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ABSTRACT 

PURPOSE: Gamma delta T-cell receptor-positive acute lymphoblastic leukemia (γδ T-ALL) is a 

high-risk but poorly characterized disease.  

METHODS: We studied clinical features of 200 pediatric γδ T-ALL, and compared the prognosis 

of 93 cases to 1,067 protocol-matched non-γδ T-ALL. Genomic features were defined by 

transcriptome and genome sequencing. Experimental modeling was used to examine the 

mechanistic impacts of genomic alterations. Therapeutic vulnerabilities were identified by high 

throughput drug screening of cell lines and xenografts. 

RESULTS: γδ T-ALL in children under three was extremely high-risk with 5-year event-free 

survival (33% v. 70% [age 3-<10] and 73% [age ≥10], P=9.5 x 10-5) and 5-year overall survival 

(49% v. 78% [age 3-<10] and 81% [age ≥10], P=0.002), differences not observed in non-γδ T-

ALL. γδ T-ALL in this age group was enriched for genomic alterations activating LMO2 

activation and inactivating STAG2 inactivation (STAG2/LMO2). Mechanistically, we show that 

inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-

promoter looping resulting in deregulation of gene expression associated with T-cell 

differentiation. Drug screening showed resistance to prednisolone, consistent with clinical slow 

treatment response, but identified a vulnerability in DNA repair pathways arising from STAG2 

inactivation, which was efficaciously targeted by Poly(ADP-ribose) polymerase (PARP) inhibition, 

with synergism with HDAC inhibitors. Ex-vivo drug screening on PDX cells validated the efficacy 

of PARP inhibitors as well as other potential targets including nelarabine. 

CONCLUSION: γδ T-ALL in children under the age of three is extremely high-risk and enriched 

for STAG2/LMO2 ALL. STAG2 loss perturbs chromatin conformation and differentiation, and 

STAG2/LMO2 ALL is sensitive to PARP inhibition. These data provide a diagnostic and 

therapeutic framework for pediatric γδ T-ALL.  
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INTRODUCTION 

The outcome of T-cell acute lymphoblastic leukemia (T-ALL) has improved with recent changes 

in therapeutic strategy including the incorporation of new drugs such as nelarabine as well as 

minimal residual disease (MRD)-based risk adaptation,1-4 however outcomes remain inferior to 

B-ALL. One group of high-risk T-ALL that is potentially associated with higher rates of refractory 

disease and poor prognosis is gamma delta (γδ) T-ALL, which expresses the γδ T-cell receptor 

(TCR) and accounts for 10% of T-ALL.5,6 Yet, the clinical features and prognostic significance of 

γδ T-ALL have been only examined in small cohorts.5,6  

Genomic analyses have identified multiple new subtypes and drivers of B-ALL, and have 

transformed the approach to diagnosis, risk classification, and for some subtypes, therapeutic 

targeting.7-9 Recent studies have examined the genomic landscape of T-ALL using whole 

exome sequencing (WES) and whole transcriptome sequencing (RNAseq), and have defined 

several T-ALL subtypes arising from dysregulated oncogene expression.10,11 However, these 

studies included few documented cases of γδ T-ALL, and the genomic basis of this form of 

leukemia remains elusive. Moreover, these genomic studies have demonstrated the limitations 

of non-whole genome sequencing (WGS) studies of T-ALL, in which oncogene-deregulating 

genomic alterations commonly involve non-coding regions of the genome that are not detected 

by RNAseq or WES, and require WGS and chromatin profiling approaches such as HiChIP to 

fully elucidate driver genomic alterations.12,13  

Thus, limited studies have explored the clinical and genomic characteristics of γδ T-ALL. 

In this study, we sought to conduct a comprehensive analysis of this entity, to identify outcome 

determinants, and to explore the therapeutic potential for better classification and improved 

outcomes.  
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METHODS 

Study Design  

Data from all patients with T-ALL expressing γδ TCR up to 25 years of age enrolled in clinical 

trials and diagnosed from January 1, 2000, through December 31, 2018, were retrospectively 

collected from 13 cooperative study groups (n=200, Appendix Table A1). Data from patients 

with non-γδ T-ALL (n=1,067) enrolled on the same protocols (DCOG-ALL10,14 AIEOP-BFM 

ALL2000,4 EORTC 58951,15 SJCRH-T15/T1616,17) were collected for comparison analysis (Fig 

1A). Only the protocol-matched patients from these four groups were used for the outcome 

analyses;  for the analyses of clinical features, we used all 200 γδ T-ALL data. All clinical trials 

were approved by institutional review boards or ethics committees. This study was approved by 

the Institutional Review Board of St. Jude Children’s Research Hospital.  

Terminology and Outcomes 

The following definitions were used to analyze clinical features according to an international 

consensus of the Ponte-di-Legno Consortium.18 The definition of the time points at the end of 

induction (EOI) and consolidation (EOC) was approximately four weeks and 7-12 weeks (day 

42/46 for SJCRH-T15/T16) from the start of treatment, respectively (Appendix Table A1). 

Complete remission (CR) was defined when bone marrow (BM) showed M1 cytomorphology 

and/or MRD <1% without evidence of extramedullary disease at EOC. When MRD data were 

available, MRD results were preferentially used to define CR. MRD was measured by PCR 

and/or flow cytometry depending on the study. Failure to achieve CR was defined as a 

treatment failure event on EOC assessment day. Event-free survival (EFS) was defined as the 

time from the start of treatment to any of the first events including the death of any time, 

treatment failure, relapse, second malignancy, or last follow-up date for those who were event-

free. Overall survival (OS) was defined as the time from the start of treatment to death from any 

cause or last follow-up date. 
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Patient samples, sequencing, gene-edited models, and drug screening 

Details for the process of primary materials, WGS, RNAseq, HiChIP, chromatin 

immunoprecipitation sequencing (ChIP-seq), and methods for cell culture, generation of 

CRISPR/Cas9-based gene-edited models, and drug screening are described in the Data 

Supplement, Supplementary Methods.  

Statistical Analysis 

Statistical analyses were performed using R v.4.2.2 software. Categorical variables were 

analyzed using the Chi-square test. The two-sided Wilcoxon rank-sum test was used to 

compare the mean values of different groups. Two-sided log-rank tests were used for survival 

analyses. For univariate and multivariate analyses of prognostic factors, the Cox proportional 

hazards regression model was used.  

RESULTS 

Identification of a subset of high-risk γδ T-ALL in the very young 

A total of 200 cases of γδ T-ALL patients were assembled through a consortium of 13 ALL study 

groups (Appendix Table A1). From the analysis of those treated in the same clinical trials, the 

frequency of γδ T-ALL was 8.0% of T-ALL (n=93 and 1,067 for γδ T-ALL and non-γδ T-ALL, 

respectively, Fig 1A), and γδ T-ALL patients exhibited significantly inferior 5-year EFS (65% v. 

76%, P=0.01) and OS (77% v. 83%, P=0.048) compared to non-γδ T-ALL patients (Fig 1B). In 

comparison with non-γδ T-ALL, γδ T-ALL patients were characterized by younger age at 

diagnosis (P=0.01), higher white blood cell (WBC) at diagnosis (P=0.02), less frequent 

mediastinal mass (P=9.1x10-5), and a more common mature T immunophenotype (surface 

(s)CD3+, CD1a-, P=1.3x10-15, Table 1, and Appendix Table A2). MRD measurements were 

available for 90, 121, and 131 patients at day 15, EOI, and EOC, respectively. γδ T-ALL patients 

exhibited a higher rate of poor prednisone response (P=0.0008), MRD ≥1% (≥10-2) at day 15 

(P=4.3 x 10-7), at EOI (P=6.4 x 10-8) and at EOC (P=6.1 x 10-8, Table 1, and Appendix Table 
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A2), suggesting slow treatment response and chemoresistance leading to treatment failure. 

Accordingly, more γδ T-ALL patients underwent hematopoietic stem cell transplantation (P=6.4 

x 10-8) and died from primary disease (16.8% v. 11.2%) and toxicity during treatment compared 

to non-γδ T-ALL patients (7.6% v. 4.0%, P=0.0004, Table 1, and Appendix Table A2). The 

cumulative incidence of relapse (Appendix Fig A1A) and OS after relapse and treatment failure 

in γδ T-ALL were similar to that of non-γδ T-ALL (Appendix Fig A1B,C). Importantly, there was 

a significant difference in the site of relapse; almost all relapses of γδ T-ALL were isolated BM 

relapses (91.3% v. 50.0%), while central nervous system (CNS, isolated CNS and combined 

CNS/BM) was more commonly involved in non-γδ T-ALL (4.3% v. 41.6%, P = 0.003, Table 1, 

and Appendix  Fig A1D). No difference was observed in CNS involvement at diagnosis 

between γδ and non-γδ T-ALL (Appendix Table A2). 

Strikingly, γδ T-ALL diagnosed before three years of age exhibited markedly inferior EFS 

compared to those diagnosed in older children (33% v. 70% [age 3-<10] and 73% [age ≥10], 

P=9.5 x 10-5) and OS (49% v. 78% [age 3-<10] and 81% [age ≥10], P=0.002), a difference that 

was not observed in non-γδ T-ALL (EFS; 72% v. 80% [age 3-<10] and 76% [age ≥10], OS; 80% 

v. 86% [age 3-<10] and 81% [age ≥10]) (Fig 1C, Table 1, and Appendix Table A2). Eleven out 

of 24 γδ T-ALL patients under three years old died from primary disease or toxicity. In addition, 

γδ T-ALL with MRD ≥1% at EOI showed poor EFS (51% v. 96% [below 0.01%] and 91% 

[0.01%–1%], P=7.6x10-7) and most were not salvaged (OS, 66% v. 96% [below 0.01%] and 

91% [0.01%–1%], P=0.001, Fig 1D and Table 1). Positivity (≥0.01%) of MRD at EOC also 

predicted poor EFS (41% v. 88%, P=3.0x10-10) and OS (66% v. 88%, P=0.001, Fig 1E, Table 1, 

and Appendix Fig A1E). Forty-four out of 53 (83%) patients with MRD ≥1% at EOI remained 

MRD positive at EOC and 34% (n=18) of them died (Appendix Fig A1F). In a multivariable 

analysis, age under three was associated with worse EFS and OS, though MRD levels at EOI 

(≥1%) and EOC (≥0.01%) remained important prognostic factors in MRD-directed protocols 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.06.23298028doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.06.23298028


10 

 

(Appendix Table A3). The use of MRD-stratified protocols did not improve the outcome of γδ T-

ALL (Appendix Table A2 and Appendix Fig A1G). Thus, clinical data identified two high-risk 

groups in γδ T-ALL - those under three years of age and those with MRD ≥1% at EOI – that 

required alternative therapy, rather than intensification with conventional treatment. 

 

Enrichment of the STAG2/LMO2 subtype in high-risk γδ T-ALL in the young  

To determine the genetic basis of γδ T-ALL, WGS (n=47) and RNAseq (n=68) were performed, 

including 15 additional γδ T-ALL samples (Appendix Tables A4–A7). We combined analysis of 

these samples with 1,076 T-ALL cases whose TCR status at diagnosis was not available 

(Children's Oncology Group AALL0434 study2,19). Gene expression profiling revealed that γδ T-

ALL cases were classified by leukemia-initiating events and maturation stages (Fig 2A, 

Appendix Fig A2, and Appendix Table A8). γδ T-ALL was enriched for several subtypes 

including LMO2 γδ-like, T-ALL with recurrent chromosome gains (Chr gains), STAG2/LMO2, 

TLX3-rearrangement, and PICALM::MLLT10 (Fig 2B). Each of these subtypes except for 

STAG2/LMO2 is described in Data Supplement, Supplementary Results, Appendix Fig A3,4, 

and Appendix Table A9. 

STAG2/LMO2 is a subtype enriched in γδ T-ALL that has a distinct expression profile 

(7.9% for γδ T-ALL v. 0.9% in non-γδ T-ALL, Fig 2A,B). All STAG2/LMO2 cases had dual-hit 

alterations targeting LMO2 and STAG2 (Fig 2C). All STAG2/LMO2 γδ cases were diagnosed 

before the age of three, including infancy, a pattern of age at diagnosis not observed in other γδ 

T-ALL subtypes (Fig 2D). 

The clinical outcomes of γδ T-ALL exhibited significant variation depending on the 

genomic subtype. The Chr gains and TLX3-rearranged subtypes had excellent OS (Fig 2E). In 

contrast, the STAG2/LMO2, LMO2 γδ-like, and KMT2A-rearranged subtypes had poor EFS, and 

notably, these subtypes included all γδ T-ALL patients diagnosed under the age of three (Fig 
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2D,E). Among these three γδ T-ALL subtypes, STAG2/LMO2 was predominantly related to 

young onset under three, indicating the overlap of high-risk groups in γδ T-ALL (Fig 2F). Indeed, 

three out of five STAG2/LMO2 cases succumbed to death by the primary disease. Thus, 

integrated clinico-genomic analyses demonstrated that the STAG2/LMO2 subtype is enriched in 

children diagnosed with T-ALL under the age of three and the γδ immunophenotype, who had 

dismal outcomes.  

 

Dual hit genomic drivers in STAG2/LMO2 T-ALL 

To further elucidate the biology of STAG2/LMO2 subtype, we collected and analyzed 18 

additional STAG2/LMO2 cases including non-γδ T-ALL (total 24 cases, Appendix Table A10). 

All but 2 (both from additional cases and diagnosed before 4 years of age) were diagnosed 

before age three and included five infant T-ALL cases (Fig 3A). Unlike the general male sex 

predominance in T-ALL, female sex was more common (58%) in STAG2/LMO2 T-ALL.  

Dual-hit alterations at the LMO2 and STAG2 loci were identified in all 20 cases with 

WGS data. Most commonly, these included LMO2::STAG2 rearrangements (n=15, 75%); 

alternatively, LMO2 enhancer single nucleotide variants or rearrangements to TCR loci that 

resulted in aberrant LMO2 expression, were present with concurrent STAG2 alterations leading 

to premature truncation (Fig 3A,B and Appendix Table A10). LMO2::STAG2 does not 

generate a fusion chimera, thus these rearrangements could not be identified in cases lacking 

WGS. In most cases, breakpoints were detected upstream of LMO2 and within the introns of 

STAG2 (Fig 3C, Data supplement, Supplementary Fig S1, and Appendix Table A10). 

H3K27ac HiChIP to integrate enhancer profiling with chromatin looping was performed in the 

STAG2/LMO2 MOLT-14 cell line. This showed abnormal looping between STAG2 promoter and 

LMO2 promoter/enhancers, indicating the induction of LMO2 expression at the cost of STAG2 

expression (Fig 3D and Appendix Fig A5A,B). All cases had NOTCH1 activating alterations, 
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but few additional alterations, suggesting that LMO2 deregulation, STAG2 inactivation, and 

NOTCH1 pathway activation are necessary and sufficient drivers of leukemogenesis.   

STAG2/LMO2 cases exhibited up-regulation of LIN28/let-7 pathway genes, which are 

expressed in fetal hematopoietic stem cells (HSCs) and silenced after birth and following HSC 

differentiation20 (Fig 3E, Appendix Fig A5C–E, and Appendix Table A11). HBE1, GATA1 and 

GATA2, key genes for early-stage hematopoiesis, were also highly expressed (Fig 3E), 

suggesting a fetal HSC origin of STAG2/LMO2 ALL. Pathway analysis using the up-regulated 

genes in STAG2/LMO2 revealed the enrichment of pathways related to stem cell proliferation 

(Fig 3F). Furthermore, gene-set enrichment analysis revealed up-regulation of MYC and 

GATA1 target pathways (Fig 3G and Appendix Table A12).   

 

STAG2 inactivation in T-ALL induces epigenomic deregulation 

Although dual-hit alterations of LMO2 and STAG2 are unique features of the STAG2/LMO2 

subtype, aberrant expression and/or alterations of LMO2 alterations are frequently observed in 

other subtypes of T-ALL, especially those with deregulation of TAL1. However, STAG2 

alterations are specific for STAG2/LMO2 T-ALL, and STAG2 inactivation may drive the 

pathogenesis and gene expression profiles of this subtype. STAG2 is a member of the cohesin 

complex which has a critical role in the maintenance of enhancer-promoter short loops.21 

Therefore, loss of STAG2 alters CTCF-anchored loop extrusion and rewires enhancer-promoter 

loops.22-24 Accordingly, chromatin loop size defined by H3K27ac HiChIP (generally representing 

enhancer-promoter loops) was highest in STAG2/LMO2 cell lines compared to normal 

thymocytes and T-ALL cases, with the exception of DND-41, a TLX3-rearranged T-ALL cell line 

with CTCF alteration (Fig 4A).  

To further explore the effect of STAG2 inactivation in T-ALL, we developed two gene-

edited cell line models: (1) empty vector (EV) or STAG2 transduced MOLT-14 (STAG2/LMO2), 
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and (2) STAG2 knockout PF382 (LMO2-activating mutation; Fig 4B, Data supplement, 

Supplementary Results, and Appendix Fig A6,A7). Comparison of MOLT14-EV (STAG2 

inactivation) and MOLT14-STAG2 (STAG2 restoration) in H3K27ac binding peaks and 

corresponding gene expression levels revealed genes regulated by STAG2 expression, 

including CD34, ID1 and ID2 (Fig 4C,D and Appendix Table A13). Pathway analysis 

(Appendix Fig A6D) suggested differentiation arrest induced by STAG2 inactivation. 

We next examined the effects of STAG2 inactivation by using PF382 parental and 

STAG2 knockout lines. STAG2 inactivation resulted in de-regulation of genes associated with T-

cell differentiation, cell cycle, and polyamine metabolism in addition to STAG1 (Fig 4E,F, 

Appendix Fig A6E and Appendix Table A14). Comparison of differentially expressed genes 

between PF382 STAG2 knockout v. parental cells, and STAG2/LMO2 T-ALL v. other T-ALL 

cases revealed 269 up-regulated and 163 down-regulated genes in common (Fig 4G, 

Appendix Fig A6F and Appendix Table A15). STAG2 binding in PF382 cells was partly 

compensated by STAG1 after STAG2 inactivation, consistent with up-regulation of STAG1 

expression following STAG2 loss (Fig 4H and Appendix Fig A6H,A7). Differential peaks of 

H3K27 acetylation and corresponding gene expression changes between PF382 parental and 

STAG2 knockout cells included T-cell differentiation-related genes as seen in the MOLT-14 

model (Fig 4I and Appendix Table A16). Thus, STAG2 inactivation drives perturbation of gene 

expression in STAG2/LMO2 T-ALL, and T-cell differentiation arrest by deregulating chromatin 

conformation. 

 

Therapeutic targeting of STAG2/LMO2 T-ALL 

To identify potential new therapeutic approaches for STAG2/LMO2 T-ALL, we performed drug-

response screening for 2,050 compounds in two LMO2::STAG2 T-ALL cell lines: MOLT-14 (γδ 

T-ALL) and PER-117 (non-γδ T-ALL; Appendix Table A17). 138 compounds were active in 
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both cell lines at 10 µM single-dose screening, and in subsequent dose-response testing, 85 

exhibited moderate to high efficacy (EC50 <1 μM) in both cell lines (Fig 5A and Appendix Table 

A18). Multiple histone deacetylase (HDAC), topoisomerase, and bromodomain (BRD) inhibitors 

showed efficacy (Appendix Fig A8A). Notably, inhibitors of the deregulated LIN28B and 

NTRK1 genes in the STAG2/LMO2 subtype (Fig 3E), were ineffective (Appendix Fig A8B–E), 

suggesting that deregulated expression of these genes is reflective of cell stage or state but is 

not oncogenic or a therapeutic vulnerability. 

Recent studies have reported the efficacy of Poly(ADP-ribose) polymerase (PARP) 

inhibitors in STAG2-inactivated cancers, including glioblastoma, myelodysplastic syndromes 

(MDS), and acute myeloid leukemia (AML) due to stalled replication forks and increased double-

strand DNA breaks25-28 (DDB, Fig 5B). The PARP inhibitor talazoparib was one of the most 

effective compounds in the STAG2/LMO2, but not STAG2 wild-type T-ALL cell lines (Fig 5C). 

Moreover, synergism with a low dose HDAC inhibitor,29,30 vorinostat (0.1 and 0.2 µM), was 

observed in STAG2/LMO2 lines, but not in STAG2 wild-type lines (Fig 5D and Appendix Fig 

A8F,G).  

Finally, we validated the drug efficacy on STAG2/LMO2 subtype by using patient-derived 

xenografts (PDX) cells from γδ TCR positive T-ALL exposed to a panel of 26 drugs including 

conventional chemotherapeutics and pathway-directed agents31 (Appendix Table A19). This 

showed resistance to prednisolone that is consistent with slow treatment response in patients 

(Fig 5E,F). Effective drugs included PARP (talazoparib, olaparib), HDAC (vorinostat), BCL2 

(venetoclax, navitoclax) and, BRD (JQ1) inhibitors, nelarabine and L-asparaginase, supporting 

the results of cell line screening (Fig 5E,F).  
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DISCUSSION 

Despite the recent improvement of outcomes in pediatric T-ALL,1-3 γδ T-ALL continues to pose a 

significant high-risk challenge. Due to the rarity of this disease and the lack of routine αβ/γδ 

TCR tests by flow cytometry at diagnosis in some clinical trials, comprehensive clinical and 

genomic analyses of γδ T-ALL have been lacking. To address this, we established a multi-

national consortium that assembled a cohort of 200 pediatric γδ T-ALL patients across various 

study groups. These patients were compared with a group of 1,067 protocol-matched non-γδ T-

ALL patients, shedding light on several distinct features of γδ T-ALL. One pivotal characteristic 

was the sluggish response to treatment and resistance to current therapeutic approaches. This 

resistance often necessitated intensified treatment regimens, including transplantation, and 

resulted in a high rate of mortality from both primary disease and treatment-related toxicity. 

Additionally, predominant BM relapses were observed, though CNS-related relapses are 

common in non-γδ T-ALL. Notably, these features were especially pronounced in patients under 

three years old or those with MRD ≥1% at EOI. These patient groups are considered extremely 

high-risk in the context of γδ T-ALL, necessitating alternative therapeutic strategies rather than 

treatment intensification. In contrast, other γδ T-ALL cases showed favorable outcomes and 

may continue to benefit from the current treatment strategy. 

Our genomic analysis revealed that the STAG2/LMO2 subtype was enriched in high-risk 

γδ T-ALL. The STAG2/LMO2 subtype was predominantly associated with a younger age group, 

primarily affecting children under the age of three including infants. This subtype exhibits a 

distinct expression profile with dual-hit alterations of LMO2 and STAG2. The young onset of 

STAG2/LMO2 T-ALL, up-regulation of HBE1 (the hemoglobin subunit expressed in the 

embryonic yolk sac), and the LIN28/let-7 pathway (whose expression in normal HSCs is limited 

to the fetal period, as well as γδ thymocytes20,32), may suggest a fetal hematopoietic origin. In 

addition, Lin28b expression was the highest in γδ T-cells among mouse thymocyte subsets at 
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birth, and ectopic Lin28b expression in adult mouse HSCs promoted γδ T-cell development,20,33 

supporting the enrichment of STAG2/LMO2 ALL in γδ T-ALL resulting from the activation of 

LIN28/let-7 pathway in leukemogenesis.  

Our analyses suggest that many of the distinct biologic features of STAG2/LMO2 ALL 

may be attributed to inactivation of STAG2, considering the frequent activation of LMO2 and 

NOTCH1 across the landscape of T-ALL.10,34-36 STAG1 and STAG2 constitute a cohesin 

complex that is crucial in the maintenance of three-dimensional genome architecture37. Although 

partly redundant, these paralogues have distinct roles in chromatin accessibility and 

organization.21,38-40 STAG1 mediates demarcation of topologically associating domains (TAD) 

with CTCF, whereas STAG2 patterns H3K27ac and regulates cell-type specific transcription 

through short loops within TAD 24,39-41. The function of STAG2-cohesin is more prominent in 

generating loops between enhancers and promoters.22-24,40 Therefore, STAG2 inactivation alters 

enhancer-promoter looping, resulting in deregulation of transcription.24,41,42 Larger H3K27ac-

based loops in STAG2/LMO2 ALL and changes of H3K27ac peaks and expression at the 

regions of T-cell differentiation-related genes in our STAG2 gene-edited models may suggest 

involvement of STAG2 inactivation in leukemogenesis by introducing differentiation arrest. 

Inactivation of STAG2 may generate an “Achilles heel” in STAG2/LMO2 ALL by 

increasing stalled and collapsed replication forks, leading to DDB.27,28 PARP inhibitors generate 

DDB by blocking DNA repair pathways and might accelerate the accumulation of DDB in 

STAG2/LMO2 ALL, resulting in cell death, as seen in MDS/AML with alterations of STAG2.25,28 

Talazoparib is a potent PARP inhibitor due to its strong PARP trapping,43 and was one of the 

most potent of 2,050 compounds in inhibiting STAG2/LMO2 ALL cell proliferation, and its effect 

was specific to the STAG2/LMO2 ALL. However, unlike BRCA-deficient cells, STAG2/LMO2 

ALL does not result in synthetic lethality by inhibition of single-strand DNA repair pathways 

through PARP inhibitors,44,45 because homologous recombination is not affected in 
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STAG2/LMO2 ALL, and thus the sensitivity of PARP inhibitors may depend on the strength of 

PARP trapping. Therefore, exploring combinatorial therapy is warranted to most effectively treat 

STAG2/LMO2 ALL. HDAC inhibitors are attractive due to their observed efficacy, and their 

ability to inhibit double-strand DNA repair pathways via promoting PARP trapping through 

PARP1 accetylation.29  

In conclusion, early onset γδ T-ALL observed in infants and very young children 

represents an exceptionally high-risk group of leukemia, prominently associated with 

STAG2/LMO2 subtype. STAG2 inactivation perturbs chromatin organization and hematopoietic 

differentiation, whereas also rendering DNA repair pathways vulnerable. The insights gained 

from our findings hold the potential to inform more precise refined risk stratification at diagnosis 

and pave the way for innovative therapeutic strategies that are needed to cure this form of 

leukemia. 
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Table 1 Comparison of clinical characteristics and outcomes between gamma delta T-ALL and non-gamma delta T-ALL. 
          γδ T-ALL 

Characteristic   No. of γδ T-
ALL Patients 

No. of non-γδ T-
ALL Patients 

Chi square 
test 

No. of 
Events 

Five-Year event-
Free Survival 

Rate, % (95% CI) 
Log Rank P No. of 

Deaths 

Five-Year Overall 
Survival Rate, % 

(95% CI) 
Log Rank P 

Sex [n (%)]     0.053     0.49     0.55 
Female 70 (35%) 301 (28.2%)   26 63 (53–76)   16 80 (71–90)   
Male 130 (65%) 766 (71.8%)   42 68 (61–77)   34 73 (66–82)   

Age at Dx [n (%)]     0.01     9.49x10-5     0.002 
<3 24 (12%) 82 (7.7%)   16 33 (19–59)   12 49 (33–74)   
3 - <10 106 (53%) 508 (47.6%)   33 70 (62–79)   23 78 (71–87)   
≥10 70 (35%) 477 (44.7%)   19 73 (63–85)   15 81 (72–91)   

WBC at DX [n (%)]     0.02     0.74     0.73 
0 - <20 44 (22%) 335 (31.4%)   13 72 (59–87)   9 78 (67–92)   
20 - <50 36 (18%) 169 (15.8%)   13 63 (49–81)   10 72 (57–90)   
≥50 120 (60%) 556 (52.1%)   42 66 (58–75)   31 75 (68–84)   
NA 0 7               

PSL Response [n (%)]    0.0008     0.0002     0.02 
Responder 78 (52.3%) 402 (67%)   17 79 (71–89)   13 83 (75–92)   
Non-Responder 71 (47.7%) 198 (33%)   34 52 (41–65)   23 69 (59–81)   
NA 51 467               

MRD at day15 [n (%)]    4.34x10-7     0.002     0.03 
<10-4 5 (5.5%) 36 (26.3%)   1 80 (52–100)   1 80 (52–100)   
10-4 – 10-2 18 (19.8%) 47 (34.3%)   0 100 (100–100)   0 100 (100–100)   
≥10-2 67 (74.7%) 54 (39.4%)   31 52 (41–65)   21 67 (56–80)   
NA 110 930               

MRD at EOI [n (%)]     6.41x10-8     7.64x10-7     0.001 
<10-4 27 (24.8%) 134 (27.0%)   1 96 (89–100)   1 96 (89–100)   
10-4 – 10-2 24 (22.0%) 231 (46.5%)   3 91 (80–100)   3 91 (80–100)   
≥10-2 58 (58.0%) 132 (26.6%)   29 51 (40–66)   20 66 (55–80)   
Positive 12 30   0 100 (100–100)   0 100 (100–100)   
NA 79 540               

MRD at EOC [n (%)]     0.02     3.00x10-10     0.001 
<10-4 71 (54.2%) 424 (64.6%)   9 88 (81–96)   9 88 (81–96)   
Positive 60 (45.8%) 232 (35.4%)   36 41 (30–56)   21 66 (55–79)   
NA 69 411               

Total relapses 23 127 0.003             
BM 21 (91.3%) 60 (50.0%)               
BM combined 1 (4.3%) 19 (15.8%)               
CNS 0 31 (25.8%)               
Others 1 (4.3%) 10 (8.3%)               
Unknown 0 7               

Death reasons     0.0004             
Alive cases 150 871               
Total death 

cases 
50 191               

ALL 29 (16.8%) 54 (11.2%)               
Toxicity 13 (7.6%) 19 (4.0%)               
Second 

malignancy 
1 (0.6%) 7 (1.5%)               

Unknown 7 111               
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Figure Legends 

Figure 1 Study cohort and outcome of γδ and non-γδ T-ALL. A, CONSORT diagram. B, γδ 

T-ALL showed significantly worse overall survival (OS) and event-free survival (EFS) compared 

to non-γδ T-ALL. C, Poor OS and EFS of γδ T-ALL for children under three years of age (top 

panels); outcomes of non-γδ T-ALL (dotted line) did not vary by age (bottom panels). D, γδ T-

ALL patients with MRD≥10-2 (1%) at EOI exhibited significantly worse OS and EFS than those 

with MRD<10-2. E, γδ T-ALL patients with positive MRD (≥10-4) at the end of consolidation 

(EOC) had inferior outcomes to those with undetectable MRD. The P values were calculated 

using the log-rank test. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.06.23298028doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.06.23298028


22 

 

Figure 2 The intersection of genomics and clinical features of γδ T-ALL. A, UMAP plot of 

gene expression analysis for 68 cases of γδ T-ALL (large bold circles) layered on the reference 

T-ALL cohort (n=1,076, small circles)19. B, Frequency of each genomic subtype in the γδ T-ALL 

cohort (n=76), non-γδ T-ALL cases from Total 15/16 of St. Jude Children’s Research Hospital 

(n=113), and AALL0434 cohorts (no TCR data at diagnosis was available, n=1,076). C, 

Heatmap showing the mutational landscape, the expression level of selected subtype defining 

genes, and clinical parameters of the 76 cases of γδ T-ALL. Black color in expression indicates 

no data. D, Age distribution of each genomic subtype in γδ T-ALL cases (n = 76). E, Event-free 

survival (EFS) and overall survival (OS) in each genomic subtype. The P value was calculated 

using the log-rank test. F, Correlation of clinical features and genomic subtypes. 
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Figure 3 The genomics of STAG2/LMO2 T-ALL. A, Heatmap showing the mutational 

landscape and clinical parameters of the 24 cases of STAG2/LMO2 T-ALL, including 6 cases of 

γδ T-ALL, 5 of non-γδ T-ALL, and 13 lacking TCR status at diagnosis (n=13). B, Example of 

variant alterations of STAG2 inactivation. One case harbored a 13 bp indel alteration in intron 3 

of STAG2, resulting in a putative exon, aberrant splicing and early STAG2 truncation. Sashimi 

plots shows the splicing between STAG2 exon 2 and exon 4. Intron indel alterations (orange) 

deregulate splicing of this region, generating a putative exon between exon 3 and 4 with early 

truncation. C, Breakpoints of LMO2::STAG2 translocation are shown in red bar. D, H3K27ac 

HiChIP on MOLT-14 cell line with LMO2::STAG2 is shown. Data was aligned on a custom 

reference that mimics chromosome 11 (orange) and X (cyan) translocation in MOLT-14. The top 

heat map represents raw interaction, and HiChIP and RNAseq coverage tracks are shown in the 

middle and the bottom, respectively. Significant H3K27ac-anchored interactions (FDR<0.01) are 

shown as arcs. Interactions between the STAG2 promoter and the LMO2 gene are shown in red. 

FDR, false discovery rate. E, Differentially expressed genes in STAG2/LMO2 cases (n=24) 

compared with other T-ALL (n=1,120) are shown in the volcano plot. LIN28/let-7 pathway genes 

are colored orange. Cohesin complex genes (STAG1 and STAG2) are colored green. F, 

Pathway analysis (GO Biological Process) using up-regulated genes (n=78, adjusted P<0.01 

and fold change >2) in STAG2/LMO2 compared to other T-ALL cases. G, Up-regulated 

pathways in STAG2/LMO2 subtype compared to other T-ALL cases analyzed by gene set 

enrichment analysis. 
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Figure 4 Effects of STAG2 inactivation in T-ALL cell line models. A, Chromatin loop size 

defined by H3K27ac HiChIP for representative T-ALL subtypes (blue and orange) and normal 

thymocytes (in grey). STAG2/LMO2 cell lines are colored red. B, The schema of gene-edited 

cell line models. C, Starburst plot comparing MOLT14-EV with MOLT14-STAG2 for peaks of 

H3K27ac and their corresponding gene expression. Each circle indicates detected H3K27ac 

peaks by MACS2 and the circle size represents the p-value of each peak. The bottom-left 

section includes higher peaks with higher expression in MOLT14-EV. D, H3K27ac (orange), 

STAG1 (green), and STAG2 (red) binding and RNAseq (blue) coverage at the CD34 locus in 

MOLT14-EV and MOLT14-STAG2 cells in duplicates. The black squares indicate regained 

STAG2 binding in MOLT14-STAG2. E, Differentially expressed genes in PF382-STAG2KO (n = 

3) compared with PF382-EV (n = 2) in the volcano plot. F, Pathway analysis using up- or down-

regulated genes (adjusted P <0.01 and fold change >2 or <-2) in PF382-STAG2KO compared 

to PF382-WT. G, Up- and down-regulated genes in PF382-STAG2 KO model (green) and 

primary STAG2/LMO2 subtype T-ALL cases (red) are shown. H, Average ChIP-seq coverage of 

STAG1 in PF382-WT and PF382-STAG2 KO lines around common STAG1/STAG2, STAG1, 

and STAG2 binding regions detected from PF382-WT. I, Starburst plot comparing PF382-

STAG2 KO with PF382-WT for peaks of H3K27ac and their corresponding gene expression. 

The top-right section indicates higher peaks with higher expression in PF382-STAG2 KO. 
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Figure 5 Drug screening in STAG2/LMO2 T-ALL showed talazoparib, HDAC, and CDK 

inhibitors as potential target therapy. A, The result of the dose-response analysis for 138 

compounds. Each circle indicates tested compounds and the circle size represents the average 

area under the curve (AUC). EC50 was calculated after 72 hours of treatment. EC50 <1 μM in 

both cell lines (bottom left section) were considered “effective”. B, The schema showing the 

effect of STAG2 inactivation in DNA replication and PARP inhibitor in DNA damage repair 

(DDR) system. STAG2 inactivation induces stalled replication forks, leading to their collapse 

and double-strand DNA break (DDB). PARP inhibitor blocks DDR of single-strand DNA break 

and causes DDB. DDR for DDB is also hindered by PARP inhibitors due to PARP1-DNA 

trapping. HR, homologous recombination; NHEJ, non-homologous end joining. C, The dose-

response curves of STAG2/LMO2 T-ALL lines (MOLT-14 and PER-117) and STAG2 wild-type 

T-ALL lines (PEER and LOUCY) treated with PARP inhibitor, talazoparib in triplicate. EC50 was 

calculated after 48 hours of treatment. D, The synergistic effect of low-dose HDAC inhibitor, 

vorinostat (0.1 μM and 0.2 μM), with talazoparib was shown in the dose-response curves and in 

the highest single agent (HSA) synergy score in PER-117 (n=3). E, LC50 value of patient-derived 

xenografts (PDX) cells from γδ TCR positive STAG2/LMO2 T-ALL tested by a panel of 26 drugs 

in duplicate. LC50 values for each tested drug in reference T-ALL cell lines were shown in black 

lines. LC50 was calculated after 96 hours of treatment. F, The dose-response curves of PDX 

cells with STAG2/LMO2 subtype treated by talazoparib and prednisolone for 96 hours in 

duplicate. 
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