH affect antibody levels against a range of 347 

viruses2,4,10,11,14–16, and largely expands the list of associated viruses, by revealing novel 348 

associations with herpesviruses 2-6, RSV, HBV, rhinoviruses, enteroviruses, coronavirus N63, 349 

and rubella virus. Sequencing of the immunoglobulin genes was critical in discovering 350 

associations with the IGH locus, as well as the new association with IGK, since SNP arrays do 351 

not cover these complex regions. We also identified a strong association between antibodies 352 

against the recently discovered and poorly understood saliviruses and FUT2, a gene previously 353 

linked to norovirus infection, suggesting that saliviruses may utilize similar infection 354 

mechanisms as noroviruses. 355 

Several genetic variants identified in our study as associated with increased humoral 356 

responses against viruses have previously been linked to higher risk of autoimmune 357 

diseases46,51,52. Patients with these diseases often show higher seroprevalence for common 358 

viruses, leading previous studies to suggest a causal role of these viral infections in 359 

autoimmunity47–49. However, our results suggest that associations between autoimmune 360 

conditions and antibody levels against viruses may instead result from a shared genetic etiology 361 

that affects both traits independently. Furthermore, our study supports the hypothesis of 362 

antagonistic pleiotropy, which posits that variants that once conferred resistance to infection now 363 

increase the risk for non-infectious immune diseases63. Consistent with this, the HLA and FUT2 364 

alleles associated with antiviral humoral responses have increased in frequency under natural 365 

selection in Europe over the past millennia64. Detailed sequencing-based studies in large 366 

biobanks are now required to determine the role of genetic variation in shaping the antibody 367 

repertoire in immune disorders. 368 
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This study has several limitations. First, while the VirScan library offers broad coverage, it is 369 

limited to linear peptides, potentially overlooking antibodies that bind to conformational 370 

epitopes. Additionally, antibody cross-reactivity between peptides introduces uncertainty in 371 

attributing results to specific viruses. We mitigated this risk by using AVARDA, although this 372 

method may also lead to false negatives. The extensive number of tests required to evaluate the 373 

entire peptide library, combined with the cohort size, may further increase false negatives. 374 

Lastly, the PhIP-seq approach does not differentiate between neutralizing and non-neutralizing 375 

antibodies, which would require large-scale experimental studies. Despite these challenges, our 376 

study provides high-resolution insights into the widespread effects of age, sex, continent of birth, 377 

smoking, and genetics on the antibody repertoire. Crucially, it also uncovers how these factors 378 

differentially affect antibodies targeting specific epitopes within the same virus or viral protein, 379 

deepening our understanding of antibody generation and maintenance processes. We anticipate 380 

that our dataset and findings will prompt novel mechanistic studies of antiviral immunity, with 381 

the potential to advance vaccine and therapeutic strategies.  382 
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Figure legends 422 

 423 

Fig. 1: Assessing variation in the antibody repertoire in the Milieu Intérieur (MI) and 424 

EvoImmunoPop (EIP) cohorts. a, Sample sizes and age distribution by sex within the MI 425 
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cohort. b, Sample sizes and age distribution by continent of birth within the EIP cohort. c, 426 

Density distributions of MI donors as a function of the number of peptides they react against, 427 

categorized by sex. d, Number of positive peptides per MI donor, as a function of age and sex. e, 428 

Number of peptides as a function of the number of positive MI donors. f, Density distributions of 429 

EIP donors as a function of the number of peptides they react against, categorized by continent 430 

of birth. g, Number of positive peptides per EIP donor, as a function of age and continent of 431 

birth. h, Number of peptides as a function of the number of positive EIP donors. i, Heatmap 432 

indicating the predicted infection status of each MI and EIP donor for the 20 most prevalent 433 

viruses, as determined by the AVARDA algorithm (Padj < 0.05 after Benjamini-Hochberg 434 

correction). The solid curves and shaded areas in d and g indicate the LOESS curves and the 435 

95% confidence intervals. 436 

  437 
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 438 

Fig. 2: Age impacts the epitope-specific antiviral antibody repertoire. a, –log10(adjusted P-439 

values) and direction of associations between all public peptide Z-scores and age in the MI 440 

cohort, by viral species. The dashed gray vertical lines indicate viruses for which the AVARDA 441 

breadth score is significantly associated with age. b, –log10(adjusted P-values) against effect 442 

sizes of associations between IAV peptide Z-scores and age in the MI cohort, colored by viral 443 

protein. c, Amino-acid positions of the midpoint of public HA peptides associated with age 444 
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within the full IAV hemagglutinin (HA) protein for the MI cohort. The significance and direction 445 

of associations with age are indicated on the y-axis and by the direction of triangles, respectively. 446 

The triangle color indicates the IAV subtype. The most significant peptides for each epitope are 447 

indicated. d, Location of the peptides of interest indicated in (c) within the three-dimensional 448 

structure of HA. e, Antibody reactivity as a function of age for the HA peptides of interest 449 

highlighted in (c). f, Amino-acid positions of the midpoint of public M1 peptides associated with 450 

age within the full IAV Matrix Protein 1 (M1) protein for the MI cohort. The significance and 451 

direction of associations with age are indicated on the y-axis and by the direction of triangles, 452 

respectively. The triangle color indicates the IAV subtype. The most significant peptides for each 453 

epitope are indicated. g, Location of the peptides of interest indicated in (f) within the three-454 

dimensional structure of M1. 455 

  456 
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 457 

Fig. 3: The antiviral antibody repertoire in relation to the continent of birth. a, –458 

log10(adjusted P-values) and direction of associations between all public peptide Z-scores and 459 

continent of birth in the EIP cohort, separated by viral species. AFB and EUB indicate Belgian 460 

individuals born in Central Africa and Europe, respectively. The dashed gray vertical lines 461 

indicate viruses for which the AVARDA breadth score is significantly associated with continent 462 

of birth. b, –log10(adjusted P-values) against effect sizes of associations between continent of 463 

birth and peptide Z-scores from the EBV AG876 strain in the EIP cohort. Colors indicate the 464 

viral protein. c, Scatter plot of antibody reactivity against the most significant EBNA-4 peptide 465 
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(Uniprot ID: Q1HVG4) from the EBV AG876 strain, categorized by continent of birth, d, 466 

Amino-acid positions of the midpoint of public EBNA-4 peptides associated with continent of 467 

birth within the full EBV EBNA-4 protein for the MI cohort. The significance and direction of 468 

associations with age are indicated on the y-axis and by the direction of triangles, respectively. 469 

The triangle colors indicate EBV strain. e, –log10(adjusted P-values) against effect sizes of 470 

associations between continent of birth and peptide Z-scores from the EBV B95−8 strain in the 471 

EIP cohort. Colors indicate the viral protein. f, Scatter plot of antibody reactivity against the 472 

most significant EBNA-6 peptide (Uniprot ID: P03204) from EBV B95−8, categorized by 473 

continent of birth, g, Amino-acid positions of EBV peptides in the EBNA-6 protein associated 474 

with continent of birth in the EIP cohort. Amino-acid positions of the midpoint of all public 475 

EBNA-6 peptides associated with continent of birth within the full EBV EBNA-6 protein for the 476 

MI cohort. The significance and direction of associations with age are indicated on the y-axis and 477 

by the direction of triangles, respectively. The triangle color indicates the EBV strain.  478 

 479 
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 481 

Fig. 4: Tobacco smoking elicits strong, reversible effects on antiviral antibody responses.  482 

a, –log10(adjusted P-values) for associations between public peptide Z-scores and health- and 483 

lifestyle-related variables. Only the 20 most significant peptides from the ten viruses with the 484 

most significant associations are shown. Only variables with an association of Padj < 0.01 are 485 
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shown. b, –log10(adjusted P-values) and direction of associations between all public peptide Z-486 

scores and smoking status in the MI cohort, separated by viral species. The direction indicates 487 

positive or negative association with smoking compared to non-smokers. The dashed gray 488 

vertical lines indicate viruses for which the AVARDA breadth score is significantly associated 489 

with smoking status. c, Antibody reactivity for the rhinovirus B peptide most significantly 490 

associated with smoking status, categorized by smoking status. d, Antibody reactivity for the 491 

rhinovirus B peptide most significantly associated with smoking status, as a function of years of 492 

smoking in active smokers. e, Antibody reactivity for the rhinovirus B peptide most significantly 493 

associated with smoking status, as a function of years since last smoking in former smokers. d, e, 494 

The blue line indicates the linear regression line, and the shaded area the 95% confidence 495 

intervals. 496 
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 498 

Fig. 5:  Genome-wide association study of antibody reactivity against public peptides. a, 499 

Manhattan plot of associations between all 2,608 public peptides and common human genetic 500 

variants (MAF > 5%) in the MI cohort. Only results with P < 0.005 are displayed. The red 501 

dashed line indicates the significance threshold (P < 1.31 × 10-10), determined by permutations. 502 

The top hit of each peak is annotated with the closest gene or gene locus. b, Antibody reactivity 503 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 20, 2024. ; https://doi.org/10.1101/2023.11.07.23298153doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.07.23298153


 24 

against the pV protein of adenovirus D, as a function of the number of copies of the HLA-504 

DRB1*04 allele. c, Antibody reactivity against the L2 protein of adenovirus B, as a function of 505 

the number of copies of the HLA-DQA1*03:01 allele. d, Antibody reactivity against the EBNA-5 506 

protein of EBV, as a function of the number of copies of the HLA-DRB1*13 allele. e,f, 507 

LocusZoom plots for the associations between IGH variants and antibody reactivity against (e) 508 

the rubella virus (UniProt ID: D5KJ87) and (f) the sandfly fever Sicilian virus (UniProt ID: 509 

A7KCL0). The variant most significantly associated with antibody reactivity and the closest 510 

guQTL variant (rs9671760) are indicated by gray vertical lines. IGHV segment locations are 511 

indicated at the bottom, and the V-segment targeted by the guQTL variant (IGHV3-64) is 512 

highlighted. 513 

 514 
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 516 

Fig. 6: Variance in antiviral antibody reactivity explained by demographic and genetic 517 

factors. a, Proportion of variance explained by demographic (i.e., age, sex, and smoking) and 518 

genetic factors for antibody reactivity against 2,608 public peptides in the MI cohort. Peptides 519 

are sorted by total variance explained. b, Variance explained by age and IGH genetic variation 520 

for RSV protein G peptides in the MI cohort, colored according to RSV strain as in (c). c, 521 

Hierarchical clustering of peptide sequences from RSV protein G, separating peptides affiliated 522 

to the RSV A (green) and B (blue) strains. d, Amino-acid positions of the midpoint of protein G 523 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 20, 2024. ; https://doi.org/10.1101/2023.11.07.23298153doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.07.23298153


 26 

peptides associated with continent of birth within the full RSV protein G for the MI cohort. P-524 

values for the association with age (beige) and the most significant IGH variant (black) are 525 

indicated, separated by RSV strain. The significance and direction of associations are indicated 526 

on the y-axis and by the direction of triangles, respectively.  527 

 528 
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Extended Data Fig. 1: Overview of the viruses targeted by the VirScan assay in the Milieu 531 

Intérieur (MI) and EvoImmunoPop (EIP) cohorts. a,b, Number of peptides in the VirScan 532 

PhIP-seq library, separated by viral family (a) and viruses (b). Only the 50 most covered viruses 533 

are shown. c, Percentage of MI (left) and EIP (right) individuals positive for 2,608 public 534 

peptides, separated by virus. Each point indicates a viral peptide, colored according to its viral 535 

family. Only viruses with at least 10 peptides showing an enrichment of >5% are included.  536 

 537 

  538 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 20, 2024. ; https://doi.org/10.1101/2023.11.07.23298153doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.07.23298153


 29 

 539 

Extended Data Fig. 2: Additional age differences in the antiviral antibody repertoire. a,b, –540 

log10(adjusted P-values) against effect sizes for associations between the AVARDA breadth 541 

score and age in the MI (a) and EIP (b) cohorts. Each point indicates a virus, colored according 542 

its viral family. c,d, Effect sizes for the associations between age and HSV-1 (c) and EBV (d) 543 

peptide Z-scores in the MI and EIP cohorts. e,f, –log10(adjusted P-values) of associations 544 

between age and HSV-1 (e) and EBV (f) peptide Z-scores, separated by viral protein, in the MI 545 

cohort. The significance and direction of associations are indicated by color and by the direction 546 

of triangles, respectively. 547 

 548 
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 550 

Extended Data Fig. 3. Sex differences in the antiviral antibody repertoire. a, –log10(adjusted 551 

P-values) and direction of associations between all public peptide Z-scores and sex in the MI 552 

cohort. b, –log10(adjusted P-values) against effect sizes for associations between the AVARDA 553 

breadth score and sex in the MI cohort. Each point indicates a virus, colored according to its viral 554 

family. c,d, –log10(adjusted P-values) against effect sizes for associations between IAV (c) and 555 

IBV (d) peptide Z-scores and sex in the MI cohort, colored according to the viral protein. 556 

 557 
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 559 

Extended Data Fig. 4. Additional population differences in the antiviral antibody 560 

repertoire. a, –log10(adjusted P-values) against effect sizes for associations between the 561 

AVARDA breadth score and continent of birth in the EIP cohort. Each point indicates a virus, 562 

colored according to its viral family. b,c, –log10(adjusted P-values) of associations between 563 
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continent of birth and HHV-8 (b) and CMV (c) peptide Z-scores, separated by viral protein, in 564 

the EIP cohort. The significance and direction of associations are indicated by color and by the 565 

direction of triangles, respectively. d, –log10(adjusted P-values) against effect sizes for 566 

associations between IAV peptide Z-scores and continent of birth in the EIP cohort, faceted by 567 

main IAV subtypes. Colors indicate the viral protein. e,f, Amino-acid positions of the midpoint 568 

of HA (e) and NP (f) peptides associated with continent of birth within the full IAV proteins for 569 

the EIP cohort. The significance and direction of associations with age are indicated on the y-570 

axis and by the direction of triangles, respectively. The triangle color indicates the IAV subtype.  571 
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 574 

Extended Data Fig. 5. Association of genetic variation in the FUT2 and IGK loci with the 575 

antiviral antibody repertoire. a,b, LocusZoom plots showing associations between the FUT2 576 

locus and antibody reactivity against (a) norovirus (UniProt ID: Q8V0P3) and (b) salivirus A 577 

(UniProt ID: D1L752). c,d, Scatter plots (c) and correlation matrix (d) for the three norovirus 578 

and salivirus peptide Z-scores most significantly associated with FUT2 variants. e, LocusZoom 579 

plot showing associations between the IGH locus and antibody reactivity against adenovirus B 580 

(UniProt ID: C7SRU6). 581 

 582 

  583 
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 584 

Extended Data Fig. 6. Variance in the antiviral antibody repertoire explained by individual 585 

factors. a, Proportion of variance explained by age, sex, smoking, and genetics for antibody 586 

reactivity against public peptides from the six viruses with the largest number of public peptides 587 

in the MI cohort. Peptides are sorted by total variance explained. b, Proportion of variance 588 

explained by genetic factors for antibody reactivity against public peptides from the six viruses 589 
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with the largest number of public peptides in the MI cohort. Genetic variance is separated by 590 

genetic variation in the HLA and IGH loci and variation external to these loci. Peptides are sorted 591 

by total variance explained. c,d, Variance explained by age and IGH genetic variation for IAV 592 

peptides (c) and age and HLA genetic variation for EBV peptides (d) in the MI cohort, colored 593 

according to protein. e, Amino-acid positions of the midpoint of protein G peptides associated 594 

with continent of birth within the full RSV protein G for the EIP cohort. The significance and 595 

direction of associations are indicated on the y-axis and by the direction of triangles, 596 

respectively. 597 
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Tables 

Gene Chr. Position MAF Virus Viral protein P (MI) P (EIP) 

IGKV3-25 2 89187836 0.0843 Human adenovirus B L4 1.51E-23 - 

IGKV1D-35 2 89895578 0.0995 Human adenovirus B L4 5.91E-20 - 

MICB 6 31481439 0.398 Human herpesvirus 4 EBNA-5 6.26E-11 0.00201 

NOTCH4 6 32225442 0.229 Enterovirus C Polyprotein 1.11E-10 0.182 

TSBP1 6 32382607 0.313 Human adenovirus B L2 7.76E-21 2.37E-05 

TSBP1 6 32382607 0.313 Human adenovirus C L2 1.34E-17 2.79E-05 

TSBP1 6 32382607 0.313 Human adenovirus D Polyprotein 1.94E-19 0.00288 

TSBP1 6 32382607 0.313 Human adenovirus E L2_HAdVE_gp09 1.24E-19 0.000444 

TSBP1 6 32382607 0.313 Human adenovirus F L2 3.29E-16 0.00527 

HLA-DRA 6 32448589 0.208 Norwalk virus ORF1 4.75E-12 0.0636 

HLA-DRA 6 32448589 0.208 Rift Valley fever virus GP 1.60E-12 0.039 

HLA-DRA 6 32477883 0.229 Human herpesvirus 4 EBNA-5 4.58E-21 2.16E-08 

HLA-DRB1 6 32598244 0.362 Enterovirus A Polyprotein 6.31E-14 0.0293 

HLA-DRB1 6 32601585 0.159 Human adenovirus A L2 2.13E-17 0.00555 

HLA-DRB1 6 32606531 0.381 Human parainfluenza virus 4 N_NP 6.66E-11 0.00325 

HLA-DQA1 6 32626296 0.334 Human herpesvirus 4 EBNA-5 9.01E-25 3.04E-06 

HLA-DQA1 6 32631077 0.17 Human adenovirus B L2 3.49E-18 0.0116 

HLA-DQA1 6 32632705 0.484 Rhinovirus A Polyprotein 1.01E-12 - 

HLA-DQA1 6 32635459 0.232 Enterovirus C Polyprotein 6.06E-12 0.0811 

HLA-DQA1 6 32644109 0.244 Human herpesvirus 1 US11 2.12E-13 4.53E-07 
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HLA-DQB1 6 32686015 0.0657 
Human immunodeficiency 

virus 1 
gag-pol 3.93E-19 0.0312 

ADAM6 14 105975087 0.109 Rhinovirus A Polyprotein 1.56E-13 - 

ADAM6 14 105975555 0.393 Human coronavirus NL63 N_6 1.47E-16 - 

IGHV1-2 14 105986730 0.144 Human herpesvirus 4 BPLF1 1.36E-14 - 

IGHVIII-2-1 14 105999331 0.129 Hepatitis B virus Mutant core protein 9.23E-24 - 

IGHVIII-2-1 14 105999331 0.129 Human herpesvirus 3 Polyprotein 2.84E-12 - 

IGHVIII-2-1 14 
106002152 

0.141 
Human respiratory syncytial 

virus 
G 1.46E-22 - 

IGHV4-4 14 106010489 0.381 Human herpesvirus 2 UL36 3.40E-17 - 

IGHV4-4 14 106010489 0.381 Human herpesvirus 5 TRS1 1.59E-14 - 

IGHV4-4 14 106016678 0.377 Alphapapillomavirus 11 L2 1.37E-12 - 

IGHV4-4 14 
106016678 

0.377 
Human immunodeficiency 

virus 1 
gag-pol 1.03E-24 - 

IGHV7-4-1 14 106030786 0.31 Enterovirus B Polyprotein 2.02E-17 - 

IGHV7-4-1 14 106030786 0.31 Enterovirus C Polyprotein 6.40E-21 - 

IGHV7-4-1 14 106030786 0.31 Rhinovirus B Polyprotein 1.64E-13 - 

IGHV2-5 14 
106038037 

0.339 Variola virus 
A42R_A45R_A47R_

A50R 
5.43E-11 - 

IGHVIII-11-1 14 106118812 0.406 Macacine herpesvirus 1 gE_US8 1.46E-16 - 

IGHV3-13 14 106127116 0.402 Powassan virus Polyprotein 1.95E-19 - 

IGHVII-15-1 14 106164409 0.114 Human herpesvirus 6A U47_RF3_RF4 6.94E-16 - 

IGHVII-15-1 14 106164409 0.114 Human herpesvirus 6B U47_KA8L 1.23E-14 - 

IGHVIII-47-1 14 106532442 0.0549 Influenza A virus M1 2.20E-13 - 
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IGHV3-64 14 106657835 0.369 Sandfly fever Sicilian virus N 5.11E-12 0.0129 

IGHV3-65 14 
106663911 

0.369 Rubella virus 
Large tegument 

protein deneddylase 
3.80E-15 0.142 

FUT2 19 48700572 0.429 Salivirus A PV 1.58E-14 0.00178 

FUT2 19 48702851 0.44 Salivirus FHB Polyprotein 4.74E-13 1.36E-10 

FUT2 19 48703346 0.498 Norwalk virus Polyprotein 1.10E-10 0.0407 

 

Table 1.  Genome-wide significant associations between human genetic variants and the antibody repertoire. Only the most 

significant variant within a 1-Mb window centered on genome-wide significance hits is shown for each associated virus.  
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Supplementary Table 1. Performance statistics for models predicting serostatus using VirScan 

peptide Z-scores 

 

Supplementary Table 2. Demographic and lifestyle variables examined 

 

Supplementary Table 3. P-values for the associations between demographic variables and 

2,608 public peptide Z-scores 

 

Supplementary Table 4. Association statistics between all genome-wide significant GWAS hits 

and 2,608 public peptide Z-scores 

 

Supplementary Table 5. Association statistics for all significant HLA alleles 
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Online Methods 

 

The Milieu Intérieur cohort 

The Milieu Intérieur (MI) cohort comprises 1,000 healthy adults recruited to investigate genetic 

and non-genetic determinants of immune response variation32. Recruitment was conducted in 

Rennes (France) in 2012-2013, and individuals were selected based on a large set of relatively 

strict inclusion and exclusion criteria described elsewhere32. Of the 900 individuals reported in 

the present study, 453 are female, and 447 are male, ranging from 20 to 69 years of age. The 

study has been approved by the Comité de Protection des Personnes — Ouest 6 (Committee for 

the Protection of Persons) and by the French Agence Nationale de Sécurité du Médicament 

(ANSM). The study protocol, including inclusion and exclusion criteria for the Milieu Intérieur 

study, has been registered on ClinicalTrials.gov under the study ID NCT01699893.  

 

The EvoImmunoPop cohort 

The EvoImmunoPop (EIP) cohort comprises 390 healthy adults recruited to investigate human 

population differences in immune responses. Recruitment was conducted in Ghent (Belgium) in 

2012-2013. Of the 312 individuals reported in the present study, 100 individuals reported to be 

of Central African descent (AFB, age range 20 to 50 years), and 212 reported to be of European 

descent (EUB, age range 20 to 50 years). All EUB were born in Europe, whereas >90% of AFB 

were born in Cameroon or the Democratic Republic of Congo. AFB and EUB present no 

evidence of recent genetic admixture with populations originating from another continent, 

besides two AFB donors who present 22% of Near Eastern and 25% of European ancestries, 

respectively33. All individuals were negative for serological tests against human 

immunodeficiency virus, hepatitis B, or hepatitis C. The study has been approved by the Ethics 

Committee of Ghent University, the Ethics Board of Institut Pasteur (EVOIMMUNOPOP-

281297), and the French authorities CPP, CCITRS, and CNIL. 

 

VirScan experimental protocol 

To investigate the virus-specific and viral peptide-specific antibody profiles in the plasma of MI 

and EIP samples, we employed PhIP-Seq using the VirScan V3 library, a pathogen-epitope 

scanning method based on bacteriophage display and immuno-precipitation. The detailed 
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protocol and VirScan library are described elsewhere27,29,65. Briefly, a library of linear peptides 

of 56 amino acids each was constructed to cover all UniProt protein sequences of viruses known 

to infect humans. Peptides were staggered along each protein sequence with an overlap of 28 

amino acids. The phage library was inactivated and incubated with plasma samples normalized 

to total IgG concentration and controls (bead samples) to form IgG-phage immunocomplexes. 

The immunocomplexes were then captured by magnetic beads, lysed, and sent to next-generation 

sequencing. Two replicates were performed for each individual to assess reproducibility. 

 

VirScan data preprocessing 

Sequencing reads were processed as in ref.28, with some modifications. We utilized the bowtie2-

samtools pipeline66,67 to map the sequencing reads of each sample to the bacteriophage library 

and count the number of reads for each viral peptide. Subsequently, the positivity of each peptide 

in plasma samples was determined by a binning strategy where read counts from blank controls 

were first used to group the peptides into hundreds of bins so that the counts form a uniform 

distribution within each bin. Then, the peptides from plasma samples were allocated into the pre-

defined bins. Z-scores were calculated for each peptide from each plasma sample. The means and 

standard deviations used for the Z-score calculations were the same for each bin and were 

computed using the bead control sample read counts for the peptides belonging to that bin. After 

generating a matrix of 115,753 peptide Z-scores for 900 MI or 312 EIP samples, we discarded 

peptides from bacteria, fungi, and allergens from the VirScan library, resulting in 99,460 viral 

peptides. Z-score values were inverse hyperbolic sine- (arcsinh)-transformed in each sample. 

Contrarily to log transformation, the arcsinh function is convenient to handle both over-

dispersion due to outliers and zero values, which were common in the VirScan Z-score data.  

Outlier peptides were identified by leveraging replicates through the following process. First, 

Z-score values missing in only one replicate were set to NA in both replicates. Then, outliers in 

each replicate were defined as Z-scores higher than the 99.5% quantile. Next, the absolute 

difference in Z-scores between replicates was calculated for all peptides with an outlier value in 

at least one replicate. The distribution of absolute differences was bimodal, with the lower peak 

representing consistent Z-scores between replicates and the upper peak representing inconsistent 

Z-scores. The local minimum between the peaks was identified using the optimize function from 

the stats R package, and outliers were defined as all peptides with absolute differences above this 
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minimum. The Z-score values of both replicates for all outlier peptides were then set to NA. The 

rate of missing values was 1.06% in the MI cohort and 1.09% in the EIP cohort. Next, peptides 

with >50% missing values were removed from the dataset, leaving 98,757 in the MI dataset and 

98,697 in the EIP dataset. Duplicated Uniprot entries were removed, leaving 97,975 peptides in 

the MI dataset and 97,923 in the EIP dataset for the remaining analyses.  

Missing values were imputed by first running a PCA on all Z-scores using the pca function 

from the pcaMethods package (nPcs = 10, scale = ‘uv’), followed by imputation using the 

completeObs function from the same package. As individual samples were processed in batches 

on cell culture plates, samples were batch-corrected using the ComBat68 function from the sva R 

package, using plates as the batch variable. The final Z-scores were generated by calculating the 

mean of the two replicates for each individual. A peptide was considered significantly positive if 

the Z-scores of both replicates were >3.5. The hit variable was defined as 1 if the peptide was 

positive and 0 otherwise. To generate the list of public peptides, the datasets were filtered on 

peptides significantly positive in >5% of tested individuals for at least 2 peptides per virus. 

 

VirScan data processing with AVARDA 

Between-species antibody cross-reactivity, unequal representation of viruses in the VirScan 

library, and viral genome size can make peptide-level data challenging to interpret in some cases. 

To address these limitations and compare antibody profiles at the virus-species level, we applied 

the AVARDA algorithm as previously described34, using the code available at 

https://github.com/drmonaco/AVARDA. Briefly, individual VirScan peptides were aligned to 

each other and to a master library of all viral genetic sequences translated in all reading frames 

using BLAST. ‘Evidence peptides’ were VirScan peptides that align to the master library with a 

bit score >80. For each virus, AVARDA calculated a maximally independent set of unrelated 

peptides that explains the total reactivity towards this virus. A 'probability of infection' for each 

virus was calculated using binomial testing, comparing the ratio of the number of positive 

evidence peptides to the total number of evidence peptides with the fractional representation of 

the virus in the VirScan library. Finally, cross-reactivity was evaluated by ranking all viruses 

based on the probability of infection. Pairs of viruses were then iteratively compared, where 

shared reactive peptides were assigned to the virus with the most substantial evidence of 

infection based solely on non-shared peptides. Once all peptides were exclusively assigned to a 
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single virus, a final probability of infection for each sample was calculated using the binomial 

testing procedure described above. Additionally, a breadth score was calculated, reflecting the 

total number of positive peptides of independent specificity for each virus. 

 

Immunoassay-based serological data 

Details on the specific antigens and immunoassay methods have been previously described2. 

Blood was collected in EDTA-treated tubes, and the plasma was extracted by centrifugation. 

Total levels of immunoglobulins IgG, IgM, IgE, and IgA were measured with a turbidimetric test 

on an Olympus AU400 Chemistry Analyzer. The immunoassay-based serologies were measured 

for IgG against the following viruses and antigens: CMV (viral lysate), HSV-1 (Glycoprotein G), 

HSV-2 (Glycoprotein G2), EBV (EBNA-1, VCA p18, EA-D), VZV (Lysate), IAV (Lysate), 

rubella (Lysate), and measles (Lysate). The data processing steps for the immunoassay-based 

serology data are described in more detail in ref.2. Briefly, the absorbance and emission values 

collected in each assay are used to call the serostatus for each blood sample. The individual 

cutoff values used for calling a sample positive or negative are given by the manufacturer and 

can be found in Table S2 of ref.2. 

 

Luminex-based serological data 

MI plasma samples were tested for antibodies to a broad panel of common respiratory pathogens 

and routine vaccine-preventable diseases using bead-based multiplex assays. A 43-plex assay 

was developed that included antigens for adenovirus, cytomegalovirus, Epstein-Barr virus, 

echovirus, enterovirus CoxB3, hepatitis A virus, hepatitis B virus, hepatitis C virus, measles, 

mumps, rubella, norovirus, respiratory syncytial virus (RSV), rhinovirus, rotavirus, varicella-

zoster virus, human papillomavirus, influenza A, human seasonal coronaviruses 229E, NL63, 

OC43 and HKU1, and SARS-CoV-2. Three antigens for RSV were sourced from The Native 

Antigen Company (Oxford, UK): RSV A glycoprotein G (RSV-AgG); RSV A lysate (RSV-A); 

and RSV B lysate (RSV-B). Samples were run at a dilution of 1:100. Plates were read using a 

Luminex IntelliFlex system, and the median fluorescence intensity was used for analysis. For the 

Luminex-based serology data, a 5-parameter logistic curve was used to convert median 

fluorescence intensities to relative antibody units, relative to the standard curve performed on the 

same plate to account for inter-assay variation.  
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Serostatus prediction 

We assessed the performance of different methods that predict serostatus from the VirScan data 

by comparing predicted serostatus to ELISA-based serostatus obtained in the same 900 MI 

donors. We focused on predicting serostatus for four common viruses for which ELISA data 

were available: CMV, EBV (EBNA-1 and EA-D), HSV-1, and HSV-2 (Supplementary Note, 

Table S1). We considered four alternative approaches: (i) the hit-based heuristic method, which 

assigns seropositivity for a given virus when the number of hits is > 3 or 5 (as in ref.27); (ii) the 

hit-based optimized method, where we searched for the number of positive hits for a given virus 

that maximizes prediction precision and recall; (iii) the AVARDA-based optimized method, 

where we searched for the threshold value of the AVARDA breadth score for a given virus 

maximizes prediction precision and recall, and (iv) an Elastic Net penalized Logistic Regression 

trained from a subset of the data.  

To train the Elastic Net model, we shuffled and split the data into a training set (70% of the 

data) and a test set (30%) so that the ratio of seropositive to seronegative samples in both sets 

was the same as in the original data. We only considered VirScan peptide Z-scores for the tested 

virus as features during feature selection. Two complementary approaches were implemented to 

reduce overfitting: we discarded features with variance lower than a user-specified threshold, 

defining a first hyper-parameter, and kept the features with univariate association statistics 

higher than a user-specified percentile, defining a second hyper-parameter. A grid-based 

approach was used to optimize the two hyper-parameters and the ratio between Elastic Net L1 

and L2 penalty, performing a 5-fold cross-validation for each point of the 3-dimensional grid. 

We visually inspected learning curves to ensure the absence of overfitting. Processing and 

modeling were carried out using Python 3.12.2 and the following packages numpy 1.26.4, scipy 

1.12.0, pandas 2.2.1 and scikit-learn 1.4.1.post1. All the packages were installed in a conda 

24.3.0 environment for reproducibility. 

 

Kappa-deleting recombination excision circles (KREC) assay 

To evaluate if B-cell maturation affects antibody levels, we tested the association between all 

public peptide Z-scores and circulating levels of Kappa-deleting recombination excision circles 

(KREC), i.e., circular DNA segments generated in B cells during their maturation in bone 
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marrow. KRECs serve as surrogates of new B cell output, as they persist in B cells and get 

diluted with cell division69. KREC quantification was performed as in ref.70, with some 

modifications. Briefly, 1 to 2 µg of whole blood genomic DNA was pre-amplified for 3 minutes 

at 95°C and then 18 cycles of 95°C for 15 s, 60°C for 30 s and 68°C for 30 s, in a 50 µl reaction 

containing primers, 200 µM of each dNTP, 2.5 mM MgSO4 and 1.25 unit of Platinum Taq DNA 

pol High Fidelity (ThermoFisher Scientific, Courtaboeuf, France) in 1× buffer. Forward and 

reverse primers were TCAGCGCCCATTACGTTTCT and GTGAGGGACACGCAGCC for 

sjKREC, and CCCGATTAATGCTGCCGTAG and CCTAGGGAGCAGGGAGGCTT for 

cjKREC, respectively. Probes were CCAGCTCTTACCCTAGAGTTTCTGCACGG (sjKREC) 

and AGCTGCATTTTTGCCATATCCACTATTTGGAGTA (cjKREC). Columns of 48.48 

Dynamic array IFCs (Fluidigm France, Paris, France) were loaded with 5 µl containing 2.25 µl 

of a 1/2000th dilution of preamplified DNA, 2.5 µl of 2× Takyon Low Rox Probe MM 

(Eurogentec, Paris, France) and 0.25 µl of sample Loading Reagent and raws with an equal 

mixture of 2× Assay loading Reagent and 2× Assay Biomark containing only the two primers 

and the probe specific for each assay and were subjected to a 40 cycles PCR (95°C, 15 s and 

60°C, 60 s) in a Biomark HD system (Fluidigm). cjKRECs and sjKRECs were normalized to 

150,000 cells using the Albumin gene quantification.  

 

Genome-wide SNP genotyping 

Details about SNP array genotyping of the MI cohort are available elsewhere45. Briefly, DNA 

was extracted from whole blood collected on EDTA using the Nucleon BACC3 genomic DNA 

extraction kit (catalog #: RPN8512; Cytiva, Massachusetts, USA). The 1,000 MI individuals 

were genotyped using the HumanOmniExpress-24 BeadChip (Illumina, U.S.), and 966 were also 

genotyped using the HumanExome-12 BeadChip (Illumina, U.S.). Details about SNP array 

genotyping of the EIP cohort are available elsewhere33. Briefly, PBMCs were isolated from 

blood collected into EDTA vacutainers, monocytes were removed with CD14+ microbeads, and 

DNA was isolated from the monocyte-negative fraction using a standard phenol/chloroform 

protocol, followed by ethanol precipitation. Genotyping was performed in all individuals using 

the HumanOmni5-Quad BeadChip (Illumina, U.S.) In addition, whole-exome sequencing was 

performed with the Nextera Rapid Capture Expanded Exome kit. 
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The genotyping data processing of the MI cohort is described in detail in ref.45. After 

applying quality control filters, the SNP array data sets from the two genotyping platforms were 

merged. SNPs that were discordant in genotypes or position between the two platforms were 

removed, yielding a final data set containing 732,341 genotyped SNPs. The data set was then 

phased using SHAPEIT271 and imputed using IMPUTE v.272, with 1-Mb windows and a buffer 

region of 1Mb. After imputation, SNPs with an information metric ≤ 0.8, duplicated SNPs, SNPs 

with a missingness of >5%, and SNPs with a minor allele frequency of ≤5% were removed, 

generating a final data set of 5,699,237 SNPs. 13 individuals were removed based on relatedness 

and admixture45. Finally, the data set was converted to GRCh38 using the LiftoverVcf function 

from the GATK software package73. 

A more complete description of the genotyping EIP data processing steps can be found in 

ref33. The SNP array genotyping and whole-exome sequencing data were processed separately 

and merged. For the SNP array data, SNPs were passed through multiple QC filters, and SNPs 

originating from the sex chromosomes were removed. For the whole-exome sequencing data, 

reads were processed according to the GATK Best Practices. Discordant variants between the 

two datasets were removed before merging the SNP array and whole-exome sequencing data 

sets. After combining the two datasets, the data was phased using SHAPEIT2 and imputed using 

IMPUTE v.2, with 1-Mb windows and a buffer region of 1 Mb. After imputation and additional 

QC filtering, 19,619,457 SNPs remained. The data set was converted to GRCh38 using the 

LiftoverVcf function from the GATK software package73. Finally, four individuals were removed 

based on relatedness and admixture33. 

 

Whole-genome sequencing 

Whole genome sequencing was performed by the Centre National de Recherche en Génomique 

Humaine (CNRGH), Institut de Biologie François Jacob, Evry, France. After quality control, 1µg 

of genomic DNA was used to prepare a library using the Illumina TruSeq DNA PCR-Free 

Library Preparation Kit, according to the manufacturer's instructions. After normalization and 

quality control, qualified libraries were sequenced on an Illumina HiSeqX5 platform (Illumina 

Inc., CA, USA) as paired-end 150 bp reads. One lane of HiSeqX5 flow cell was produced for 

each sample to reach an average sequencing depth of ~30× for each sample. FASTQ files were 

mapped on the human reference genome version hs37d5, using BWA-MEM with default 
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options74. BAM file integrity was verified with PicardTools and samtools. Duplicated reads were 

identified with sambamba75. Reads were realigned and recalibrated with GATK73 v.4.1. 

Sequencing reads mapping to the HLA, IGH, IGK, and IGL loci were extracted from the mapped 

BAM files. Genotypes were called in each individual with HaplotypeCaller in GVCF mode. 

Multi-sample genotype calling was performed jointly on combined GVCF files with GATK 

GenotypeGVCFs. After Variant Quality Score Recalibration (VQSR), variants that passed the 

tranche sensitivity threshold of 99.0% were selected. Multiallelic sites were split into several 

biallelic sites with ‘bcftools norm -m-both’ and variants spanning deletions were filtered out. 

Genotypes were set to missing if the depth of coverage was < 8× or genotype quality < 20. Based 

on kinship coefficients estimated with KING76, ten related individuals and one individual 

detected as contaminated were excluded. Finally, variants with minor allele frequency (MAF) < 

0.05, Hardy-Weinberg equilibrium P-value < 10-10 (calculated using the HWExact function from 

the GWASExactHW R package) or call rate < 0.95 were discarded, resulting in a total of 30,503 

common variants near and within immunoglobulin genes.  

 

Testing association between VirScan Z-scores and non-genetic factors 

All statistical associations were tested using multiple regression models. In all models, the 

dependent variable was either an asinh-transformed VirScan Z-score (for a given peptide) or an 

AVARDA breadth score (for a given virus). The independent variable could be (i) serological 

measurements based on ELISA, (ii) serological measurements based on Luminex xMAP assays, 

or (iii) age and sex, continent of birth, and candidate non-genetic factors, including smoking, 

diet, past diseases, health biomarkers, and anthropometric measures (Table S2). The three 

variable groups (i), (ii), and (iii) were treated as independent families of tests. Tests within the 

MI and EIP cohorts were also considered independent. As detailed below, the specific model and 

complete list of covariates used varied depending on the independent variables being tested. 

A linear model was applied using the 'lm' R function when the independent variable was 

continuous or binary. The beta value was used to determine the effect size of the independent 

variable. When the independent variable was categorical with more than two levels, an 

ANCOVA model was applied using the 'aov' R function. In the association analyses of the MI 

cohort, age and sex were systematically included as covariates. We also investigated non-linear 

effects of age by testing an ANOVA model that models age as a factor with five 10-year levels. 
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In addition, we tested for age×sex interactions by adding an interaction term to the linear model. 

The only analyzed independent variables for the EIP cohort were age and continent of birth. 

When age was used as the variable of interest, the continent of birth was controlled for, and vice 

versa. As all individuals in the EIP cohort were males, sex was not used as a covariate in these 

analyses. 

To leverage the high resolution of the VirScan peptide library while accounting for between-

species antibody cross-reactivity, we first tested the association between non-genetic factors and 

all public peptide Z-scores and then evaluated if AVARDA breadth scores for the tested viruses 

were associated with the corresponding factors. We considered three scenarios: (i) both the Z-

scores for several peptides of a given virus and the AVARDA score for the same virus were 

associated with the candidate factor in the same direction, interpreted as a true association; (ii) 

the Z-scores for several peptides of a given virus were associated with the candidate factor in the 

same direction, but the AVARDA score for the same virus was not, interpreted as a false 

association due to cross-reactivity; and (iii) the Z-scores for several peptides of a given virus 

were associated with the candidate factor in opposite directions, but the AVARDA score for the 

same virus was not associated, interpreted as true associations obscured by opposite epitope-

specific effects. 

 

Testing association between VirScan scores and genetic factors 

GWAS was conducted on the asinh-transformed VirScan Z-scores or AVARDA breadth scores 

in the MI cohort. The EIP cohort was used as a replication cohort. The specific covariates used 

differed between the two cohorts. To correct for population stratification, a principal component 

analysis was run on all SNPs separately for both cohorts, and the first two principal components 

were included as covariates. Age was also included as a covariate for both cohorts, and sex was 

included as a covariate for the MI cohort only. The population of origin was included as an 

additional binary indicator covariate for the EIP cohort. The GWAS analyses were conducted 

using the 'assocRegression' function from the GWASTools R package77, using a linear model as 

the model type and an additive model for the genotype effects. Manhattan plots, locusZoom 

plots, and tables were all made using the topr R package78. 

 

HLA allele imputation and association testing 
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HLA allele imputation was done using whole-genome sequencing data of the HLA locus (here 

defined as position 28-35 Mbp in GRCh37), using all variants in the region with MAF ≥ 5%. 

Imputation was conducted on the Michigan Imputation Server79, using the Four-digit Multi-

ethnic HLA reference panel v2. HLA dosages were calculated using plink280. Association testing 

was conducted similarly to individual SNP analysis but using HLA allele dosages instead of SNP 

genotypes. 

 

Estimation of the proportion of variance explained 

The proportion of variance explained by demographic and genetic factors was estimated for the 

VirScan Z-scores of the 2,608 public peptides in the MI cohort. Genetic factors were the most 

associated SNPs identified through conditional GWAS, i.e., by testing association with all 

variants while controlling for hitherto identified lead SNPs. This process was continued until no 

more SNPs with a P-value below genome-wide significance (P < 1.31 × 10-10) could be 

identified, leaving a total of 17 SNPs. Age, sex, and smoking were included as demographic 

factors. The contribution of each of these 20 variables to the variance of each peptide Z-score 

was estimated using the relaimpo R package81.  

 

Phylogenetic analyses 

All UniProt amino-acid sequences used to build the VirScan peptide library for the RSV protein 

G were aligned with the msa function from the msa package82. The 41-aa-long region that was 

covered by the largest number of UniProt sequences was identified. Based on this shared region, 

a distance matrix between all Uniprot sequences was computed with the ‘DistanceMatrix’ 

function from the DECIPHER package83 , and complete-linkage clustering was used to obtain a 

phylogenetic tree using the 'hclust' R function. Strain annotations were then interpolated for all 

VirScan peptides using the constructed tree. 
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Data availability 

The VirScan3 PhIP-seq raw and processed data generated in this study have been deposited in 

the Institut Pasteur data repository, OWEY, which can be accessed via the following link: 

https://dataset.owey.io/doi/10.48802/owey.84rn-jg72?version=1.1. All association statistics 

obtained in this study can be explored and downloaded from the web browser 

http://mirepertoire.pasteur.cloud/. The SNP array data can be accessed in the European Genome-

Phenome Archive (EGA) with the accession code EGAS00001002460. All Milieu Intérieur 

datasets can be accessed by submitting a data access request to milieuinterieurdac@pasteur.fr, 

the Milieu Intérieur data access committee (DAC). The DAC informs all the research 

participants of the data access request and grants data access if the request is consistent with the 

informed consent signed by the participants. In particular, research on Milieu Intérieur datasets is 

restricted to research on the genetic and environmental determinants of human variation in 

immune responses. Data access is typically granted two months after request submission.  
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