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Abstract 

Large community cohorts are useful for lung cancer research, allowing for the development and 

validation of predictive models. A robust methodology for (1) identifying lung cancer and pulmonary 

nodules from electronic health record (EHRs) as well as (2) associating longitudinal data with these 

conditions is needed to optimally curate cohorts at scale from clinical data. Both objectives present the 

challenge of labeling noisy multimodal data while minimizing assumptions about the data structure 

specific to any institution. In this study, we leveraged (1) SNOMED concepts to develop ICD-based 

decision rules for building a cohort that captured lung cancer and pulmonary nodules and (2) clinical 

knowledge to define time windows for collecting longitudinal imaging and clinical concepts. We curated 

three cohorts with clinical concepts and repeated imaging for subjects with pulmonary nodules from our 

Vanderbilt University Medical Center. Our approach achieved an estimated sensitivity 0.930 (95% CI: 

[0.879, 0.969]), specificity of 0.996 (95% CI: [0.989, 1.00]), positive predictive value of 0.979 (95% CI: 

[0.959, 1.000]), and negative predictive value of 0.987 (95% CI: [0.976, 0.994]). for distinguishing lung 

cancer from subjects with SPNs. This work represents a strategy for high-throughput curation of multi-

modal longitudinal cohorts at risk for lung cancer from routinely collected EHRs. 

1. Introduction 

The use of predictive models to inform clinical diagnosis, management, and prognosis is an area 

of intense research, especially in the early diagnosis of lung cancer from detected pulmonary 

nodules[1,2]. Large representative cohorts are a key ingredient in developing and validating predictive 
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models that generalize well across communities[3]. Although prospective clinical trials such as the 

National Lung Screening Trial [4] have provided a richly annotated datasets for this purpose, they are 

costly to replicate at scale and are limited in scope as they only include high-risk, lung cancer screening 

patients. Without well-funded clinical trial enrollment, electronic health records (EHRs) represent the 

next best window into clinical populations[5,6]. Curating a retrospective cohort from the EHRs is a two-

step pipeline that includes (1) defining a phenotype to separate cases and controls within an appropriate 

time window, and (2) mining data across modalities and time.  

Individuals with an indeterminate pulmonary nodule (IPN) detected incidentally or during 

screening, and without a recent or active history of any cancer, represent a clinical challenge due to 

limitations of available noninvasive methods to risk stratifying IPNs [7]. In contrast, individuals with an 

active cancer or recent cancer history who present with an IPN undergo are generally managed with more 

aggressive diagnostic investigations due to a higher pretest probability of malignancy. The value of 

predictive models is limited in this setting, so these individuals should excluded from study cohorts for 

lung cancer prediction [8,9]. A common starting point for finding diagnoses from the EHR are 

International Classification of Diseases (ICD) codes, a hierarchical terminology of medical findings, 

diagnoses, and conditions that is ubiquitously used for reimbursement requests in the United States[10]. 

For many diagnoses, including lung cancer, there is no consensus on which ICD codes should be included 

to define the diagnostic event. Furthermore, identifying cases where an IPN ultimately diagnosed as lung 

cancer is a nontrivial issue as the information is often only accessible as non-structured data within biopsy 

reports and clinical notes. This study proposes a strategy for defining lung cancer and IPN events based 

on existing SNOMED-CT concepts[11]. We further leverage the implicit timing between the two events 

to label cases and controls. 

 Once cases and controls have been identified, data from these subjects are commonly 

retrospectively extracted. An imaging study would require chest CT scans that capture SPNs, ideally 

repeated scans that show nodule change over time. To this end, imaging studies undertake expensive and 

time-consuming visual assessments of each image. Studies of non-imaging risk factors likewise undertake 

challenging efforts to extract clinical concepts from the EHR. These challenges motivate a scalable 

method for medical image and clinical concept mining that would enable high-throughput research or at 

least preliminary curation to minimize manual effort. This study proposes to implicitly curate images and 

clinical concepts that occur in clinically-informed time windows surrounding the lung cancer or SPN 

events. 

Standardized cohort curation methods are needed to increase the chance that cohorts are 

comparable across geographic and institutional boundaries. However, the underlying data structure of 

EHRs differ by institution, with each facing unique challenges in extracting information from 
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heterogeneously structured, sparse, and irregularly sampled data. The methods put forth in this study seek 

to be agnostic to data structure by inferring phenotypes from ICD codes only. We test the validity of these 

inferences by comparing our cohorts with our institution’s cancer registry [12]. The proposed method was 

used to curate three cohorts from our home institution: a clinical concepts cohort and two longitudinal 

imaging cohorts.  

2. Data 

All data were collected from Vanderbilt University Medical Center (VUMC) under a protocol 

approved by  the Vanderbilt Human Research Protections Program, IRB #140274. Non-imaging data 

were pulled from the Research Derivative, our archive of 2.5 million EHRs from VUMC collected over 

the two decades [13]. The full history of ICD codes and their occurrence date were retrieved for each 

subject in the study. We also tapped ImageVU, our linked imaging archive that contains an incomplete 

subset of chest and full body CTs acquired at VUMC after 2012.  

3. Methods 

Risk factors, biomarkers, and predictive models are most valuable when they inform early risk 

stratification before patients undergo invasive procedures and well before the disease becomes metastatic. 

We choose to retrospectively capture this population by finding individuals with a SPN detected 

incidentally or by screening who do not have a history of any cancer. We use ICD-based rules to define 

the presence of pulmonary nodules, lung cancer, and history of any cancer, and leverage their relative 

timing to distinguish those who developed lung cancer from those with benign disease. These methods 

are used to curate three different cohorts that represent populations from VUMC with (1) an SPN, (2) an 

SPN and longitudinal chest CT imaging, and (3) just longitudinal chest CT imaging. We denote these 

cohorts as VU-SPN, VU-LI-SPN, and VU-LI respectively.  

 

3.1. ICD-based Phenotypes 

Table 1. ICD-based phenotypes for SPN and lung cancer 

Version Code Description 

Phenotype: Solitary Pulmonary Nodule 
   ICD-9 793.11 Solitary pulmonary nodule 
   ICD-10 R91.1 Solitary pulmonary nodule 

Phenotype: Lung cancer 
   ICD-9 162† Malignant neoplasm of trachea bronchus and lung 
   ICD-9 197.0 Secondary malignant neoplasm of lung 
   ICD-9 209.21 Malignant carcinoid tumor of the bronchus and lung 
   ICD-9 176.4 Kaposi's sarcoma, lung 
   ICD-10 C34* Malignant neoplasm of bronchus and lung 
   ICD-10 C7A.090 Malignant carcinoid tumor of the bronchus and lung 
   ICD-10 C46.5* Kaposi's sarcoma of lung 
   ICD-10 C78.0* Secondary malignant neoplasm of lung 

†Includes all sub-categories below the hierarchy except 162.0 “Malignant neoplasm of trachea”. *Includes all sub-categories 

below the hierarchy under this general category. 
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ICD-based phenotypes can be inferred using clinical expert-designed schemas that map high level 

clinical concepts to aggregations of ICD codes. The leading expert-designed schemas that have emerged 

include Phecodes [14,15], representing diseases for PheWAS-based clinical and genetic research , and 

SNOMED-CT, a comprehensive terminology that broadly includes clinical concepts beyond diseases. 

The phenotyping efforts in this study leveraged a mapping between SNOMED-CT concepts and ICD 

codes [16], but we note that Phecodes result in similar phenotype definitions for lung cancer and 

pulmonary nodules.  

For the SPN phenotype, we used SNOMED-CT with SCTID 427359005, concept name “Solitary 

nodule of lung (finding)”, to identify ICD-9 793.11 and ICD-10-CM R91.1 both named “solitary 

pulmonary nodule”. For the lung cancer phenotype, we aggregated the descendants of SCTID 363358000, 

concept name “Malignant tumor of lung”, and mapped them to ICD-9/ICD-10/ICD-10-CM codes, 

ultimately finding 56 matching codes in our archives (Table 1). This aggregation of codes represents a 

broad phenotype of lung cancer and includes any malignancy found in the bronchus or lung, but excludes 

malignancies of the trachea, larynx, mediastinum, and pleura. The phenotype can be further factorized to 

distinguish between primary lung cancer and metastasis to the lung from other cancers if the need arises. 

Finally, a phenotype for any malignancy was created by aggregating the descendants of SCTID 

363346000, concept name “Malignant neoplastic disease” and mapping the concepts to ICD codes. 
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3.2 Criteria for inclusion, case, and control 

 We defined the cohort inclusion criteria as individuals with a SPN phenotype and no cancer 

phenotype occurring before the SPN phenotype (Figure 1). Lung cancer cases are individuals with a lung 

cancer phenotype occurring 4 to 1095 days after the SPN phenotype. A SPN that is stable for three years 

is highly unlikely to be malignant, based on previous clinical studies. Controls are individuals that meet 

the inclusion criteria but not the positive case criteria. Importantly, we excluded records that ended within 

three years of an SPN. We defined the end of a record as the date of the last ICD code plus a 1 month 

buffer. These rules were used to label VU-SPN and VU-LI-SPN. 

These criteria represent a conservative strategy that may not be adequately sensitive for capturing 

lung cancer incidence, since subjects must have a SPN that rises to the threshold of being worked up to be 

included in the cohort. We defined a broader inclusion criteria to identify those with and without lung 

cancer, regardless of SPN presence. Cases were those without cancer of any type before an occurrence of 

a lung cancer phenotype. Controls were those without lung cancer, and no cancer of any type before an 

 
Figure 1. Archives linking EHRs to imaging allowed for the 

selection of subjects via ICD rules. Scans that were low 

quality and data that did not fall within observation windows 

were excluded. VU-SPN: subjects with no cancer history prior 

to an SPN code. VU-LI-SPN: subjects in VU-SPN with 

imaging. VU-LI-Incidence: subjects with imaging. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2023. ; https://doi.org/10.1101/2023.11.03.23298020doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.03.23298020
http://creativecommons.org/licenses/by-nc/4.0/


 6 

observation. Any data occurring after a diagnosis of cancer were excluded. These rules were used to label 

VU-LI. 

3.3 SPN cohort 

We collected records from the Research Derivative with ICD codes matching the SPN phenotype. 

Our observation window for each subject ranged inclusively from the start of their record to the date of 

their lung cancer event. Within this window, we collected demographics, ICD codes, laboratory values, 

and medication orders. Observations occurring after the lung cancer code was excluded (Table 2). 

 

3.4 Longitudinal Imaging cohorts 

We assembled a cohort with repeated chest CTs that captured pulmonary nodules or untreated 

lung cancer for a longitudinal imaging study (Figure 1). We started with an initial discovery cohort of 

individuals in ImageVU with three CTs within five years. As a quality assurance step, we algorithmically 

analyzed the imaging metadata to discard images with poor slice contiguity and unrealistic physical 

dimensions. We also performed a fast manual review to remove CTs that did not fully include the lung 

field or had occluding artifact. Finally, we retrieved ICD codes for the discovery cohort that passed this 

quality assurance and identified cases and controls (Table 2). 

A unique challenge in building imaging cohorts is inferring which images best capture a lung 

cancer without the need for visual assessment or robust natural language processing of radiologic reports. 

For lung cancer cases we implicitly classified images based on their timing relative to the first occurring 

lung cancer event (Figure 2). The classes are distinguished as follows. Pre-3+: Images acquired three or 

more years before the lung cancer phenotype. They are unlikely to capture any relevant pulmonary 

nodules. Pre-3: Images acquired 1-3 years before the lung cancer phenotype. They are likely to capture 

 
Figure 2. Distribution of scans surrounding first diagnosis of lung cancer in the LIVU-SPN cohort. Scans were classified  

into disjoint time windows (in chronological order: Pre 3+, Pre 3, Pre 1, Post 3, and Post 3+) based on their proximity to the 

first lung cancer event for cases or first SPN event for controls. For cases (a), scans occurring at or before the lung cancer 

event (Pre 3+, Pre 3, Pre 1) were included in the cohort while scans collected after were excluded (Post 3, Post 3+). For 

controls (b), scans that were acquired before or within three years after the first SPN code (Pre, Post 3) were included in the 

cohort while scans acquired three years after were excluded (Post 3+). 
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pulmonary nodules in the pre-malignant stage. Pre-1: Images acquired from the date of the lung cancer 

phenotype to 1 year before. They are likely to capture undiagnosed and untreated lung cancer [8,9]. Post-

3: Images acquired 3 years after the lung cancer phenotype was observed. They are likely to capture lung 

cancer that was diagnosed and treated. Post-3+: Images acquired more than 3 years after the lung cancer 

phenotype. They are not likely to capture findings relevant to lung cancer. For controls, we designate two 

classes of images as useful for analysis: images before the SPN code (Pre) and those within three years 

after the SPN (Post-3). Images acquired more than three years after the SPN (Post-3+) were discarded 

due to the possibility of containing unlabeled lung cancer. 

3.5 Validation 

 The ICD-based decision rules for distinguishing lung cancer cases and controls were compared 

against the VUMC Cancer Registry (VCR), an externally developed registry of all patients who received 

a cancer diagnosis or first course treatment for a cancer at VUMC from 1983 to 2023. For inclusion in the 

registry, records are first broadly selected using pathology reports or the presence of ICD codes. Each 

selected record is reviewed by trained clinicians and confirmed cases are reported the Tennessee State 

Registry. We estimate that this process produces an extremely low false positive rate for inclusion in the 

VCR to indicate a true cancer case [12]. However, the false negative rate is difficult to bound because the 

VCR does not include patients diagnosed at other institutions who then receive second course treatment 

or beyond at VUMC.  

To explain the gap between our cohorts and the VCR, we conducted a chart review of the 

mismatched patients using clinical notes and pathology reports (Table 3). Due to the large cohort size, we 

reviewed a random 10% of cases and controls absent from the VCR. We did not review cases present in 

the VCR because they are manually reviewed and we expected a negligible false positive rate.  

3.6 Statistics 

We used the following bootstrap procedure to estimate the proportions of cases and controls that 

truly meet criteria from our chart review. First, we attained 100,000 samples by sampling with 

replacement from subjects whose charts were reviewed. The size of each sample was 627, which is 10% 

of VU-SPN. We stratified the sampling by the comparison between VU-SPN and VCR. That is, each 

bootstrapped sample was the union of a 10% sample from the 675 cases present in VCR, a 100% sample 

from the 28 reviewed cases absent from VCR, a 10% sample from the 50 reviewed controls present in 

VCR, and a 100% of the 526 reviewed controls absent from VCR. We report the proportion estimates as 

the bootstrapped medians. Values at the 2.5th and 97.5th percentile among bootstrap samples formed the 

95% confidence intervals of each estimate (Table 4). We also computed the sensitivity, specificity, 

positive predictive value (PPV), and negative predictive value (NPV) in each bootstrap sample and report 

their aggregate estimates using the same procedure.  
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For imaging cohorts, we simply conducted reviewed the predicted cases absent from VCR and 

predicted controls present in the VCR (Table 5). We did not perform a full review of these imaging 

cohorts because we conducted our validation with a larger overlapping cohort in VU-SPN. 

 

4. Results 

4.1 Clinical Concepts 

16,053 unique subjects were found to match inclusion criteria. However, 9769 controls were excluded 

due to their record ending within three years of the SPN date. Ultimately we identified 946 cases and 

5308 controls (Table 2). We collected all demographics, ICD codes, laboratory tests, and medications 

occurring before the SPN.  

4.2 Longitudinal Imaging 

4229 CT scans across 1672 subjects were included in the initial discovery cohort. From the 

discovery cohort, 4110 chest CTs across 1636 subjects were found to meet quality standards. 199 of these 

subjects met the SPN inclusion criteria with 30 lung cancer cases and 169 controls. The broader inclusion 

criteria identified 535 subjects with 66 cases and 469 controls.  

VU-LI-SPN cases were associated with 167 chest CTs with 0 in the Pre-3+ class, 13 in Pre-3, 29 

in Pre-1, 94 in Post-3, and 31 in Post-3+ (Figure 2a). Controls were associated with 465 chest CTs with 

189 in the Pre class, 205 in Post-3, and 71 in Post-3+ (Figure 2b). VU-LI cases were associated with 2082 

chest CTs, with 1 in the Pre-3+ class, 16 in the Pre-3 class, 71 in the Pre-1 class, 543 in Post-3, and 202 in 

Post-3+. Since images in the Post-3 and Post-3+ class are likely to capture cancers that have been 

diagnosed and treated, their diagnostic value to an imaging study is uncertain and they should excluded. 

After excluding usable scans, VU-LI-SPN captured 436 scans across 199 subjects while the VU-LI 

captured 1337 scans across 535 subjects (Table 2). 

Table 2. Cohorts Characteristics 

Cohort VU-SPN VU-LI-SPN VU-LI 

No. subjects 6254 199 535 

    Cases/Controls 946 (6%) / 5308 30 (15%) / 169 66 (12%) / 469 

No. scans N/A 436 1337 

    Cases/Controls N/A 42 (9.9%) / 394 88 (6.6%) / 1249 

Age 57.2±15.8 59.9 ±13.1 62.0 ±11.0 

Sex (male) 2776 (44%) 126 (59%) 383 (72%) 

BMI 29.2±7.03 27.5±7.23 27.1±6.33 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2023. ; https://doi.org/10.1101/2023.11.03.23298020doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.03.23298020
http://creativecommons.org/licenses/by-nc/4.0/


 9 

 

 

4.3 VCR Validation 

In the VU-SPN cohort we reviewed all 50 controls present in the VCR, 28 out of 271 cases absent 

from the VCR, and 451 out of 5258 controls absent from the VCR. Within the first group, 4 (8%) were 

diagnosed with lung cancer before the SPN date, 10 (20%) were diagnosed within three years after the 

SPN, and 36 (72%) were diagnosed beyond three years after the SPN. Within the second group, we found 

that 24 records met case criteria while 4 were unable to be confirmed as cases via chart review. 2 of these 

4 subjects were likely to have lung cancer based on the clinical picture, but the diagnosis was not 

confirmed due to patient choice and patient death. For the third group, we found 1 (0.19%) subject with 

lung cancer, 5 (0.95%) subjects with a history of cancer before their SPN, and 520 (98.8%) subjects that 

met control criteria. With bootstrapping, we estimated that 0.979 (95% CI: [0.948, 1.00]) of predicted 

Table 3. VU-SPN cases/controls vs. presence in VUMC 

Cancer Registry (VCR). (Number of subjects that we 

chart reviewed from each cell.) 
 VCR 

 Present Absent 

VU-SPN   

Predicted Cases 675 

(0) 

271 

(28) 

Predicted Controls 50 

(50) 

5258 

(526) 

 
Table 4. Estimated proportion of predicted cases and controls in VU-SPN that 

truly met criteria, reported as median and 95% CI of bootstrapped samples. 
 Estimated  

 True Case True Control Do not meet 

inclusion criteria 

VU-SPN    

Predicted Cases 0.979 

[0.948, 1.00] 

0.021 

[0.00, 0.052] 

0 

[0, 0] 

Predicted Controls 0.013 

[0.006, 0.024] 

0.987 

[0.976, 0.994] 

0.009 

[0.002, 0.019] 

 
Table 5. Estimated true cases and controls from VU-LI-SPN and VU-LI. Only mismatches between cohort vs. VCR 

were reviewed. (Number of subjects that we chart reviewed from each cell) 
 VCR  Estimated  

 Present Absent True Case True Control 

VU-LI-SPN     

Predicted Cases 28  

(0) 

2  

(2) 
 

30 0 

Predicted Controls 5  

(5) 

164  

(0) 

0 169 

VU-LI     

Predicted Cases 58  

(0) 
 

8  

(8) 

66 0 

Predicted Controls 3  

(3) 

466  

(0) 

3 466 

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2023. ; https://doi.org/10.1101/2023.11.03.23298020doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.03.23298020
http://creativecommons.org/licenses/by-nc/4.0/


 10 

cases and 0.987 (95% CI: [0.976, 0.994]) of predicted controls to truly meet their respective criteria 

(Table 4). Our method achieved a median sensitivity of 0.930 (95% CI: [0.879, 0.969]), specificity of 

0.996 (95% CI: [0.989, 1.00]), and positive predictive value of 0.979 (95% CI: [0.959, 1.000]), negative 

predictive value of 0.987 (95% CI: [0.976, 0.994]).  

In the VU-LI-SPN cohort, there were 5 controls present in the VCR and 2 cases absent from the 

VCR. All of the former developed lung cancer more than three years after their first observed SPN code, 

meaning they were appropriately labeled as a control. Chart review of the latter confirmed that they all 

met case criteria despite being absent from the VCR. In VU-LI there were 3 controls present in the VCR 

and 8 cases absent from the VCR. Chart review determined that all of the former did have lung cancer, 

while all of the latter met case criteria (Table 5).  

 

5. Discussion 

 In this work we outline a strategy that leverages simple and well-defined rules around ICD codes 

to curate three cohorts for studying pulmonary nodules at risk for lung cancer from our local institution. 

Our approach avoids any systematic assumptions about the institution or the EHR, except for similarity in 

the use of the relevant ICD codes for reimbursement purposes. Within these cohorts we verify that our 

approach is highly accurate in identifying subjects with and at risk for lung cancer. We are not surprised 

that lung cancer codes have high specificity, at 0.996, and high PPV, at 0.979, because billing for this life-

changing condition should not occur unless clinicians are certain of the diagnosis. We believe this is a 

reasonable explanation for our results that likely holds across code sets of other cancers and across 

different institutions. 

In this work, we excluded a large portion of data because it fell outside of the observation 

windows of interest. The observation window for non-imaging data was anytime before the SPN event, 

while the window for imaging data depended on its proximity to the lung cancer and SPN events. This 

strategy is suitable for building a validation cohort because it prevents estimates of the posterior 

probability, found in data after the lung cancer event, from leaking into the validation. However, 

including data that occurs after the lung cancer event can be beneficial for hypothesis generation or model 

development, as this research may gain insight from seeing posterior observations. For example, 

unsupervised training on imaging acquired after diagnosis of lung cancer can lend statistical strength to a 

predictive model even if those images have no diagnostic value.  

 A few edge cases demonstrate the limitations of our approach. First, there were 4 controls in VU-

LI-SPN that became lung cancer cases in VU-LI. These were subjects that had a lung cancer code which 

occurred three years after their first SPN code. The lung cancers are most likely unrelated to the first SPN 
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and may have arisen from other nodules that the subjects acquired after the first. The inability to 

distinguish between multiple nodules in the same subject is a limitation of our approach.  

Second, our validation supports a 7% false negative rate with various modes of failure. 14 out of 

the 20 false negatives developed lung cancer but were incorrectly billed and did not receive a lung cancer 

code. 5 of the false negatives were subjects who had a clinical note citing a remote history of cancer 

before their SPN and therefore should not have met our inclusion criteria. There was no corresponding 

ICD code for these subjects. A single false negative had a code for mucosa-associated lymphoid tissue 

lymphoma (MALT), which can arise in the lung and present as a SPN [17]. However, ICD taxonomy 

does not distinguish pulmonary MALT lymphoma from MALT lymphoma in other organs. In summary, 

our high-throughput method is effective at curating and labeling cohorts for lung cancer research from 

subjects that have a EHR footprint in the form of billing codes, but rare limitations arise when relying on 

the medical billing system. 
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