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Abstract 14 
The choice of reference panels significantly impacts phasing, imputation and GWAS results. In 15 
this study, we built a haplotype reference panel using the Genomics England (GEL) high-16 
coverage sequencing dataset, one of the largest genetic variation resources ever collected in the 17 
UK. The resulting reference panel consists of 156,390 haplotypes and 342 million autosomal 18 
variants. The GEL reference panel demonstrates reliable imputation of variants as rare as 1 in 19 
10,000 within the White British population, with an imputation r2 value of 0.75 . The resulting 20 
imputed UKB data (GEL-UKB) contains three times more variants, predominantly rare variants, 21 
compared to the UKB data previously imputed using the HRC and UK10K reference panel. The 22 
GEL-UKB presents a unique opportunity for the reliable discovery of rare associations across the 23 
whole genome, especially within the regions not covered by the exome sequencing data. Rare 24 
variant signals with high confidence are predominantly from rare coding variants, implying 25 
firstly, a probable tendency for existing rare non-coding mutations to not reach a disruptive level 26 
comparable to that of coding variants. Secondly, it raises the possibility that the current sample 27 
size of UK Biobank may be insufficient for detecting rare variants with a moderate effect size, 28 
even with the whole genome sequencing. The resulting GEL phased haplotype reference panel 29 
has been made available on the GEL platform and widely used by GEL users. Our GEL imputed 30 
UKB data has been adopted as one of the UKB official imputed data resources (Data Field 31 
21008). 32 
 33 
 34 
 35 
 36 
  37 
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 2 

Main 38 
Genomics England (GEL) has carried out whole genome sequencing (WGS) of over 120,000 39 
genomes from over 80,000 individuals taking part in the 100,000 Genomes Project, using an 40 
average sequencing coverage depth of ~30x1. The recruitment strategy focussed on patients with 41 
rare disease (disorders affecting < 1 in 2000 people) and cancer, and their close relatives, across 42 
hospitals in England. We constructed a GEL phased reference panel based on 78,195 high-43 
coverage sequencing germline genomes, with a diverse ethnic representation. The high degree of 44 
relatedness among the samples enhances the power of filters, such as the Mendel error filter, for 45 
eliminating false positive variant sites identified in the sequencing data, and also leads to more 46 
accurate phasing and imputation of rare variants. In particular, it enables even variants found in 47 
only one or two individuals to be phased through transmission, a task which is more difficult in 48 
the absence of related samples or phase information in sequencing reads2.  49 
 50 
The resulting GEL reference panel consists of 341,922,205 autosomal variants, with 31,502,703 51 
(9.26%) being INDELs with an average length of 5bp and a maximum length of 50bp. The 52 
majority of the variants in the GEL reference panel are rare. 287.2 million (84.1%) of identified 53 
variants possess an allele frequency lower than 0.0001, including 66.7 million (19.5%) singletons 54 
and 91.1 million (26.7%) doubletons. We compared the variants in GEL reference panel to the 55 
widely used TOPMed r23 and HRC4 panels and found GEL has 8 times and 1.1 times more 56 
variants than the HRC and TOPMed panels respectively (Figure 1b and Supplementary Figure 57 
1). Due to the use of mostly low coverage sequencing technology, the HRC dataset has limited 58 
numbers of rare variants, especially those with AF ≤ 10!". While the numbers of rare variants 59 
captured in TOPMed and GEL are similar, around half of the ultra-rare variants (AF ≤ 10!") 60 
from GEL and TOPMed are non-shared across the panels (Supplementary Figure 1). As 61 
expected, all three panels capture a similar set of more common (AF>10!#) variants, with less 62 
than 4% unique to each panel (Supplementary Figure 1), indicating common variants are 63 
largely saturated.  64 
 65 
The GEL reference panel can be used as a powerful resource for phasing European and South 66 
Asian samples, due to their strong representation in the dataset. We compared the phasing 67 
accuracy achievable using the GEL and HRC reference panel across 26 diverse populations from 68 
the 1000 Genomes project (Methods). GEL phasing of these samples achieved lower switch 69 
error rates than HRC phasing, across the CEU (Northern European from Utah), African, South 70 
Asian and East Asian ancestry populations (Figure 1a), with HRC only showing improved 71 
performance for South American samples, which are not significantly represented in GEL.  GEL 72 
phasing switch error rates are 0.18%, 0.33%, 0.31% and 0.73% for European, African, South 73 
Asian and East Asian samples respectively.  74 
 75 
A primary use of the GEL will be as a reference panel for genotype imputation of other datasets. 76 
We assessed the imputation accuracy among 2,405 1,000 Genomes samples, using the GEL, 77 
TOPMed and HRC reference panels. We used genotypes at the 716,473 autosomal bi-allelic SNP 78 
positions on the UK Biobank Axiom array5 to impute all non-array sites using each reference 79 
panel (Methods). Squared correlation 𝑟# between the imputed allele dosages and true genotypes 80 
were calculated, stratified by the independently estimated gnomAD (v3.3.1) minor allele 81 
frequency6. As we focus on showing the overall performance of the reference panel across 82 
different allele frequencies, only variants present within gnomAD are shown. As a result, the 83 
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number of tested variants differs across reference panels. GEL achieved higher 𝑟#than HRC in 84 
all allele frequency bins for all ethnicities (Supplementary Figure 4) and outperforms the 85 
TOPMed panel in White British (GBR) and South Asian (SAS) samples, especially for rarer 86 
variants: at MAF < 10!$, the GEL imputation 𝑟# for GBR samples is 0.6, compared to 0.3 and 87 
0.29 using TOPMed and HRC, respectively (Figure 1c).  The TOPMed panel outperforms GEL 88 
in African, American and East Asian samples due to its better representation from these groups 89 
(Supplementary Figure 4).  90 
 91 
We used the GEL panel to impute 488,315 UK Biobank samples at 342,573,817 variants, 92 
producing a “GEL-UKB” dataset; we compared to the corresponding HRC and UK10K-imputed 93 
“HRC-UKB”5. GEL-UKB has around 3 times more variants than HRC-UKB, 3.5 times more 94 
missense variants , and 6.6 times more “high impact consequence” variants (Supplementary 95 
Table 5). The imputed information scores (Method) were higher for GEL-UKB than HRC-UKB 96 
for 87% of the variants that are in common, while 98% (78%) of GEL-imputed variants at 97 
frequency below 10!"  (10!$) exceeded a threshold of 0.3, vs 78% (54%) for HRC 98 
(Supplementary Figure 2-3).  99 
 100 
To demonstrate the use of GEL-UKB, exemplar GWAS were carried out on four quantitative 101 
traits, including standing height (HEIGHT), body mass index (BMI), systolic (SBP) and diastolic 102 
(DBP) blood pressure, with variant testing using REGENIE7.  Across all four traits, we found 103 
31,699 and 30,711 significant (P-value < 5 × 10!%) rarer variant associations (MAF < 0.05) 104 
from GEL-UKB and HRC-UKB, respectively. The GEL-UKB common variant associations 105 
were also less likely to be subjected to false associations than HRC-UKB (Supplementary 106 
Notes; Supplementary Table 2; Supplementary Figure 6-8). A recent exome-sequencing 107 
based association study reported 31, 0, 1, and 2 rarer (MAF < 0.05) genome-wide significant (P-108 
value < 2.18 × 10!&&)  variant-trait associations across HEIGHT, BMI, SBP and DBP, 109 
respectively8. We discovered 70% of these associations using GEL-UKB, compared to 56% 110 
using HRC-UKB at the same p-value threshold. Relaxing the GEL p-value threshold to 111 
5 × 10!%, GEL-UKB identifies 76% of these associations (Supplementary Table 3). When we 112 
compare to the UKB whole exome imputation results9, all but 4 out of the 28 exome imputation 113 
likely-causal rare coding variants associated with standing height(p-value < 5 × 10!%) are found 114 
to be significant using GEL-UKB, whereas all but 9 of such variants are found to be significant 115 
using HRC-UKB (Supplementary Figure 9). 116 
 117 
This comparison in the exonic portion of the genome provides confidence that whole-genome 118 
imputation using GEL can identify most associations directly observed using sequencing. We 119 
next compared the performance of GEL-UKB to the widely used imputed genotypes available 120 
for the full set of UKB samples, HRC-UKB, and we examined those novel associations 121 
identified using GEL-UKB. First examining shared signals (mainly at common sites), we saw a 122 
useful improvement in fine-mapping (method) using GEL-UKB vs. HRC-UKB. 44% of the 123 
GEL-UKB based 95% credible sets contain fewer SNPs, while 25% contain more SNPs (Figure 124 
2b; Supplementary Table 4), with the remainder identical in size.  125 
 126 
A more dramatic difference is observed for rare variants: independent rare variant associations 127 
(MAF < 5 × 10!"), accompanied by high estimated effect sizes (Figure 2a) required to reach 128 
statistical significance at these frequencies, are almost exclusively discovered by GEL-UKB 129 
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(Figure 2a). For example, GEL-UKB detected a novel ultra-rare association signal for DBP at 130 
rs757561770 in FGD4, with allele frequency 9.31 × 10!'. Common variants in FGD4 has 131 
previously been reported to be associated with hypertension10 (Figure 2c). Interestingly, this 132 
SNP is intronic and does not show strong linkage disequilibrium (r2 > 0.7) with any coding 133 
variant within the GEL panel (Supplementary Table 6).  134 
 135 
Because we test the entire genome, our results allow us to investigate whether large-effect 136 
mutations (which in our example GWAS are only found at low frequency; Figure 2b) occur in 137 
coding or non-coding DNA. We identified 27 independent large-effect/rare-variant signals (AF < 138 
0.001), across the four traits using step-wise regression (Method). Of these, 17 were either 139 
coding (n=7) or in strong LD (r2 > 0.7) with a coding variant. An additional 1 is associated with 140 
splice-site variants and 2 with variants in 5’ UTRs or 3’ UTRs of genes (Supplementary Table 141 
6). In total, 62% of all the rare variant associations and 88% of the strongest associations (p-142 
value <2.18 × 10!&&) were associated with genic sequences (Supplementary Table 6). If 143 
replicated for other phenotypes, this implies that it could be likely rare for variation in other non-144 
coding regions such as enhancers to achieve dramatic trait effects – despite such regions 145 
dominating GWAS signals overall11. Because it seems likely that non-coding mutations are able 146 
to strongly disrupt the binding of individual transcription factors, this might imply that (except in 147 
5’ UTR and 3’ UTR regions) no one transcription factor plays an essential role in the 148 
overwhelming majority of cases. Nonetheless, we still observed several cases implicating only 149 
non-genic sites, for example an intronic signal for decreasing height (rs570873498;AF=0.0002) 150 
at SLC12A1, a gene known to be associated with height and Bartter syndrome, whose symptoms 151 
include growth retardation12. We anticipate that despite their modest effect sizes and limiting 152 
power at present (likely, even if genomes are fully sequenced), the number of non-coding 153 
associations will likely increase rapidly in future, once sample sizes become larger. Moreover, 154 
our results imply imputation will be highly effective in identifying such associations, even for 155 
rare variants. 156 
 157 
One unexpected finding for height from our analysis was a cluster of five independent low-158 
frequency associations with height on chromosome 6 (Supplementary Table 6; Extended data 159 
table), including the rare missense variant rs957675208, in a region not reported by the previous 160 
exome sequencing8 and exome imputation9 analyses, or by HRC-UKB (low imputation INFO). 161 
Strikingly, rs957675208 in HMGA1 shows the strongest height-increasing impact of any SNP in 162 
the whole dataset, equivalent to gaining 3.5 cm of height. On further examination, three of these 163 
four variants are missense mutations and the remaining two 5’ UTR variants are in a gene not 164 
annotated in the exome studies. This gives one example of how the complete genome-wide 165 
coverage of the GEL-UKB data allows for additional findings compared to previous approaches.   166 
 167 
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168 
Figure 1: a) Phasing quality for 589 high coverage 1,000 Genome children from mother-father-child trio families, 169 
using HRC and GEL reference panels. b) Venn diagram comparing numbers of variants from the GEL, HRC and 170 
TOPMed reference panels. The numbers show the variant count (in millions of variants), followed by the Ts/Tv ratio 171 
of these variants in brackets. c) Imputation performance, measured by r2 (Methods), for imputation of 1000 172 
genomes samples from the White British (left) and South Asian (right) groups, using three different reference panels 173 
(labels). The variants are stratified by GnomAD allele frequency (v3.3.1)6 of their corresponding population.  174 
 175 
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 177 
Figure 2: a) A set of independent genome-wide significant (𝑝 < 5 × 10!") associations identified by step-wise 178 
regressions (conditioned joint analysis), and with INFO > 0.8, are plotted versus their imputed allele frequency (x-179 
axis). The blue colour represent variants that were flagged by step-wise regressions in one dataset and also showed a 180 
significant GWAS association in the other dataset; The red colour indicates that the variant is unique to each dataset. 181 
The shape of the data points reflects the predicted consequences of the variants as determined by VEP. Dots 182 
represent functional variants, including stop gained, stop lost, splice donor/acceptor, frameshift, in-frame 183 
insertion/deletion, and missense and the triangles indicate non-functional variants. The dotted lines indicates the 184 
smallest effect sizes that can be captured by the p-value threshold (𝑝 < 5 ×	10!"). b) Comparison of the number of 185 
variants in the 95% credible sets for GEL-UKB and HRC-UKB fine-mapping results for standing height (capped at 186 
20 variants; Methods). The circle sizes represent the number of fine-mapping regions showing each combination; 187 
plots below the diagonal correspond to GEL-UKB having fewer variants in the credible set compared to HRC-UKB. 188 
c) The LocusZoom plot of ultra-rare variant association (rs757561770) detected by GEL-UKB. The color indicates 189 
the LD between SNPs and the focal SNP rs4931017, showing that rs757561770 is in low LD with the focal SNP 190 
(𝑟# = 	6.57 × 10!$). The blue lines show the recombination rate of the region.    191 
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Methods 192 
Genomics England high coverage sequencing data 193 
The Genomics England 100,000 Genomes Project was launched in 2013, focusing on rare 194 
diseases and cancer. Over 120,000 genomes have been sequenced. It comprises genomes from 195 
73,700 rare disease (disorders affecting ≤1 in 2000 persons) patients and their close relatives, and 196 
46,539 genomes from cancer patients1. The GEL reference panel described in this paper is built 197 
on the aggregated dataset (aggV2), comprising 78,195 samples from both rare disease and cancer 198 
germline genomes. Samples were sequenced with 150bp paired-end reads on the IlluminaHiSeq 199 
X platform and processed with the Illumina North Star Version 4 Whole Genome Sequenced 200 
Workflow (iSAAC Aligner v03.16.02.19 and Starling small variant caller v2.4.7), and aligned to 201 
the GRCh38 human reference genome. The individual gVCF files were aggregated into multi-202 
sample VCF files using Illumina gVCF genotyper and normalised with vt v0.57721. The 203 
aggregated multi-sample VCF dataset (aggV2) comprises over 722 million initial called SNPs 204 
and short indels (<=50bp). Multi-allelic variants were decomposed into biallelic variants.The l 205 
includes 49,641 samples (63.48%) from individuals self-identifying as White British, 4,100 206 
(5.24%) as “Other White”, 2,885 (3.69%) as Pakistani, 1860 (2.3%) as Black, 1,751 (2.24%) as 207 
Indian, and 12,277 samples (15.7%) as “Unknown”. The large White British and relatively large 208 
South Asian sample size made GEL an ideal reference panel for phasing and imputing UK 209 
Biobank, which has a similar ethnic composition5.  According to the self-reported data, only 210 
27,346 samples (34.97%) are have no relatives in the reference panel. 11,584 (14.81%), 32,679 211 
(41.79%), and 6,586 (8.43%) samples are one of 2, 3 and >3 family members in the dataset 212 
respectively. We identified 12,816 (16.39%) samples as members of duo families and 35,106 213 
(44.9%) as members of trio families, while 30,273 (38.71%) samples are treated unrelated for 214 
phasing (Supplementary Notes).  215 
 216 
 217 

Quality Control 218 
Prior to the quality control (QC) described here, sample level QC was carried out by Genomics 219 
England informatics team on variants called one sample at a time. We conducted additional 220 
quality control by pooling information across samples, to remove false positive sites. Specifically 221 
we utilised aggregated VCFs, considering genotype quality, depth, missingness, allele balance, 222 
Mendel errors, Hardy-Weinberg equilibrium, and gnomAD6 allele frequency concordance. 223 
Because singletons observed in unrelated samples are very hard to phase accurately these sites 224 
were removed. We applied two sets of QC rules. First, we applied a stringent rule set applied to 225 
all sites, including those de novo in Genomics England and very rare sites. Second, we applied a 226 
more lenient group of filters for relatively common sites (AF>0.001) that additionally showed 227 
support from independent external datasets (TOPMed, HRC, 1000 Genomes, GnomAD), to 228 
avoid removing a proportion of genuine sites (e.g. for a modest number of Mendel errors). For 229 
these sites, if they failed our stringent filters but passed with somewhat less stringent 230 
missingness, Mendel error and gnomAD frequency concordance thresholds, we included them, 231 
after separate phasing conditional on the phase of sites passing the more stringent thresholds, i.e. 232 
in a manner which did not impact the stringent sites. These sites were incorporated in the final 233 
dataset, but with a QC flag indicating their slightly lower reliability. Overall, our filters reduced 234 
the initial number of sites from 722 million to 342 million. (Supplementary Notes and 235 
Supplementary Table 1) 236 
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 237 
Phasing the GEL reference panel 238 
We used a multi-stage phasing strategy leveraging the relatedness within GEL, in particular 239 
allowing phasing of singletons were possible.  240 

1. We used the makeScaffold software (https://github.com/odelaneau/makeScaffold) to 241 
determine the phase of duo and trio samples (Supplementary Notes) by direct 242 
transmission information (this phases most sites in these samples). 243 

2. For remaining unphased genotypes in these related samples, with phases undetermined 244 
due to heterozygosity or missing data, phases were inferred using SHAPEIT4.2.213, with 245 
the phased genotypes from step 1 as a scaffold.  246 

3. To phase genotypes in the unrelated samples, we first phased the common variants (AF > 247 
0.01) one chromosome at a time, using SHAPEIT4.2.2 and now using the genotypes (at 248 
these common sites) from step 1 and 2 in the related samples as a reference panel.  249 

4. Finally, to phase the remaining sites: genotypes at rare variants in unrelated samples, we 250 
using SHAPEIT4.2.2 with the phased samples from steps 1-2 as a reference panel, and 251 
the phased common variants from step 3 as a scaffold for these samples. 252 

5. For sites only passing our lenient filters (see “Quality Control” section above and 253 
Supplementary Notes) we used the results of step 4, for the sites on the UKB Axiom 254 
array sites passing the stringent filters, as a scaffold, and then used SHAPEIT4.2.2 on the 255 
remaining genotypes. 256 

Phasing for steps 1 and 3 was done at the entire chromosome level; for steps 2 and 4 was carried 257 
out in regions of approximately 300,000 sites, with 30,000 sites on each side as buffer. The 258 
resulting phased regional segments were merged and concatenated using bcftools14. These 259 
phasing steps were computationally intensive, and took about 6,500 CPU days in total to 260 
accomplish. The phased reference panel is stored in VCF format and has been made available for 261 
all Genomics England registered users on the GEL trusted research environment.  262 
 263 
Estimation of 1000 Genome trio phasing switch error rate 264 
Phasing accuracy is important for direct biological interpretation of variants within GEL, as well 265 
as ensuring high-quality imputation in other samples and other downstream applications. We 266 
assessed the ability of the GEL panel to phase such external samples. Specifically, we phased the 267 
parents of mother-father-child trios included in the 1000 Genomes Project (but not HRC or GEL) 268 
using the reference panels from HRC and GEL. We then assessed the resulting phase accuracy, 269 
by comparing phased haplotypes to those directly inferred using inheritance patterns to the child 270 
in each trio. The HRC reference panel was lifted over  from the GRCh37 to the GRCh38 271 
reference genome using GATK Picard LiftoverVCF15. The original GRCh37 HRC reference 272 
panel has 39,131,578 autosomal variants. 13,813 variants were removed either due to the 273 
incompatibility between reference genomes or mismatching chromosome between the two 274 
reference genomes. The resulting autosomal GRCh38 HRC reference panel contain 39,115,765 275 
variants and 27,165 samples. 1000 Genome samples within the HRC reference panel were 276 
removed.  277 
 278 
We analysed only sites passing 1000 Genome data16 filters. The phasing test was carried out on 279 
589 trio families from diverse ethnic backgrounds, using SHAPEIT 4.2.213. We tested all the 280 
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heterozygous 1000G sites for each individual reference panel, yielding a total of 1.04 × 10( 281 
heterozygous sites (1.76 million per trio family) for the HRC panel and 1.16 × 10( (1.9 million 282 
per trio family) for the GEL panel. 283 
 284 
Imputation testing of  1000 Genomes samples 285 
We used 2,405 1000 Genomes samples to test the relative performance of imputation based on 286 
the GEL, TOPMed and HRC imputation panels. We first performed quality control on the 1000 287 
Genomes data, by removing sites which either possess a missingness larger than 5% or failed a 288 
Hardy Weinberg equilibrium test, by having a p-value smaller than 10!&) in any of the 26 1000 289 
Genome populations. We then masked genotypes in 1000 Genomes sequencing samples, except 290 
the sites existing in the UK Biobank Axiom array, to mimic imputation using this array. This 291 
gave 716,473 bi-allelic SNPs across all autosomes. The pseudo-SNP array dataset was then 292 
phased one chromosome at a time using SHAPEIT4.1.213. TOPMed imputation was carried out 293 
using the TOPMed imputation server with the TOPMed r2 reference panel and the imputation 294 
software minimac4 1.5.717. IMPUTE518 was used to impute from the GEL and HRC reference 295 
panels. We stratified imputation results into 6 groups :  661 African (AFR), 347 American 296 
(AMR), 504 Eastern Asian (EAS), 489 South Asian (SAS), 313 non-Finnish European (NFE) 297 
samples and 91 British (GBR) samples.   298 
 299 
UK Biobank imputation using the GEL reference panel 300 
The UK Biobank SNP array data consists of 784,256 autosomal variants. We removed the set of 301 
113,515 sites identified by the previous centralized UK Biobank analysis as failing quality 302 
control5 and an additional set of 39,165 sites failing a test of Hardy-Weinberg equilibrium on 303 
409,703 White British samples, with the p-value threshold of 10!&). The resulting UK Biobank 304 
SNP array data was mapped from the GRCh37 to GRCh38 genome build, using the GATK 305 
Picard LiftOver tool. Alleles with mismatching strand but matching alleles were flipped. 495 306 
sites were removed due to incompatibility between the two reference genomes, resulting in a 307 
final SNP array incorporating 631,081 autosomal variants that we used for phasing and 308 
imputation. Haplotype estimation of the SNP array data is a prerequisite for imputation. Phasing 309 
was carried out one chromosome at a time using SHAPEIT4.2.2 without a reference panel, using 310 
the full set of UK Biobank samples. We ran SHAPEIT4 using its default 15 MCMC iterations 311 
and 30 threads. The runtime varied from 2 hours to 30 hours for each chromosome. Imputation 312 
of normal filter set and lenient filter set SNPs was carried out independently. Autosomal 313 
imputation using the GEL reference panel was performed using IMPUTE5 (v1.1.4). The SNP 314 
array data was divided into 408 consecutive and overlapping chunks with roughly 5mb for each 315 
chunk and 2.5mb buffer across the genome, using the Chunker program in IMPUTE518 and each 316 
chunk was further divided into 24 sample batches with each batch containing 20,349 samples. 317 
IMPUTE5 was run on each of the 9,792 subsets using a single thread and default settings, at a 318 
speed less than 4 minutes per genome, resulting in a total time of around 1,200 CPU days to 319 
impute all UK Biobank samples.  320 
 321 
Genome-wide association studies 322 
We selected four quantitative traits to demonstrate the GWAS performance of the GEL imputed 323 
UK Biobank data (GEL-UKB), compared to the HRCUK10K imputed UKB (HRC-UKB) data 324 
on 429,460 white British samples. These traits are standing height (HEIGHT), body mass index 325 
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(BMI), systolic (SBP) and diastolic (DBP) blood pressure. Variants with minor allele count 326 
lower than 5 are not included in testing. The trait measures are transformed using rank inverse 327 
normal transformation (RINT) within sexes to ensure normally distributed input phenotypes and 328 
reduce the likelihood of false positives due to outliers. 329 
 330 
Samples between 40 to 70 years old are included and for each data point, outliers that are above 331 
±4	standard deviation from the mean value were removed5. SBP and DBP values are based on 332 
automated blood pressure readings, substituting in manual reading values when automated 333 
readings are not available. We calculated the mean SBP and DBP values from two automated (n 334 
= 418,755) or two manual (n = 25,888) blood pressure measurements. For individuals with one 335 
manual and one automated blood pressure measurement (n = 13,521), we used the mean of these 336 
two values. For individuals with only one available blood pressure measurement (n = 413), we 337 
used this single value. After calculating blood pressure values, we adjusted for blood pressure-338 
lowering medication (n=94,289) use by adding 15 and 10 mmHg to SBP and DBP, 339 
respectively19, for individuals on such medication. 340 
 341 
GWAS effect size estimates and p-values were obtained using REGENIE7. . We used the UKB 342 
SNP array data to estimate the LOCO predictors in REGENIE Step 1 and the imputed data for 343 
Step 2, accounting for sex, age, sex squared, sex × age, and 20 principal components as 344 
covariates7. The association tests for GEL imputed UKB (GEL-UKB) and HRCUK10K imputed 345 
UKB (HRC-UKB) used the identical setup. The HRC-UKB summary statistics of the association 346 
tests were mapped using Picard LiftOver from GRCh37 to GRCh38 to compare the results with 347 
GEL-UKB. In all analysis, we used an INFO threshold of 0.3 for common imputed variants 348 
(MAF>0.05) and 0.8 for rare imputed variants (MAF≤0.05). Supplementary Figure 5 shows 349 
higher INFO threshold are effective for detecting false positive rare associations.  350 
 351 
Bayesian fine-mapping 352 
Bayesian fine-mapping credible set size comparison was carried out on 1,660, 711, 505 and 546 353 
non-overlapping regions for HEIGHT, BMI, SBP and DBP respectively based on HRC-UKB 354 
GWAS summary statistics. These regions were defined by the following procedure. First, 355 
candidate regions were identified with width 0.125 centiMorgans plus 25 kb on each side of a 356 
significant marker. Overlapping candidate regions were successively merged until there are no 357 
remaining regions overlapping. We removed 60, 30, 33, and 51 regions for above traits 358 
respectively, in which GEL-UKB showed no significant sites (p-value < 5 × 10!% in GWAS) for 359 
each trait. The recombination rate is based on the HapMap genetic map20. The detail description 360 
of this approach can be found in Maller et al., and Bycroft et al.5,21   361 
 362 
For each region, we assume a single causal variant – call this model M. Given this, define model 363 
𝑀* to be the model where SNP i is the causal variant. We seek the probability of 𝑀* given the 364 
data and that model M is true. This posterior 𝑃𝑟(𝑀*|𝑿,𝑀)	can be written in terms of the Bayes 365 
factor relating the probability of the data given 𝑀* versus the probability of the data under the 366 
null model with no associated SNP in the region, 𝐵𝐹*. Further, 𝐵𝐹* can be approximated by an 367 
asymptotic Bayesian factor (𝐴𝐵𝐹*): 368 
 369 
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𝑃𝑟(𝑀*|𝑋,𝑀) =
𝐵𝐹*

∑ 𝐵𝐹*+
*,&

≈
𝐴𝐵𝐹*

∑ 𝐴𝐵𝐹*+
*,&

 370 

 371 
𝐴𝐵𝐹* can be calculated using the standard error (𝑉*) and Z score (z) estimated by REGENIE5. In 372 
each region, the smallest possible 95% credible set of potential causal markers can be obtained 373 
by successively including the sites with the highest probabilities, to accumulatively reach 0.95. 374 
Model 𝑀	requires a prior for the (Gamma distribution) on effect sizes; we choose this prior W to 375 
have parameters 0.2# and 0.02#, but found the results are not particularly sensitive to the choice 376 
of the prior.  377 
 378 
Conditional joint analysis: step-wise regression 379 
A standard GWAS uses marginal model considering one variant at a time, while a joint model 380 
considers all the selected variants and estimates their joint effect simultaneously. In order to 381 
remove rare variant signals that are explained by stronger signals at more common nearby 382 
SNPs8. We performed a conditional joint analysis via a stepwise forward selection procedure, 383 
considering each chromosome separately. First we defined the set S of genome-wide significant 384 
variants in one chromosome (P-value < 5	 × 10!%) in the marginal regression using REGENIE. 385 
We initialized a set of variants R as the most significant variant in the marginal regression. 386 
Given the current value of R, we calculate the P-value of all the remaining variants in S one at a 387 
time, conditioned on R and the covariates used for the initial GWAS. We then move the variant 388 
with the smallest conditional P-value from S to R, until this smallest P-value is no longer 389 
genome-wide significant. This approach identifies a set of variants that are independently 390 
significant, and account for all the genome-wide association signals (note that this set is not 391 
unique), while also accounting for linkage disequilibrium between sites. To identify rare causal 392 
variants within UKBB found using GEL-UKB imputation, we considered only those variants 393 
found by this stepwise forward selection approach. The full conditional joint analysis results can 394 
be found in the Extended data table.  395 

Data availability 396 
The GEL haplotype reference panel is available within the GEL trusted research environment to 397 
approved researchers only. The imputed UK Biobank data imputed using the GEL haplotype 398 
reference panel is available to those with approved access to the UK Biobank resource and 399 
described on the UK Biobank showcase here 400 
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21008 401 
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