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A B S T R A C T

Background: Mendelian randomization (MR) has emerged as a valuable tool for causal infer-
ence in genetic epidemiology. Existing MR methods have issues related to pleiotropy and offer
limited comprehensiveness. Here, we introduce an integrated MR analysis pipeline designed for
GWAS summary statistics data. Our pipeline integrates feature selection, harmonization, and
checkpoint mechanisms to improve the accuracy and reliability of MR analysis.

Methods: In classical GWAS, the p-value threshold usually does not guarantee to identify
causal single-nucleotide polymorphisms (SNPs). In such cases, t-statistics can be considered
as imperative and robust criteria for identifying causal SNPs. Therefore, in this study, we
computed the t-statistic for all independent SNPs remained after linkage disequilibrium pruning.
Next, prior to harmonization, we removed SNPs having a t-statistic below the average t-statistic
value. Furthermore, our pipeline incorporates sensitivity analysis tests at each step to reduce the
chances of directional pleiotropy.

Result and Conclusion: We applied our pipeline to single-sample and two-sample MR
study designs, encompassing diverse populations and a wide range of diseases. Our results
demonstrate superior performance compared to existing MR methods. In conclusion, our
research presents an integrated MR analysis pipeline that significantly enhances the accuracy
and reliability of MR studies. By outperforming existing methods and providing comprehensive
validation, this pipeline represents a valuable tool for researchers in genetics and epidemiology.

1. Introduction
After the completion of gap-less sequencing of the human genome [23], the discovery of genetic variation has

become a major area of future research. Comparative genetic studies across ethnically diverse human populations
are crucial in understanding the genetic basis of different traits and diseases. These studies aim to understand why
certain individuals have a higher susceptibility to specific diseases. Single-nucleotide polymorphisms (SNPs) are of
particular importance in such studies due to their high frequency and uniform distribution throughout the genome.
Additionally, the density of SNPs needed for mapping complex diseases will likely vary across populations with
specific geographical locations. To understand the impact of genetic variants on diseases, it is essential to differentiate
between association and causation. Many genome-wide association studies (GWAS) and their statistic models are
designed to identify associations between genetic variants and traits or diseases of interest. These associations
sometimes could reflect the causal relationship between genetic variants and diseases, but the direction of causality is
still not clear. Understanding causal inferences from these GWAS studies can be challenging due to reverse causation,
confounding factors, and several other biases[11]. Such issues have been addressed through epidemiological studies
by establishing correlations between exposures (e.g., traits, environmental conditions, medication etc.) and outcomes
(complex diseases). These studies adopt randomized controlled trials (RCTs), which involve the random assignment
of various treatments to individuals of a population. Basically, one "active group" (outcome/disease) that was treated
is compared against a "control group" to establish causal relationships. Observational epidemiological studies are not
easy to observe results while mediating exposure in RCTs. These studies often present spurious causal relationships
between modifiable exposures and disease. In such studies, exposure modification in confined environmental settings
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1 INTRODUCTION

underestimates the true association between causal genetic variants and disease. Aside from this, RCTs have a long
duration and encounter ethical clearance issues. Moreover, the persistence of confounding and selection bias remains
a concern even after the initiation of an RCT. This includes the absence of follow-up data depending on treatment
outcomes, potentially resulting in non-randomly missing data issues. However, nowadays, genetically predicted causal
inference between exposures and diseases has been popularized in epidemiological studies, which provide new
insights into early screening and prevention of disease. However, nowadays, genetically predicted causal inference
between exposures and diseases has been popularized in epidemiological studies, which provide new insights into
early screening and prevention of disease [20]. The incorporation of genetic variants in epidemiology studies is
motivated by the inherent randomization of genetic polymorphism. This means that the genotype of an individual
cannot be changed, and interpersonal covariates are normally distributed among the studied population. The key
consequence of this randomization is the independent distribution of genetic variations from traits they do not affect.
This approach aligns with the principles of Mendel’s laws of segregation and independent assortment [7]. These types
of studies are known as Mendelian randomization (MR) studies.

MR studies are an analytical approach that uses such genetic variants as instrumental variables that are robustly
associated with the exposure of interest and outcome, whether the effects of the variants on the exposure result
in proportional effects on the outcome. MR studies follow three core assumptions which are as follows: i) genetic
variants should be associated with exposure, ii) genetic variants should not be associated with confounding factors,
and iii) genetic variants should impact outcomes only through exposure. When all of these assumptions are satisfied,
MR analysis becomes less susceptible to bias from factors such as non-genetic confounding and reverse causation
compared to conventional observational epidemiological analyses [10, 9]. This approach traditionally uses summary
statistics datasets of genotype-phenotype associations to evaluate the causal effects of exposures on disease incidence.
However, there are research gaps in MR studies, like the potential of methodological because of reverse causation and
confounding, which can introduce bias into the results. This limitation impacts the power of an MR analysis in the
precision of estimating the genetic association with the outcome, as this association is typically much weaker than
the genetic association with the exposures. One of the possible solutions to handle this issue is to use published data
on genetic associations with the outcome combined with individual-level data from a cross-sectional study on genetic
variants and the exposure to obtain precise MR estimates [6]. The genotyping data from human samples, together with
corresponding trait information, involves ethical clearance challenges and is not readily accessible.

Here, we have proposed a pipeline to systematically address the issues of selecting datasets, finding weak causality,
and enhancing the efficiency of the genetic instruments. This pipeline incorporates mainly the following steps: the
selection and preprocessing of raw data (specifications of datasets), the filtration of genetic instrument variants
(feature selection (valid genetic instruments)), the application of MR analysis on selected variants (statistical tests
for MR analysis), and the validation of resultant genetic variants (sensitivity analysis). The guidelines from dataset
selection to MR analysis should follow all three MR assumptions and check multi-directional pleiotropy to avoid
biases that can lead to inaccurate causal estimates. Our proposed pipeline effectively addresses these biases and
successfully exhibits a robust framework to analyse causality between exposure and outcome. In classical causality
analysis, p-value thresholding usually does not guarantee the identification of causal SNPs. Other than p-values, the
selection of valid and effective genetic instruments highly depends on the estimates of exposure and outcome, i.e.,
βexposure and βoutcome, respectively and their corresponding standard errors (SEexposure and SEoutcome). We applied the
filtration method on both exposure and outcome summary statistics datasets using both β and SE. Moreover, only
those genetic instruments exceeding the defined threshold value for these parameters are selected. These selected
genetic instruments are then analysed for causality tests by applying different well-established MR methods. The
stability of causal estimation in the MR results is evaluated using various sensitivity analysis approaches. To validate
the performance of the pipeline, we tested our pipeline on multiple datasets belonging to different exposures and
outcomes. Also, to check the robustness of the pipeline, we selected summary statistics datasets from different
populations. Summary statistics datasets can be obtained from two types of MR study designs, two-sample MR study
and single-sample MR study. The two-sample MR study describes the collection of exposure and outcome datasets
from two different sample populations, and the single-sample MR study describes the collection of both exposure
and outcome from the same population. For two-sample MR data, we have to collect both datasets from the same
super-population. Figure 1 explains the assumptions and study designs of MR analysis. The detailed evaluation of the
proposed pipeline is described in the following sections.
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2 MATERIAL AND METHOD
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Figure 1: MR assumptions and data collection study designs

2. Material and Method
This section provides a comprehensive description of the dataset selection and pre-processing method for summary

statistics datasets (step 1), along with the genetic instrument selection (step 2). In addition, various MR approaches
are explained with their relative advantages and limitations (step 3), followed by a sensitivity analysis (step 4). The
proposed pipeline is shown in Figure 2.

2.1. Data Sets Selection and Specifications
In this study, the proposed pipeline has been applied to five GWAS summary statistics datasets. Of these, 4 datasets

are used for a two-sample MR study design, and one is used for a single-sample MR study design. Before selecting
exposure and outcome datasets, it is essential to identify the heritability of the chosen phenotype or trait. Heritability
refers to the extent to which the genetic composition of a given sample could be responsible for the variance observed
in the phenotype.

2.1.1. Datasets
An overview of all these five datasets is given in Table 1, and the detailed description of all these datasets is as

follows:

• Single-sample summary statistic dataset

The genotype and phenotype data for single-sample MR were obtained from the PennCATH cohort study conducted
by the University of Pennsylvania’s Medical Center [14]. This dataset comprises a rich array of clinical parameters,
including gender, age, CAD status, LDL cholesterol levels, HDL cholesterol levels, and triglycerides. It is anchored by
an angiographic CAD case-control GWAS involving 1,401 individuals and 861,473 SNPs. This study removed SNPs
with genotype call rates below 100% to keep only high-quality SNPs. Also, SNP with minor allele frequency (MAF
<5%) are excluded from genotyping arrays to focus on common SNPs. Population genotype frequency is examined
using the inbreeding coefficient and frequency analysis to ascertain the Hardy-Weinberg Equilibrium. Then, high
linkage disequilibrium (LD) regions were trimmed to include genetic haplotype block markers. LD was assessed
using a r2 threshold at 0.3 and a 50,000 SNP sliding window. All related samples were eliminated in order to reduce
sample biases. After applying all of these pre-processing biological filters, the analysis uses a total of 1277 samples
and 41,802 SNPs. The below-discussed two-sample dataset describes the heritability of both exposure and outcome.

• Two-sample summary statistic datasets
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Figure 2: Proposed workflow

This study used openly accessible data obtained from the MRC Integrative Epidemiology Unit (IEU, https:
//gwas.mrcieu.ac.uk/). The datasets are obtained using the R package TwoSampleMR [15]. The following section
provides a description of the selected datasets, organized in an "Exposure-Outcome" format.

1. Total Cholesterol-Coronary Heart Disease:
The summary-statistics dataset of serum total cholesterol(TC) was obtained from a genome-wide association meta-
analysis (GWAS ID: met-c-933). In this dataset, 21,491 samples were analysed, and 118,55,845 SNPs were identified
[18]. The dataset of Coronary Heart Disease (CAD) was also obtained from the EBI GWAS Catalog (GWAS ID:ebi-
a-GCST000998). In this dataset, 86,995 samples (22,233 cases and 64,762 controls) were analysed with 2,415,020
SNPs [25]. Both exposure and outcome datasets are collected for the European super-population. TC has a heritability
of 35-60% [27] and heritability of CAD is approx 40-70% [22].

2. Total Cholesterol-Coronary Heart Disease:
The summary-statistics dataset of TC was obtained from the biobank Japan (GWAS ID: bbj-a-54). In this dataset,
128,305 samples were analysed, and 6,108,953 SNPs were identified [16]. The dataset of CAD was also obtained from
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2.1 Data Sets Selection and Specifications 2 MATERIAL AND METHOD

Table 1
Overview of selected datasets used in this study

Single-Sample Data (PennCATH study data)

S.No. Exposure Outcome Population

1 Total Cholesterol CAD American

Two-Sample Data

1
Total Cholesterol

(met-c-933)

CAD

(ebi-a-GCST000998)
European

2
Total Cholesterol

(bbj-a-54)

CAD

(bbj-a-159)
East-Asian

3
Liver Iron Content

(ebi-a-GCST90016674)

Liver Cell Carcinoma

(ieu-b-4953)
European

4
Childhood Obesity

(ieu-a-1096)

Knee and hip osteoarthritis

(ieu-a-1170)
European

the biobank Japan (GWAS ID: bbj-a-159). In this dataset, 212,453 samples (29,319 cases and 183,134 controls) were
analysed with 24,15,020 SNPs. Both exposure and outcome datasets are collected for the East Asia super-population.
The heritability of both exposure and outcome is described in the above dataset detail.

3. Liver Iron Content-Liver Cell Carcinoma:
The summary-statistics dataset of liver iron content (LIC) was obtained from EBI GWAS Catalog (GWAS ID: ebi-
a-GCST90016674). In this dataset, 32,858 samples were analysed, and 9,275,407 SNPs were identified [19]. The
dataset of liver cell carcinoma (LCC) was also obtained from the UK Biobank (GWAS ID: ieu-b-4953). In this dataset,
372,184 samples (168 cases and 372,016 controls) were analysed with 6,304,034 SNPs. Both exposure and outcome
datasets are collected for the European super-population. Liver Iron has a heritability of 7% [29], and individual with
a family history of Liver Cell Carcinoma has an increased risk of developing this disease [28].

4. Childhood obesity (CO)-Knee and hip osteoarthritis(OA):
The summary-statistics data on childhood obesity (CO) were obtained from a genome-wide association meta-analysis
(GWAS ID: ieu-a-1096) conducted by the Early Growth Genetics (EGG) consortium [4]. In this dataset, 13,848
children were analysed, and 2,442,739 SNPs were identified. The dataset of Knee and hip osteoarthritis (OA) was
also obtained from a genome-wide association meta-analysis (GWAS ID: ieu-a-1170) conducted by the arcOGEN
consortium. In this dataset, 14,507 samples (3,498 cases and controls) were analysed with 12,79,483 SNPs. Both
exposure and outcome datasets are collected for the European super-population. The estimated heritability of obesity
is between 40% and 70% [21]. The estimate of heritability has been reported to be 40% for the knee, 60% for the hip,
65% for the hand, and about 70% for the spine [30].

2.1.2. Datasets pre-processing
The GWAS summary statistics for the single-sample dataset were calculated from linear and logistic regression

models for total cholesterol (exposure) and CAD (outcome), respectively. The two-sample MR data are collected
with a less-stringent p_value ≤ 5E-03 to retrieve the maximum possible SNPs. Once the summary statistics data for
both exposure and outcome are prepared, the SNPs in linkage disequilibrium (LD) were clumped according to the
respective super-population in the 1000 genomes reference panel using a threshold of r2 ≥ 0.01 and a window size of
10,000 kb with MAF > 0.01.
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2.2 Feature Selection (Valid Genetic Instruments) 2 MATERIAL AND METHOD

2.2. Feature Selection (Valid Genetic Instruments)
At this step, the first checkpoint is performed to avoid the third assumption of MR, i.e., genetic variants should

impact outcomes only through exposure. The clumped SNPs from both datasets, exhibiting a significant correlation
with both exposure and outcomes, were excluded to remove the potential confounding effect of horizontal pleiotropy.

The strength of the association of any SNP with the phenotype can be measured through the p-value. However,
p-value thresholding overlooked significant SNPs. Therefore, here we consider β and the standard error (SE) of
corresponding SNPs to understand the impact of SNP on outcome. We calculated the t-statistics as a selection method
of valid genetic instruments for both datasets using the following equation:

t_statisticsexposure =
βexposure

SEexposure

t_statisticsoutcome =
βoutcome

SEoutcome

(1)

Only those SNPs with t-statistic values greater than the average t-statistics of their respective datasets were selected
for subsequent analysis. In addition, the F-statistic was calculated to quantify the strength of selected SNPs as valid
genetic instruments for the outcome using the following equation:

F_statistics =
β 2

instrument

SE2
instrument

(2)

After selecting valid genetic instruments, the resultant SNPs are subsequently harmonised. In the harmonisation
process, we attempted to infer all SNPs in the forward-strand.

2.3. Statistical Tests for Causal Inference
Statistical tests for MR analysis were performed on R software using TwoSampleMR package. These MR methods

included weighted median [2], simple and weighted mode [13], inverse-variance weighted (IVW) [5], and MR-Egger
regression [1]. In addition, bias adjustment for MR-Egger with a simulation extrapolation (SIMEX) [3] was also
performed.

The weighted median MR method requires that a minimum of 50% of the weight in the analysis derives from
valid genetic instruments. The weighted median estimate is insensitive to a pleiotropic genetic variant because the
median is unaffected by outliers. In contrast, the mode-based methods (simple mode and weighted mode) require the
largest subset of variants that identify the same causal effect for genetic instruments that are valid. Both median and
mode-based methods measure the central tendency of variant-specific beta values (causal estimates). These methods
are robust to variants with outlier ratio estimates and less impacted by a few pleiotropic variants. For MR analysis,
we integrated each SNP effect using IVW, where the estimate was the slope of a zero-intercept regression of SNP-
outcome effects on SNP-exposure effects. Besides these methods, MR-Egger can provide unbiased estimates even if all
genetic instruments violate the exclusion restriction assumption. However, the genetic instrument must have negligible
measurement error (NOME), and the InSIDE (Instrument Strength Independent of Direct Effect) assumption must
be satisfied. If the NOME assumption is violated, the MR analysis is performed using the MR-Egger method with
simulation extrapolation (SIMEX) correction. While these six methods are best used when genetic instruments consist
of a large number of independent SNPs, since r2 values between SNPs in our instruments were low (r2 > 0.001), we
included them with a further sensitivity analysis to account for correlation in the MR Egger analysis. While these
six methods are best used when genetic instruments consist of a large number of independent SNPs, since r2 values
between SNPs in our instruments were low (r2 > 0.001), we included them with a further sensitivity analysis to
account for correlation in the MR Egger analysis.

2.4. Sensitivity Analysis
Before conducting the sensitivity analysis of the resultant SNPs, the third checkpoint is enacted, which examines

reverse causality. A directionality test is carried out to explore the potential existence of reverse causality within the
chosen datasets to reduce the risk of spurious causal associations. For this purpose "directionality_test" function is
used from the "TwoSampleMR" package.

In MR studies, a heterogeneity test refers to a statistical evaluation that examines the compatibility between
instrumental variable estimations using each genetic variant. This evaluation is known as an over-identification
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3 RESULTS

Table 2
MR results of single-sample dataset after t-statistics filter

MR methods #SNP β SE p-value

MR-Egger 26 2.3926 1.3928 9.87E-02

Weighted median 26 4.3987 1.0127 1.40E-05

Inverse variance weighted 26 5.4731 0.5579 1.02E-22

Simple mode 26 5.0182 1.4023 1.45E-03

Weighted mode 26 4.1684 1.0162 3.81E-04

MR-Egger SIMEX 26 2.827415 1.479024 6.792946E-02

test because it identifies the same causal effect through every instrumental variant. The presence of heterogeneity
signals potential issues, either indicating violations of modeling assumptions or suggesting that some genetic variants
are not conforming to the instrumental variant assumptions. Cochran’s Q is a statistical measure used to quantify
heterogeneity. It is computed by summing the squared differences between the individual study effects and the pooled
effect across studies, with the weights being consistent with the pooling method.

Heterogeneity indicates the possibility that different causal mechanisms may contribute to the same disorder.
Moreover, it may occur when genetic polymorphisms linked to the exposure of interest directly influence the outcome
through various pathways, potentially leading to biased estimates of causal effects [12]. Further, we performed the
MR-PRESSO (Mendelian Randomization Pleiotropy RESidual Sum and Outlier) test [26]. In this test, genetic variants
are systematically removed based on their contributions to heterogeneity, underscoring the significance of addressing
heterogeneity in causal inference.

However, it is noteworthy that MR-PRESSO has its limitations. In some cases where outlier removal or covariate
adjustment cannot entirely eliminate horizontal pleiotropy, additional pleiotropy tests become imperative to ensure the
accurate study of the causal relationship between exposure and outcome. One such test is the "pleiotropy test" from
twosampleMR package. It involves MR-Egger regression analysis as its regression intercept can assess the magnitude
of pleiotropy. The intercept closer to zero indicates a lower likelihood of genetic pleiotropy [17]. The p-value ≥0.05
indicates that there is no significant horizontal pleiotropy in the genetic instruments used in the analysis.

In order to assess the specific impact of each SNP on the causal relationship, we employ a Leave-one-out analysis
[8]. Additionally, we utilize forest plots to evaluate the effect estimates of genetic variation.

3. Results
The proposed method focuses on selecting valid genetic instruments to improve the precision of causative SNPs

using different MR methods. The results for both types of MR study designs are described in this section.

• Single-sample summary statistic dataset

On the single-sample dataset, the LD clumping step produced 4093 SNPs and 4081 SNPs for the exposure and
outcome datasets, respectively. There was no shared SNP that was found to be significantly associated with both
exposure and outcome, and it validated the follow-up of the third MR assumption. Next, the average t-statistic
threshold was applied, which resulted in a total of 988 SNPs and 959 SNPs in the exposure and outcome dataset,
respectively. After this, data harmonization was performed on these filtered SNPs, resulting in a total of 26 SNPs. F
statistics were calculated to estimate the sample overlap effect and weak instrument bias considering the relatively
relaxed threshold, and an F > 10 was considered dubious bias [24]. However, as the single-sample data has a low
sample size, the F statistics of all SNPs follow the standard statistical threshold (i.e. > 3.95).

Afterward, all six MR methods were applied to analyze this harmonized dataset. All MR approaches demonstrated
a statistically significant causal association between total cholesterol and CAD, except MR Egger. The classic IVW
model IVW was employed in the primary MR analyses. When directional pleiotropy is absent, the IVW method can
deliver a relatively stable and accurate causal evaluation by using a meta-analytic approach to combine Wald estimates
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3 RESULTS

for each IV. Table 2 displayed the detailed results of all MR methods. Figure 3 presents a scatter plot of different MR
methods, depicting the positive correlation between TC and the probability of developing CAD.

Further, the directionality of a causal relationship is evaluated, and the directionality test displays the direction of
causality from the TC, i.e., exposure to CAD, i.e., outcome. This analysis indicates the absence of reverse causality in
the single-sample dataset. Following the analysis, the heterogeneity test yielded non-significant findings, as shown by
Cochran’s Q value (= 9.6) being considerably lower than the degrees of freedom (= 24) and a p-value of 0.9959. These
results suggest the absence of heterogeneity. After the heterogeneity, we checked probable outliers in the selected
genetic instrument using MR-PRESSO. Our analysis did not identify any statistically significant outliers, suggesting
that the probability of horizontal pleiotropy is very minimal. The pleiotropy test obtained a p-value of 0.0237, which
does not reach statistical significance about the existence of horizontal pleiotropy. The intercept value of 0.12 is also
minor, suggesting the lack of multiple pleiotropic effects in the analyzed single-sample dataset.

If the default parameters are applied and t-statistics is not applied, the single-sample dataset shows insignificant
results. After the harmonisation, 679 SNPs are obtained, and out of 679 SNPs, 668 SNPs are involved in MR analysis.
The IVW method estimated the coefficient (β ) -0.0742 with a standard error of 0.2349, and the p-value is 0.7520. The
results are not significant and also show a spurious negative association between TC and CAD.
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Figure 3: Scatter plot of different MR methods for single-sample and two-sample data

• Two-sample summary statistic datasets

The two-sample dataset is collected from the database of MRC IEU with p-value filter ≥ 5E-03 and r2 = 0.01.
This section presents a comprehensive analysis of one of our selected datasets, the impact of LIC on LCC. The results
of additional datasets are presented in a supplementary document.
A total of 4233 SNPs and 1624 SNPs were obtained for the LIC and LCC datasets, respectively. There was no shared
SNP that was found to be significantly associated with both exposure and outcome, and it validated the follow-up of
the third MR assumption. After pruning these datasets according to their LD values, the average t-statistic threshold
was applied, which resulted in a total of 473 SNPs and 221 SNPs in the exposure and outcome datasets, respectively.
After this, data harmonization was performed on these filtered SNPs, resulting in a total of 14 SNPs. F statistics were
calculated to estimate the sample overlap effect and weak instrument bias considering the relatively relaxed threshold,
and an F > 10 was considered dubious bias [24]. Here we have sufficiently large size of samples, and the F statistics
of all SNPs are above 10, thus indicating their strong candidacy for causality tests.

Afterward, all six MR methods were applied to analyze this harmonized dataset. All MR approaches demonstrated
a statistically significant causal association between iron content in the liver and LCC, including MR Egger. Table 3
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3.1 Performance evaluation 3 RESULTS

Table 3
MR results of two-sample dataset after t-statistics filter(liver cancer)

Method #SNP β SE p-value

MR-Egger 14 8.36E-04 1.83E-04 6.57E-04

Weighted median 14 1.06E-03 1.65E-04 1.31E-10

Inverse variance weighted 14 1.16E-03 1.71E-04 1.06E-11

Simple mode 14 2.55E-03 1.13E-03 4.23E-02

Weighted mode 14 9.64E-04 1.74E-04 9.61E-05

MR-Egger SIMEX 14 8.33E-04 1.43E-04 8.41E-05
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Figure 4: Sensitivity analysis of Single-Sample MR (Leave-one-out and Forest plot)

shows the detailed results of all MR methods. Figure 3 presents a scatter plot of different MR methods, depicting the
positive correlation between iron contents in the liver and the probability of developing LCC.

Further, the directionality test is performed, and it displays the direction of causality from the iron content,
i.e., exposure to LCC, i.e., outcome. It indicates that no reverse causality is present in this two-sample dataset.
Subsequently, heterogeneity is performed, and the value of Cochran’s Q is 1.9898, which is much lower than the
degrees of freedom (i.e., 12 for this dataset), and the p-value is not statistically significant (= 0.9994). This result
indicates the absence of heterogeneity. After the heterogeneity, we checked potential outliers in the selected genetic
instrument using MR-PRESSO, and we didn’t detect any significant outliers here, indicating that the likelihood of
horizontal pleiotropy is extremely low. Finally, the pleiotropy test is conducted, and the obtained p-value is 3.49E-
03, which is significant for the presence of horizontal pleiotropy; however, the intercept value is extremely small,
6.98E-05, which has no effect on the analysis as a whole.

With the default parameters, LIC and LCC are obtained from the MRC IEU database. A total of 10 SNPs and
8 SNPs are retrieved for LIC and LCC, respectively. Following the pruning of SNPs in LD, the harmonisation
process was performed. After the harmonisation, a total of 5 SNPs are found, which are involved in MR analysis.
The IVW method estimated the β 8.42E-04 with a standard error of 2.50E-03 and the p-value 7.58E-04. The results
are comparatively less significant with a very small number of genetic instruments.
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Figure 5: Sensitivity analysis of Two-Sample MR (Leave-one-out and Forest plot)

Table 4
Comparative MR results of two-sample datasets before and after t-statistics filter

MR study Design Dataset
With default parameters After Proposed pipeline

IVW MR-Egger IVW MR-Egger

Single-Sample TC-CAD (American) 0.752 0.6939 1.02E-22 9.87E-02

Two-Sample

TC-CAD (European) 1.25E-04 0.1184 5.04E-06 3.32E-03

TC-CAD (East-Asian) 1.84E-11 1.59E-05 1.31E-31 7.08E-07

Liver iron-LCC (European) 7.58E-04 5.10E-02 1.06E-11 6.57E-04

CO-OA (European) 1.9E-03 0.3483 1.68E-16 2.60E-02

3.1. Performance evaluation
To evaluate the effectiveness and robustness of our proposed pipeline, we applied it to different datasets of two-

sample data collected from varied super-populations. In Table 4, we present a comparison of p-values between two
frequently used MR methods, considering both the proposed pipeline and the standard default parameter settings
implemented in MR analysis across all the specified datasets.

4. Conclusion
This work introduces an optimized MR analysis pipeline that effectively elucidates a causal association between

exposure and outcome within various super populations while minimizing susceptibility to horizontal pleiotropy and
outlier effects. Although the MR-Egger method has the potential to address directional pleiotropy and yield causal
estimates, its statistical power remains somewhat constrained. Horizontal pleiotropy represents a pivotal challenge to
MR analysis, as it can distort causal estimations, diminish statistical power, and potentially lead to spurious positive
causal connections. However, by implementing bias correction through SIMEX, we were able to unveil a substantial
and statistically significant causal relationship between exposure and outcome while mitigating the likelihood of
directional pleiotropic influence.
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Furthermore, conventional p-value thresholding techniques may not consistently identify SNPs with significant
causal associations within GWAS summary statistics datasets. In such scenarios, t-statistics emerge as a robust
alternative for selecting SNPs as potential genetic instruments. In single-sample MR datasets, both exposure and
outcome variables are derived from the same sample, which eases the data harmonization step. Nevertheless, it is
accompanied by the potential drawback of weak genetic instruments. To counteract this limitation, our proposed
pipeline incorporates sensitivity analysis tests at each stage and employs t-statistics thresholding to mitigate the
influence of weak bias. To validate our approach, we calculated F-statistics. Despite the limited sample size in our
study, F-statistics exceeded the threshold of 10 for two-sample datasets.

In summary, the proposed pipeline extends beyond single-sample MR analysis and demonstrates its versatility by
successfully handling two-sample data, even in cases where sample dissimilarity is a concern. Our pipeline excelled
in both the selection of valid genetic instruments and the detection of robust causal relationships. Thus, our study
identified specific SNPs with a causal relationship to outcome. We anticipate that our proposed pipeline will exhibit
robust performance when applied to high-dimensional datasets from diverse populations, thus offering a valuable tool
for future MR investigations.
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