1	Drug target Mendelian randomization supports apolipoprotein C3-lowering	,
2	for lipoprotein-lipid levels reductions and cardiovascular diseases preventior	1
3		
4	Eloi Gagnon, MA ¹ and Benoit J. Arsenault, PhD ^{1,2} *	
5		
6	1) Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québe	c,
7	Québec (QC), Canada	
8	2) Department of Medicine, Faculty of Medicine, Université Laval, Québec (QC), Canada	
9		
10		
11	*Address for correspondence	
12	Benoit Arsenault, PhD	
13	Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec -	_
14	Université Laval	
15	Y-3106, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy	
16	Québec (QC), Canada G1V 4G5	
17	Telephone: 418-656-8711 ext. 3498	
18	Email: <u>benoit.arsenault@criucpq.ulaval.ca</u>	
19		

Gagnon et al.

2

20	Abstract
21	
22	Background and aims: Inhibitors of apolipoprotein C-III (apoC3) are currently approved for the
23	reduction of triglyceride levels in patients with Familial Chylomicronemia Syndrome. We used
24	drug target Mendelian randomization (MR) to assess the effect of genetically predicted decrease
25	in APOC3 blood protein levels on cardiometabolic traits and diseases.
26	
27	Methods: We quantified lifelong reductions in APOC3 blood levels by selecting all genome
28	wide significant and independent ($r^2 < 0.1$) single nucleotide polymorphisms (SNPs) in the
29	APOC3 gene region ± 1 Mb, from three genome-wide association studies (GWAS) of apoC3
30	blood protein levels (deCODE, $n = 35,378$, Fenland, $n = 10,708$ and ARIC, $n = 7,213$). We
31	included the largest GWASes on 18 cardiometabolica traits and 9 cardiometabolic diseases as
32	study outcomes.
33	
34	Results: A one standard deviation lowering in apoC3 blood protein levels was associated with
35	lower triglycerides, apolipoprotein B, density lipoprotein cholesterol, alanine aminotransferase,
36	and glomerular filtration rate as well as higher high-density lipoprotein cholesterol levels.
37	APOC3 lowering was also associated with lower risk of acute pancreatitis (odds ratio [OR] =
38	0.91 95% CI=0.82 to 1.00), aortic stenosis (OR = 0.82 95% CI=0.73 to 0.93), and coronary
39	artery disease ($OR = 0.8695\%$ CI=0.80 to 0.93), and was associated with increased parental
40	lifespan (0.06 95% CI=0.03 to 0.09 years). These results were concordant across robust MR
41	methods, the three protein datasets and upon adjustment for APOA1, APOA4 and APOA5 using
42	a multivariable MR framework.
43	
44	Conclusions: These results provide evidence that apoC3 lowering could result in widespread
45	benefits for cardiometabolic health and encourage the launch of trials on apoC3 inhibition for

46 coronary artery disease prevention.

Gagnon et al.

3

T 4 1	
Introd	inotion

49	
50	Apolipoprotein C-III (apoC3) is an established target for triglyceride lowering. ApoC3 reduction
51	by the antisense oligonucleotide (ASO) volanesorsen resulted in 77% lower circulating
52	triglyceride levels in individuals with the rare congenital syndrome Familial
53	Hyperchylomicronemia Syndrome (FCS) (Witztum et al. 2019). Beyond triglyceride lowering,
54	APOC3 could be implicated in the pathogenesis of other diseases (Giammanco et al. 2023),
55	opening potential opportunity for extending APOC3-ASO's indications for other more common
56	conditions.
57	
58	Mounting genetic evidence support a causal role of apoC3 inhibition in the prevention of
59	cardiovascular diseases. APOC3 heterozygous loss of function mutations carrier have on average
60	40% lower plasma triglyceride levels and a 46% lower coronary heart disease risk in the exome
61	sequencing project (498 carriers vs. 110,472 non-carriers) (The TG and HDL Working Group of
62	the Exome Sequencing Project 2014) and 36% lower risk of ischemic heart disease in the
63	Copenhagen General Population Study (302 carriers, 75,423 non-carriers) (Jørgensen et al.
64	2014). Akin to studies on loss of function carriers, mendelian randomization (MR) studies
65	leverage naturally occurring genetic variations to investigate the impact of perturbing drug
66	targets on health outcomes (Gill and Burgess 2022). These genetic variations are randomly
67	distributed during meiosis and remain constant throughout life, making MR results unlikely to be
68	influenced by confounding factors or reverse causality. Drug target MR study designs may also
69	help identify new indications for existing drugs, predict randomized clinical trial (RCT)
70	outcomes, and identify ontarget adverse effects (Gill and Burgess 2022). MR studies on apoC3
71	have proven challenging as this protein is encoded by a complex genetic locus on chromosome
72	11 harboring other genes influencing lipoprotein metabolism such as APOA1, APOA4, and
73	APOA5. However, recent advances in large-scale proteo-genetics can help isolate genetically
74	predicted apoC3 blood concentrations from these other apolipoproteins opening the door to drug
75	target MR studies on apoC3 genetic inhibition.
76	
77	Here, we performed drug target MR analyses evaluating the effect of genetically predicted lower
78	apoC3 protein levels on CAD as well as 8 other cardiometabolic diseases and 18 cardiometabolic

Gagnon et al.

4

79	traits. We show that genetically predicted apoC3 reduction is associated with a healthier
80	metabolic profile as well as a lower risk of CAD, aortic stenosis and acute pancreatitis.
81	
82	
83	Methods
84	
85	Genome-wide association studies on blood protein levels
86	The datasets used to derive the study exposures and outcomes are presented Supplementary
87	Table 1. We included three distinct population-based cohorts for genetic-plasma protein levels
88	associations: deCODE, Atherosclerosis Risk in Communities (ARIC), and Fenland (Ferkingstad
89	et al. 2021; Zhang et al. 2022; Pietzner et al. 2021). 1) In the deCODE cohort, plasma protein
90	levels were measured in 35,365 Icelanders. These measurements were adjusted for age and sex
91	and the resulting residuals were inverse rank normal transform prior to GWAS. Genotyping was
92	performed using Illumina SNP chips. 2) In the ARIC population-based cohort, protein plasma
93	levels were measured in 7,213 European Americans. These measurements were adjusted in a
94	linear regression model including PEER factors and the covariates sex, age, study site, and 10
95	ancestry-based principal components. Genotyping was performed using Illumina SNP chips. 3)
96	In the Fenland population-based cohort, protein plasma levels were measured in 10,708
97	European-descent participants. These measurements were adjusted for age, sex, the first ten
98	principal components of ancestry and the test sites. The resulting residuals were inverse rank
99	normal transform prior to GWAS. Fenland participants were genotyped using three genotyping
100	arrays: the Affymetrix UK 1149 Biobank Axiom array (OMICs, n=8994), Illumina Infinium
101	Core Exome 24v1 (Core-Exome, 1150 n=1060) and Affymetrix SNP5.0 (GWAS, n=1402).
102	Primary analyses were performed using the deCODE cohort because this study had the largest
103	sample size.
104	

105 *Cardiometabolic traits and outcomes genome-wide association studies*

106 Relevant information on the GWAS summary statistics used throughout this study is presented in

107 Supplementary Table 1. Parental lifespan, fasting glucose, fasting insulin, and glomerular

108 filtration rate were reported in years, log(pmol/L), log(pmol/L) and log(eGFR) respectively. For

109 better interpretability and comparability, we transformed these summary statistics to a one

Gagnon et al.

5

- 110 standard deviation scale using the sdY.est function in the coloc package (Wallace 2020). The
- 111 other continuous variables were already inverse-rank normal transformed in the GWAS.
- 112

113 Genetic variant selection and harmonisation

114 We identified common variants (minor allele frequency > 0.01) within a 1 Mb window around 115 the gene region associated (p < 5e-8) with lower blood protein levels in the ARIC (N = 7,213). 116 deCODE (N= 35,365) or Fenland (N= 10,708) population-based cohort. Variants were then 117 clumped respectively to the lowest p-value of any of these cohorts (linkage disequilibrium r^2 118 <0.1 and window = 10 MB). When a SNP alter the structure of a protein, the statistical 119 association between that SNP and protein levels may be biased, a phenomenon known as epitope 120 binding artifact. To prevent epitope binding artifacts, these SNPs were annotated using the 121 variant effect predictor (McLaren et al. 2016). We removed every SNPs tagged as being 122 missense variant, stop gained, stop lost, start gained, start lost, or frameshift. The strength of 123 every instrument was evaluated with the Cragg-Donald F-statistic (Stephen Burgess, Thompson, 124 and CRP CHD Genetics Collaboration 2011). Variant harmonization was performed by aligning 125 the betas of different studies on the same effect allele with the TwoSampleMR V.0.5.6 package 126 (Hemani et al. 2018). When a particular exposure SNP was not present in the outcome dataset, 127 we used proxy SNPs instead (R2>0.8). We used the LD matrix of the 1000 Genomes Project -128 European sample of the Utah residents from North and West Europe.

129

130 <u>Mendelian randomization analyses</u>

131 For univariable primary MR analyses, we performed the inverse variance weighted (IVW) 132 method with multiplicative random effects (Stephen Burgess, Foley, and Zuber 2018). MR must 133 respect three core assumptions (relevance, independence and exclusion restriction) for valid 134 causal inference. Failure to respect these assumptions can occur if the genetic instruments 135 influence several traits on different causal pathways. This phenomenon, referred to as horizontal 136 pleiotropy, can be balanced by applying robust MR methods (Slob and Burgess 2020). To verify 137 if pleiotropy likely influenced the primary univariable MR results, we performed four different 138 robust MR analyses: the MR Egger intercept test (Bowden, Davey Smith, and Burgess 2015), the 139 contamination mixture (Stephen Burgess et al. 2020), the weighted median, and the MR-140 PRESSO (Verbanck et al. 2018), each making a different assumption about the underlying nature

Gagnon et al.

141	of the pleiotropy. Consistent estimates across methods provide further confirmation about the
142	nature of the causal links. An intercept not significantly different from zero in the Egger test
143	support that pleiotropy is balance (Bowden, Davey Smith, and Burgess 2015). Univariable MR
144	analyses were performed using the TwoSampleMR V.0.5.6 package (Hemani et al. 2018).
145	
146	Multivariable Mendelian randomization analyses
147	For multivariable primary MR analysis, we conducted the IVW method (S. Burgess and
148	Thompson 2015). As robust MVMR analyses, we used the multivariable MR-Egger (Rees,
149	Wood, and Burgess 2017), the multivariable median method, and the multivariable MR-Lasso
150	method (Grant and Burgess 2021). Akin to robust univariable MR analyses, each method makes
151	different assumptions about the underlying nature of the pleiotropy so that consistent estimates
152	give confidence in the robustness of the causal finding. Multivariable MR analyses were
153	performed using the MendelianRandomization V.0.9.0 package (Yavorska and Burgess 2017).
154	To estimate instrument strength given the other exposures included in the model, we calculated
155	conditional F statistics (Sanderson, Spiller, and Bowden 2021).
156	
157	
158	Results
159	
160	We identified up to 15 genetic proxies for apoC3 levels, explaining 3% of the variance in
161	APOC3 levels (Supplementary Table 2 and Supplementary Table 3). Lower genetically predicted
162	APOC3 plasma levels were associated with lower triglyceride levels (effect size per 1 SD
163	[standard deviation] lower apoC3 plasma levels = -0.77 95% CI=-0.99 to -0.55, p=6.4e-12). This
164	result was directionally consistent and maintained statistical significance (p-value < 0.05) across
165	all robust MR approaches (weighted median, weighted mode, contamination mixture, MR-
166	PRESSO) (Supplementary Table 4) and Egger intercept did not differ from zero (Supplementary
167	Table 5). This result was similar across the other study cohorts. Altogether, these results
168	corroborate RCT findings with RNA interference therapy targeted at APOC3 providing
169	validation for the genetic instrument.
170	

MR analyses were consistent with apoC3 lowering being associated with a more favorable

cardiometabolic risk profile. Genetically instrumented predicted apoC3 lowering was associated

Gagnon et al.

171

172

173	with lower apoB levels (-0.20 95% CI=-0.27 to -0.12, p=1.3e-06), lower LDL cholesterol levels
174	(-0.16 95% CI=-0.22 to -0.11, p=4.2e-09), lower aspartate amino transferase (-0.08 95% CI=-
175	0.13 to -0.04, p=5.9e-05), lower alanine amino transferase (-0.04 95% CI=-0.06 to -0.02, p=2.6e-
176	05) and higher HDL cholesterol levels (0.37 95% CI= 0.27 to 0.47, p=5.0e-14, Figure 1). There
177	was robust evidence of a small negative effect on glomerular filtration rate (-0.02 95% CI=-0.03
178	to 0.00, p=6.1e-03). There was nominal evidence for an association with fasting glucose, but not
179	reaching statistical significance in robust MR analyses.
180	
181	MR analyses were consistent with protective associations of genetically predicted apoC3
182	lowering with risk of aortic stenosis (OR per 1 SD reduction in APOC3 levels 0.82 95% CI=0.73
183	to 0.93, p=1.3e-03), and CAD (OR = 0.86 95% CI=0.80 to 0.93, p=4.2e-05, Figure 2). There was
184	nominal evidence for an association with acute pancreatitis and heart failure but not reaching
185	statistical significance in robust MR analyses. There was no evidence for an association with
186	non-alcoholic fatty liver disease, type 2 diabetes, chronic kidney disease, Alzheimer's disease, or
187	stroke. There was evidence for an association with longer life expectancy (0.06 years 95% CI=
188	0.03 to 0.09, p=1.4e-05).
189	
190	The human APOC3 gene is located on chromosome 11 in a cluster with three other
191	apolipoprotein genes, APOA1, APOA4, and APOA5. The genetic variants used to proxy apoC3
192	levels may also be associated with pleiotropic pathway through the levels of these
193	apolipoproteins. We performed multivariable MR analyses, adjusting for genetic associations
194	with apoA1, apoA4 and apoA5 plasma protein levels in the same cohort. We extracted the
195	genetic instruments for these proteins using the same genetic instrument selection procedure as
196	for APOC3. We then pooled these SNPs to the lowest p-value of any of the exposures, using the
197	same parameter setting as the univariable MR ($r^2=0.1$, window=1 Mb), resulting in 65 SNPs.
198	Conditional F statistics were 20 for apoA1, 4 for apoA4, 89 for apoA5, and 5 for apoC3,
199	indicating adequate instrument strength. Adjustment for genetic associations with serum apoA1,
200	apoA4 and apoA5 did not influence the direction or the significance of the MR estimates
201	(Supplementary Table 6). Adjustment for these apolipoproteins did not affect the results. For

Gagnon et al.

202	example, genetically predicted apoC3 lowering was associated with a 0.77 SD decrease in
203	triglycerides without adjustment, and a similar 0.77 SD decrease in triglycerides with adjustment
204	(Figure 3). ApoC3 was similarly associated to CAD with and without adjustment (Figure 4).
205	
206	It is plausible that the effect of apoC3 lowering on the occurrence of diseases is linked to its
207	influence on lipids. Specifically, triglycerides are a known causal factor of acute pancreatitis,
208	while apoB is a known causal factor of coronary artery disease. To shed lights on the underlying
209	mechanism, we used a multivariable MR approach (Figure 5, Supplementary Table 7). For this
210	analysis, we included the genetic proxies of apoC3 identified in the univariable analysis as
211	instrumental variables. When adjusting for triglyceride levels, apoC3 was no longer associated
212	with acute pancreatitis. Similarly, when adjusting for apoB levels, the association between
213	APOC3 and CAD was null. In contrast, when adjusting for either apoB or triglycerides, apoC3
214	remained associated with aortic stenosis, although the association did not reach statistical
215	significance. These results support that the effect of apoC3 on CAD and acute pancreatitis is
216	entirely explained by the effect on apoB and triglyceride levels. ApoC3 may have a direct effect
217	on aortic stenosis, not mediated through its impact on lipoprotein-lipid levels.
218	
219	
220	Discussion
221	
222	We performed drug target Mendelian randomization to determine the effect of genetically
223	predicted apoC3 lowering on cardiometabolic health. Our results show that genetically predicted
224	apoC3 lowering was associated with lower circulating levels of triglycerides, apoB, LDL
225	cholesterol, alananine amino transferase, aspartate amino transferase, and higher circulating
226	levels of HDL cholesterol. Furthermore, genetically predicted apoC3 lowering was associated
227	with lower risk of CAD and aortic stenosis and to a smaller extent acute pancreatitis. These
228	associations were concordant across three large blood pQTL datasets, concordant with robust
229	MR methods and concordant in multivariable MR when including genetic information for
230	apoA1, apoA4 and apoA5. Altogether, these results provide genetic evidence that apoC3 may
231	represent a therapeutic target of interest to improve cardiometabolic health.
232	

Gagnon et al.

9

233 Most of our MR results are in line with results from RCTs on apoC3 lowering and extent those 234 results to show that apoC3 reductions may provide cardiovascular benefits. A clinical trial 235 involving patients with hypertriglyceridemia found that administering the ASO against APOC3 236 olezarsen 50 mg every four weeks significantly lowered apoC3 by 74%, triglycerides by 23%, 237 apoB by 10%, but no effect on lipoprotein(a) levels when compared to a placebo after 6 months 238 of treatment (Tardif et al. 2022). Similarly, In a phase 1/2a study in healthy volunteers (ages 18– 239 65) without elevated triglyceride levels, administration of olezarsen every four weeks for three 240 months resulted in a median reduction of circulating apoC3 of 89%, circulating triglycerides of 241 66%, circulating ApoB of 20%, and increase in HDL cholesterol of 60% observed immediately 242 after the first injection and maintained throughout the treatment (Alexander et al. 2019). These 243 concordant results provide external validation for our genetic instrument proxying lifelong

244 *APOC3* perturbation.

245

246 The ASO against liver APOC3, volanorsen, is approved in the European Union for FCS (Paik 247 and Duggan 2019). In this patient population, volanorsen reduced triglycerides by 77% when 248 compared to placebo (Witztum et al. 2019). By doing so, Volanorsen could help reduce the rate 249 of acute pancreatitis Observational data suggest that the incidence of acute pancreatitis increases 250 approximately 3% for every increment of 100mg/dl in triglyceride levels over 1000 mg/dl 251 (Rashid et al. 2016). In our MR study, genetically predicted APOC3 lowering was associated 252 with lower acute pancreatitis risk, although this assosication did not survive more robust MR 253 analyses. Multivariable MR supported that this effect was presumably entirely explained by 254 triglyceride levels. Although our MR analysis was not performed in the FCS population, these 255 results provide genetic support to potenital benefits of apoC3 lowering in acute pancreatitis 256 prevention.

257

Heterozygous carriers of rare loss of function mutation in *APOC3* were found to have 40% lower plasma triglyceride levels and a comparable lower CAD event rate (The TG and HDL Working Group of the Exome Sequencing Project 2014). Our findings indicate that CAD risk in the general population is influenced by apoC3 levels, not only apoC3 activity. Our multivariable MR results also suggest that the impact of apoC3 lowering is primarily driven by its influence on apoB. Whether apoC3 inhibitors could provide cardiovascular protection in patients with

Gagnon et al.

10

elevated triglyceride levels at high residual CVS risk will ultimately need to be determined in alarge cardiovascular outcomes RCT.

266

267 Our MR results also suggest that apoC3 may have a role in the development of aortic stenosis. 268 Aortic stenosis is characterised by thickening, fibrosis, and mineralization of the aortic valve 269 leaflets (Moncla et al. 2023). Currently, there are no pharmacological therapy available to 270 prevent or slow its progression. Surgical valve replacement remains the only treatment option. 271 ApoC3 is present in a ortic valve leaflets, as reported in a study by Capoulade et al. in 2020 272 (Capoulade et al. 2020). In this study, elevated levels of ApoC3-Lipoprotein(a) complexes have 273 been shown to predict rapid hemodynamic progression of aortic stenosis in patients with mild to 274 moderate aortic stenosis. High circulating levels of Lipoprotein(a) is an established causal factor 275 for aortic stenosis (Arsenault et al. 2014; Thanassoulis et al. 2013). Our study results show that 276 genetically predicted apoC3 lowering is associated with lower aortic stenosis risk but is not 277 associated with lipoprotein(a) levels. These findings suggest that apoC3 may elevate the risk of 278 aortic stenosis, but it does so independently of any impact on lipoprotein(a) levels. As an 279 important proportion of the apoC3-aortic stenosis relation was mediated with lipoprotein-lipid 280 levels, ApoC3 could represent an interesting therapeutic target for the prevention or treatment of 281 aortic stenosis in patients with elevated triglyceride levels.

282

283 The main strength of the present study is the use of a MR study design using multiple robust and 284 independent cis-acting instruments, minimizing the likelihood of horizontal pleiotropy. A second 285 strength is the use of multiple study cohorts to derive the genetic proxies improving robustness. 286 Our study findings must be evaluated within three main study limitations. First, genetic data was 287 restricted for individuals of European ancestry to reduce chances of type 1 error due to 288 population stratification, so the generalisability of the study's findings to other populations is 289 uncertain, especially in the context of other studies documenting a role of apoC3 in other ethnic 290 groups (Saleheen et al. 2017). Second, MR evaluates lifelong effect of a genetically perturbed 291 target, but trials often start later in life and for a shorter duration. Therefore, drug target MR 292 typically estimates stronger causal effects compared to RCTs. Finally, we could only evaluated 293 on-target effect of apoC3 lowering. Potential off-target effects of existing drug targeting APOC3 294 are not captured by our study design.

Gagnon et al.

295	
296	In conclusion, these results support that lowering of apoC3 blood protein levels may have several
297	cardiometabolic health benefits such as a reduction in the risk of CAD, aortic stenosis and
298	potentially acute pancreatitis and increased lifespan. RNA interference therapies effectively
299	lowering apoC3 are already approved for the treatment of FCS. These findings provide genetic
300	support and a rationale for the launch of cardiovascular outcomes RTCs on long-term apoC3
301	inhibition.
302	
303	
304	Declarations
305	
306	Institutional Review Board Approval
307	All data used in this study are in the public domain. All participants provided informed consent
308	and study protocols were approved by their respective local ethical committees. This project was
309	approved by the Institutional Review Board of the Quebec Heart and Lung Institute.
310	Data Availability
311	All data used in this study are in the public domain. Supplementary Table 1 describes the data
312	used and relevant information to retrieve the summary statistics.
313	<u>Code Availability</u>
314	Code to reproduce the results of this manuscript is available on
315	https://github.com/gagelo01/APOC3
316	Competing interests
317	BJA is a consultant for Novartis, Eli Lilly, Editas Medicine and Silence Therapeutics and has
318	received research contracts from Pfizer, Eli Lilly and Silence Therapeutics.
319	Funding
320	EG holds a doctoral research award from the Fonds de recherche du Québec: Santé. (FRQS).
321	BJA holds a senior scholar awards from the FRQS.
322	Acknowledgements
323	We would like to thank all study participants as well as all investigators of the studies that were
324	used throughout the course of this investigation.
325	Authors' contributions

Gagnon et al.

276	Data acquisition and analysis EC. Conception and design EC. PIA. Drafting of the work EC.
320	Data acquisition and analysis EG. Conception and design EG, BJA. Dratting of the work EG,
327	BJA. Both authors approved the final version of the manuscript.
328	
329	
32)	
330	
331	References
332	
333	Arsenault, Benoit J., S. Matthiis Boekholdt, Marie-Pierre Dubé, Eric Rhéaume, Nicholas J.
334	Wareham, Kay-Tee Khaw, Maniinder S. Sandhu, and Jean-Claude Tardif. 2014.
335	'Lipoprotein(a) Levels, Genotype, and Incident Aortic Valve Stenosis: A Prospective
336	Mendelian Randomization Study and Replication in a Case-Control Cohort', <i>Circulation</i>
337	Cardiovascular Genetics 7 (3): 304–10
338	https://doi.org/10.1161/CIRCGENETICS.113.000400.
339	Bowden, Jack, George Davey Smith, and Stephen Burgess, 2015, 'Mendelian Randomization
340	with Invalid Instruments: Effect Estimation and Bias Detection through Egger
341	Regression'. International Journal of Epidemiology 44 (2): 512–25.
342	https://doi.org/10.1093/ije/dvv080.
343	Burgess, S., and S. G. Thompson. 2015. 'Multivariable Mendelian Randomization: The Use of
344	Pleiotropic Genetic Variants to Estimate Causal Effects'. American Journal of
345	<i>Epidemiology</i> 181 (4): 251–60. https://doi.org/10.1093/aje/kwu283.
346	Burgess, Stephen, Christopher N. Foley, Elias Allara, James R. Staley, and Joanna M. M.
347	Howson. 2020. 'A Robust and Efficient Method for Mendelian Randomization with
348	Hundreds of Genetic Variants'. Nature Communications 11 (1): 376.
349	https://doi.org/10.1038/s41467-019-14156-4.
350	Burgess, Stephen, Christopher N. Foley, and Verena Zuber. 2018. 'Inferring Causal
351	Relationships Between Risk Factors and Outcomes from Genome-Wide Association
352	Study Data ⁷ . Annual Review of Genomics and Human Genetics 19 (August): 303–27.
353	https://doi.org/10.1146/annurev-genom-083117-021731.
354	Burgess, Stephen, Simon G. Thompson, and CRP CHD Genetics Collaboration. 2011. 'Avoiding
355	Bias from Weak Instruments in Mendelian Randomization Studies'. International
356	Journal of Epidemiology 40 (3): 755–64. https://doi.org/10.1093/ije/dyr036.
357	Ferkingstad, Egil, Patrick Sulem, Bjarni A. Atlason, Gardar Sveinbjornsson, Magnus I.
358	Magnusson, Edda L. Styrmisdottir, Kristbjorg Gunnarsdottir, et al. 2021. 'Large-Scale
359	Integration of the Plasma Proteome with Genetics and Disease'. Nature Genetics 53 (12):
360	1712–21. https://doi.org/10.1038/s41588-021-00978-w.
361	Gill, Dipender, and Stephen Burgess. 2022. 'The Evolution of Mendelian Randomization for
362	Investigating Drug Effects'. PLOS Medicine 19 (2): e1003898.
363	https://doi.org/10.1371/journal.pmed.1003898.
364	Grant, Andrew J., and Stephen Burgess. 2021. 'Pleiotropy Robust Methods for Multivariable
365	Mendelian Randomization'. Statistics in Medicine, August.
366	https://doi.org/10.1002/sim.9156.
367	Hemani, Gibran, Jie Zheng, Benjamin Elsworth, Kaitlin H Wade, Valeriia Haberland, Denis
368	Baird, Charles Laurin, et al. 2018. 'The MR-Base Platform Supports Systematic Causal

Gagnon et al.

369	Inference across the Human Phenome'. <i>eLife</i> 7 (May): e34408.
370 271	MoLeron William Leurent Cil Sarah E. Hunt Hammast Singh Dist Croham D. S. Ditabia Ania
371	Thormann, Daul Flicak, and Fiona Cunningham, 2016, 'The Ensembly Variant Effect
372	Prodictor' Canoma Piology 17 (1): 122 https://doi.org/10.1186/s12050.016.0074.4
373	Monale Louis Hippolyta Minyiella Mowen Briend Vohen Bossá and Patrick Mathieu 2023
374	"Calcific Aortic Valva Disease: Machanisms Provention and Treatment' Nature Paviaus
375	Cardiology 20 (8): 546 59 https://doi.org/10.1038/s41569-023-00845-7
370	Paik Julia and Sean Duggan 2019 'Volanesorsen: First Global Approval' Drugs 79 (12):
378	1349-54 https://doi org/10.1007/s40265-019-01168-z
379	Pietzner Maik Eleanor Wheeler Julia Carrasco-Zanini Adrian Cortes Mine Koprulu Maria A
380	Wörheide Erin Oerton et al 2021 'Manning the Proteo-Genomic Convergence of
381	Human Diseases' Science (New York, NY) 374 (6569): eabi1541
382	https://doi.org/10.1126/science.abi1541.
383	Rashid, Nazia, Puza P. Sharma, Ronald D. Scott, Kathy J. Lin, and Peter P. Toth. 2016. 'Severe
384	Hypertriglyceridemia and Factors Associated with Acute Pancreatitis in an Integrated
385	Health Care System'. Journal of Clinical Lipidology 10 (4): 880–90.
386	https://doi.org/10.1016/j.jacl.2016.02.019.
387	Rees, Jessica M. B., Angela Wood, and Stephen Burgess. 2017. 'Extending the MR-Egger
388	Method for Multivariable Mendelian Randomization to Correct for Both Measured and
389	Unmeasured Pleiotropy'. arXiv:1708.00272 [Stat], August.
390	http://arxiv.org/abs/1708.00272.
391	Saleheen, Danish, Pradeep Natarajan, Irina M. Armean, Wei Zhao, Asif Rasheed, Sumeet A.
392	Khetarpal, Hong-Hee Won, et al. 2017. 'Human Knockouts and Phenotypic Analysis in a
393	Cohort with a High Rate of Consanguinity'. Nature 544 (7649): 235-39.
394	https://doi.org/10.1038/nature22034.
395	Sanderson, Eleanor, Wes Spiller, and Jack Bowden. 2021. 'Testing and Correcting for Weak and
396	Pleiotropic Instruments in Two-Sample Multivariable Mendelian Randomization'.
397	Statistics in Medicine 40 (25): 5434–52. https://doi.org/10.1002/sim.9133.
398	Slob, Eric A. W., and Stephen Burgess. 2020. 'A Comparison of Robust Mendelian
399	Randomization Methods Using Summary Data'. <i>Genetic Epidemiology</i> 44 (4): 313–29.
400	https://doi.org/10.1002/gepi.22295.
401	Tardif, Jean-Claude, Ewa Karwatowska-Prokopczuk, Eric St Amour, Christie M Ballantyne,
402	Michael D Shapiro, Patrick M Moriarty, Seth J Baum, et al. 2022. 'Apolipoprotein C-III
403	Reduction in Subjects with Moderate Hypertriglyceridaemia and at High Cardiovascular
404	Risk'. European Heart Journal 43 (14): 1401–12.
405	https://doi.org/10.1093/eurheartj/ehab820.
406	Thanassoulis, George, Catherine Y. Campbell, David S. Owens, J. Gustav Smith, Albert V.
407	Smith, Gina M. Peloso, Kathleen F. Kerr, et al. 2013. 'Genetic Associations with
408	Valvular Calcification and Aortic Stenosis'. New England Journal of Medicine 368 (6):
409	503–12. https://doi.org/10.1056/NEJMoa1109034.
410	Ine IG and HDL working Group of the Exome Sequencing Project. 2014. Loss-of-Function
411 412	of Madiaina 271 (1): 22–21 https://doi.org/10.1056/NEDMaa1207005
412 412	UJ Medicine 5/1 (1), 22-51, https://doi.org/10.1050/INEJM00150/095. Verbanck Marie Chia Ven Chen Benjamin Neals and Pon Do 2019 (Detection of
413 /1/	Widespread Horizontal Dejotropy in Causal Delationships Information Mondalian
414	whespical monzonial rheiouopy in Causal Kelauoliships interfed from Mendellan

Gagnon et al.

14

415	Randomization between Complex Traits and Diseases'. <i>Nature Genetics</i> 50 (5): 693–98.
416	https://doi.org/10.1038/s41588-018-0099-7.
417	Witztum, Joseph L., Daniel Gaudet, Steven D. Freedman, Veronica J. Alexander, Andres
418	Digenio, Karren R. Williams, Qingqing Yang, et al. 2019. 'Volanesorsen and
419	Triglyceride Levels in Familial Chylomicronemia Syndrome'. New England Journal of
420	Medicine 381 (6): 531-42. https://doi.org/10.1056/NEJMoa1715944.
421	Yavorska, Olena O., and Stephen Burgess. 2017. 'MendelianRandomization: An R Package for
422	Performing Mendelian Randomization Analyses Using Summarized Data'. International
423	Journal of Epidemiology 46 (6): 1734–39. https://doi.org/10.1093/ije/dyx034.
424	Zhang, Jingning, Diptavo Dutta, Anna Köttgen, Adrienne Tin, Pascal Schlosser, Morgan E.
425	Grams, Benjamin Harvey, et al. 2022. 'Plasma Proteome Analyses in Individuals of
426	European and African Ancestry Identify Cis-pQTLs and Models for Proteome-Wide
427	Association Studies'. Nature Genetics 54 (5): 593-602. https://doi.org/10.1038/s41588-
428	022-01051-w.
429	
120	

15

Gagnon et al.

Figure Legends

Figure 1. Effect of one standard deviation reduction in genetically predicted APOC3 blood protein levels on 18 cardiometabolic traits. Standard deviation change per one standard deviation increase with 95% confidence intervals are shown. P-values correspond to two-sided tests for the inverse variance weighted method with random effect model.

Figure 2. Effect of one standard deviation reduction in genetically predicted APOC3 blood protein levels on 9 cardiometabolic outcomes. Odds ratios per standard deviation with 95% confidence intervals are shown. P-values correspond to two-sided tests for the inverse variance weighted method with random effect model.

Figure 3. Effect of apolipoproteins in the APOA1/A4/A5/C3 gene cluster on triglycerides using univariable and multivariable Mendelian randomization. Standard deviation change per one standard deviation increase with 95% confidence intervals are shown. P-values correspond to two-sided tests. For univariable MR the IVW with random effect model was used. For multivariable MR, the multivariable IVW was used.

Figure 4. Effect of apolipoproteins in the APOA1/A4/A5/C3 gene cluster on coronary artery disease using univariable and multivariable Mendelian randomization. Odds ratios per standard deviation with 95% confidence intervals are shown. P-values correspond to twosided tests. For univariable MR the IVW with random effect model was used. For multivariable MR, the multivariable IVW was used.

Figure 5. Effect of APOC3 on coronary artery disease, aortic stenosis, and acute pancreatitis before and after adjustment for triglycerides or apolipoprotein B levels using multivariable Mendelian randomization. Odds ratios per standard deviation with 95% confidence intervals are shown. P-values correspond to two-sided tests of the multivariable IVW analysis.

	Blood protein levels	OR (95% CI)	pval
Brain			
Alzheimer's disease	F₩	1.00 (0.98 to 1.03)	6.8e-01
Glucose homeostasis			
Type 2 diabetes	┝──╋─┼┤	0.95 (0.89 to 1.02)	1.9e-01
Kidney			
Chronic Kidney disease	⊢ = <u> </u>	0.97 (0.88 to 1.08)	5.9e-01
Lifespan			
Longevity	⊢ ¦ ■ →	1.12 (0.92 to 1.35)	2.5e-01
Liver			
NAFLD (7 cohorts)	⊢ _	0.94 (0.86 to 1.01)	1.1e-01
Pancreas			
Acute pancreatitis	⊢_■{	0.91 (0.82 to 1.00)	4.7e-02
Vascular			
Aortic stenosis		0.82 (0.73 to 0.93)	1.3e-03
Coronary artery disease	┝──╋──┤	0.86 (0.80 to 0.93)	4.2e-05
Heart failure	┝──■──┤┆	0.91 (0.84 to 0.99)	2.4e-02
Stroke	⊢₽⊣	1.01 (0.96 to 1.06)	8.3e-01
	0.8 0.9 1 1.1 1.2 1.3		

Effect of 1-SD reduction of APOC3

Figure 1.

	Blood protein levels	Beta (95% Cl)	pval	
Anthropometric				
ASAT	⊦∔₁	-0.02 (-0.08 to 0.04)	5.8e-01	
VAT	⊦∎⊣	-0.02 (-0.09 to 0.05)	6.6e-01	
Glucose homeostasis				
Fasting glucose	imi,	-0.05 (-0.08 to -0.01)	6.5e-03	
Fasting insulin	Hand	-0.00 (-0.04 to 0.03)	8.7e-01	
Kidney				
Glomerular filtration rate		-0.02 (-0.03 to -0.00)	6.1e-03	
Lifespan				
Parental lifespan		0.06 (0.03 to 0.09)	1.4e-05	
Lipids				
Apolipoprotein B	⊦≖⊣	-0.20 (-0.27 to -0.12)	1.3e-06	
HDL cholesterol	⊢∎⊣	0.37 (0.27 to 0.47)	5.0e-14	
LDL cholesterol	⊦∎₁	-0.16 (-0.22 to -0.11)	4.2e-09	
Lipoprotein (a)	i i i i i i i i i i i i i i i i i i i	0.02 (-0.01 to 0.04)	2.0e-01	
Triglycerides H	 ∎	-0.77 (-0.99 to -0.55)	6.4e-12	
Liver				
ALT	H	-0.04 (-0.06 to -0.02)	2.6e-05	
AST	H#H	-0.08 (-0.13 to -0.04)	5.9e-05	
Liver Fat	⊢■┤	-0.03 (-0.09 to 0.04)	4.5e-01	
Pancreas				
Pancreas Fat	⊦₩	0.03 (-0.04 to 0.10)	3.6e-01	
Vascular				
Diastolic blood pressure	Hel	-0.02 (-0.05 to 0.00)	1.0e-01	
Systolic blood pressure	Ħ	-0.02 (-0.05 to 0.00)	6.2e-02	
_	-0.5 0			
Effect of 1-SD reduction of APOC3				

Figure 2.

Figure 3.

	Exposures	n SNPs	Effect on tr	iglyceride	s Effect (95% CI)	pval
	Univariable					
	APOA1	13	F	∎ į́	-0.19 (-0.38 to -0.00)	4.8e-02
	APOA4	7	i	■	-0.22 (-0.56 to 0.12)	2.1e-01
	APOA5	60		H∎I	-0.13 (-0.19 to -0.07)	4.9e-05
	APOC3	15	⊢∎		-0.77 (-0.99 to -0.55)	6.4e-12
	Multivariable					
	APOA1	65		⊦∎∔	-0.08 (-0.17 to 0.02)	1.1e-01
	APOA4	65			→ 0.29 (0.04 to 0.53)	2.1e-02
	APOA5	65		H	-0.06 (-0.09 to -0.02)	1.5e-03
	APOC3	65	┝──╋──┤		-0.77 (-0.91 to -0.63)	5.3e-28
			-0.5	0	0.5	
	Effect of 1-SD reduction of blood protein levels					

Outcomes	Adjusted for		OR (95% CI)	pval
Acute pancreatitis				
	Unadjusted	⊢∎┤	0.91 (0.82 to 1.00)	4.7e-02
	Triglycerides	⊦¦∎	→ 1.02 (0.84 to 1.24)	8.6e-01
	Apolipoprotein B	⊢ ∎	H 0.98 (0.84 to 1.15)	8.2e-01
Aortic stenosis				
	Unadjusted	⊢	0.82 (0.73 to 0.93)	1.3e-03
	Triglycerides		0.88 (0.71 to 1.08)	2.2e-01
	Apolipoprotein B	╞───╋──┼┤	0.87 (0.74 to 1.04)	1.2e-01
Coronary artery disease				
	Unadjusted	⊢∎⊣	0.86 (0.80 to 0.93)	4.2e-05
	Triglycerides	⊢┼■	⊢ 1.05 (0.94 to 1.17)	3.8e-01
	Apolipoprotein B	⊢ .	1.01 (0.93 to 1.09)	8.6e-01
0.8 0.9 1 1.11.2				
	Effect of 1-SD reduction of APOC3			

Figure 5.