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Abstract

Malaria, caused by Plasmodium parasites and transmitted by female Anopheles
mosquitoes, is most common in tropical regions, especially in Sub-Saharan Africa.
Despite significant global effort to control and eradicate the disease, many cases and
deaths are still reported yearly. These efforts are hindered by several factors, including
the severe underestimation of cases and deaths, especially in Africa, making it difficult
to assess the disease burden accurately. We used a mathematical model of malaria,
incorporating the underestimation of cases and seasonality in mosquito biting rate, to
study the disease dynamics in Cameroon. Using a Bayesian inference framework, we
calibrated our model to the monthly reported malaria cases in ten regions of Cameroon
from January 2019 to December 2021 to quantify the underestimation of cases and
estimate other important epidemiological parameters. We performed Hierarchical
Clustering on Principal Components analysis to understand regional disparities, looking
at underestimation rates, population sizes, healthcare personnel, and healthcare
facilities per 1,000 people. We found varying levels of underestimation of cases across
regions, with the East region having the lowest underestimation (14%) and the
Northwest region with the highest (70%). The mosquito biting rate peaks once every
year in most of the regions, except in the Northwest region where it peaks every 6.02
months and in Littoral every 15 months. We estimated a median mosquito biting rate
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of over five bites per day for most of the regions with Littoral having the highest (9.86
bites/day). Two regions have rates below five bites per day: Adamawa (4.78 bites/day)
and East (4.64 bites/day). The notably low estimation of malaria cases in Cameroon
underscore the pressing requirement to bolster reporting and surveillance systems.
Regions in Cameroon display a range of unique features, which may contribute to the
differing levels of malaria underestimation. These distinctions should be considered
when evaluating the efficacy of community-based interventions.

Author summary

i. We used a deterministic mathematical model of malaria that incorporated the
underestimation of cases and seasonality in the biting rate of mosquitoes to
retroactively study the dynamics of the disease in Cameroon from January 2019
to December 2021.

ii. We found varying levels of underestimation of malaria cases across regions in
Cameroon, with the East region having 14% underestimation and the Northwest
region having 70%.

iii. We found consistent malaria-induced death rates and natural immunity duration
across Cameroon. We estimated that the mosquito biting rate for the Northwest
region oscillated with a period of 6.02 months, while those of the remaining
regions had a period of 12 months or more. Most regions had median mosquito
biting rates exceeding five bites per day, with the Littoral having the highest (9.86
bites/day). In comparison, two regions had rates below five bites per day:
Adamawa (4.78 bites/day) and East (4.64 bites/day).

iv. We clustered the ten regions into four major groups using the case
underestimation rate, population size, total healthcare human resources per 1,000,
and total healthcare facilities per 1,000.

Introduction 1

Malaria is a mosquito-borne disease caused by plasmodium parasites and transmitted by 2

female Anopheles mosquitoes. It is common in sub-Saharan Africa and other tropical 3

regions of the world [1–3]. There are 123 known species of the genus Plasmodium. 4

However, only five of them are known to cause infections in human: P. falciparum, P. 5

malariae, P. ovale, P. vivax, and P. knowlesi [7–11]. The most prevalent and dangerous 6

malaria parasite is Plasmodium falciparum [12]. It is responsible for a significant portion 7

of malaria-related fatalities [7, 8, 13]. Plasmodium parasites are mainly spread through 8

mosquito bites, but can also be spread from a malaria-infected pregnant individual to 9

their fetus through the placenta, and through blood transfusion [14]. Individuals 10

infected with malaria may have symptoms like fever, rigors, and chills, in the case of 11

uncomplicated malaria [15]. However, severe malaria mostly in children under five may 12

be presented as fever, impaired consciousness, severe anaemia, respiratory distress, 13

convulsions, and hypoglycemia, among other symptoms [8, 16]. Symptoms usually start 14

10 to 15 days after the initial mosquito bite, however for infections involving some 15

strains of plasmodium vivax, symptoms could delay for 8 to 10 months or longer [17]. 16

About half of the world’s population, the majority of whom reside in Africa, are 17

susceptible to malaria and dealing with its economic hardships. According to the WHO 18

estimates, there were 247 million malaria cases and 619, 000 deaths in 2021, where 234 19

million (∼ 95%) of the cases and 593, 000 (∼ 96%) of the deaths were in Africa [12]. In 20
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addition, ∼ 79% of the deaths were in children under five years [12]. Despite recent 21

advancements in the fight against malaria, the disease is still widespread with over 2 22

million reported cases in Cameroon yearly, posing a serious public health 23

concern [18–22]. It is identified as the third leading cause of death in healthcare centers 24

in Cameroon, accounting for 30% of the mortality [23]. 25

The burden of malaria differs geographically depending on the local malaria 26

transmission intensity [24]. Underestimation of cases can be in terms of 27

under-ascertainment (when not all patients seek healthcare), under-diagnosis (when 28

cases seek healthcare but are not properly diagnosed) and/or under-reporting or 29

under-notification (when diagnosed cases are not adequately reported and notified) [25]. 30

The burden of asymptomatic malaria, i.e., infection with P. falciparum in the absence 31

of overt clinical symptoms, is huge [3]. Individuals may harbor malaria parasites but 32

due to the absence of symptoms will not report to any facility for diagnosis or treatment 33

and thus will not be counted. In addition, some individuals may self-treat, either with 34

local herbs or through medication from undocumented sources. These may lead to the 35

under-ascertainment of cases. Furthermore, infected individuals may visit hospitals but 36

their cases go undetected due to low parasite load and/or the sensitivity of the testing 37

device [26]. Recently, Afriyie et al. [26] found that up to 40% of individuals diagnosed 38

as negative in the lab by microscopy and rapid diagnostic tests (RDT) in the Ashanti 39

Region of Ghana, were identified as positive under research settings when tested with 40

molecular techniques with higher sensitivity. Such individuals with undetected infection 41

bring concern to malaria elimination in Africa, as they present as a reservoir for 42

mosquitoes to pick up infections and spread to others. 43

One of the earliest mathematical models used to study malaria transmission is the 44

”Ross-Macdonald model” developed in 1915 [27]. Over the years, this model has led to 45

the development of other deterministic mathematical models used to gain insight into 46

the transmission dynamics of malaria [7, 28,29,29–31]. Of recent, Ndamuzi et al. [7] 47

proposed a deterministic model for studying the dynamics of malaria parasite in 48

mosquito and human populations. They demonstrated the need for effective control 49

measures to decrease the number of mosquito bites per individual per unit time and the 50

population of mosquitoes, among other factors to adequately control the spread of 51

malaria. Another malaria dynamics model with age-structure in mosquito population 52

was developed by Bakary et al. [10]. The model divides the human population into 53

non-immune and semi-immune, where the non-immune are the most vulnerable, while 54

the semi-immune are the least vulnerable individuals. They analyzed the model 55

mathematically and studied the stability properties of its steady-states. The model of 56

Collins et al. [32] was used to study the dynamics of malaria in Nigeria. The model 57

incorporates the treatment of malaria, drug resistance, and the usage of mosquito nets 58

as a preventive measure. Their finding suggests that unless better control efforts are 59

directed at the dominant resistant strain of the disease, treatment is improved, and 60

mosquito nets are used widely, malaria is likely to remain endemic in Nigeria. 61

The underestimation of malaria cases has been reported in some regions around the 62

world [46–49,51,52]. In an India forest community, Chourasia et al. [46] estimated that 63

malaria cases maybe have been underestimated by up to 20% and 22.8% in 2013 and 64

2014, respectively, due to asymptomatic cases. A cross-sectional study by Nankabirwa et 65

al. [49] indicated that up to 39.9% of malaria cases in children under five years old are 66

undiagnosed in Uganda. The under-reporting of malaria cases in Europe was estimated 67

to vary between 20% to 59% by Legros and Danis [51]. This estimate is consistent with 68

the 33.33% rate estimated for the Netherlands in 1996 by Van Hest et al. [52]. Overall, 69

there are limited studies on the underestimation of malaria cases in the literature. To 70

our knowledge only two studies have looked at the underestimation of malaria cases in 71

Africa [48, 49]. To better understand the magnitude of malaria epidemic in Africa, it is 72
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essential to understand the degree of underestimation of cases and deaths. 73

In this study, we used a deterministic mathematical model to study the dynamics of 74

malaria in Cameroon. Our model incorporates the human and mosquito population, 75

and a seasonal mosquito biting rate. Using a Bayesian inference framework, we fitted 76

our model to the reported cases of malaria in each of the ten regions of Cameroon, from 77

January 2019 to December 2021, from which we estimated the underestimation of 78

malaria cases in each region, and other key epidemiological parameters. In addition, 79

through Hierarchical Clustering on Principal Components analysis (HCPC), we 80

clustered the ten regions based on the quantified underestimation rates and other 81

regional characteristics. 82

Methods 83

Mathematical model 84

We used a deterministic compartmental model to study the dynamics of malaria in the 85

ten geographical regions of Cameroon, following the framework of [10,33–36]. Our 86

model considers the human and mosquito population in each region, dividing the human 87

population into four compartments: susceptible (Sh), exposed (Eh), infectious (Ih), and 88

recovered (Rh), and the mosquito population into two compartments: susceptible (Sv) 89

and infected (Iv) (see Fig 1). Although many of the malaria models in the literature 90

explicitly consider the population of mosquitoes in the exposed stage of the 91

disease [35,36], these mosquitoes are included in the infected compartment (Iv) in our 92

model. 93

Humans

Mosquitos

Sh EhEh IhIh Rh

Sv Iv

λh(t)

λv(t)

σh γh

ωh

Sh

µh

Eh

µh

Ih

µh
+
δ

Rh

µh

Sv

µv

Iv

µv

Sv

Λv

Sh

Λh

Fig 1. Schematic illustration of the compartmental model. An illustration of
our model incorporating human and mosquito populations. The human population is
divided into susceptible (Sh), exposed (Eh), infectious (Ih), and recovered (Rh)
populations, while the mosquito population is divided into susceptible (Sv) and infected
(Iv) mosquitoes. Solid black arrows show the transition of humans and mosquitoes
through the different stages of malaria at the rate beside the arrows. Dashed black
arrows show malaria transmission from humans to mosquitoes and vice versa.

In our model, a susceptible human becomes infected with malaria at a probability βh 94

following a bite from an infected mosquito. Similarly, a susceptible mosquito becomes 95

infected with malaria at a probability βv upon biting an infected human. After a 96

successful bite and malaria transmission from a mosquito to a human, the malaria 97

parasite in this individual undergoes an incubation period during which the infected 98

humans cannot transmit the parasite to susceptible mosquitoes [37]. The incubation 99

period lasts for a couple of days depending on the initial dose of the plasmodium 100

parasite injected into the human by the mosquito [37]. This period is captured by the 101
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exposed compartment (Eh) in our model. After this period, the infected individual 102

becomes infectious and can transmit the parasite to susceptible mosquitoes. We 103

assumed a constant influx of humans into each regions through birth and/or 104

immigration at the rate Λh, and similarly for mosquitoes at the rate Λv. We did not 105

explicitly model mosquito habitat and assumed that all the mosquitoes considered are 106

the female Anopheles mosquitoes that can be infected with and transmit 107

malaria [38,39]. In addition to the natural human death rate µh, we considered 108

malaria-induced deaths in the human population at rate δ. To capture the seasonality 109

of the malaria epidemic in each region, we assumed a periodic change in the biting rate 110

of mosquitoes. We also incorporated the waning of infection-acquired temporary 111

immunity in humans at rate ωh, which we assumed varies between the regions. The 112

differential equations of the model are given by 113

dSh

dt
= Λh − λh Sh + ωhRh − µhSh,

dEh

dt
= λh Sh − σhEh − µh Eh,

dIh
dt

= σhEh − γhIh − (µh + δ)Ih,

dRh

dt
= γhIh − ωhRh − µhRh,

dSv

dt
= Λv − λv Sv − µvSv,

dIv
dt

= λvSv − µvIv,

(1)

where λh ≡ λh(t) and λv ≡ λv(t) are the time-dependent forces of infection for the 114

human and mosquito populations, respectively, given by 115

λh(t) = b βh
Iv
Nh

and λv(t) = b βv
Ih
Nh

. (2)

In Eq 2, Nh denotes the human population size, b denotes the biting rate of one 116

mosquito per unit time, and βh (βv) denotes the probability of malaria transmission to 117

human (to a mosquito) upon one infectious bite. We assumed that one mosquito bites 118

the same human only once during its lifetime. 119

To account for the seasonality in the biting rate of mosquitoes, we used a periodic 120

function for b ≡ b(t), given by 121

b(t) = b0

[
1 + ε cos

(
2πω(t− tc)

)]
, (3)

where b0 is the average biting rate of mosquitoes, ε is the degree of variation around the 122

average biting rate, 1/ω is the period for seasonal malaria epidemic and tc is the phase 123

shift in the periodicity. All model parameters, their descriptions, and values are 124

presented in Table 1. 125

Using the next-generation matrix approach [43], we derived the time-dependent 126

effective reproduction number Re(t) of malaria for our model. Details of the derivation 127

and the Re(t) computed for each region using the median estimated parameters are 128

presented in the S1 File. 129

Data 130

We considered the monthly reported malaria cases in the ten geographical regions of 131

Cameroon: Adamawa, Central, East, Far North, Littoral, North, Northwest, West, 132
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Table 1. Descriptions and values for model variables and parameters.

Variable Description Initial value Source
Sh Susceptible human population Sh(0) = Nh(0)− (Eh(0) + Ih(0)) Assumed
Eh Exposed human population See S2 File Fitted
Ih Infectious human population See S2 File Fitted
Rh Recovered human population Rh(0) = 0 Assumed
Nh Total human population See S2 File [40]
Sv Susceptible mosquito population SV (0) = 5,000 Assumed
Iv Infected mosquito population See S2 File Fitted

Parameter Description Value Source
λh(t) Force of infection for human See Eq 2 -

λv(t) Force of transmission for mosquitoes See Eq 2 -

b(t) Time-dependent mosquito biting rate See Eq 3 -

Λh Human birth/immigration rate See S2 File [40]

Λv Mosquito birth/immigration rate See S2 File Fitted

βh Probability of malaria transmission to human
per bite

0.022 [41]

βv Probability of malaria transmission to
mosquito per bite

0.48 [41]

ωh Region-specific waning rate of malaria natural
immunity in human

See S2 File Fitted

µh Human death rate 0.0014 month−1 [42]

µv Mosquito death rate 0.033 day−1 [41]

σh Disease progression rate from exposed to in-
fected for human

0.1 day−1 [41]

γh Human recovery rate 0.0035 day−1 [41]

δ Human death rate due to malaria See S2 File Fitted

p Fraction of undetected malaria cases See S2 File Fitted

b0 Average biting rate of a mosquito See S2 File Fitted

ε Degree of variation around the average biting
rate of mosquitoes

See S2 File Fitted

ω Frequency of seasonality in mosquito biting
rate

See S2 File Fitted

tc Phase shift in the periodicity of mosquito biting
rate

See S2 File Fitted

South, and Southwest, from January 2019 to December 2021, as obtained from 133

DHIS2 [44]. The data is stratified into two age groups: < 5 years old and ≥ 5 years old 134

(see Fig 2). However, in this study, we combined the data for the two age groups to 135

obtain the total estimated cases of malaria for each region, which is used in our model 136

calibration. 137

Fig 2 shows the bar plots of the monthly reported cases of malaria for each region 138

for the < 5 years old (red bars) and those ≥ 5 years old (green bars). The seasonality in 139

the total cases of malaria in each region can easily be seen. Many of the regions have 140

only one (usually large) outbreak of malaria each year. However, the Northwest region 141

has multiple smaller outbreaks yearly. 142
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Fig 2. Monthly reported cases of malaria. The monthly reported cases of malaria
in different geographical regions of Cameroon from January 2019 to December 2021, for
different age groups, obtained from DHIS2 [44]. Red bars represent the reported cases
for < 5 years age-group, and the green bars is for the ≥ 5 years age-group.

Bayesian inference 143

We fitted our model in Eq (1) to the monthly reported cases of malaria in each region 144

independently using a Bayesian inference framework and the RStan package in R 145

version 3.6.3 [45]. Although the data are stratified by age groups when presented in 146

Fig 2, we used the total reported cases (without age stratification) in our fit. In our 147

calibration, we defined the likelihood function for each region as 148

ReportedCases(t) ∼ NegBin(incidence(t)(1− p), ϕ), (4)

where NegBin(·) is the negative binomial distribution, ReportedCases(t) is the total 149

monthly reported cases of malaria for the region obtained from the data in Fig 2, 150

incidence(t) is the monthly incidence of malaria computed using our model Eq 1 (it is 151

computed as the number of exposed individuals transitioning to the infectious 152

compartment each month), p is the fraction of cases undetected (i.e., 1− p is the 153

fraction of malaria cases that was detected), and ϕ is the dispersal parameter. 154

The Bayesian inference framework gives us the flexibility to incorporate our prior 155

knowledge into the model parameters and the ability to evaluate probabilistic 156

statements of the data based on the model. We implemented uninformative priors when 157

fitting our model to the case data. To ensure that our model is coded accurately in the 158

Stan and also for validation, we generated synthetic case data using our model with 159

known parameter values. We then calibrated our model to the synthetic dataset, and 160

inspected the resulting posterior distributions for biases and coverage of the true 161

parameter values used to generate the data. We also checked for the identifiability of 162

the parameters. We used the adaptive Hamiltonian Monte Carlo method No-U-Turn 163

sampling (NUTS) as implemented in RStan with 5,000 iterations and four chains for our 164

model calibrations. From our fit, for each region, we estimated the fraction of 165

underestimated cases of malaria (p), the average biting rate of a mosquito (b0), the 166

malaria-induced death rate for humans (δ), and other important model parameters (see 167

Results Section). These parameters are used to compute the time-dependent effective 168
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reproduction number Re of malaria for each region (See S1 File). 169

Results 170

Data fitting 171

We calibrated our model in Eq (1) to the monthly reported cases of malaria in each of 172

the ten regions of Cameroon (see Fig 2) independently using a Bayesian inference 173

framework. The results of our inference showing the monthly reported malaria cases 174

(black dots), together with the median predicted cases, obtained from our model fit 175

(solid lines), are presented in Fig 3. The narrower (darker) bands are 50% credible 176

intervals (CrI), while the wider (lighter) bands are 90% CrI. 177

Fig 3. Observed and estimated monthly malaria cases. The monthly reported
malaria cases (black dots) and median predicted cases (solid lines) for each region of
Cameroon. The darker bands are the 50% CrI, while the lighter bands are the 90% CrI.

Quantifying the underestimation of malaria cases 178

From our calibration, we estimated the percentage of underestimated cases of malaria in 179

each region, which varies significantly between the regions (Fig 4). The smallest 180

percentage was estimated for the East region with a median of 14% (90% CrI: 1% - 181

38%), while the largest was estimated for the Northwest region, 70% (90% CrI: 40% - 182

83%). Following the Northwest region is the Littoral and West regions, with similar 183

rates, 67% (90% CrI: 39% - 80%) and 67% (90% CrI: 47% - 76%), and then Far North, 184

48% (90% CrI: 15% - 68%) and North, 47% (90% CrI: 13% - 68%). 185

We present five key malaria parameters estimated from our fit in Fig 5 and Fig 6: 186

the mean duration of natural immunity (1/ωh) in months, malaria-induced per capita 187

death rate (δ), the period of seasonal mosquito biting rate (1/ω) in months, the baseline 188

(or average) mosquito biting rate (b0) per day, and the degree of variation around 189

baseline biting rate (ε) in percentage. 190

The estimated malaria-induced death rate is similar for the regions ranging from a 191

median of 0.016/month (90% CrI: 0.007-0.034) for the East region to 0.019/month for 192
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Fig 4. Percentage of malaria cases underestimation. The percentage of
underestimation of malaria cases estimated for each region. Left panel: map
visualization with the median underestimation percentage indicated with color intensity:
high (reddish) and low (yellowish). Right panel: barplots showing the percentage of
underestimation for each region with 90% CrI (in ascending order).
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Fig 5. Estimated region-specific malaria parameters: mean duration of
natural immunity in months and malaria-induced per capita death rate per
month. The bars are the median estimated values and error bars are for the 90% CrI.

Far North (90% CrI: 0.008-0.041) and Northwest (90% CrI: 0.009-0.044). The mean 193

duration of natural immunity is also consistent among the regions (see Fig 5). The East 194

region has a natural immunity duration of 5 months (90% CrI: 4.17-5.88) and the 195

Southwest region has the shortest duration of 4.17 months (90% CrI: 1.92-8.33). It is 196

important to note that the East region has the highest estimation rates of malaria cases 197

while it has the lowest malaria-induced death rates and longest natural immunity 198

duration. 199

We estimated that the mosquito biting rate for the Northwest region oscillated with 200

a period of 6.02 months (90% CrI: 5.62-6.33), while those of the other regions oscillated 201

with a period of at least 12 months, with the biting rate of Littoral having the largest 202

periodicity of 15.38 months (90% CrI: 10.87-16.39). The low periodicity of mosquito 203

biting rate in the Northwest region may have contributed to the high underestimation of 204

malaria cases estimated for this region. Most of the regions have an estimated mosquito 205
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Fig 6. Estimated region-specific malaria parameters: period of oscillation of
mosquito biting rate in months, baseline mosquito biting rate per day and
variation of baseline mosquito biting rate in percentage. The bars represent the
median estimated values and error bars are for the 90% CrI.

biting rate above 5 bite/day, with the highest estimated for the Littoral region with a 206

median of 9.86 bites/day (90% CrI: 6.24-14.61). Two regions have biting rates below 5 207

bites/day, and they are the Adamawa region with a median of 4.78 bites/day (90% CrI: 208

3.39-7.09), and the East region with 4.64 bites/day (90% CrI: 3.03-6.94). The degree of 209

variation around baseline mosquito biting rate was estimated to be mostly between 9% 210

and 35%, with Far North having the only exceptionally large variation of 55% (90% CrI: 211

47%-62%), and Southwest having the least variation of 9% (90% CrI: 5%-13%). 212

Clustering of regions 213

We used the estimated malaria underestimation rates, the population sizes, total 214

numbers of healthcare human resources per 1,000, and total numbers of healthcare 215

facilities per 1,000 to cluster the ten Cameroon regions through Hierarchical Clustering 216

on Principal Components (HCPC). 217

HCPC resulted in four major clusters as shown in Fig 7A, indicated by different 218

colors. Cluster 1 includes Aadmawa alone, cluster 2 includes the South, East and 219

Southwest regions, cluster 3 contains the West and Northwest regions, and cluster 4 has 220

Littoral, Far North, North and Central. Among the four factors used for this clustering, 221

the fraction of undetected cases (p=0.018), number of healthcare human resources 222

(p=0.0043) and population size (p=0.0074) are significantly different across clusters 223

from ANOVA test, as shown in Fig 7B. However, these clusters do not differ in number 224

of healthcare facilities (p=0.19). 225

Discussion 226

We have used a deterministic mathematical model to quantify the underestimation of 227

malaria cases in ten regions of Cameroon. The research aimed to estimate essential 228

epidemiological parameters and reveal the extent of underestimation in malaria 229

dynamics across the country. Our findings showed significant variations in the degree of 230

underestimation, ranging from 14% in the East region to a substantial 70% in the 231

Northwest region. We observe from our model fit that the Northwest region has the 232
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Fig 7. Results from Hierarchical Clustering on Principal Components
(HCPC). A: Dendrogram showing the clustering of the Cameroon regions. B:
Significant variables characterizing the clusters, with p-values from ANOVA test.

largest number of smaller epidemics that occurred during our study period of January 233

2019 to December 2021, among the regions. Although these epidemics do not result in 234

high number of malaria cases like those reported in other regions (Adamawa, Central, 235

East, Far North, Littoral North, and Southwest), the frequency of the epidemics may 236

have resulted in the high percentage of underestimation obtained for this region. 237

Furthermore, the research indicated a consistent malaria-induced death rate across 238

Cameroon, with the East region reporting the lowest rate at 0.016/month, while the Far 239

North and Northwest regions recorded the highest at 0.019/month. The mean duration 240

of natural immunity displayed uniformity among regions, with all regions showing a 241

duration of less than five months. Notably, the East region had a relatively longer 242

natural immunity duration of 5 months, while the Southwest region had the shortest at 243

4.17 months. Moreover, the study revealed that only the Northwest region exhibited a 244

minor period of oscillation for the mosquito biting rate (6.02 months), while all other 245

regions demonstrated oscillation periods greater than or equal to 12 months. The 246

Littoral region exhibited the longest periodicity at 15.38 months, indicating substantial 247

variation in mosquito activity across Cameroon. 248

Regarding mosquito biting rates, most regions had estimated rates exceeding 5 bites 249

per day, with the Littoral region topping the list at a median of 9.86 bites per day. In 250

contrast, only two regions reported biting rates below 5 bites per day, specifically the 251

Adamawa region (4.78 bites/day) and the East region (4.64 bites/day). 252

To gain insights into regional disparities, we conducted Hierarchical Clustering on 253

Principal Components analysis, considering undetected fractions, total population size, 254

total healthcare human resources per 1000, and total healthcare facilities per 1000. This 255

analysis resulted in four major clusters: Cluster 1 consisted of Adamawa alone, Cluster 256

2 included the South, East, and Southwest regions, Cluster 3 contained the West and 257

Northwest regions, and Cluster 4 comprised the Littoral, Far North, North, and Central 258

regions. Significantly, the fraction of undetected cases (p=0.018), the number of 259

healthcare human resources (p=0.0043), and population size (p=0.0074) exhibited 260

notable differences across these clusters, as determined by the ANOVA test. However, 261
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the number of healthcare facilities did not display significant variation (p=0.19) among 262

the clusters. 263

In the current academic literature, there have been a limited number of efforts to 264

assess the hidden impact of malaria in both malaria-prone and non-malaria-prone 265

regions worldwide. For instance, in malaria-prone areas, Chourasia et al. [46] estimated 266

the burden of asymptomatic malaria among a tribal population in a forested village in 267

central India. They used peripheral blood smears from 134 and 159 individuals in the 268

village during 2013 and 2014. The authors found that the prevalence rates of 269

asymptomatic malaria were 20% and 22.8% for the two years, respectively. Yadav et 270

al. [47] conducted a retrospective exploration of surveillance data and health records 271

from major public and private health facilities in Ahmedabad city, India. They observed 272

that the detected malaria incidence (37,431 cases) was nine times higher than what was 273

officially reported (4,119 cases), meaning that only 11% of the total malaria cases were 274

reported. In the Ifanadiana District in Madagascar, passive surveillance was estimated 275

to have reported 1 in every 5 malaria cases among all individuals (20%), and 1 in every 276

3 cases among children under five (33.33%) from 2014 to 2017 [48]. Nankabirwa et 277

al. [49] conducted a cross-sectional study that revealed 39.9% of children under five 278

years old in Uganda are under-diagnosed for malaria. Breman [50] observed that less 279

than 20% of malaria incidence cases in sub-Saharan Africa reach the formal health 280

system. In non-malaria-prone regions of the world, Legros and Danis [51] estimated the 281

under-reported rate of malaria in Europe varies from 20% to 59%. This is consistent 282

with Van Hest et al. [52] estimating that approximately one-third (33.33%) of cases in 283

the Netherlands in 1996 went unreported and Cartcath et al. estimating that 34% of 284

cases in England went unreported from 2003-2004. Based on these studies, there isn’t 285

much disparity in malaria underestimation between malaria-prone regions and 286

non-malaria-prone regions. Our study reveals that the mean undetected malaria cases 287

across Cameroon is 44.4% (S.D. 19.24%), which aligns with the undetected values in the 288

studies above. 289

The studies mentioned were identified through searches in two major scholarly 290

electronic databases in the biomedical field, namely, MEDLINE via its openly accessible 291

interface, PubMed, and Scopus. To ensure we captured all relevant studies that hadn’t 292

been indexed, we also conducted searches on Google Scholar. The following search 293

strings were utilized: (”malaria” OR ”malarial fever”) AND( (”Underestimate” OR 294

”Reporting gap” OR ”Hidden cases” OR ”Under-declared” OR ”Unrecorded” OR 295

”Missed reports” OR ”Under-ascertainment” OR ”Under ascertainment” OR 296

”Reporting bias” OR ”Undercount” OR ”under reporting” OR ”underreporting” OR 297

”underascertainment”) OR (”misdiagnosis” OR ”Missed diagnosis” OR ”False negative” 298

OR ”Incorrect diagnosis” OR ”Underdiagnosis” OR ”Failed detection” OR ”Diagnostic 299

error” OR ”Diagnostic bias” OR ”Undetected” OR ”Under-assessment”) OR 300

(”Under-assess” OR ”Under-rate” OR ”underrate” OR ”Under-ascertain” OR 301

”Underestimate bias” OR ”Inaccurate assessment” OR ”under-estimation” OR 302

”Underestimation”)OR (”Non-reporting” OR ”Unreported ” OR ”Under-declared ” OR 303

”Underdeclared” OR ”Missed notification” OR ”Notification deficit” OR ”Silent 304

reporting” OR ”Notification bias” OR ”Notification-bias” OR ”Underdocumented” OR 305

”Under-registered” OR ”Underestimated”))AND (“mathematical model” OR 306

“statistical model” OR “model-based study” OR “modeling study” OR ”model*”). 307

We found that in the existing scholarly literature, there is no mechanistic model for 308

estimating the underestimated proportions of malaria. As a result, our model is the first 309

mechanistic model designed for this purpose. The observation that underestimated 310

fractions and the number of healthcare personnel are variables defining clusters is quite 311

significant and raises some important points for investigation. The significance of 312

underestimated fractions within clusters alongside a low number of healthcare personnel 313

November 6, 2023 12/17

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2023. ; https://doi.org/10.1101/2023.11.06.23298167doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.06.23298167
http://creativecommons.org/licenses/by/4.0/


suggests a potential correlation. It may imply that regions with fewer healthcare 314

professionals are more likely to under-estimate cases. 315

Our study has several limitations that should be acknowledged, including the limited 316

variables chosen for clustering analysis and the omission of an assessment of the factors 317

responsible for underestimation. Future studies should explore the impact of a wide 318

array of socio-economic, climatic, epidemiological, health system-related, demographic, 319

and clinical public health variables on the underestimation of malaria. Further research 320

is warranted to investigate the impact of climatic factors, such as rainfall and 321

temperature on the dynamics of malaria across Cameroon. Seasonal variations in these 322

factors can affect mosquito populations and biting habits, which, in turn, may influence 323

the spread of malaria 324

In conclusion, factors like self-administered treatment, the availability of healthcare 325

facilities, the healthcare workforce, the presence of asymptomatic malaria cases, the 326

capacity of medical laboratories, and the quality of sanitation infrastructure all have the 327

potential to influence people’s inclination to reveal their malaria status or to seek 328

medical help. Recognizing these variations is essential for designing customized and 329

comprehensive strategies that can efficiently tackle underestimation, ultimately 330

resulting in more significant and enduring improvements in clinical public health. The 331

notably low reported rates in Cameroon indicate a distinct necessity for the 332

enhancement of reporting and surveillance systems. 333
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