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Abstract 
 

A commonly-used form of human mobility data, called in-app mobility data, is based on GPS 

locations collected from a panel of mobile applications. In this paper, we analysed daily travel 

patterns from in-app GPS data in the United Kingdom to identify characteristic modes of travel 

behaviour, and assessed whether certain behavioural modes were more common among users 

of different groups of mobile applications. We also explored the relative importance of different 

mobility behaviours for the topology of an aggregated travel network. Our findings point to the 

presence of behavioural bias in in-app mobility data driven by the interaction between mobile 

device users and specific mobile applications. Our study also presents a general methodology 

for detecting behavioural bias in in-app mobility data, allowing for greater transparency into the 

characteristics of in-app mobility datasets without risking individual privacy or identifying specific 

mobile applications underlying a given dataset. Overall, the analysis highlights the need to 

understand the process of data generation for in-app mobility data, and the way that this 

process can bias the collective dynamics reported in aggregate mobility data. 
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1. Introduction 
 

Human mobility data derived from mobile phones are increasingly used to measure economic 

activity (1,2), predict the spread of disease (3–6), forecast travel demand (7,8), measure 

responses to natural disasters (9,10), and understand human social dynamics (11,12). There 

are a number of sources of mobility data used in these applications, ranging from Call Detail 

Record Data, which estimates mobility based on mobile phone connections to nearby cell 

towers, to GPS data, which is collected by GPS sensors in smartphone devices. One specific 

form of GPS mobility data, in-app mobility data, is collected from a panel of mobile applications 

using software called a software development kit (SDK) packaged inside of mobile applications 

installed on a smartphone (13). The use of in-app mobility data accelerated during the COVID-

19 pandemic due to the increasing availability of publicly accessible mobility indices produced 

by major mobility data aggregation companies, and the pressing need to understand real-time 

patterns of activity related to lockdowns and travel restrictions (14,15). To minimise the risk of 

revealing personally disclosive information, granular mobility data from multiple applications are 

typically aggregated to describe population-level dynamics, ranging from measures of ‘activity’ 

at specific points-of-interest (16), to measures of travel volume between pairs of locations 

(8,17). 

 
Aggregating individual-level mobility data removes information about the unique travel 

behaviours of individuals, as well as the identity of the mobile applications which collected 

individual-level location data. While this is important for preserving individual privacy, 

aggregation can also mask key biases inherent to the process of in-app mobility data 

generation. This leads to uncertainty about the specific travel behaviours that define collective 

dynamics recorded by a given dataset. A key unknown in the analysis of aggregated in-app 

mobility data is the degree to which these data measure a representative subset of individual 

behaviours, or are influenced by biased sampling of individuals or activities, due to bias 

introduced by the specific mobile application collecting location data. Applications for navigation, 

for example, could be activated only while an individual engages in certain activities (i.e. the 

morning commute), while other applications, like an entertainment application, could be 

activated during an individual’s periods of leisure, such as weekends or evenings. 

 

The specific mobile applications comprising widely-used in-app mobility datasets from different 

providers is proprietary information which is rarely released to the public. However, there is 
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some public information on the identity of mobile applications supporting widely used in-app 

mobility data products. Analysis of the terms of service of mobile applications listed on the 

Google Play App Store, for example, has shown that navigation, weather, and fantasy sports 

applications share location data with the UK-based data aggregator Huq, the provider of in-app 

mobility data on which this study is based (18). The activity-specific nature of some of these 

apps raises questions about the degree to which the composition of apps in an in-app mobility 

dataset drives the detection of specific modes of behaviour. The same concern applies to other 

large-scale in-app mobility datasets, such as the US-based data aggregator SafeGraph, which 

has collected data through a SDK from applications for navigation, weather, and prayer (19). 

Because the identity of mobile apps in in-app mobility data is typically private, or removed 

through data transformations, there is currently little insight into how potential behavioural bias 

may affect existing in-app mobility datasets, and how differences in the behaviours detected by 

different mobile applications could influence the aggregate dynamics reported by these data.  

 

Because of the sensitive nature of individual location information, and the commercial sensitivity 

of the specific applications which collect a given in-app mobility dataset, there is a pressing 

need for methods to identify potential behavioural bias, without presenting risks to individual 

privacy or disclosing sensitive commercial information. In this analysis, we endeavour to provide 

a view “underneath” an aggregated travel network derived from in-app mobility data, seeking to 

understand whether the mobile applications used to collect the mobility data are biased towards 

the detection of specific modes of behaviour, as well as the impact that this bias has on the 

topology of the aggregate travel network.  

 

Our analysis is based on an individual-level in-app mobility dataset collected from 45 mobile 

applications in 2019. This dataset includes an anonymized identifier for the mobile applications 

that collected each location observation. In this paper, we use clustering techniques to identify 

common “modes” of daily travel behaviour based on characteristics such as travel distance, 

predictability, and regularity of location visitation. We then assess the potential for app-based 

behavioural bias by comparing the relative proportion of behavioural modes detected by 

different groups of mobile applications. Finally, we assess the implications of the different 

modes of detected travel behaviours on mobility dynamics reported in an aggregate travel 

network created from the underlying individual-level mobility dataset. In addition to 

demonstrating potential behavioural bias in a specific large-scale in-app mobility dataset, this 

paper demonstrates a general approach to resolving questions about the quality and 
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representativeness of in-app mobility data while maintaining individual privacy, and masking the 

identity of individual mobile applications which collected location data. This approach can 

strengthen future uses of in-app mobility data by increasing the transparency of the data 

generation process, without the disclosure of sensitive personal or commercial information, 

thereby strengthening subsequent analysis based on a given dataset. 

 

2. Methods 
 
2.1 Data description 
 
We used GPS location data collected from a panel of 45 mobile applications between January 

1st 2018 and December 31st 2019 supplied by ESRC Consumer Data Research Centre and 

collected by Huq Industries, a commercial location data aggregator in the United Kingdom. 

Unique device identifiers, and identifiers pertaining to the application that collected location data 

were anonymized prior to data sharing. Individual location histories were analysed within a 

secure data environment, with research outputs checked by data scientists prior to release to 

prevent the disclosure of personally identifiable information (20). 

 
5.2 GPS data preprocessing 
 
GPS observations in the original in-app dataset are collected from either the high-accuracy GPS 

sensor in the phone, or lower-accuracy A-GPS sensors, depending on the availability of GPS 

satellites (21). This leads to a bimodal distribution in the accuracy of location observations in the 

dataset (Supplemental Figure 1.1). We selected high-accuracy GPS observations in the original 

in-app mobility dataset based on an accuracy threshold of ≤ 100 metres, to ensure that location 

observations were collected by the high-accuracy GPS sensor in a mobile device (22). We then 

transformed sequences of GPS locations (recording the time and spatial coordinates of a 

device) into a diary of ‘stop points’ describing locations where a device remained within a 

defined spatial diameter 𝑑! for a minimum time threshold 𝑡. We then used agglomerative 

clustering to reference nearby stop-points to the same location (defined by a distance radius 𝑑") 

according to the method proposed in (23). This transforms a sequence of GPS location 

observations into a set of stop-points describing ‘visits’ to a set of locations for each device, with 

spatial coordinates, start- and end-times. The agglomerative clustering of near-by stop points 

allows for the detection of repeated visits to the same location over time. We chose to define a 

stop-point based on a spatial radius of 200m (𝑑!, 𝑑") and a time duration of at least 5 minutes 𝑡. 
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These parameters are based on established definitions of the minimum duration of activities in 

travel surveys, and average walking speed (22,24). 

 
2.3 Sample selection 
 
Due to turnover in the panel of users in the location dataset, individuals’ activity was recorded 

for varying durations. This is a well-documented limitation of mobile phone location data 

including in-app data of the type used in this study (25). We took two steps to account for this 

bias in the dataset: (1) we based our clustering of travel modes around ‘days’ of travel, rather 

than individual devices by splitting visits crossing midnight (00:00 GMT) into distinct visits 

(ending 23:59:59 and beginning 00:00:01); (2) We filtered the location dataset for days of high 

quality location sampling, defined as days with at least 300 minutes of recorded activity, based 

on previous work using similar mobile-phone in-app location data (26). We performed a further 

sensitivity analysis to understand the effect that this threshold had on the size of the sample 

used in subsequent analysis (see Supplemental Figure 1.2);  

 

2.4 Defining characteristics of daily travel behaviour 
 
To discriminate between different modes of daily travel, we computed eleven features based on 

the travel diaries of individual mobile devices (Table 1). We chose metrics which highlighted 

distance travelled (in total and as displacement from and identified home location); recurrent 

visitation to the same locations; predictability of a sequence of visited-locations; total number of 

locations visited per day; and the amount of time spent at home. We estimated the home 

location based on a simple heuristic which identifies the most frequently visited nighttime 

location (defined between 22:00 and 06:00) per month. 

 
Some daily metrics, like the total distance travelled by a device, are directly comparable 

between devices, while frequency measures are related to the total amount of time in which a 

device is included in the dataset. Similarly, entropy is related to the total number of locations 

ever visited by an individual. To account for this dependence, we normalised frequency and 

entropy measures by the observation window of a device (defined as the number of days the 

device was observed), and the total number of locations visited by a device, respectively. 
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Characteristic Measures Units Description 

Total distance travelled Daily total Kilometre Total daily distance travelled 

Radius of gyration (𝑟#) Daily Kilometre Distance travelled around a daily 
“centre of mass” 

Distance from home  Daily 
maximum, 
minimum, 
mean 

Kilometre Distance travelled away from identified 
home location 

Frequency of visitation 
(𝑝(𝑖)$%&' ) 

Maximum, 
minimum, 
mean 

 Likelihood to visit previously-visited 
locations on a given day (normalised 
by days observed) 

Normalised entropy 
(𝐻$%&') 

Daily  Predictability of visitation with respect 
to all possible locations visited by a 
device (normalised by days observed) 

Number of visits Daily Count Daily number of locations visited 

Time spent at home Daily Seconds Amount of time spent at identified 
home location 

Table 1. Measures of daily travel activity. Measures of daily travel activity computed for 
individual days of device activity. 
 
Descriptions of individual behaviour are based on a set of 𝑁 identified stop points 𝑉!...) for each 

day of travel activity for each device. The sequence of stop points for a specific day are defined 

by stop point identifiers 𝑆𝑡𝑜𝑝!..), spatial coordinates (𝑥!, 𝑦!), (𝑥", 𝑦"), . . . (𝑥) , 𝑦)), and time 

intervals (𝑡*+,&+!, 𝑡-$.!), (𝑡*+,&+", 𝑡-$."), . . . (𝑡*+,&+) , 𝑡-$.)). 

 

We calculate distances (total distance travelled and distance from home) as the Euclidean 

distance between the locations of relevant visits. 

 

Radius of gyration 𝑟# is based on the centre of mass (𝑥/', 𝑦/') of a daily trajectory where: 

𝑥/' 	= 	
∑!"#$ 1"

)
          (Equation. 1) 

 

𝑦/' 	= 	
∑!"#$ 2"

)
          (Equation. 2) 
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𝑟# is derived from squared displacements 𝑟3" from the centre of mass for each location 𝑖 in the 

trajectory:  

 

𝑟3" 	= 	 (𝑥3 	− 	𝑥/')" 	+ (𝑦3 	− 	𝑦/')"	       (Equation. 3) 

 

Thus: 

 

𝑟# 	= 8!
)
∑)34! 𝑟3"	          (Equation. 4) 

 

We calculate Normalised Frequency of Visitation 𝑝(𝑖)$%&' for each location 𝑖 in the trajectory 

relative to the number of observation days for each device 𝐷 based on the number of times the 

location was visited by an individual 𝑣3 . 

 

𝑝(𝑖)$%&' 	= 	
5"
6

           (Equation. 5) 

 

 

We calculate Normalised Entropy 𝐻$%&' based on the probability of visiting individual location 

𝑝(𝑖) based on the number of visits to each location 𝑣3 and the total number of visits to all 

locations 𝑉: 

 

𝑝(𝑖) 	= 	 5"
7

            (Equation. 6) 

 

Entropy 𝐻 is then defined as: 

 

𝐻	 = 	−∑)343 𝑝(𝑖) 	 ⋅ 	𝑙𝑜𝑔"(𝑝(𝑖))        (Equation. 7) 

 

And Normalised Entropy 𝐻$%&' is defined as: 

 

𝐻$%&' 	= 	
8
6
          (Equation. 8) 
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Number of Visits is the count of distinct visits recorded for an individual per-day, and Time Spent 

Home measures the total number of seconds an individual was observed in at their identified 

home location.  

 

We used principal component analysis (PCA) to account for collinearity among the daily travel 

measures which can influence the results of clustering analysis, and to reduce the 

dimensionality of the daily travel measures, increasing the computational efficiency of the 

clustering. We assessed the correlation between input features prior to performing the PCA to 

understand possible axes of differentiation in the original data and to identify highly correlated 

input features (Supplemental Figure 2.1). After performing PCA, we assessed the 

correspondence between principal components and the original features by computing the 

Pearson Correlation Coefficient between the components and the original features 

(Supplemental Figure 2.2). This indicates the potential axes defining subsequent clustering of 

similar patterns of mobility activity. We used the first 6 principal components for subsequent 

analysis (a 45% dimensionality reduction) which captured >95% of the variance of the original 

dataset (Supplemental Figure 2.3).  

 

2.5 Detecting modes of daily travel behaviour 
 
We clustered the resulting principal components using the k-means algorithm (27). K-means is 

a widely used clustering algorithm which partitions a series of data points into pre-defined 𝑘 

groups by repeated random selection of cluster centroids to identify the partition which 

minimises within-cluster variance. We chose the k-means algorithm due to its efficient 

implementation and ability to handle the clustering of large datasets (28). Our choice of 

clustering algorithm, combined with dimensionality reduction from the PCA allows for the 

efficient clustering of >10 million daily activity patterns.  

 

To gain an intuitive understanding of the effect of different numbers of clusters on our dataset, 

we created a clustergram (29) for values of 𝑘 between 2 and 9. The clustergram displays the 

size, and PCA-weighted similarity of clusters as well as the transition of data between clusters 

at different values of 𝑘. This visualisation can be a useful tool to spot regularities in the dataset 

across different numbers of clusters (for example, “branches” of similar clusters at higher values 

of 𝑘). To choose an appropriate value of 𝑘, we then assessed the quality of the identified 

clusters using three measures: Silhouette Score (30), Davies-Bouldin Index (31), and Calinski-
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Harabasz Index (Variance Criterion Ration) (32). Each metric highlights different aspects of the 

clusters: Silhouette Score compares the within-cluster distance to the distance between the 

next-most-similar cluster, Davies-Bouldin Index measures the average of the maximum ratio of 

within-cluster distance to between-cluster distance for each cluster, and Calinski-Harabasz 

Index measures the ratio of the sum of within-cluster variance to between-cluster variance. We 

selected 4 clusters based on the value of k producing high Silhouette Score, low Davies-Bouldin 

Index, and high Calinski-Harabasz Index (Supplemental Figure 3.1). 

 

Calculation of clustering quality metrics requires the computation of distances between all 

observations which is not practical for the size of our dataset, as the number of required 

distance calculations scales as 𝑂(𝑛") to the number of observations (quadratic complexity). To 

reduce the number of required distance calculations, we performed bootstrapping for 1000 

samples of 0.1% of the original dataset to produce a density estimate of each clustering quality 

metric. 

 
2.6 Detecting application-based behavioural bias 
 
We detect behavioural bias related to the mobile application that collected the location data by 

clustering mobile applications together based on the relative proportion of each behavioural 

mode identified by individual mobile applications. Similar to aggregating daily travel histories 

into behavioural modes to preserve individual privacy, we group applications into eight groups 

using k-means clustering, informed by the relative proportion of each behavioural mode 

identified by each individual mobile application. We then computed the distribution of stop points 

and total travel distance for daily travel histories recorded by each application group. 

 
2.7 Effect on travel network connectivity 
 
To assess the influence of identified modes of behaviour on the topology of the overall travel 

network and the implications of different behaviours detected by different groups of mobile 

applications, we constructed an aggregated travel network describing individual movements 

between cells in a hexagonal spatial grid with resolution equal to approximately 36 km2 (33). In 

this travel network, connections are defined by a pair of sequential stop-points recorded in 

different grid cells by an individual mobile device. Using this aggregated travel network, we then 

performed a series of experiments, removing days of travel corresponding to a specific 

behavioural mode from the aggregated network one-at-a-time. Finally, we assessed how this 
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removal affected different measures of network topology: the total number of edges in the 

network, the average shortest path distance (both spatially-explicit and topological distance), the 

diameter (maximum distance between any nodes), and transitivity or clustering coefficient 

(describing the number of triangles or cycles of length three in the network). 

 
3. Results 
 
3.1 Detecting travel behaviour from in-app location histories 
 
We analysed anonymized GPS location data recording travel by 782,000 mobile devices in 

England and Wales collected between January 1st, 2018 and December 31st, 2019. We filtered 

GPS positions for high accuracy observations (Supplemental Figure 1.1), and applied a two-

stage ‘stop-point’ detection algorithm (23) to sequences of GPS locations which identified 43 

million locations where mobile devices were stationary within a spatial radius of 200m for a 

minimum duration of 5 minutes (Figure 1a-d). We then selected days of travel with observation 

windows of at least 5 hours (300 minutes) per day (Supplemental Figure 1.2), yielding a dataset 

recording the positions of 10.9 million days of travel by 677,000 devices (Figure 1e). 

 

 
Figure 1. Overview of the mobility dataset. a-d) Diagrams illustrating the detection of stop-
points from a sequence of GPS locations. Distance threshold d1  is the maximum spatial ‘roam’ 
of a device, d2 is the spatial threshold used to attribute nearby stops to the same location. e) 
The size of the mobile phone location dataset (total days of travel) through different stages of 
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sample selection. f) The distribution of the number of stop-points for all days of travel and g) the 
total distance travelled for daily sequences of stop-points with travel greater than 1 km. 
 
In the travel dataset, individual devices were present for varying length durations. Devices are 

recorded in the dataset for a median of 4 days (IQR: 1, 14). To account for the varying-length 

sampling windows, we frame our analysis around ‘days’ of travel as opposed to individual 

devices, where one device may contribute multiple days of travel to subsequent analysis. In the 

dataset, 31% of travel days recorded only one visited location, while 43% of travel days 

recorded a total distance travelled less than 1 km (Figure 1f,g). 

 
3.2 Daily travel activity clustering 
 
We identified modes of daily travel activity based on measures of travel distance, visitation 

frequency, and entropy (predictability) using k-means clustering informed by a principal 

component analysis of the characteristics of daily travel histories (Supplemental Figures 2.2, 

2.3). The clustering analysis identified four clusters (Table 2): regular-travel (59% of travel 

days), stay-at-home (38% of travel days), long-distance (1.6% of travel days), and away-from-

home (0.9% of travel days). We describe two of these clusters (long-distance, and away-from-

home) as ‘long tailed’ clusters, referring to their relatively low frequency and the extreme 

distribution of some travel characteristics in these clusters, which are primarily defined by high 

total daily distance travelled (long-distance), and high minimum daily distance from home 

(away-from-home) (Figure 2a). The distribution of total distance travelled (Figure 2b) highlights 

the difference in travel behaviour across clusters, with the long-distance cluster showing high 

total distance travelled, while away-from-home is distinguished by a high minimum distance 

travelled from home (Figure 2c). 

 

Cluster Descriptive title Travel 
days 

Description 

1 Regular-travel 59% Variable total travel distance, low distance from 
home, higher likelihood to visit a new location, 
variable entropy 

2 Stay-at-home 38% Low travel distance, low likelihood of visiting a new 
location, low entropy, high time spent at home 

3 Long-distance 1.6% High distance travelled, low minimum distance 
from home, high likelihood of visiting new locations 
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4 Away-from-home 0.9% High minimum distance from home (never near 
home location), variable total distance, high 
likelihood of visiting a new location 

Table 2. Description of identified modes of travel. The result of cluster analysis of travel 
based on distance, visit frequency, and entropy of daily travel patterns.  
 

 
Figure 2. Clustering identifies long-distance, atypical travel. a) The distribution of travel 
measures for each identified cluster. Intervals indicate 90% and 50% density intervals for 
observations within each cluster. Values have been transformed for comparison across 
measurement scales. Dotted black line indicates average for each variable. b) The distribution 
of total distance travelled for each cluster. Dotted black lines in panels b and c indicate the 
variable distribution for the overall dataset. c) The distribution of the minimum distance travelled 
from home for each cluster.  
 
3.3 Application-specific behavioural bias 
 
To understand whether bias towards specific modes of behaviour is introduced by data 

collection through different mobile applications, we perform a clustering analysis of mobile 

applications in the dataset, grouping apps based on the distribution behavioural modes 

identified. While our primary motivation for grouping applications together is to obscure the 
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identity of any single app in the original dataset, the identified groups reveal notable differences 

in the modes of behaviour captured by different mobile applications (Figure 3a). We find that 

three groups (A, B, C) detect a high percentage of stay-at-home activity, and relatively low 

away-from-home and long-distance travel behaviour, while other groups, (D, E, F, H) detect a 

relatively higher percentage of long-distance and away-from-home travel relative to the dataset 

overall. Only three groups (D, F, G) detect a higher relative quantity of regular-travel. It is 

important to note that different mobile applications contribute different volumes of data to the 

dataset, resulting in an unbalanced sampling of behaviours by different apps (Figure 3b). App 

groups D and G, for example, represent 13 apps contributing 828,000 days of travel, equal to 

75% of the total days of travel recorded by the dataset (Figure 3b). This uneven contribution of 

different mobile applications increases the potential for behavioural bias introduced by the 

outsized contribution of a small group of mobile applications which capture a particular 

distribution of behavioural modes. 

 

Figure 3. Distribution of behavioural modes detected by different mobile applications. a) 
Pie charts showing the distribution of behavioural clusters for each app cluster. b) Number of 
apps and days of travel in each app cluster. c) Distribution of visits for each app cluster. d) 
Distribution of total distance travelled for each app cluster. 
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The varying distribution of behavioural modes in each cluster produces different distributions of 

visits (Figure 3c) and daily travel distance (Figure 3d) for days of travel recorded by different 

groups of apps. Apps capturing high proportions of stay-at-home activity (A, B, C) have more 

days of travel with a low number of visits and shorter overall travel distance, compared to other 

app groups which report higher proportions of regular-travel, long-distance and away-from-

home behaviours, with correspondingly higher volumes of travel days with high numbers of 

visits and longer distance travel. The daily total distance travelled for app group G shows an 

interesting artefact, with a notable drop in the frequency of days of travel with total distance 

above 50 km. This may reflect an outer limit to the total distance travelled per day by individuals 

recorded by apps in this group, due to limits such as the availability of transit or the mode of 

behaviour for users of these apps. 

 

 
Figure 4. Temporal distribution of data in each cluster of applications. a) The proportion of 
stop points detected at different hours of the day and b) days of week for each group of mobile 
applications. 
 
Analysis of the daily patterns of location data collection across different app groups roughly 

show three different motifs (Figure 4a). Some groups of apps (B, C, F) show low usage 

overnight and in the morning, with high usage during the daytime. Other app groups show a 

relatively consistent pattern of usage throughout the day (groups D, E, G, H) while one group (I), 

shows a peak usage after 8PM. Across days of the week (Figure 4b), the majority of app groups 

collect data primarily on weekdays, while one cluster (B) collects data primarily on weekends. 

This points to the potential that different groups of applications are detecting different modes of 

behaviour related to work- or leisure-related activities over time. 
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3.4 Behavioural clusters drive travel network connectivity 
 
To understand how the identified modes of travel behaviour influence the topology of the travel 

network, and the potential implication of different modes of behaviour collected by different 

mobile applications, we aggregated movements into origin-destination flows across a regular 

spatial grid of approximately 36 km2 (33). We then performed an experiment, removing one 

behavioural mode at a time, to observe the resulting changes on the travel network topology 

(Table 3). We found that regular-travel formed 42% of the unique network connections (‘edges’) 

in the aggregated network, and that long-distance movements, although they comprised 1.6% of 

all travel days, represented 35% of the unique edges in the network. By contrast, the other ‘tail’ 

cluster, away-from-home, represented only 1.9% of unique edges, while removal of stay-at-

home movements had almost no influence on the remaining travel network.  

 

Cluster removed Edges Removed Days in removed cluster 

None N/A N/A 

Regular-travel 42% 59% 

Stay-at-home 0.1% 38% 

Long-distance 35% 1.6% 

Away-from-home 1.9% 0.9% 
Table 3. Number of edges removed by each cluster compared to the proportion of travel 
days. Shows changes in the number of edges in the aggregated travel network caused by the 
removal of different clusters of daily travel activities.  
 
The number of unique edges represented by each cluster is only one means of assessing 

changes to the topology of the travel network. We computed additional measures to better 

illustrate how the aggregated travel network responded to the removal of each cluster of travel 

behaviours (Table 4). We found that some spatially explicit measures, such as the diameter of 

the network (maximum distance between any nodes), and the spatially-explicit mean shortest 

path length, remained similar with any cluster removed. This is because the network retained 

the same spatial extent despite the removal of some movement modes. The topology of the 

network, however, showed sensitivity to the removal of certain clusters of behaviour, in 

particular to long-distance movements.  
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Cluster removed Diameter (km) Mean shortest 
path (km) 

Mean shortest 
path (Topological) 

Transitivity 

None 750.79 228.58 2.62 0.26 

Regular-travel 1048.40 231.65 2.75 0.20 

Stay-at-home 760.27 228.60 2.62 0.26 

Long-distance 763.40 229.09 3.56 0.38 

Away-from-home 753.45 228.67 2.62 0.26 
Table 4. Measures of network characteristics with different behavioural clusters 
removed. A collection of measures characterising the spatial and topological changes in the 
travel network with the removal of different activity clusters. 
 
Changes in the degree and edge-distance distributions with the removal of a specific mode of 

behaviour provide further insight into the topological changes to the travel network. Decreases 

in high degree nodes (observed with the removal of regular-travel and long-distance modes) 

indicate a network with fewer well-connected locations (Figure 5a). Decreases in the edge-

distance distribution (Figure 5b) indicate fewer long-distance connections in the network. For 

both measures, removal of the stay-at-home and away-from-home modes produced travel 

networks with characteristics similar to the original dataset. It is important to note that 

differences in travel network topology are sensitive to the spatial scale at which individual 

movements are aggregated. We perform a sensitivity analysis showing how different measures 

of travel network topology change with decreasing spatial resolution (Supplemental Section 4). 
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Figure 5. Degree and edge distance distribution with behavioural clusters removed. a) 
The degree distribution and b) edge distance distribution for the aggregated travel network, for 
travel networks with each activity cluster removed one-at-a-time. 
 
4. Discussion 
 
This analysis demonstrates that mobile applications underlying a large-scale in-app mobility 

dataset introduce bias towards specific travel behaviours through differential measurement of 

certain forms of travel activity. Moreover, the degree of this bias, and the behaviours which are 

over- or under-represented, is dependent on the group of applications which comprise the 

dataset. This confirms that the nature of mobility patterns recorded by a given source of in-app 

mobility data are intimately connected to the mobile applications from which the data was 

collected.  

 

Aside from the over- or under-representation of certain modes of mobility behaviour, we also 

show how specific behavioural modes (like long-distance travel) can themselves have an 

outsized influence on the overall structure of collective dynamics recorded in an aggregated 

mobility dataset. In our analysis, for example, the long-distance mode, which accounts for 1.6% 

of travel days, forms 35% of the unique origin-destination pairs in an aggregate travel network. 

The combination of these two findings: that groups of mobile applications detect modes of 

mobility activity at different rates, and that certain behavioural modes play an outsized role in 

defining population-level measures of travel behaviour, raise questions about how to best 
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account of the application-based sampling frame inherent to in-app mobility data in order to 

improve the robustness of conclusions drawn from these data.  

 

In-app mobility data are an undeniably valuable form of mobile phone location data that have 

been used to address a range of scientific and practical challenges, in particular during the 

response to the COVID-19 pandemic. Unlike other forms of mobile phone mobility data, namely 

Call Detail Record data, in-app GPS data provide higher spatial granularity which can provide 

more detailed insights regarding patterns of social contact and visitation to points of interest 

(13). The challenge of behavioural bias in in-app mobility data, as explored in this study, is likely 

inherent to the structure of the data generation process which create in-app mobility data, and 

must be considered in addition to other well-known biases in large-scale mobile phone location 

data such as “drift” in the sample of individuals contributing location data over time (34), and 

concerns about bias in mobility data with respect to specific demographic groups (35). 

Moreover, although we have identified specific biases present in the dataset used in this study, 

it is likely that the composition of applications generating other sources of in-app mobility data 

will have their own unique patterns of behavioural bias. 

 

The first step towards addressing application-based behavioural bias in in-app mobility data is to 

understand the extent to which different activity patterns detected in the dataset are attributable 

to different mobile applications. The methodology presented in this study provides a 

generalizable approach to answering this question, while maintaining the private character of 

both the individuals and mobile applications included in the underlying dataset. There are further 

opportunities to use this information to inform statistical re-weighting of in-app mobility data, by 

increasing or suppressing the contributions of specific mobile applications through post-

stratification. Similar techniques are already used to reduce the effect of demographic bias in in-

app mobility data (26,36,37). The challenge of applying post-stratification techniques, however, 

arises from the scarcity of representative information on the behavioural characteristics in a 

given population of interest. As, in-app mobility data are often employed in domains for which 

there are few other potential sources of information, defining the correct distribution of 

behavioural modes for a given population may remain a challenge. Developing techniques in 

the generation of synthetic mobility data could also contribute to improving the accuracy of in-

app mobility data, as synthetic data could “fill-in” missing data for specific modes of behaviour 

(38). 
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Ultimately, future uses of in-app mobility data can be strengthened by an improved 

understanding of the process of data generation underlying a given class of mobility data (such 

as in-app data), and through rigorous exploration of the unique characteristics of specific 

mobility datasets. Because of the imperative to preserve individual privacy, and the ecosystem 

for processing and sharing mobility data, information on the quality of location datasets can 

often be lost through privacy-preserving data transformations prior to data sharing with 

researchers. In this analysis, we present a ‘middle path’ between full dataset transparency and 

a naive approach to dataset aggregation, in which we illuminate some of the behavioural and 

application-specific differences that drive important variations in the structure of recorded 

mobility data, while avoiding the risk of disclosing potentially sensitive information. This 

approach required the processing of sensitive individual-level mobile location data within a 

secure research facility, with adequate safeguards prior to exporting the specific insights 

presented in this study (20). In the future, the type of analysis presented here could be 

performed by location data providers, in order to improve transparency in the quality of an in-

app mobility dataset, and inform the use of aggregated mobility data, such as aggregated travel 

networks, in subsequent analysis. 

 

5. Conclusion 
 

Our analysis highlights the need for scientific understanding of the behavioural biases present in 

sources of in-app mobility data. This understanding cannot be achieved merely through the 

analysis of aggregated mobility data, and highlights the tension between the imperative to 

preserve privacy, and the need to understand limitations within mobility data in order to improve 

the robustness of conclusions drawn from these data. Publicly available, aggregated mobility 

datasets could be accompanied by findings similar to the analysis presented in this paper, which 

can highlight the unique biases affecting a given dataset, and point to potential remedies in 

order to improve confidence in subsequent uses of the data. 
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