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Abstract 

Background. Chronic low back pain (cLBP) is the leading cause of disability worldwide. Current 

treatments have minor or moderate effects, partly because of the idiopathic nature of most cLBP 

cases, the complexity of its presentation, and heterogeneity in the population. Explaining this 

complexity and heterogeneity by identifying subgroups of patients is critical for personalized health. 

Clinical decisions tailoring treatment to patients’ subgroup characteristics and specific treatment 

responses can improve health outcomes. Current patient stratification tools divide cases into 

subgroups based on a small subset of characteristics, which may not capture many factors 

determining patient phenotypes. 

Methods and Findings. In this study, we use an unsupervised machine learning framework to 

identify patient subgroups within a specialized back pain clinic and evaluate their outcomes. Our 

analysis identified 25 latent factors determining patient phenotypes and found three distinctive 

clusters of patients. The research suggests that there is heterogeneity in the population of patients 

treated in a specialty setting and that several factors determine patient phenotypes. Cluster 1 

consists of those individuals with characteristics found to be protective of chronic pain: younger 
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age, low pain medication prescription, high function, good insurance access, and low overlapping 

pain conditions. Individuals in Cluster 3 associate with older age and present with a higher 

incidence of chronic overlapping pain conditions, comorbidities, and pain medication use. Cluster 

2 is an intermediate group. 

Conclusions. We quantify cLBP population heterogeneity and demonstrate how ML analytical 

workflow can be used to explain, in part, this heterogeneity in relation to outcomes. Notably, 

considering a data-driven approach from multi-domain data produces different subgroups than the 

STarT back screening tool, and the addition of other functional metrics at baseline such as global 

physical and mental function, and pain intensity, increases the variance explained in outcomes. 

Our study provides novel insights into the complex nature of cLBP and the potential for data-driven 

methods to identify clinically relevant subtypes. 

 

Keywords: 

Unsupervised learning, clustering, phenotyping, chronic low back pain, specialty clinic 

 

Introduction 

Chronic low back pain (cLBP) is the leading cause of disability worldwide (1). With a lifetime 

prevalence of 70%, cLBP affects over half of all Americans annually (1–3), yet effective non-opioid 

treatment remains elusive. cLBP is a complex pathology with a heterogeneous population (4,5), 

and several interrelated factors influencing its presentation and progression. About 90% of cases 

are considered non-specific, which means there are no clear causes for the presence of pain. As 

a consequence, heterogeneous responses to treatments are likely. One commonly used 

framework for understanding cLBP complexity is the biopsychosocial (BPS) model (6), in which 

cLBP results from an interplay between biological factors such as complex pain signal processing 

in the central nervous system (CNS), and psychological and social factors (7,8). For example, age, 
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gender, race, culture, and comorbidities have been shown to associate with cLBP outcomes (9–

14). While widely accepted, the results from treatments inspired by the BPS model of cLBP are 

typically small, with randomized clinical trials (RCT) demonstrating that even the best treatments 

improve pain by only two points on the 0-11 Visual Analog Scale (VAS) (7,15,16). RCT's however, 

generally estimate an average treatment effect, which may obscure differences in treatment effects 

in subgroups of the population. Identifying these subgroups is critical for personalized health, 

where clinical decision tailoring treatment depending on a patient's subgroup characteristics and 

specific response to treatment can improve health outcomes (17–19).  

Several classification, stratification, and subgrouping tools have been developed to guide 

screening and clinical decision making (17–19). The evidence for their utility is often inconsistent. 

For example, studies using the Subgroup for Targeted Treatment Back Screening Tool (STarT 

back, or SBT), for stratified care management has shown contradictory results, with studies 

describing positive outcomes (20,21) while others reporting inconclusive effects (22,23). A 

remaining question is whether SBT is sufficient or whether other stratifying factors can add 

valuable information on subgrouping patients for risk prediction and treatment response (24). 

These subgrouping strategies are often derived from a small subset of metrics capturing a focused 

aspect of pain experience, and based largely on expert opinion, which may or may not explains 

the heterogeneity of non-specific cLBP. Using machine learning (ML) and data-driven approaches 

in a large set of metrics is well suited for discovering hidden patterns of variables (sub-grouping 

factors) and dividing subjects into homogeneous groups with unique characteristics (sub-groups). 

A recent work by Tagliaferri et all. (25) demonstrated that subgroups of cLBP patients can be 

discovered respect to a pain-free cohort using a combination of variable selection and clustering 

methods.  

This work presents a machine learning (ML) and data-driven systems approach to learn 

subgrouping factors and patient subgroups for individuals admitted to a back pain specialty clinic 
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- the UCSF Integrated Spine Service (ISS) between 2018 and 2020 - and its association with 

outcomes depending on non-standardized, patient-centric intervention patterns. We use different 

unsupervised ML techniques to discover multidimensional associations of variables available at 

clinical presentation, and homogeneous patient subgroups considering different data domains 

(e.g., demographics, pain characteristics, comorbidities). We compare SBT stratification with our 

ML-based process to determine further informative clinical features meaningful for patient 

subgrouping and prognosis. 

 

Methods 

Cohort identification and data extraction 

ISS is a multidisciplinary program for improving the quality of care delivered to patients with 

spinal (cervical, thoracic, or lumbar) chronic pain. Patients are scheduled for back-to-back 

appointments with a physical therapist and a physician, who formulate a jointed treatment plan 

based on the principles of pain neuroscience education with the emphasis on self-care strategies, 

active rehabilitation, and non-interventional treatments. SBT is administered to all patients at 

baseline. There are no standardized treatment pathways, but patients who fall into the high-risk 

subgroup are discussed at monthly multidisciplinary case conferences so that the patient progress 

is closely monitored, and treatment is adjusted as indicated.   

All adult patients diagnosed with cLBP and referred to ISS between 2018 and 2020 who 

completed baseline PROMIS-10 global health questionnaire and baseline SBT were included. The 

exclusion criteria for this study were consistent with the ISS exclusion criteria: presence of cancer, 

active spine infection, neurological deficits urgently needing surgery. Figure 1 provides a flow 

diagram of the included patients in the analysis. Ethics committee/IRB of the University of 

California San Francisco gave ethical approval for this work. 
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Data measurement 

The VAS and PROMIS-10 global health questionnaire were administered at baseline. As 

part of a quality improvement project, a one-time follow up survey was conducted via phone or 

email in August 2020. Similarly, clinical notes of individual patients were reviewed at initial visit to 

characterize pain intensity (VAS), duration of pain, other pain locations, and presence of clinician 

diagnosed weakness. In addition, we obtained all other features available within the electronic 

medical record (EMR) at time of referral. This included using ICD-10 codes available in the chart 

to assess the patient's Charlson Comorbidity Index (26), presence of overlapping pain conditions 

(COPCs) (13), prescription of medications including anti-inflammatory, analgesic, opioids, anti-

convulsants, and glucocorticoids. Similarly, we tabulated utilization of imaging, emergency 

department visits, nerve tests, physical therapy visits, acupuncture, hospitalization, injections, and 

surgeries in the 6 months prior to the baseline visit, and from baseline visit and PROMIS-10 follow 

up time.  

 

Data pre-processing 

 Before conducting unsupervised learning, we performed the following data pre-processing 

steps: 1) data re-coding, 2) variable filtering, 3) missing value analysis and imputation. We first re-

coded categorical variables using dummy variables or one-hot encoding including a variable for 

each level and unknown or missing cases (e.g., sex.male, sex.female, sex.unknown). Ordinal and 

continuous variables were used in their original form. Then, to reduce uninformative variables, we 

filtered out variables with near-zero variance (variance cutoff of 0.02).  

Missing value analysis: The built dataset contains missing values (Supplementary Fig. 7), 

a characteristic of biomedical research and real-world data. We proceeded with data imputation 

through multiple imputation by chain equation (MICE) using the R mice package (27). We 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.04.23298104doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.04.23298104
http://creativecommons.org/licenses/by/4.0/


7 
 

performed 100 multiple imputations to obtain 100 complete datasets through predicting mean 

matching. The complete datasets were then aggregated before unsupervised learning by the 

median value in quantitative variables and the mode in qualitative variables. Visual inspection of 

the distribution of the imputed vs. non-imputed values for each imputed variable revealed similar 

distributions (Supplementary Fig. 7) 

Unsupervised learning 

Non-linear PCA (NLPCA): We performed NLPCA by means of optimal scaling and 

alternating least squares implemented in the PRINCALS algorithm in the Gifi R package, which 

solves for the Gifi loss function (28). We chose this method because it allows for principal 

component (PC) extraction of mixed data while accounting for non-linearity in the variables through 

optimal scaling quantification or transformations. The transformations were considered as follow: 

categorical variables were not ordinally restricted, which allows for non-monotonic quantification 

based on the proportion of each level in the variable. Ordinal and continuous variables were 

ordinally restricted. Continuous and ordinal variables were transformed through a b-spline of 

degree 2 and 3 knots placed on the tertials (continuous) or the categories (ordinal) of the datapoints 

allowing for a non-linear transformation. The number of selected PC or dimensions was 

determined using the Kaiser (eigenvalue > 1) and elbow-in-Scree-plot criterions, with a final 

selection of the first 25 PCs. Examining the loading patterns, we observed that each PC is loaded 

by several variables with generally low loadings and each variable loads into several PCs. To 

simplify the PC solution and increase interpretability of the resulted dimensions, we performed 

varimax rotation of the loadings of the selected PCs (29). Varimax rotation was chosen since it 

preserves the distance between observations, increasing interpretability of the latent low 

dimensional coordinate system without affecting the internal structure of the dataset (i.e., the 

distance between subjects). The rotated latent dimensions were described by expert clinicians and 

researchers based on the variables with higher loadings (|loadings|>0.4). The rotated scores were 
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calculated by applying (i.e., dot product) the resulting rotation matrix by the NLPCA scores of the 

25 first PCs. The Median Hoffman index of complexity (30) for the unrotated original solution was 

7.9 (the higher the value, the more complex the solution, with the maximum being equal to the 

number of total variables), indicative of high level of complexity in the latent solution (i.e., each PC 

is composed of several low to middle loadings and only captures a small portion of the variance), 

which made the interpretability more challenging. The new rotated dimensions had lower 

complexity than the original PCs (Hoffman index median = 1.89) with the consequent simplification 

of the loadings and increase interpretability. 

Probabilistic-based clustering: Clustering was performed by modeling the rotated latent 

space through a mixture of gaussian distributions. Mixture models have previously shown good 

results for estimating densities and deriving clusters of patients in complex heterogeneous 

diseases (31). The models are parametrized by the mean vector of each cluster, and the 

covariance matrix of each cluster, and solved through the expectation maximization algorithm 

(32,33). The number of clusters (a.k.a., mixture components), and the different structural 

constrains that can be imposed to the covariance matrices are specified. Since our goal was to 

perform an unsupervised description of the structure of the data and we did not have a prior 

knowledge of the number of mixtures or the form of their covariance matrices, we performed a 

linear search by specifying a range of k= {1, …, 10} mixtures and different covariance structures. 

The limit was set to 10 after an exploratory analysis suggesting that more than 3-6 clusters were 

unlikely. To fit the models, we used the mclust R package (33), and chosen the covariance 

parametrization among the mclust implemented models m = {EII, VII, EEI, EVI, VEI, VVI, EEE, 

VEE, EVE, VVE, EEV, VEV, EVV, VVV}. These are defined by the cluster orientation (respect to 

coordinate system), volume (whether all cluster have a similar number of patients per cluster), and 

shape (whether all clusters have approximately the same multidimensional shape). We refer the 

reader to mclust documentation and further material (33) for details. For model selection, we first 
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fitted all the models in m through k and used the Bayes Information Criteria (BIC) to compare 

models. Then we selected the top 3 performing models m = {VVI, VII, VEI} for further evaluation. 

Since selecting models that have close BIC can be problematic, we studied the stability of the 

model by leave-one-out (LOO) resampling. For each of the m models, k mixtures and n patients, 

a model was fitted on n-1 patients. The BIC and the log-likelihood of the patient left out (LOO-

loglikelihood) for the n resulting models were calculated. For each m and k combination, the mean 

and 95% confidence interval of the BIC and LOO-loglikelihood were computed.  

The data were best fitted by a 3-class model with VVI covariance structure based on model 

fit parameters and leave-one-out cross-validation (Supplementary Fig. 2). Increasing model 

complexity (i.e., number of classes) beyond three classes did not improve the model performance 

as it did not capture any additional underlying observations (Supplementary Fig. 2a-c), reinforcing 

the 3-VVI class model to be the best fit for our data. 

Phenotypic characterization of clusters: To characterize the differences between clusters, 

a one-way ANOVA with phenotyping factor scores as response variable and cluster membership 

as predictor was used for each phenotyping factor. When the differences between clusters was 

significant (p < 0.05), a pairwise estimated marginal means contrast between clusters was 

performed (Supplementary Table 3).   

 

Analysis of outcome associations  

To analyze the association between outcomes (delta PROMIS Physical Function, delta PROMIS 

Mental health, and delta VAS), we used linear models (ordinary least squares) with the outcomes 

as response variable. An F statistic test and ANOVA table were performed to determine the 

contribution and p value of the terms in the model. When multiple predictors were incorporated in 

the model, a stepwise forward and backward model selection procedure was used for selecting a 
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parsimonious model based on Akaike Information Criteria (AIC) using R step function. P values 

were adjusted for the false discovery rate (Benjamini-Hochberg) and an adjusted p value < 0.05 

was considered significant. 

 

Results 

 

 

Cohort 

 A total of 356 patients were included in the clustering analysis (Fig.1, Table 1). The median 

age was 61 (IQR: 48 - 72), 62% of the patients were females, and they exhibited different durations 

of pain, with 20% experiencing pain for 0-3 months and 41% for five years or more. The SBT 

Figure 1. Flow diagram of dataset and analysis 
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categorized patients into Low (29%), Medium (42%), or High (29%) risk. The median PROMIS 

Mental Health standard score was 44 (IQR: 39 – 51), and the median PROMIS Physical Function 

standard score was 40 (IQR: 35 – 45). The median VAS was 7 (IQR: 5.75 – 8). Follow-up outcomes 

were obtained for VAS, PROMIS Mental Health, and PROMIS Physical Function. The median time 

for VAS follow-up was 56 days (IQR: 48 – 70), and for PROMIS was 529 days (IQR: 317 – 700). 

The distribution of delta values from the follow-up to baseline are shown in Figure 2.   
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Table 1. Patient characteristics at clinic presentation 
 N = 3561 

Age 61 (48, 72) 
BMI (kg/m2) 26.6 (23.5, 30.4) 

Unknown 7 
Female 222 (62%) 
Insurance type  

Private 160 (45%) 
Medical 66 (19%) 
Medicare 130 (37%) 

Race  
White/Caucasian 173 (49%) 
Black/African American 51 (14%) 
Asian 81 (23%) 
Others and unknown 51 (14%) 

Smoking  

Never Smoker 208 (59%) 
Former Smoker 130 (37%) 
Current Some Day Smoker 8 (2.3%) 
Current Every day Smoker 9 (2.5%) 
Unknown 1 

Pain Duration  

0-3 months 64 (20%) 
3-6 months 24 (7.6%) 
6-12 months 33 (10%) 
12-24 months 22 (6.9%) 
24-36 months 14 (4.4%) 
36-48 months 13 (4.1%) 
48-60 months 17 (5.4%) 
5 years or more 130 (41%) 
Unknown 39 

StartBack risk assessment  

Low Risk 102 (29%) 
Medium Risk 145 (42%) 
High Risk 100 (29%) 
Unknown 9 

PROMIS Mental Health score (higher = better) 44 (39, 51) 
Unknown 15 

PROMIS Physical Function score (higher = better) 40 (35, 45) 
Unknown 10 

VAS score (higher = worse pain) 7.00 (5.75, 8.00) 
Unknown 20 

CCI  1.00 (0.00, 2.00) 
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Figure 2. Delta values from the follow-up to the baseline. The estimated frequency distribution of the delta 

values for the three outcomes are shown in a. The median (IQR) delta value and the median (IQR) of days 

for which the delta was measured are shown in b. IQR: Interquartile range. 

 

Patient phenotypes 

 We used a two-step ML workflow to derive patient phenotypes with data for the 6 months 

before first visit, referred to as pre-presentation (e.g., comorbidities, medications and procedures) 

and data at the first visit, referred to as data at-presentation (e.g., demographics, pain 

Table 1. Patient characteristics at clinic presentation 
 N = 3561 
1 Median (IQR); n (%). BMI: body mass index; PROMIS: Patient-Reported Outcomes 
Measurement Information System; VAS: Visual Analog Scale; CCI: Charlson 
Comorbidity Index. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.04.23298104doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.04.23298104
http://creativecommons.org/licenses/by/4.0/


14 
 

characteristics). We first grouped variables by common (latent) phenotypic factors using Non-

Linear Principal Component Analysis (NLPCA) (Supplementary Fig. 1), effectively reducing the 

dimensionality of the data. NLPCA was used as it allows for mixed variable types (continuous, 

nominal, and ordinal) through non-linear transformations of the data (28,34). Then we clustered 

patients based on their individual scores in the NLPCA, which we named phenotyping factors 

scores (PFS).  

We retained the first 25 principal components (PCs) based on the Kaiser and elbow criteria 

(see methods), which represent the PCs that capture variability above what is expected for a single 

variable. The 25 PCs explained an accumulated total variance of 69.4%. The PCs were rotated 

using varimax rotation to increase their interpretability, and the resulting latent dimensions were 

regarded as the relevant phenotypic factors interpreted by expert clinicians (Supplementary Table 

1). Overall, the complex multidimensional structure of the pre-presentation and at-presentation 

data indicates cohort heterogeneity and suggests several factors that determine patient 

phenotypes. Next, we derived clusters of patients using probability-based clustering through 

gaussian mixture models (GMM) of PFS, resulting in three clusters (Fig. 3a; Supplementary Fig. 

2). Each patient was assigned to a given cluster by their maximal posterior probability resulting in 

clusters of 96, 126, and 134 patients, respectively (Table 2). Since SBT is used for stratifying 

patient risk of future disabling low back pain, we compared whether the 3 clusters reassemble SBT 

groups at the first ISS visit. The Adjusted Rand Index, a measure of agreement from 0 (no 

agreement) to 1 (exact partitions), was 0.021. This indicate that the stratification generated by the 

three clusters is different than the one given by the SBT alone. Note that these are not necessarily 

independent as SBT was included in the ML procedure (Chi-square independence test of SBT vs 

clusters partitions p < 0.001), but it suggests that adding more information beyond SBT for 

partitioning patients generates different subgroups.   
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The three clusters were described by their PFS, providing the characteristics defining a 

given patient phenotype (Fig. 3b). PFS value closest to 0 means that patients locate around the 

factor average of all patients; positive values for a given phenotypic factor mean that patients in 

that cluster have a higher representation of that phenotypic factor than the average, and vice versa 

for negative scores. Cluster 1 is generally characterized by a younger population, low pain 

medication prescription, high function with low pain at presentation, a high proportion of patients 

with private insurance, and a low number of overlapping pain conditions. Cluster 2 is characterized 

by a high proportion of patients with Medicaid insurance, enriched with patients of other or 

unknown race (27.8% of the group), presenting with lower number of comorbidities and chronic 

overlapping pain conditions (COPCs), especially head pain, and low tobacco use. Cluster 3 

captures older participants characterized by high COPC and head pain, comorbidities, and pain 

medication use pre-visit to ISS. We then compared the differences between clusters for each of 

the phenotypic factors (Supplementary Tables 2 and 3). The age factor was significantly different 

between clusters 1 and 3, with a gradual increase between clusters 1 (negative), 2 (around 0), and 

3 (positive). Cluster 3 was significantly higher in COPC and head pain, cervico-thoracic chronic 

pain, heart, cerebrovascular, and kidney comorbidities than clusters 2 and 1, with no differences 

between the latter two. Regarding baseline pain and function, Cluster 1 presented significantly 

lower PFS than clusters 2 and 3. The proportion of individuals of other/unknown races was lowest 

in cluster 1, average in cluster 3, and the highest in cluster 2. Finally, tobacco use was reported 

higher by the individuals in cluster 3 than those in cluster 2. The complete list of comparisons can 

be found in Supplementary Tables 2 and 3. 
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Figure 3. Clustering of the phenotyping factors scores revealed 3 clusters (Supplementary Fig. 2). The 

density estimate for each gaussian mixture (i.e., cluster) can be represented in a scatterplot of the 2 most 

discriminant directions from the phenotyping factors rotated scores (a). Each dot represents a subject 

colored by the most probable assigned cluster. Solid ellipsoid represents the bivariate standard deviation, 

and the dashed ellipsoid represents the 95% bivariate confidence interval for each cluster. The closer two 

subjects are, the more similar they are in their multidimensional phenotype. The average ± SE phenotyping 

factor scores for each factor and cluster are shown in (b). The more positive the score is the higher the factor 

is represented in the cluster, and vice-versa for negative scores (e.g., positive score for age represents older 

than average, negative score represents younger than average). Values of 0 represents the average score 

of the entire cohort. 

 

 

 

 

 

Table 2. Cluster classification probabilities of presentation data 

Probabilities 
Cluster 1 
(N = 96) 

Cluster 2 
(N = 126) 

Cluster 3 
(N = 134) 

prob (cl. 1) 0.94 (0.11) 0.03 (0.08) 0.00 (0.01) 

prob (cl. 2) 0.06 (0.11) 0.94 (0.12) 0.02 (0.08) 

prob (cl. 3) 0.00 (0.01) 0.04 (0.09) 0.98 (0.08) 

Mean (SD)    
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Using a similar NLPCA workflow we obtained a small set of variables that captures different 

profiles of interventions administered in the population (Table 3; Supplementary Fig. 3). The three 

presentation clusters were mainly differentiated on whether they received pain medication 

(p<0.01). On average, patients in cluster 1 received less medication after the first ISS visit than 

patients in cluster 2 and 3, while cluster 3 had the highest average in pain medication. Accordingly, 

69% of patients in cluster 3 were prescribed opioids, with gradual reduction to 48% and 33% of 

patients with opioid prescription in clusters 2 and 1, respectively (Chi-squared p < 0.001). A similar 

pattern was observed for anti-inflammatory analgesics (Chi-squared p <0.001; cluster 1 31%, 

cluster 2 49%, cluster 3 60%) (Supplementary Fig. 4) 

Table 3. Mean values of Intervention factor scores per cluster (univariable analysis) 

Intervention factor Cluster 1 
(N = 96) 

Cluster 2 
(N = 126) 

Cluster 3 
(N = 134) P value* 

Antidepressant -0.10 (0.84) 0.07 (0.97) 0.01 (1.13) 0.44 
In-patient hospitalization -0.03 (0.79) -0.02 (0.99) 0.04 (1.15) 0.81 
Pain medication -0.47 (0.94) -0.01 (0.93) 0.34 (0.98) <0.001 
ED visit -0.05 (0.69) 0.01 (1.08) 0.02 (1.11) 0.84 
Surgery 0.11 (0.85) -0.07 (0.98) -0.01 (1.12) 0.42 
Acupuncture -0.01 (0.78) 0.07 (1.18) -0.06 (0.96) 0.54 
PT visit 0.10 (1.03) -0.01 (0.96) -0.06 (1.02) 0.52 
 Mean (SD). *P value of one-way ANOVA  

 

Phenotypes associations with outcomes 

Subjects in either phenotype showed a significant average reduction in delta VAS (overall 

change -2.57 [-2.99, -2.15], p < 0.001), while subject in phenotype 2 showed a significant average 

increase in PROMIS Mental Health scores (1.78 [0.037, 3.52], 0.045), and PROMIS Physical 

Function scores (3.2 [1.585, 4.81], p < 0.001) with respect to the null hypothesis of no change. 

Phenotype 3 presented a significant average increase in PROMIS Physical Function scores (2.41 

[0.86, 3.95], p = 0.002) (Fig. 4a-c). 
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No statistical differences were found when comparing the three phenotypes. To reduce the 

effect of uncertainty on cluster allocation, we performed the same analysis considering only 

patients with high certainty of cluster membership (posterior probability of 80% or higher). This 

increases the effect sizes although still not reaching significance when comparing among 

phenotypes (Supplementary Table 4). This is in contraposition of SBT (Fig. 4d-f), where we 

observed a significant association of changes in PROMIS Mental Health (p < 0.01) and PROMIS 

Physical Function (p < 0.01) scores with SBT-defined subgroups. 

 

Figure 4. Delta outcomes differences per subgrouping method. No statistical significant differences between 

cluster membership in the prediction of outcome were observed (a-c), while there are significant differences 

with SBT subgrouping(d-f) in change in PROMIS Mental Health (e) and PROMIS Physical function (f). Graph 

represents the expected marginal mean (dot) and 95% confidence interval (error bar) of the analysis model 

(Table 4). Dashed line represents no change between follow-up and baseline. 
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Phenotyping factors associations with phenotypes and outcomes 

 Next, we sought to determine the minimal number of phenotyping factors that could predict 

outcomes by using multivariate regression with model selection. Table 4 show a summary of the 

significant factors, with complete tables in the supplement (Supplementary Tables 5, 6, 7). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. ANOVA and marginal effects of significant phenotyping factors associated to 
outcomes (multivariable analysis) 

 Delta PROMIS Physical (n = 240)  
Phenotyping factor F value Adj. P value Coeff. Lower, Upper CL 
COPC_head 10.46 0.01 -1.34 -2.17, -0.49 
leg_chPain 6.73 0.04 0.97 0.11, 1.83 
low_BL 32.40 p<0.01 2.37 1.48, 3.26 
COPD 6.63 0.04 -1.13 -1.99, -0.26 
asian:cluster 8.10 p<0.01   

asian:cluster 1   -2.08 -3.52, -0.63 
asian:cluster 2   1.62 0.1, 3.136 
asian:cluster 3   -2.05 -3.35, -0.73 

Delta PROMIS Mental (n = 238) 
Phenotyping factor F value Adj. P value Coeff. Lower, Upper CL 

COPC_head 14.25 p<0.01 -1.63 -2.54, -0.72 
low_BL 30.57 p<0.01 2.75 1.76, 3.74 

Delta VAS (n = 222) 
Phenotyping factor F value Adj. P value Coeff. Lower, Upper CL 
medical 7.84 0.04 0.43 0.04, 0.83 
L-IVD_displ 6.23 0.04 0.39 0.003, 0.77 
Asian 6.29 0.04 0.47 0.07, 0.88 
PT_visit:cluster 4.58 0.04   

PT_visit:cluster 1   1.22 0.27, 2.17 
PT_visit:cluster 2   0.65 -0.35, 1.667 
PT_visit:cluster 3   0.04 -0.41, 0.5 

L-IVD_deg:cluster 5.20 0.04   
L-IVD_deg:cluster 1   -3.69 -5.72, -1.66 
L-IVD_deg:cluster 2   -0.26 -0.83, 0.3 
L-IVD_deg:cluster 3   -0.55 -1.06, -0.05 

Note: Only significant predictors are shown, see full table in supplementary Table 5, 6, and 7 
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The final parsimonious model for delta PROMIS Physical Function explained 37.4% of the 

variance (Supplementary Table 5). An increase in Physical Function was associated with higher 

values of the "Low baseline function" factor (p < 0.01) and "Leg pain" factor (p = 0.04), and lower 

values of "COPC and head pain" (p = 0.01), and "COPD" (p = 0.04). "Asian vs. White" phenotyping 

factor presented a significant interaction with the clusters in association with Physical Function (p 

< 0.01). The interaction shows that being Asian was associated with better improvement of 

Physical Function in phenotype 2, while it was associated with less improvement in phenotypes 1 

and 3 (Supplementary Fig. 4). In the case of delta PROMIS Mental Health, the final model 

explained 33.02% of the variance (Supplementary Table 5). Like physical function, increase in 

mental health function was related to higher values of "Low baseline function" factor, and lower 

values of "COPC and head pain". No interactions between factors and phenotypes were found 

significant. Finally, reduction in pain (delta VAS, Supplementary Table 6) was associated with 

lower values of the factors "Medicaid insurance", "Lumbar IVD displacement" and "Asian vs. 

White". Differences between phenotypes on the association to delta VAS (significant interaction) 

were found for the factor "PT visits for LBP" (p = 0.04) and "Lumbar IVD degenerations" (p = 0.04). 

A post-hoc  of these interactions showed that patients with positive values in the "PT visits for LBP" 

factor (more likely to have visited with a PT before ISS) are less likely to reduce pain if they are of 

phenotype 1. This relationship is not observed for phenotypes 2 and 3. On the other hand, patients 

in phenotype 1 that presents to the ISS with Lumbar IVD degeneration are more likely to reduce 

their pain after ISS visits than those patients with no Lumbar IVD degeneration (Supplementary 

Fig. 5). 

 

Intervention factors associations with phenotypes and outcomes 

 Lastly, we studied the association of the interventional factors with phenotypes and 

outcomes. An increase in Physical Function was associated with higher values of the intervention 
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factor "ED visits" (p = 0.01), with no other factors nor interactions with phenotypes being significant 

(Supplementary Table 8). The final delta PROMIS Mental Health model explained only 6.35% of 

the variance, and no significant associations were found for the included intervention factors 

(Supplementary Table 9). Similarly, no significant factors were associated with delta VAS, with a 

final model explaining 12.4% of the variance (Supplementary Table 10). 

 

Discussion 

 In this study we evaluated patient heterogeneity in a cohort of patients treated in a cLBP 

specialty clinic. We found several phenotyping factors associated with patient outcome and 3 

distinctive patient subtypes or clinical phenotypes. Specifically, using data-driven unsupervised 

dimensionally reduction and probabilistic-based clustering we identified 25 independent factors 

capturing different patient characteristics at presentation to ISS, 7 independent factors capturing 

interventions undertaken post-ISS presentation, and 3 patient sub-populations with different 

characteristics. 

 

Heterogeneity of cLBP 

Our findings reveal a highly complex cohort, consistent with the notion of heterogeneity 

among cLBP patients. Despite dimensionality reduction 25 principal components, accounting for 

an accumulated variance of 69.4%, were considered informative. This contrasts with previous 

studies where only 3 PCs were retained (35). Our results indicate that there is redundancy in the 

original set of variables, but also that the true dimensionality of the data is high, with at least 25 

meaningful dimensions and several interrelations between variables (complex PC composition). 

Tagliaferri et all. (25) used a univariate approach for initial variable selection before clustering cLBP 

patients. This has the risk of discarding variables from the analysis that are informative for 
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clustering when combined with other variables. In contrast, our results suggest that there are 

emergent characteristics in cLBP that can be measured from the combination of observed 

variables, and those could be meaningful for patient phenotyping. We captured expert opinion on 

the definition of these emergent properties in order to clarify their clinical meaning. Some of these 

characteristics have established associations with cLBP: chronicity, chronic other site pain (COPC 

and head pain, cervico-thoracic chronic pain, leg chronic pain, presence of sciatica), diabetes and 

fibromyalgia comorbidities, pain medication use, presence of mood disorder/bipolar disorder, 

tobacco use. Other important characteristics identified in this work had only weak or no 

associations with cLBP outcomes in prior studies such as higher weight, older age, male sex, disc 

degeneration, and race (particularly Asian). Thus, many of the findings from data-driven 

unsupervised learning are consistent with prior knowledge, while others provide novel insights. 

The latter may reflect clinically important association that can drive new directions for determining 

patient subgroups and prognostic predictors. 

We identified 3 phenotypes distinct of the three subgroups determined by SBT. Cluster 1 

consists of those individuals with characteristics found to be protective of chronic pain: younger 

age, low pain medication prescription, high function, good insurance access, and low overlapping 

pain conditions. Individuals in Cluster 3 associate with older age and present with higher incidence 

of COPC and head pain, comorbidities, and pain medication use. Cluster 2 is an intermediate 

group with an enrichment of patients of the other or unknown race. It is not clear whether 

"other/unknown" race encompasses groups historically associated with disparate outcomes. Thus, 

further exploration is warranted. Use of pain medication seems to be the single intervention factor 

that significantly differs among the 3 clusters, with opioid prescription being the biggest difference. 

Cluster 1, was associated with the least pain medication prescription, including both opioids and 

anti-inflammatory analgesics. These differences follow the same pattern previously ISS visit, with 

the tendency of pain medication prescription continuing for those patients who are already on 
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medication after ISS visits. It is possible that differences in pain medication prescription underly 

the different phenotypes. For example, long-term pain medication use have significant changes in 

response to pain such as hyperalgesia (opioid-induced hyperalgesia)(36), which could lead to 

effects that might be captured in the discriminatory variables between clusters. A future time-based 

analysis of causal effects with a more granular time event data might help better study how pain 

medication may be highly linked to separations in cLBP subgroups and whether prolonged pain 

medication may play a role in chronification of pain (37).   

Other measurements beside what is included in this work could be also important for 

defining cLBP subgroups. We have previously shown that biomechanical metrics automatically 

extracted using markerless motion capture during the sit-to-stand task can discriminate patient 

subgroups and relate to pain and disability (38). In addition, previous clustering work have noted 

psychosocial variables to be important for separating cLBP into distinct sub-groups. Bäckryd et al., 

found 4 clusters largely based on psychosocial and pain related questionnaires (35), with 

subgroups characterized mostly for their differences in psychological strain levels, social support, 

and pain characteristics such as intensity and duration. Their subgroup presenting moderate pain 

intensity, overall better health and low psychological comorbidities presents similarities with our 

cluster 1 with lower VAS and SBT at baseline, and higher values of PROMIS-10 mental health. On 

the other side, they found a subgroup associated with lower health, high pain and high 

psychological strain, which share similarities with the phenotype described by our cluster 3. 

Tagliaferri et all. (25) found 5 subgroups of cLBP patients, mostly divided with reference to 

depressive symptoms and social isolation. Our data did not contain detailed measurements of 

psychosocial factors, which could have limited partitioning subgroups into further clusters. In 

contrast, our dataset contained a more detailed clinical description using data from medical records 

for months previous to ISS first visit. For example, prescribed pain medications are important 

discriminatory factors between clusters in the present study. Future work directed to cLBP 
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subgrouping should consider a more comprehensive dataset including detailed descriptions from 

different domains such as demographics, medical records, psychosocial, pain processing, and 

biomechanics and physical function (5).  

 

Phenotypes associations with outcomes 

Phenotypes did not statistically differ among them related to changes in physical, mental 

or pain scores. Nonetheless, clusters 2 and 3 showed average significant improvement in physical 

function, while cluster 1 did not.  Since patients in Cluster 1 are already characterized by relatively 

higher function and younger age as compared to those in Clusters 2 and 3, it is possible that there 

is a ceiling effect limiting the observation of physical function improvement in those individuals.  

The high heterogeneity of the cohort may require a higher number of subjects to resolve 

more meaningful patient subgroups using unsupervised methods. Indeed, the post-hoc diagnostic 

of the clustering partitions suggests that more clusters are possible, but there is not enough data 

to estimate them reliably. Considering only patients with high certainty of cluster membership 

increased the effect sizes of the differences between clusters regarding changes in outcome, 

although still without reaching statistical significance. This suggests that with a large enough 

dataset, we might be able to achieve clustering that can accurately predict outcomes. Furthermore, 

our approach is unsupervised, meaning outcome information is not considered when forming the 

subgroups. Stratification strategies with respect to outcomes using semi-supervised clustering 

could be an alternative and informative way to discover subgroups informing cLBP prognostics.  

The phenotyping factors found through NLPCA had associations with outcomes. An 

increase in Physical and Mental functions was associated with "low baseline function" factor, 

mainly constituted by a combination of PROMIS Physical, PROMIS Mental and VAS scores, and 

SBT subgroups at presentation. Patients presenting to the ISS with a generally low function are 
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those who improve the most. Although we cannot discard a regression to the mean effect between 

baseline and follow-up functional metrics, these results suggests a strategy for patient stratification 

and prognosis by augmenting SBT subgrouping with PROMIS-10 and VAS scores at baseline. 

Only considering SBT subgrouping explains 4%, and 3.9% of the change in PROMIS Physical and 

Mental scores from baseline to follow up, respectively. This value significantly increases to 9% 

(LRT p < 0.001) and 8.5% (LRT p = 0.001), respectively, when considering the "low baseline 

function" factor together. Future work should be directed at finding the best combination of SBT 

and baseline outcomes for creating a patient stratification and prognostic metric. Low values of the 

"chronic overlapping pain conditions and head pain" factor was related to higher improvement in 

physical and mental scores after admission to the ISS. COPCs captures the comorbidity of distinct 

pain conditions, such as headache, low back pain, fibromyalgia, temporomandibular disorders, 

and irritable bowel syndrome, but share common comorbidities and risk factors such as sex, 

increased pain sensitivity, and genetic variants (39,40). The presence of COPCs has been 

associated with worse outcomes for the treatment of other pain conditions, such as chronic 

migraines (41). Although we could not fine evidence of cluster association with outcomes, cluster 

3 was characterized with high values in COPCs and head pain. Since COPCs acompasses other 

symptoms beyond pain such as fatigue, sleep impairment and physical and mental dysfunction 

(40), it is possible that the presence of COPCs is a proxy for underlying biological and psychosocial 

mechanistic determinants of cluster 3 phenotype. A state of increased pain sensitivity or pain 

amplification might be higher when some pain conditions develop such as temporomandibular 

disorder (42), and potentially other COPCs (40). Peripheral and central nervous system 

dysregulation and sensitization underlying pain amplification is likely to also contribute to other 

symptoms such as altered mood, and sensory, motor and autonomic dysfunction (40,43,44). 

Subjects in cluster 3 also show, on average, high incidence of heart, cerebrovascular and kidney 

comorbidities and the presence of mood disorders such as anxiety and depression. Although it is 

impossible to establish a causal connection from our analysis, it could be the case that cluster 3 
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capture patients with nervous system dysregulation and sensitization as their central 

pathophysiological mechanism. Further research is needed to link cluster 3 phenotype to central 

sensitization as potential common mechanisms of pain and other symptoms. If this hypothesis is 

true, it could have implications on treatment options for subjects showing cluster 3 phenotype. In 

addition, our findings suggest screening for COPCs at the time of referral to specialty care as 

additional stratifying/phenotyping factor. 

Interestingly, we observed an interaction between the phenotyping factor that represented 

being Asian with the phenotype in relation with changes in physical function. Asian patients in 

cluster 2 had greater physical function improvement than those that are not Asian, while this 

relationship is not observed for clusters 1 and 3. In fact, Asians in cluster 2 presented with the 

highest recovery in physical function. Although we cannot fully explain these relationships with the 

data at hand, understanding this interaction provides the opportunity to find novel determinants of 

functional recovery related to patient race/demographics. Our observation also suggests that race 

cannot be taken at face value since complex interactions may be present when phenotyping cLBP. 

It will be important for future studies to further delve into potential cultural, genetic, or treatment-

related factors that might explain these relationships and to explore if similar interactions exist with 

other racial or ethnic groups and how they may influence recovery in cLBP. 

 

Limitations 

One limitation to our work is that the data comes from a single-center with a relatively low 

number of subjects included in the analysis. Furthermore, this is an observational study, and the 

possibility of spurious associations must also be considered. Future work should focus on 

validating our clustering model and phenotypes. The inclusion of more patient data from other 

specialty clinics will potentially increase the population heterogeneity, providing better substrate to 
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find more homogeneous patient strata with different medical needs. Finally, other combination of 

ML methods might produce different subgroups, and future research should be directed on 

determining which methods produce more stable, generalizable and clinically useful results. 

 

Conclusions 

 Overall, we demonstrate that cLBP population heterogeneity is quantifiable and that ML 

analytical workflow can be used to explain, in part, the heterogeneity in relation to outcomes. 

Notably, considering a data-driven approach from multi-domain data produces different subgroups 

than SBT, and the addition of other functional metrics at baseline such as PROMIS and VAS 

increases the variance explained in outcomes. 
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