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Abstract

The integration of artificial intelligence (AI) into healthcare systems within low-
middle income countries (LMICs) has emerged as a central focus for various
initiatives aiming to improve healthcare access and delivery quality. In contrast to
high-income countries (HICs), which often possess the resources and infrastructure
to adopt innovative healthcare technologies, LMICs confront resource limitations
such as insufficient funding, outdated infrastructure, limited digital data, and a
shortage of technical expertise. Consequently, many algorithms initially trained on
data from non-LMIC settings are now being employed in LMIC contexts. However,
the effectiveness of these systems in LMICs can be compromised when the unique
local contexts and requirements are not adequately considered. In this study, we
evaluate the feasibility of utilizing models developed in the United Kingdom (a
HIC) within hospitals in Vietnam (a LMIC). Consequently, we present and discuss
practical methodologies aimed at improving model performance, emphasizing the
critical importance of tailoring solutions to the distinct healthcare systems found
in LMICs. Our findings emphasize the necessity for collaborative initiatives and
solutions that are sensitive to the local context in order to effectively tackle the
healthcare challenges that are unique to these regions.

1 Introduction

As the field of artificial intelligence (AI) progresses, the integration of AI into healthcare systems
presents a remarkable opportunity to revolutionize the delivery of healthcare, foster innovation and
discovery, and ultimately enhance patient care and treatment outcomes on a global level. Nevertheless,
while many high income countries may be well-prepared to develop and adopt these innovative
technologies, the implementation of healthcare AI in low-middle income country (LMIC) settings
poses distinctive challenges in comparison to high income country (HIC) settings.
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LMIC hospitals often face resource constraints, such as inadequate funding, outdated infrastructure,
and shortages of technical expertise (7; 17). Additionally, AI algorithms typically rely on large
and high-quality datasets for training and validation. However, LMIC hospitals may have limited
access to comprehensive and digitized healthcare data (1; 5; 17). These resource limitations pose
significant challenges for the adoption and implementation of healthcare AI systems, especially when
compared to many HIC hospitals. As such, many algorithms trained on data outside of an LMIC
context (such as those trained using HIC data) are being applied to LMIC settings (17; 24). However,
without adequate consideration of the unique contexts and requirements of LMICs, these systems
may struggle to achieve generalizability and widespread effectiveness (5; 10; 17; 24).

Machine learning (ML) generalization refers to a model’s ability to accurately apply its learned
knowledge from training data to new, unseen data (19). This capability is particularly valuable
when models are deployed in real-world scenarios, where they must perform well on independent
datasets encountered in real-time. In clinical contexts, two common types of generalizability are
temporal generalizability (applying prospectively within the center where a model was developed)
and external/geographic generalizability (applying a model at an independent center). In this study,
we will focus on external/geographic generalizability.

While achieving broad generalizability is desirable for scalability, cost-effectiveness, and applicability
to diverse cohorts/environments, it is often not feasible. Achieving external generalizability is
challenging due to population variability (patients at one center may not represent those in another
location) (10; 20; 21), healthcare disparities (variations in access to healthcare services, quality of care,
and healthcare infrastructure) (4; 16; 24), variations in clinical practice (local guidelines, healthcare
systems, and cultural factors) (19; 20; 21), and differences in data availability and interoperability
(limited access to comprehensive and standardized data, variations in data formats, coding systems,
and collection processes) (1; 5; 7; 16; 17). These differences are especially apparent when comparing
HIC and LMIC hospitals.

In order to achieve optimal integration and effectiveness of AI development in LMICs, it is imperative
to adopt tailored approaches and strategies that specifically address the unique contexts of LMICs
(1; 5; 16; 17). With a particular emphasis on biomedical engineering and AI, we aim to evaluate the
feasibility of generalizability, specifically when deploying a model that was initially developed in a
HIC setting to an LMIC setting. Our goal is to explore practical solutions that demonstrate effective
performance while also investigating the ways in which international collaborations can offer optimal
support for these development initiatives.

The collaboration between the Oxford University Clinical Research Unit (OUCRU) in Ho Chi Minh
City, Vietnam, The University of Oxford Institue of Biomedical Engineering in Oxford, England,
the Hospital for Tropical Diseases in Ho Chi Minh, Vietnam, and the National Hospital for Tropical
Diseases in Hanoi, Vietnam, aims to improve the provision of critical care in LMIC settings. Their
primary objective is to accurately identify patients requiring critical care and enhance the quality of
care they receive, thereby addressing the unique challenges encountered within LMIC healthcare
systems. Thus, in this study, we evaluate the performance of a United Kingdom (UK)-based AI
system on patients in Vietnam.

Previously, we developed an AI-driven rapid COVID-19 triaging tool using data across four United
Kingdom (UK) National Health Service (NHS) Trusts (12; 13; 19; 20; 21; 22). As such, through
our collaboration with Vietnam-based centres, we aimed to translate the UK-based models to LMIC
settings, specifically at the Hospital for Tropical Diseases (HTD) in Ho Chi Minh, Vietnam, and the
National Hospital for Tropical Diseases (NHTD) in Hanoi, Vietnam.

In the UK, the NHS utilized a green-amber-blue categorization system, where green indicated patients
with no COVID-19 symptoms, amber indicated patients with potential COVID-19 symptoms, and
blue indicated laboratory-confirmed COVID-19 cases. Through a validation study conducted at the
John Radcliffe Hospital in Oxford, England, we demonstrated that our AI screening model improved
the sensitivity of lateral flow device (LFD) testing by approximately 30%, and correctly excluded
58.5% of negative patients who were initially triaged as "COVID-19-suspected" by clinicians (13).
Furthermore, the AI model provided diagnoses, on average (median), 16 minutes (26.3%) earlier than
LFDs, and 6 hours and 52 minutes (90.2%) earlier than Polymerase Chain Assay (PCR) testing, when
the model predictors were collected using point of care full blood count (FBC) analysis. Applying
a similar screening tool at the HTD and NHTD in Vietnam could offer a systematic approach to
prioritize and manage patient care. It would allow for the efficient use of limited resources, including
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clinician expertise, ventilators, and beds, ultimately optimizing patient outcomes and ensuring timely
access to appropriate interventions. These benefits are especially valuable in LMIC settings where
resource constraints pose significant challenges to healthcare delivery.

Furthermore, building upon the four UK datasets, we have conducted prior research exploring the
generalizability of models across different hospital sites (19). Specifically, we investigated how well
pre-existing models developed in one hospital setting performed when applied to another location. To
accomplish this, we introduced three distinct methods: (1) utilizing the pre-existing model without
modifications, (2) adjusting the decision threshold based on site-specific data, and (3) fine-tuning the
model using site-specific data through transfer learning. Our findings revealed that transfer learning
yielded the most favorable outcomes, indicating that customizing the model to each specific site
enhances predictive performance compared to other pre-existing approaches.

Through this COVID-19 case study, we now evaluate the feasibility of adapting models in hospitals
that span diverse socioeconomic brackets, additionally evaluating corresponding datasets obtained
from two hospitals in Vietnam. In doing so, we aim to expand the understanding of ML-based
methods in identifying COVID-19 cases across different healthcare settings, thus contributing to the
advancement of diagnostic capabilities in diverse regions. We particularly focus on transitioning a
model from a HIC setting to a LMIC setting. By leveraging datasets sourced from four UK NHS
Trusts and two hospitals located in Vietnam, we illustrate practical methodologies that can enhance
the performance of models. Additionally, we highlight the importance of collaborative efforts in the
development of resilient AI tools tailored to healthcare systems in LMICs.

2 Method

2.1 Datasets

In this study, we used clinical data with linked, deidentified demographic information for patients
across hospital centres in the UK and Vietnam. From the UK, we used data from hospital emergency
departments (EDs) in Oxford University Hospitals NHS Foundation Trust (OUH), University Hos-
pitals Birmingham NHS Trust (UHB), Bedfordshire Hospitals NHS Foundations Trust (BH), and
Portsmouth Hospitals University NHS Trust (PUH). For these datasets, United Kingdom National
Health Service (NHS) approval via the national oversight/regulatory body, the Health Research
Authority (HRA), has been granted for development and validation of artificial intelligence models to
detect COVID-19 (CURIAL; NHS HRA IRAS ID: 281832). From Vietnam, we used data from the
intensive care units (ICUs) in the Hospital for Tropical Diseases (HTD) and the National Hospital
for Tropical Diseases (NHTD). This was approved by ethics committees of the HTD and the NHTD,
respectively.

To ensure consistency with previous studies, we trained our models using the same cohorts as those
used in (12; 13; 19; 20; 21). Specifically, we utilized patient presentations exclusively from OUH
for training and validation sets. Two data extracts were obtained from OUH, corresponding to the
first wave of the COVID-19 epidemic in the UK (December 1, 2019, to June 30, 2020) and the
second wave (October 1, 2020, to March 6, 2021) (Supplementary Section B). During the first wave,
incomplete testing and the imperfect sensitivity of the polymerase chain reaction (PCR) test resulted
in uncertainty regarding the viral status of patients who were either untested or tested negative.
To address this, similar to the approach taken in (12; 13; 19; 20; 21), we matched each positive
COVID-19 presentation in the training set with a set of negative controls based on age, using a ratio
of 20 controls to 1 positive presentation. This approach created a simulated disease prevalence of 5%,
which aligned with the actual COVID-19 prevalences observed at all four UK sites during the data
extraction period (ranging from 4.27% to 12.2%). To account for the uncertainty in negative PCR
results, sensitivity analysis was conducted and found to improve the apparent accuracy of the models,
as described in (13; 21).

Thus, the model development process involved a dataset comprising 114,957 patient presentations
from OUH prior to the global COVID-19 outbreak, guaranteeing that these cases are COVID-free.
Additionally, we included 701 patient presentations that tested positive for COVID-19, as confirmed
by a positive polymerase chain reaction (PCR) test. This careful selection of data ensured the accuracy
of COVID-19 status labels used during the training phase of the model.
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Table 1: Total patients and positive COVID-19 cases in the OUH training cohorts (OUH pre-
pandemic and "wave one"), prospective validation cohort (OUH), external validation cohorts of
patients admitted to three independent NHS Trusts (UHB, PUH, BH), and external validation cohorts
of patients admitted to two Vietnam-based hospitals (NTD, NHTD).

Cohort Total Patients COVID-19 Positive Cases

OUH pre-pandemic Before Dec 1/19 114,957 0
OUH "wave 1" Dec 1/19-June 30/20 701 701
OUH "wave 2" Oct 1/20-Mar 6/21 22,857 2,012 (8.80%)

UHB Dec 1/19-Oct 29/20 10,293 439 (4.27%)
PUH Mar 1/20-Feb 28/21 37,896 2,005 (5.29%)

BH Jan 1/21-Mar 31/21 1,177 144 (12.2%)
HTD Dec 10/20-Dec 30/22 1,820 1,360 (74.7%)

NHTD Nov 1/20-Dec 21/22 1,611 1053 (65.4%)

We then validated the model on four UK cohorts (OUH “wave 2”, UHB, PUH, BH), totalling 72,223
admitted patients (4,600 COVID-19 positive with confirmatory testing), and two Vietnam cohorts
(HTD and NHTD), totalling 3,431 admitted patients (2,413 COVID-19 positive with confirmatory
testing. A summary of each respective cohort is in Table 1.

For OUH, we included all patients presenting and admitted to the ED. For PUH, UHB, and BH,
we included all patients admitted to the ED. It is important to highlight that HTD and NHTD are
specialized hospitals primarily focused on infectious diseases. Consequently, COVID-19 negative
cases in these facilities typically involved other infectious diseases. Throughout the pandemic, patients
with severe COVID-19 or other serious infections were typically admitted to either the ICU or high
dependency units. There was a large variety in how COVID-19 was recorded (including "COVID-19
lower respiratory infection", "COVID-19 pneumonia", "SARS-COV-2 Infection", "COVID-19 acute
respiratory distress syndrome", "Acute COVID-19", and many more). For our purposes, we treated
any label and severity of COVID-19 presence as COVID-19 positive. A full count of all diseases
present in the HTD and NHTD cohorts can be found in Supplementary Figures 2 and 3 (it should
be noted that each patient’s EHR data had two columns for listing disorders, and thus, the counts of
all diseases is greater than the total number of patients in the cohort). A full count of all COVID-19
severity levels can be found in Supplementary Figures 4 and 5.

2.2 Features

To facilitate a more meaningful comparison of our results with previous studies (13; 19; 20; 21; 22),
we adopted a similar set of features. These features align with a focused subset of routinely collected
clinical data, including the first recorded laboratory blood tests (comprising full blood counts, urea
and electrolytes, liver function tests, and C-reactive protein) as well as vital signs.

Regarding the UK NHS datasets, it’s worth noting that each hospital operates within its own distinct
IT infrastructure. However, in general, laboratory data is managed within a system referred to as
LIMS (Laboratory Information Management System). The data extraction process for these datasets
typically involved sourcing data from either a LIMS mirror, a trust integration system that interfaces
with LIMS, or a direct extraction from the LIMS system itself.

For the Vietnam hospitals, we extracted data from the Critical Care Asia Registry (we will refer
to this as "Registry", a dedicated prospectively acquired database facilitating quality improvement
initiatives. To test model generalizability at HTD and NHTD, we had to match the features available
at the UK hospitals to the features available in the NTD and NHTD system (i.e. those recorded on
Registry).

Some features available in the UK datasets (such as albumin, alkaline phosphatase, C-reactive protein)
are not routine tests on admission in HTD and NHTD.

Table 2 summarizes the final features included.

2.3 Pre-processing

We first checked to ensure uniformity in the units used to measure identical features. We standardized
all the features to have a mean of 0 and a standard deviation of 1. This standardization process aids in
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Table 2: Clinical predictors considered for COVID-19 diagnosis.

Category Matched UK and Vietnam UK Features

Vital Signs Heart rate, respiratory rate, systolic blood pressure,
diastolic blood pressure, temperature

Blood Test Haemoglobin, haematocrit, white cell count, platelets Mean cell volume, neutrophil count, lymphocyte count,
monocyte count, eosinophil count, basophil count

Liver Function Tests & C-reactive protein Bilirubin Albumin, alkaline phosphatase, alanine aminotransferase,
C-reactive protein

Urea & Electrolytes Sodium, potassium, creatinine, urea Estimated glomerular filtration rate

achieving convergence in neural network models. These steps are consistent with (13; 19; 20; 21; 22).
To handle missing values in the UK datasets, we employed population median imputation. The
technique used to handle missing data in the Vietnam datasets is discussed in following sections.

2.4 Model Architectures

In order to evaluate the generalizability of developed models, we conducted investigations using three
commonly used model architectures: logistic regression, XGBoost, and a standard neural network.
Logistic regression is a linear model that is widely accepted in the clinical community; XGBoost
is a tree-based model known for its strong performance on tabular data (); and lastly, a standard
neural network serves as the foundation for many powerful machine learning models and can be used
alongside transfer learning. It should be noted that LR is a relatively simple and linear classification
model which does not inherently involve complex neural network architectures or deep learning, and
thus, is not typically used alongside transfer learning; and XGBoost depends on the availability of
the entire dataset, such that transfer learning is not typically feasible (19). Additionally, a neural
network has previously been shown to have superior performance for COVID-19 diagnosis (using
the same UK cohorts) (19; 20; 21; 22). Thus, like previous studies, we trained a fully-connected
neural network which used the rectified linear unit (ReLU) activation function in the hidden layers
and the sigmoid activation function in the output layer. For updating model weights, the Adam
optimizer was used during training. Details of the model architecture are presented in Section C of
the Supplementary Material.

2.5 Metrics

In order to evaluate the performance of the trained models, we provide the following metrics:
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), area under
the receiver operating characteristic curve (AUROC), and area under the precision-recall curve
(AUPRC). These metrics are accompanied by 95% confidence intervals (CIs), which are computed
using 1000 bootstrapped samples drawn from the test set. Tests of significance (p-values) comparing
model performances are calculated by evaluating how many times one model performs better than
other models across 1000 pairs of bootstrapped iterations.

We performed a grid search to adjust the sensitivity/specificity for identifying COVID-19 positive or
negative cases. We chose to optimize the threshold to achieve sensitivities of 0.85 (±0.05), ensuring
clinically acceptable performance in detecting positive COVID-19 cases. This chosen sensitivity
surpasses the sensitivity of lateral flow device (LFD) tests, which achieved a sensitivity of 56.9%
for OUH admissions between December 23, 2021, and March 6, 2021 (13). Additionally, the
gold standard for diagnosing viral genome targets is real-time PCR (RT-PCR), which has estimated
sensitivities between 80%-90% (18; 8). Thus, by optimizing the threshold to a sensitivity of 0.85, our
models can effectively detect COVID-19 positive cases, comparable to the sensitivities of current
diagnostic testing methods.

2.6 Training Outline

For each task, we utilized a training set to develop, select hyperparameters, train, and optimize the
models. A separate validation set was employed for ongoing validation and threshold adjustment.
Following successful development and training, six independent test sets were utilized to evaluate the
performance of the final models.

To start, we used the OUH pre-pandemic controls and "wave 1" positive cases to develop models,
using the reduced feature set (i.e. matched HTD/NHTD features).
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In their study, Soltan et al. (12) identified specific laboratory blood markers, such as eosinophils
and basophils, as having a significant impact on model predictions. This determination was made
through the application of SHAP (SHapley Additive exPlanations) analysis during the development
and evaluation of their models using patient cohorts from the UK. However, these particular features
were not accessible in the Registry dataset, and consequently, were not incorporated into the initial
models developed for compatible testing across UK and Vietnam cohorts. We hypothesize that
without the inclusion of these features during training, the models’ performance would be inferior
compared to the previously reported scores.

Nevertheless, in the context of addressing missing data, nearest neighbor (NN) imputation algorithms
provide efficient approaches for completing missing values. In these methods, each absent value in
certain records gets replaced by a value derived from related cases within the entire dataset (2). This
approach has the capacity to substitute missing data with plausible values that closely approximate
the true ones.

Drawing from a similar concept, a recent technique called "Geometrically-Aggregated Training
Samples (GATS)" (23) has been introduced to address missing data challenges. GATS constructs
training samples by blending various patient characteristics using convex combinations. This approach
enables the creation of missing columns by combining features from multiple patient samples that
do not have missing data in those columns. Importantly, these generated samples exist within the
same data space as genuine training samples, preserving the original data structure and avoiding any
distortion in the distribution of the imputed variables. This preservation facilitates effective model
training, as these samples can be considered a "summary" of multiple patients. Furthermore, it’s
noteworthy that this method can be used to tackle missing columns without compromising the privacy
of individual patient data, thereby mitigating privacy concerns.

We start by matching each patient in the HTD and NHTD datasets to the k most similar patients in the
UK datasets, based on the available features in the Registry. Here, we use the OUH "wave 2", PUH,
UHB, and BH datasets, as to ensure that the training and test sets are completely independent of one
another (i.e. not bias any samples towards the developed model). Similar patients are identified using
a k nearest neighbors (kNN) method. For the k matched samples, the GATS technique is employed to
combine values of the columns missing in Registry, effectively "filling-in" the missing features for
each Vietnam-based patient. As a result, the HTD and NHTD datasets have a feature set matching
the UK data.

Using the comprehensive feature set, we proceeded to perform supplementary experiments by
utilizing the OUH pre-pandemic controls and "wave 1" positive cases as the training set, as previously
conducted. Subsequently, we re-evaluated the models’ performance on the six test sets. Anticipating
an enhancement in performance on the UK test sets due to the inclusion of additional features, we
also hypothesized that the performance on the Vietnam datasets would also improve (particularly
when evaluated using the UK-based models).

We additionally investigate the utility of transfer learning, as this has proven to be a successful
approach for applying models developed at one center to another independent center (19). In our
study, we assess the effectiveness of transfer learning by taking the network weights from a trained
neural network model, which was initially trained on OUH data. We then fine-tune the network
by updating the existing weights using a subset of either the HTD or NHTD data, allowing us to
customize the model to the local context of Vietnam. For each of HTD and NHTD, the subset of
data selected for transfer learning comprises the earliest 40% of patients, with 20% used for training
and 20% used for threshold adjustment. This allows us to validate the model prospectively on the
remaining 60% of patients and externally validate it on the other hospital.

Finally, to establish a baseline, we will train neural network models locally at each hospital in
Vietnam. Similar to the transfer learning approach, we will select the earliest 40% of patients from
each hospital dataset to train models, with 20% of the data allocated for training and another 20%
for threshold adjustment. As before, this setup enables us to perform prospective validation on the
remaining 60% of patients within the same hospital and external validation on the dataset from the
other hospital (external validation will be performed on the entire dataset).
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3 Results

COVID-19 prevalences observed at all four UK sites during the data extraction period ranged from
4.27% to 12.2%. COVID-19 prevalence was highest in the BH cohort, owing to the evaluation
timeline spanning the second UK pandemic wave during January 1, 2021 to March 31, 2021 (12.2%
vs 5.29% in PUH and 4.27% in UHB; Fisher’s exact test p < 0.0001 for both). Prevalance at
the Vietnam sites was significantly higher (74.7% and 65.4% at HTD and NHTD, respectively,
p < 0.0001), as these were exclusively infectious disease hospitals, and handling the most severe
cases of COVID-19.

Between all UK and Vietnam cohorts, all matched features had a significant difference in population
median (Kruskal-Wallis, p < 0.0001). In the case of features exclusive to the UK cohorts, a significant
distinction in population median was observed for all features, except for mean cell volume, where
the population median appeared to be similar (p = 0.210). Full summary statistics (including
median and interquartile ranges) of vital signs and blood tests for all patient cohorts are presented in
Supplementary Tables 1 and 2, respectively.

It’s important to highlight that, upon a preliminary examination of the summary statistics of the
datasets, we observed the presence of extreme values in the Vietnam datasets. For instance, the
minimum haemoglobin value was recorded as 11 g/L, which is notably rare, as values this low
are typically considered highly unlikely (3; 14; 25). Another instance is observed in the white
blood cell count feature, where the dataset’s maximum value was registered at 300, an exceptionally
extreme value (25). While such levels of deviation theoretically can occur in cases of haematological
malignancy, they remain exceedingly rare occurrences. In the Vietnam datasets, there were some
extreme values in patients with lymphoma. For our experiments, we made a deliberate choice to
retain these extreme values in the dataset. This decision was motivated by our aim to evaluate the
performance of models using real-world data, acknowledging the presence of extreme values and
potential errors (this is further discussed in Section 4).

3.1 Reduced Feature Set

Figure 1: t-SNE comparison of all positive COVID-19 samples in UK and Vietnam datasets, including
matched/reduced set of features.

We initially employed t-Stochastic Neighbor Embedding (t-SNE) to generate a low-dimensional
representation of all positive COVID-19 cases within each hospital cohort. As depicted in Figure 1,
there are no immediately discernible indications of site-specific biases or distributions apparent in the
visualization, as evidenced by the absence of distinct clusters.

Following the training of models on the OUH pre-pandemic and "wave 1" data, we conducted
prospective and/or external validation on six datasets. As anticipated, when utilizing the reduced
dataset based on the available features in Registry, the performance of the models was approximately
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5%-10% lower in terms of AUROC compared to previous studies using the same training and test
cohorts. The AUROC ranges were as follows: OUH (0.784-0.803), PUH (0.812-0.817), UHB
(0.757-0.776), BH (0.773-0.804), in contrast to the results reported in prior research (12; 19; 20):
OUH (0.866-0.878), PUH (0.857-0.872), UHB (0.858-0.878), BH (0.880-0.894). The AUROC scores
remained relatively consistent across all UK test sets, with a standard deviation (SD) of 0.017 for the
NN model. However, the AUROC was lower for the HTD and NHTD centers, with an NN AUROC
of 0.577 (CI 0.551-0.604) and 0.515 (0.491-0.541), respectively.

Although we optimized the classification threshold for a sensitivity of 0.85, sensitivity scores varied
across all test sets, with an SD of 0.090 for the NN model. The highest sensitivities were observed at
HTD, PUH, and NHTD (0.908, 0.835, 0.831 for the NN model, respectively), while the lowest sensi-
tivities were observed at OUH, UHB, and BH (0.718, 0.690, 0.688 for the NN model, respectively).
Even within the same country, there was a significant range in sensitivity, with ranges of 0.688-0.835
for UK centers and 0.831-0.908 for Vietnam centers in the NN model. In the UK test sets, specificity
exhibited a reasonable balance with sensitivity. However, for the Vietnam datasets, specificity was
notably poor, with values of 0.139 (0.114-0.167) and 0.159 (0.134-0.185) for NN models at HTD and
NHTD, respectively.

Consistent with previous studies, our models achieved high prevalence-dependent negative predictive
value (NPV) scores (>0.944) on the UK datasets, demonstrating their ability to confidently exclude
COVID-19 cases.

3.2 Comprehensive Feature Set

Figure 2: t-SNE comparison of all positive COVID-19 samples in UK and Vietnam datasets, including
matched/reduced set of features.

Upon the inclusion of additional UK features (generated using GATS for the Vietnam datasets),
it becomes evident that a separate cluster emerges during t-SNE visualization, represented by the
orange data points corresponding to the OUH "wave 2" cohort in Figure 2. This observation implies
that the training data can be grouped together based on, and consequently exhibits bias towards,
site-specific features. These features could encompass factors such as annotation methods, data
truncation techniques, the type of measuring devices utilized, or variances in data collection and
processing tools. It is worth noting that a similar observation was also made in a prior studies that
employed different stratifications of the same datasets (19; 20; 21).

Upon utilizing the comprehensive set of features, including the filling in of missing Registry values
using kNN and GATS, our models exhibited improvements of up to 10% on the UK test sets
(p < 0.001), as shown in Figure 3. These improvements resulted in achieving comparable AUROC
scores to those reported in previous studies that employed the same training and test cohorts. The
ranges of AUROC scores were as follows: OUH (0.854-0.877), PUH (0.832-0.877), UHB (0.846-
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0.860), BH (0.875-0.905), compared to the results reported in previous studies (12; 19; 20): OUH
(0.866-0.878), PUH (0.857-0.872), UHB (0.858-0.878), BH (0.880-0.894). The AUROC scores
remained relatively consistent across all UK test sets, with the XGB model exhibiting the best
performance, with a standard deviation (SD) of 0.019. Similar to previous findings, the AUROC
scores were lower at the HTD and NHTD centers. Nonetheless, the NN model outperformed the XGB
and LR models by an approximate margin of 5%, achieving AUROC scores of 0.590 (0.563-0.617)
for HTD and 0.522 (0.497-0.544) for NHTD, respectively. This represented an improvement from the
scores of 0.577 (0.551-0.604) (p = 0.033) for HTD and 0.515 (0.491-0.541) (p = 0.409) for NHTD
when using the reduced datasets. The AUPRC also demonstrated improvement across all test sites,
with a notable improvement of over 25% at BH.

In terms of sensitivity, the scores were more consistent across the UK datasets, with a range of 0.779-
0.825 and an SD of 0.021 for the XGB model. Across the Vietnam datasets, sensitivity ranged from
0.610-0.646 for the XGB model and 0.660-0.661 for the NN model, indicating increased consistency
compared to previous experiments.

For the UK test sets, specificity remained reasonably balanced with sensitivity. In the case of the
Vietnam sites, specificity improved and became slightly more balanced with sensitivity, with values
of 0.465 (0.426-0.505) and 0.353 (0.319-0.385) for the NN model at HTD and NHTD, respectively.
However, this improvement corresponded to a decrease in sensitivity.

Consistent with previous studies, our models achieved high prevalence-dependent negative predictive
value (NPV) scores (>0.951) on the UK datasets, affirming their capability to confidently exclude
COVID-19 cases.

Figure 3: COVID-19 diagnosis performance across logistic regression, XGBoost, and neural network
models trained on the UK data. Results are presented for the reduced feature set and the comprehen-
sive feature set (GATS-filled), with * representing the comprehensive dataset. Metrics are reported
alongside 95% confidence intervals (CIs).

3.3 Transfer Learning

When we applied transfer learning to adapt models developed in the UK to the local context of
Vietnam, we observed improved classification performance at both centers. This improvement was
evident in both the prospective validation on the center used for transfer learning and the external
validation on the other center.

When using the reduced feature set for training, we found that AUROC improved from 0.577 (0.551-
0.604) to 0.707 (0.654-0.756) for HTD (p = 0.001) and from 0.515 (0.491-0.541) to 0.653 (0.627-
0.677) for NHTD (p < 0.001), when pre-trained on a subset of the HTD data. Pre-training models
using a subset of the NHTD data also yielded improvements, albeit slightly lower, achieving AUROCs
of 0.656 (0.599-0.712) (p < 0.001) for HTD and 0.650 (0.623-0.675) for NHTD (p < 0.001).

AUPRC scores also showed improvements across all centers, with particularly notable improvements
of 7%-15% at NHTD. In terms of sensitivity, we observed improved performance with less variation
across the two hospitals, with a difference of less than 2%.
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Sensitivity significantly improved compared to applying ready-made models without transfer learn-
ing (improved between 0.10-0.20 across both sites, p < 0.001). Specificity did not exhibit any
improvement at HTD (range 0.386-0.418 compared to 0.465 (0.426-0.505) without transfer learning),
however appeared to show slight improvement at NHTD (range 0.328-0.422 compared to 0.353
(0.319-0.385) without transfer learning).

When we repeated the transfer learning experiments using the comprehensive feature set, including
the filling in of missing Registry values using kNN and GATS, we observed further improvements of
1%-3% in both AUROC and AUPRC across all iterations (0.113 < p < 0.180, compared to models
trained without GATS). However, there was no clear pattern in the improvement of sensitivity and
specificity.

In order to assess the value of transfer learning, we conducted a comparison with the alternative
approach of developing a model locally in Vietnam, starting from scratch and using only the available
data from within the country.

When training a model locally at HTD, using the features available in Registry, we observed improve-
ments in AUROC compared to using a UK-based model trained at OUH. The AUROC improved from
0.577 (0.551-0.604) to 0.664 (0.613-0.716) during prospective validation at HTD (p = 0.032), and
from 0.515 (0.491-0.541) to 0.639 (0.615-0.663) during external validation at NHTD (p < 0.001).
Similarly, when trained locally at NHTD, the AUROC improved to 0.608 (0.585-0.634) during
external validation at HTD (p < 0.001) and 0.662 (0.604-0.717) during prospective validation at
NHTD (p < 0.001). AUPRC also showed improvements, particularly at NHTD, with enhancements
of up to 16%. These improvements are shown in Figures 4 and 5.

In terms of sensitivity, there was improved performance with less variation across the two hospitals,
with a difference of less than 2%. Models trained at HTD exhibited higher sensitivity (ranging from
0.849 to 0.868) compared to those trained at NHTD (ranging from 0.760 to 0.786), but this was
accompanied by a trade-off in specificity, with the model trained at NHTD demonstrating superior
specificity (ranging from 0.378 to 0.455) compared to the model trained at HTD (ranging from 0.305
to 0.369).

When compared to transfer learning, the locally-trained models (trained solely on the data available
at the site) exhibited slightly lower performance. Using the same features for model development
(reduced feature set available in HTD and NHTD hospital systems), the transfer learning model
(finetuned at HTD) achieved an AUROC of 0.707 (0.654-0.756) when tested at HTD, while the HTD
locally-trained model achieved an AUROC of 0.664 (0.613-0.716) (p = 0.01). When evaluating
on NHTD data, the transfer learning model (finetuned at HTD) achieved an AUROC of 0.653
(0.627-0.677), while the HTD locally-trained model achieved an AUROC of 0.639 (0.615-0.663).
Similarly, when models were trained locally or finetuned (via transfer learning) at NHTD, the transfer
learning model achieved an AUROC of 0.656 (0.599-0.712) during HTD testing, whereas the NHTD
locally-trained model achieved an AUROC of 0.608 (0.585-0.634). However, when testing on NHTD,
both models achieved similar scores, with a slightly higher AUROC of 0.662 (0.604-0.717) for
the NHTD locally-trained model compared to 0.650 (0.623-0.675) for the transfer learning model
(p = 0.458).

Overall, the best performing models were those using transfer learning (especially with the compre-
hensive dataset), achieving an AUROC range of 0.663-0.727 across all iterations.

Although the subset of HTD and NHTD data used in testing varied slightly among different methods
(either the complete dataset or 60% of the data was employed for testing), sensitivity analysis yielded
AUROC scores of 0.577 (0.551-0.604) and 0.562 (0.509-0.616) for the full and partial (prospective)
HTD data variations, respectively. Similarly, during the senstivity analysis of NHTD, AUROC scores
of 0.515 (0.491-0.541) and 0.489 (0.428-0.549) were obtained for the full and partial (prospective)
variations, respectively. While the utilization of full test sets seemed to enhance the apparent accuracy
of the models, the comparable results, as indicated by overlapping confidence intervals, underscored
the stability of the models across both the complete test sets and their respective subsets.

4 Conclusion and Discussion

Using ready-made HIC models (UK models) in LMIC settings (Vietnam hospitals) without customiza-
tion resulted in the lowest predictive performance and the highest variability in AUROC/AUPRC
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Figure 4: COVID-19 diagnosis AUROC performance at HTD and NHTD using neural network
models which were ready-made (the UK-based models) and models which were fine-tuned using
transfer learning. Models trained and tested locally at HTD and NHTD are represented by the
horizontal purple and yellow dotted lines, respectively. Results are presented for the reduced feature
set and the comprehensive feature set (GATS-filled), with * representing the comprehensive dataset.
Metrics are reported alongside 95% confidence intervals (CIs).

and sensitivity/specificity. This finding aligns with a previous study (19) that focused on external
validation of COVID-19 prediction models within the UK. Additional research has similarly indicated
that model performance declined when models trained on data from contexts different from the
implementation setting were employed, including transitions from HIC to LMIC settings (17; 24).
Thus, these outcomes were anticipated, as diverse hospital settings can significantly differ in terms of
unobserved factors, protocols, and cohort distributions, posing challenges to model generalization.
Despite potential similarities in human pathophysiology for specific outcomes, neural networks
heavily rely on the specific datasets and patient cohorts used during training (19; 20; 21). Therefore,
considering the unique attributes of each setting is crucial for achieving optimal model performance.
In particular, the datasets analyzed in this study exhibited variations in patient demographics, geno-
typic/phenotypic characteristics, and other determinants of health, such as environmental, social, and
cultural factors. For example, the HTD and NHTD datasets were primarily composed of Southeast
Asian (Vietnamese) patients, which may have influenced the models’ generalization capabilities (as
opposed to the UK datasets, which had a majority of patients from a white demographic).

We found that transfer learning performed the best in terms of COVID-19 diagnosis and generaliz-
ability across both the UK and Vietnam hospital sites. This method becomes particularly valuable for
LMIC hospitals that often encounter difficulties in gathering an adequate amount of data or resources
to train machine learning models effectively (6). By leveraging transfer learning, LMIC hospitals can
harness collaborative efforts with HIC centers, benefiting from their expertise and resources while
adapting the models to local contexts with limited data availability. This approach allows for the
development of tailored models using smaller datasets, addressing the challenges faced by LMIC
hospitals.

It is important to highlight that the development of site-specific models (models trained on data
from the local context) also yielded strong performance, ranking as the second-best approach. In the
case of HTD and NHTD, when subjected to prospective validation at the site where the model was
originally developed, the models demonstrated superior performance compared to external validation
conducted at a different site. This observation aligns with expectations since datasets from external
sites can possess distinct underlying data distributions and statistical characteristics, influencing
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Figure 5: COVID-19 diagnosis AUPRC performance at HTD and NHTD using neural network
models which were ready-made (the UK-based models) and models which were fine-tuned using
transfer learning. Models trained and tested locally at HTD and NHTD are represented by the
horizontal purple and yellow dotted lines, respectively. Results are presented for the reduced feature
set and the comprehensive feature set (GATS-filled), with * representing the comprehensive dataset.
Metrics are reported alongside 95% confidence intervals (CIs).

the generalizability and performance of the models (5; 19; 24). While models trained at a central
location (such as a HIC like the UK), may offer certain advantages like data availability, efficiency,
and scalability, there is significant merit in the development of AI models that are finely tuned to the
intricacies of their particular operational environment and the specific context of their deployment.
This is particularly critical when considering LMIC settings, as AI models trained exclusively on HIC
data may introduce biases into AI outputs, potentially resulting in subpar performance (5), which
we’ve demonstrated in our experiments.

When using GATS, we found that models exhibited further improvements at HTD and NHTD during
transfer learning and external validation using the UK-based models. Therefore, data generation
methods, such as GATS, provide promising solutions for tackling missing data challenges in LMIC
hospitals. Utilizing this technique enables the generation of complete datasets, which in turn facilitates
effective model training. The selection of features to be added can be guided by those that have
proven to be effective in models developed in HIC settings. However, it is important to acknowledge
that despite using kNN to match patients based on similar features, some bias still persists as missing
values are being filled using UK datasets, which have their own distinct distributions (recall the
t-SNE representation, where the UK features were clustered together). This may explain why even
though GATS slightly improved apparent accuracy during transfer learning, results were not found to
be significant between transfer learning with and without GATS. However, results obtained when
evaluating UK models (without any transfer learning step) were found to have significant improvement
with the addition of GATS. Hence, careful consideration and scrutiny are necessary to account for
any potential bias introduced during the data generation process.

Furthermore, it’s important to recognize that while HICs typically possess extensive collections of
health data, many LMICs face limitations in data availability, particularly regarding the volume and
quality of data accessible electronically and the asynchronous, varied nature of information. These
factors can make it challenging to train AI models (5; 9). Therefore, in the context of LMICs, where
datasets may be smaller and data accessibility issues persist, it is advisable to consider additional
computational techniques such as "GATS" to better leverage and optimize the utilization of available
data resources.
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Regarding data quality, we also detected the presence of outliers within the Vietnam datasets, such
as the minimum recorded haemoglobin value of 11 g/L. This particular value would typically be
considered highly improbable (3; 14). The existence of such outliers could be attributed to a unit
conversion error, where values were erroneously shifted by a factor of 10 (some locations utilize
g/dL instead of g/L), or they may be the result of data entry errors. Since we aimed to work with
real data, our model incorporates such instances of incorrect data entry and outliers. In the case of
extreme values for white blood cell count, there were some extreme values found in patients with
lymphoma in the HTD and NHTD datasets. In certain scenarios, outliers like these may contain
unique information that can enhance a model’s ability to generalize effectively, rendering the models
more robust and less susceptible to noise. The decision of whether to retain extreme values in a
dataset or not depends on the context and the problem under consideration. Extreme values can
indeed offer valuable information, but it is important to handle them appropriately to prevent any
adverse impact on model performance (11; 15). Therefore, for future studies, it may be worthwhile
to explore additional filtering and preprocessing steps to address these anomalies and enhance the
dataset’s quality before model development and testing.

It is essential to consider that HTD and NHTD are specialized hospitals for infectious diseases.
They specifically designated as "COVID-19" hospitals during the pandemic, primarily receiving
referrals for severe cases of COVID-19. While both the UK and Vietnam datasets included the
first recorded blood tests and observations, it’s important to acknowledge that in LMICs during
pandemics, there might be some delay in recording these features after the initial presentation.
Moreover, COVID-19 negative cases in these facilities typically involved other infectious diseases,
and critical cases, including patients with various comorbidities, were treated at these hospitals.
Given that the Vietnamese cohorts primarily consisted of severely ill patients, this might account
for the more noticeable fluctuations in blood test results. Due to these differences, models may
encounter challenges in accurately differentiating COVID-19 for patients at HTD and NHTD based
on vital signs and blood test features, as other diseases (including infectious diseases) might also
be present. Furthermore, in the case of UK hospitals, there was a broader spectrum of COVID-19
case severity. The UK datasets encompassed all individuals coming to the hospital, with only a
small subset of patients progressing to ICUs. Consequently, diagnosing COVID-19 using AI is a
significantly more challenging task at HTD and NHTD because we must distinguish the specific
reason for ICU admission, particularly in cases of infectious diseases. For instance, distinguishing
COVID-19 from bacterial pneumonia (which is frequently encountered at HTD and NHTD) is more
challenging than distinguishing it from a case like a fractured leg.

This difficulty may also account for the lower level of specificity observed in the HTD and NHTD
datasets compared to the UK sites. Thus, even if AUROC/AUPRC metrics are high at external
sites, it may be necessary to tailor the classification threshold (i.e., the criterion for categorizing
COVID-19 status as positive or negative) for each site independently, to maintain the desired levels
of sensitivity and specificity (19). Nonetheless, we acknowledge the value of assessing the likelihood
of having a disease rather than simplifying it into a binary classification. While we opted for a binary
classification to expedite the categorization of COVID-19 as positive or negative, probability can
serve as a viable final outcome for tasks when suitable. This is particularly relevant given that the
Vietnam datasets contained information on varying levels of disease severity. Future studies can
consider harnessing these labels to offer more detailed diagnoses or to estimate levels of uncertainty
when necessary.

While we analyzed patient cohorts admitted to ICUs at HTD and NHTD, the datasets and features we
utilized were those readily available and documented upon hospital admission. These models can
provide swift insights and facilitate efficient and precise triage during a patient’s initial presentation at
the hospital. It’s important to note that in many cases, such as those observed in Vietnam, by the time
patients are transferred from the hospital to the ICU, the diagnosis is typically already established.
Therefore, even though similar features are recorded upon ICU admission, in these scenarios, the
relevance of a machine learning-based classification algorithm may appear redundant, and the benefits
of diagnosing at ICU admission may be limited. Ultimately, the decision to employ machine learning
algorithms should consider various factors, including the clinical context, the patient’s condition,
and the urgency of the situation. Additionally, similar approaches could be applied to other diseases
or integrated into local hospital protocols, including guidelines for patient transfer, among other
considerations.
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Finally, our investigation spanned a significant time period, from December 1, 2019, to December
30, 2022. During this extended duration and particularly during peak pandemic periods, such as
the COVID-19 outbreak, the relationship between patient and disease factors with clinical events,
including hospital-acquired infections, may undergo changes (6). Additionally, over time, there may
be variations in practice patterns such as hardware and software updates and changes in protocols,
which can impact data capture and outcomes. Therefore, when assessing model performance in
such complex settings, it becomes crucial to consider these dynamic factors and gradually make
adjustments as more data is accumulated to accurately gauge their true impact.
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