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Highlights

● Two 3D CNNs trained from scratch and validated to predict age from T1-w brain

MRI

● Testing on motion-free and motion-corrupted scans from the same participants

● Image quality assessed by neuroradiologists and using standard image quality metrics

● Systematic increase in brain-predicted age difference with worsening image quality

● Spurious advanced brain aging effect in scans deemed usable for clinical diagnostics

Abstract

Deep learning can be used effectively to predict participants' age from brain magnetic

resonance imaging (MRI) data, and a growing body of evidence suggests that the difference

between predicted and chronological age—referred to as brain-predicted age difference

(brain-PAD)—is related to various neurological and neuropsychiatric disease states. A crucial

aspect of the applicability of brain-PAD as a biomarker of individual brain health is whether

and how brain-predicted age is affected by MR image artifacts commonly encountered in

clinical settings. To investigate this issue, we trained and validated two different 3D

convolutional neural network architectures (CNNs) from scratch and tested the models on a

separate dataset consisting of motion-free and motion-corrupted T1-weighted MRI scans

from the same participants, the quality of which were rated by neuroradiologists from a

clinical diagnostic point of view. Our results revealed a systematic increase in brain-PAD

with worsening image quality for both models. This effect was also observed for images that

were deemed usable from a clinical perspective, with brains appearing older in medium than

in good quality images. These findings were also supported by significant associations found

between the brain-PAD and standard image quality metrics indicating larger brain-PAD for

lower-quality images. Our results demonstrate a spurious effect of advanced brain aging as a
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result of head motion and underline the importance of controlling for image quality when

using brain-predicted age based on structural neuroimaging data as a proxy measure for brain

health.

1. Introduction

The human brain undergoes considerable change in its structural architecture and functional

organization during the adult lifespan. Age-related macrostructural changes are characterized

by the expansion of the ventricular system and a heterogeneous pattern of reduction in gray

matter volume [1–3], while changes in white matter volume follow an inverted U-shaped

trajectory, with a peak around 50 years of age followed by a rapid decrease after 60 years of

age [4,5]. Alterations in brain function are evidenced by the reorganization of the

resting-state functional connectome [6] and changes in task-related brain activity across the

lifespan [7]. Brain aging is also accompanied by cognitive decline—affecting in particular the

speed of information processing and the faculties of reasoning, memory, and executive

functions [8]—and an increased risk for neurodegenerative diseases such as Alzheimer’s

disease and Parkinson disease [9]. However, it has also been shown that the pace and

magnitude of structural changes in brain aging vary considerably among individuals [10,11].

Hence, quantifying the extent to which an individual deviates from the healthy brain aging

trajectory allows for the identification of accelerated or decelerated brain aging and the

evaluation of the associated risk for health deterioration and potential treatment options. To

this end, the dominant approach in the last decade has been to predict the age of the

individual in a machine learning framework based on structural or functional neuroimaging

data. In the past few years, deep learning has been increasingly used to predict brain age from

magnetic resonance imaging (MRI) data, in line with recent trends regarding the application

of deep neural networks in medical image processing in general [12,13] and in the study of

neurological and psychiatric disorders in particular [14,15]. In many cases, convolutional

neural networks (CNNs) [16,17], designed to learn from raw data in the form of

multi-dimensional arrays such as 2D images or 3D volumes [18] are used for this purpose. In

particular, 3D CNNs have been used successfully to predict chronological age from

minimally-preprocessed structural MRI scans [19–23].

A growing body of evidence suggests that the difference between the predicted brain age and

the chronological age of the individual—referred to as brain-predicted age difference

(brain-PAD)—is indicative of overall brain health [24,25], presenting a potential for its use as
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an aging biomarker. This difference has been shown to be smaller in individuals with autism

spectrum disorder [26] and attention-deficit hyperactivity disorder [27] than in healthy

control participants, in line with the assumption of delayed brain development in these patient

populations. Conversely, having an older-appearing brain has been associated with an

increased risk of mortality [28] and with various disease states including mild cognitive

impairment and Alzheimer’s disease [29–31], epilepsy [32,33], and schizophrenia [34–36].

Longitudinal changes in brain age have also been associated with disease progression in

dementia. Advanced brain aging has been related to cognitive decline and clinical disease

severity, and increased brain-PAD has been demonstrated to accurately predict the conversion

of mild cognitive impairment to Alzheimer’s disease [29,30]. This increase in brain-PAD has

also been observed in cognitively unimpaired individuals that developed mild cognitive

impairment or dementia later on [22]. Brain age prediction may also be applied effectively in

the assessment of risk and severity in other neurological disease states. Evidence suggests

that brain age is associated with cardiovascular risk factors including stroke risk [37], and

disease severity and long-term recovery in post-stroke aphasia [38,39].

Given the potential of brain-predicted age as a biomarker of individual brain health, the

feasibility and relevance of brain age prediction in clinical settings is an especially important

issue. A recent study has shown that accurate brain age prediction can be achieved using

clinical-grade T2-weighted MRI scans acquired in routine hospital examinations, with

increased brain-PAD indicating excessive brain atrophy [21]. This suggests that high

resolution scans optimized for research purposes may not be necessary to obtain

diagnostically relevant information using brain age prediction. A related issue that remains to

be investigated is whether and how brain-predicted age is affected by common MR image

artifacts. One of the most prominent sources of degraded scan quality is patient motion,

which can introduce ghosting and blurring artifacts in the MR image [40–43]. Head motion is

a common problem in clinical MR examinations that entails significant costs to radiology

departments [44]. Furthermore, when studying neurological and neuropsychiatric disorders or

longitudinal changes in brain structure and function, head motion can be a confounding factor

due to its correlation with age and disease state. Younger participants have been shown to

move more during MR image acquisition than individuals aged between 20 and 40 years

[45], and older adults are more prone to move their heads than younger ones [46]. Increased

movement of the head is associated with autism spectrum disorder, attention-deficit

hyperactivity disorder, and schizophrenia as well [45]. Head motion during functional

magnetic resonance imaging (fMRI) has also been shown to differ systematically between
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patients with mild cognitive impairment, Alzheimer’s disease, and healthy controls [47]. The

problem of motion is particularly significant because it is known to induce spurious effects in

resting-state functional connectivity MRI [48–50] and structural brain MRI analysis [45,51].

A recent study has investigated the reliability and predictive power of three commonly used

pre-trained brain age prediction algorithms—XGBoost, which uses gradient tree boosting to

predict age based on precomputed morphometric features [52], and brainageR [28] and

DeepBrainNet [53], using Gaussian process regression and 2D CNN, respectively, to predict

age based on minimally preprocessed T1-weighted images—and observed a modest

correlation between XGBoost brain-PAD and a combined measure of image quality derived

using the Computational Anatomy Toolbox (CAT12) [54]. In the present work, we examined

the sensitivity of 3D CNNs specifically to head motion. We investigated 3D CNNs due to

their remarkable effectiveness in predicting brain age from structural and functional brain

images [19–23]. We trained two different neural network architectures—3D CNN using

spatially separable convolutions and a regression variant of the Simple Fully Convolutional

Network (SFCN-reg) [20]—from scratch and validated them using a large number of

T1-weighted MRI scans and tested the networks on the separate MR-ART dataset [55].

MR-ART consists of motion-free and motion-corrupted brain scans from the same

participants, the quality of which were rated by neuroradiologists from a clinical point of

view. In particular, we examined whether the degradation of image quality by motion

artifacts has a significant effect on brain-predicted age, by comparing brain-PAD between

different quality images of the same subjects. We focused on brain-PAD because any

systematic motion-related effect may result in spurious differences when using

brain-predicted age as a proxy for advanced or delayed brain aging. We also examined the

relationship between brain-PAD and MRI image quality metrics (IQMs) that are known to be

sensitive to MRI artifacts including those resulting from movement [56-59].

2. Methods

2.1. Data acquisition

2.1.1. Source dataset

We used T1-weighted brain MRI scans from the UK Biobank dataset to train and evaluate the

brain age prediction source model on a large cohort of predominantly healthy individuals
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with good quality images. UK Biobank is a large population-based prospective study with

over 500,000 individuals recruited between 2006 and 2010 from across Great Britain and

comprises detailed phenotypic and genotypic information about participants [60]. A subset of

the participants underwent MRI assessment starting from 2014. Data were acquired on

Siemens Skyra 3T MRI scanners (Siemens Healthcare, Erlangen, Germany), using a standard

Siemens 32-channel RF receive head coil, at the UK Biobank imaging centers in Cheadle,

Newcastle, and Reading. The brain imaging protocol included a T1-weighted 3D

magnetization-prepared rapid gradient echo (MPRAGE) sequence for structural imaging,

using in-plane acceleration (iPAT = 2) and a field-of-view (FOV) of 208 × 256 × 256 with

isotropic 1 mm spatial resolution [61].

Image quality control on behalf of UK Biobank consisted of the rough manual review of T1

images supplemented by a beta-version automated quality control pipeline [61]. Participants

with a T1-weighted brain MRI scan deemed “unusable” by the UK Biobank team were

excluded from the present study. Images from participants who attended a second imaging

visit were also discarded, as we plan to use this data in a further, unrelated analysis. In

addition, participants with a self-reported history of cancer, stroke, heart attack, deep-vein

thrombosis, or pulmonary embolism diagnosed by a medical doctor (based on data-fields

2453-2.0, 6150-2.0, and 6152-2.0) were also omitted from the current study. Eventually, data

from N = 32897 participants (17371 females) were used. A single T1-weighted brain MRI

scan was used from each subject to train and evaluate the brain age prediction model. The

dataset was randomly divided into disjoint training (N = 26897), validation (N = 3000), and

test sets (N = 3000) using stratified sampling with age and sex as stratification variables

(Table 1.). Only data in the training and validation sets were used for model training and

hyperparameter selection.
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Table 1. Number of images and descriptive statistics for chronological age (in years) at the

time of the MRI assessment in the UK Biobank dataset used for the training and evaluation of

the brain age prediction source model.

Training set Validation set Test set

Number of images 26897 3000 3000

Age range 44.57 - 82.44 46.34 - 81.91 46.25 - 82.18

Mean age ± standard
deviation 64.36 ± 7.65 64.35 ± 7.70 64.33 ± 7.64

2.1.2. Transfer learning dataset

The transfer learning dataset was used to adapt the source model to brain scans collected in

our own lab. Importantly, it was ensured that there was no overlap in subjects between the

transfer learning dataset and the MR-ART test set used to investigate the effect of head

motion on brain age prediction (see section 2.1.3.). Image acquisitions were performed on a

Siemens Magnetom Prisma 3T MRI scanner (Siemens Healthcare GmbH, Erlangen,

Germany) with Siemens 20-channel, 32-channel, and 64-channel head-neck receiver coils at

the Brain Imaging Centre, Research Centre for Natural Sciences. T1-weighted 3D MPRAGE

anatomical images were acquired using 2-fold in-plane GRAPPA acceleration with isotropic

1 mm3 spatial resolution (repetition time (TR) = 2300 ms, echo time (TE) = 3 ms, inversion

time (TI) = 900 ms, flip angle (FA) = 9°, FOV = 256 × 256 × 192 mm). The research protocol

used for collecting the dataset was designed and conducted in accordance with the Hungarian

regulations and laws, and was approved by the National Institute of Pharmacy and Nutrition

(file number: OGYÉI/70184/2017).

The transfer learning dataset included 453 images from 451 participants (275 females). The

dataset was divided into disjoint training (N = 361 images) and validation (N = 92) sets using

stratification based on age, sex, and the number of head-neck receiver coil channels (Table

2.). The number of coils was taken into consideration because the MR-ART test set contained

images acquired using the 20-channel head-neck receiver coil, however, we intended to use
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all available scans in our lab—apart from MR-ART images—to boost brain age prediction

accuracy as much as possible.

Table 2. Number of images and descriptive statistics for chronological age (in years) at the

time of image acquisition in the transfer learning dataset.

Training set Validation set

Number of images
(number of subjects) 361 (359) 92 (92)

Age range 18.14 - 89.48 18.35 - 79.95

Mean age ± standard
deviation 35.75 ± 18.82 36.23 ± 19.20

2.1.3. MR-ART test set

We used MRI data collected in our own lab as part of the MR-ART dataset to investigate the

accuracy of brain age prediction under different levels of image degradation related to head

motion-induced artifacts. The MR-ART dataset [55] contains motion-free and

motion-affected data acquired from the same participants. 148 healthy adult volunteers (95

females) with no reported history of neurological or psychiatric diseases participated in the

study.

Image acquisitions were performed on a Siemens Magnetom Prisma 3T MRI scanner

(Siemens Healthcare GmbH, Erlangen, Germany) with the standard Siemens 20-channel

head-neck receiver coil at the Brain Imaging Centre, Research Centre for Natural Sciences.

T1-weighted 3DMPRAGE anatomical images were acquired using 2-fold in-plane GRAPPA

acceleration with isotropic 1 mm3 spatial resolution (TR = 2300 ms, TE = 3 ms, TI = 900 ms,

FA = 9°, FOV = 256 × 256 mm). Three T1-weighted structural scans were acquired with the

same parameters for each participant in a standard setting without motion (STAND) and with

low (HM1) and high levels of head motion (HM2). During the acquisition, a fixation point

was presented at the center of the display, and participants were instructed to gaze at this
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point. For the STAND scan, participants were instructed not to move at all, while for the

HM1 and HM2 scans, participants were instructed to nod their head (tilt it down and then up

along the sagittal plane) once every time the word “MOVE” (in Hungarian) appeared on the

screen. To create different levels of movement artifacts, the word “MOVE” was presented 5

and 10 times evenly spaced during image acquisition for the HM1 and HM2 scans,

respectively. Participants were instructed to avoid lifting their heads from the scanner table

while nodding and to return their heads to the original position after performing a nod. Due to

acquisition issues, one of the HM1 and HM2 scans is missing for 8 participants. All

participants provided written, informed consent before participation. The research protocol

used for collecting the dataset was designed and conducted in accordance with the Hungarian

regulations and laws, and was approved by the National Institute of Pharmacy and Nutrition

(file number: OGYÉI/70184/2017).

MR images were labeled based on visual inspection of the structural volumes by two

neuroradiologists with more than ten years of experience, who were blind to the acquisition

conditions (STAND, HM1 or HM2). Each record was rated on a 3-point scale based on image

quality from the point of view of clinical diagnostic use. Clinically good (score 1), medium

(score 2), and bad quality images (score 3) were differentiated, where bad quality images

were considered unusable for clinical diagnostics (Table 3.). The two neuroradiologists

initially harmonized their rating on 100 independent structural scans and were encouraged to

discuss unclear cases during the whole labeling process in order to make the scores as robust

as possible.

Table 3. Number of clinically good (score 1), medium (score 2), and bad quality (score 3)

images and descriptive statistics for chronological age (in years) at the time of image

acquisition in the MR-ART test set.

Score 1 Score 2 Score 3

Number of images
(number of subjects) 129 (119) 109 (82) 198 (125)

Age range 18.15 - 74.80 18.15 - 71.36 18.15 - 74.80

Mean age ± standard
deviation 29.84 ± 12.18 29.51 ± 12.85 29.86 ± 12.24
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2.2. Data preprocessing

Raw T1-weighted images comprising the source dataset were preprocessed by the UK

Biobank team using an automated processing pipeline based on FSL tools [62]. The

preprocessing pipeline included gradient distortion correction, cutting down the FOV, skull

stripping, and non-linear transformation to MNI152 space [61]. The codes for the

preprocessing pipeline are available online at:

https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1. We applied the same

preprocessing pipeline to images in the transfer learning dataset and the MR-ART test set.

Chronological age was calculated as the difference between the date of MR image acquisition

and the date of birth divided by 365.25. As date of birth in the UK Biobank was available

only with precision to the month, the 15th day of the month of birth was used to calculate age

for each participant in the source dataset.

2.3. Neural network architectures

Two different 3D convolutional neural network architectures were used to perform brain age

prediction based on volumetric T1-weighted MR images (Fig. 1). The first model, referred to

as 3D CNN (Supplementary Table 1), was built using spatially separable convolutions to

reduce the computational cost of processing whole-brain volumes. In this case, regular 3D

convolutional layers are factorized into asymmetric convolutions—instead of convolving the

input with kernels of shape K × K × K, a cascade of three convolutional operations with

kernel shapes of K × 1 × 1, 1 × K × 1, and 1 × 1 × K, is applied to the images and feature

maps. The proposed network consists of four convolutional blocks, with each block

consisting of two sets of 3D spatially separable convolution, batch normalization [63] and

rectified linear unit (ReLU) nonlinearity [64]. The first spatially separable convolution in the

first convolutional block uses a stride of 2 to adaptively downsample the input volume,

whereas all the remaining convolutional layers in the network use a stride of 1. Kernel size is

5 in the first and 3 in the remaining convolutional blocks, and all convolutional layers use

SAME padding. The first two sets of spatially separable convolutions use 16 and 32 filters,

and the number of filters is doubled in each successive block. Convolutional blocks are

interleaved with max pooling layers to downsample feature maps at regular intervals. These

pooling layers use a kernel size of 3, a stride of 2, and VALID padding. The last

convolutional block is followed by global average pooling instead of max pooling. The
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spatial averages of feature maps in the last convolutional layer are fed into a fully connected

hidden layer with 128 units using the ReLU nonlinearity, followed by a fully connected

output layer consisting of a single unit with linear activation function. The overall neural

network architecture is similar to the models applied in our previous studies for MRI quality

control [65] and body mass index prediction based on T1-weighted MRI scans [66]. The

model has 890,001 parameters, out of which 888,561 are trainable parameters.

We also implemented a slightly modified version of the SFCN model developed by [20]. This

network consists of 7 blocks. The first five blocks extract feature maps from the input image

using regular 3D convolution, batch normalization, max pooling, and ReLU activation. The

6th block increases further the nonlinearity of the model by using pointwise convolution

along with ReLU and batch normalization, without changing the size of the feature maps. The

final block contains an average pooling layer and a fully connected layer along with softmax

activation. The fully connected layer consists of 40 units, with the activation of each unit

representing the probability that the participant’s age falls into a specific one-year age

interval. In the currently implemented version of the model, referred to as SFCN-reg

(Supplementary Table 2), the fully connected output layer consists of a single unit with no

activation to represent brain-predicted age with a scalar value instead of a probability

distribution. This implementation is similar to previous regression variants of the SFCN

model [22,23].

The models were implemented in Python 3.8.13 using TensorFlow 2.4.1.
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Fig. 1. Overview of image preprocessing and neural network architectures (SFCN-reg and 3D

CNN) used for brain age prediction. For a detailed description of the network layers, see

Supplementary Table 1 and 2.

2.4. Training and evaluation

2.4.1. Training and evaluating the source models

Both models were trained from scratch using the exact same UK Biobank training and

validation set images (the source dataset). For the 3D CNN model, the weights of the

convolutional layers and the fully connected hidden layer were initialized using He normal

initialization [67] and the weights of the output layer were initialized using Glorot uniform

initialization [68]. The bias terms of the convolutional and fully connected layers were

initialized with zeros. We used the mean squared error (MSE) loss function and Adam

optimization [69] with a learning rate of 0.0005 and a batch size of four. Dropout

regularization [70] with a dropout rate of 0.4 was applied to the fully connected hidden layer

during training. The network was trained using early stopping with a patience of 30 epochs,

i.e. the model was evaluated on the validation set after each epoch and training was stopped

when the validation loss had not decreased for the last 30 epochs.
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For the SFCN-reg model, the weights of the layers were initialized using the default Glorot

uniform initializer and the bias terms were initialized with zeros. The MSE loss was

optimized using the Stochastic Gradient Descent (SGD) optimizer. Batch size was set to 4,

and the learning rate was initialized to 0.01 and dropped by a factor of 0.3 every 30 epochs.

L2 regularization was applied to the convolutional and fully connected layers with a

regularization factor of 0.001, and dropout (with a dropout rate of 0.5) was applied after the

global average pooling layer during training. The network was trained for 130 epochs, and

model performance on the validation set was evaluated at the end of each epoch [20].

At the end of the training process, a snapshot of the model parameters leading to the best

validation set performance (i.e. lowest MSE) was restored, and the models were evaluated on

the UK Biobank test set to assess their generalizability. These models and the corresponding

set of learnt weights constituted the source models that were fine-tuned using transfer

learning (section 2.4.2.) and then evaluated on the MR-ART test set to assess their sensitivity

to head motion-induced artifacts (2.4.3.). The accuracy of the models is estimated using the

correlation coefficients between the predicted brain age and the chronological age (Pearson’s

r and Spearman’s ρ), the mean absolute error (MAE), root mean squared error (RMSE),

coefficient of determination (R2), and the mean and standard deviation of the brain-predicted

age difference (brain-PAD, defined as predicted brain age minus chronological age). The age

labels were divided by 100 during training and the model predictions were multiplied by 100

before the statistical analysis of the results.

A single NVIDIA RTX A6000 graphical processing unit (GPU) was used to train the

networks.

2.4.2. Transfer learning

The goal of transfer learning was to adapt the source models to MRI scans that were acquired

using the same scanner and from participants in the same age range as in the MR-ART set.

Again, it is important to note that there was no overlap in subjects between the transfer

learning dataset and the MR-ART dataset. Transfer learning was performed in two phases, in

a similar way for both models. In the first phase, the weights and bias term of the output layer

were reinitialized and the network was trained for 10 epochs. The parameters of all layers

other than the output layer were frozen during training, i.e. they were not allowed to be

changed by backpropagation. The MSE loss was optimized using Adam for the 3D CNN and

SGD for the SFCN-reg model. In the second phase, several layers below the output layer
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were unfreezed and the training process was continued using early stopping with a patience

of 30 epochs. We experimented with unfreezing different numbers of layers and using

different learning and dropout rates, and retained the configuration yielding the lowest

validation MSE. Batch size was set to 4, and batch normalization layers were run in inference

mode during the whole transfer learning process. The model parameters leading to the best

transfer learning validation set performance were restored to evaluate the final models on the

MR-ART dataset.

2.4.3. Evaluation on the MR-ART test set

The final models were evaluated on the MR-ART test set to investigate the effects of head

motion-induced artifacts on brain age prediction accuracy. Besides evaluating the models on

the overall MR-ART set, we selected a subset of participants including all subjects with a

clinically good quality (score 1) STAND, a medium quality (score 2) HM1, and a bad quality

(score 3) HM2 image to ensure the independence of samples in each experimental condition

and quality score level. We refer to this as image selection 1 - IS1. In this way, 105 images

from 35 subjects (25 females; age range = 18.15 - 64.64 years; mean age ± standard deviation

= 27.65 ± 9.78) were selected for further analysis. To compare brain-PAD across the three

clinical scores/conditions, a two-way repeated measures analysis of variance (ANOVA) was

performed with ‘clinical score’ (1/2/3) and ‘model’ (3D CNN/SFCN-reg) as within-subject

factors. Greenhouse-Geisser corrected p-values are reported to account for violations of

sphericity. Post-hoc analysis was performed using pairwise t-tests. Benjamini-Hochberg false

discovery rate (FDR) correction was applied to account for the problem of multiple

comparisons.

In a further step, we narrowed the analysis to good and medium quality images (image

selection 2 - IS2). We selected all subjects who had a good quality (score 1) STAND image

and at least one medium quality (score 2) image. If a subject had two medium quality images,

the HM2 image was kept and used in the analysis. This way we were able to select

good-medium quality image pairs from 54 subjects (36 females; age range = 18.15 - 71.36

years; mean age ± standard deviation = 29.57 ± 12.58). A two-way repeated measures

ANOVA with ‘clinical score’ (1/2) and ‘model’ (3D CNN/SFCN-reg) as within-subject

factors was performed to compare brain-PAD between good and medium quality images in

these subjects. Post-hoc analysis was performed as detailed above. Metrics of model accuracy

are also reported for each clinical score separately.
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A particular bias is commonly observed in brain age prediction: the age of younger

participants is overestimated and the age of elderly subjects is underestimated, whereas the

age of participants whose age lies closer to the mean age in the training sample is estimated

more accurately [71]. Besides the analyses reported in the manuscript using the original

(uncorrected) model predictions, we rerun all the analyses twice after applying different

correction procedures to address this potential bias. Importantly, we used the models’

predictions on the transfer learning validation set to perform these corrections (for details, see

section S1.2 in Supplementary materials and methods).

Furthermore, to assess the association between image quality and brain-predicted age

difference on the MR-ART dataset, partial Pearson’s and Spearman’s correlation coefficients

were calculated between IQMs and brain-PAD by controlling for potential covariate effects of

chronological age. The quality of images was characterized by the Euler number and some

additional IQMs that were shown to be sensitive to MRI artifacts and head motion in

particular [56-59]. The Euler numbers were obtained by running the FreeSurfer toolbox [72],

and the following additional IQMs were selected from the MRIQC toolbox [58]: coefficient

of joint variation (cjv), contrast-to-noise ratio (cnr), signal-to-noise ratio (snr, separately for

cerebrospinal fluid, gray matter, white matter and total brain: snr_csf, snr_gm, snr_wm and

snr_total), Dietrich’s SNR (snrd, similarly to SNR measures: snrd_csf, snrd_gm, snrd_wm

and snrd_total) and quality indices QI1 and QI2. The MRIQC toolbox ran successfully on all

MR-ART images, while FreeSurfer failed for a single image recorded in the HM2 condition

and having clinical score 2. This image was excluded from correlations analysis. To control

for performing multiple correlations, the obtained p values (pu) were corrected per correlation

coefficient type (separately for Pearson’s and Spearman’s coefficients) by the

Benjamini-Hochberg FDR method (pc). The IQMs were calculated using the MRIQC 0.16.1

and FreeSurfer 7.1.1 toolboxes. All statistical analyses were performed using the Pingouin

0.5.3. statistical package for Python 3 [73].
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3. Results

3.1. Brain age prediction on the UK Biobank and the

transfer learning datasets

3D CNN achieved particularly good age prediction performance on the UK Biobank

validation set (MAE = 2.51 years, RMSE = 3.14 years, Pearson’s r = 0.91, Spearman’s ρ =

0.92, R2 = 0.83, mean brain-PAD ± standard deviation = 0.39 ± 3.11 years) and generalized

very well to the UK Biobank test set (MAE = 2.55 years, RMSE = 3.20 years, Pearson’s r =

0.91, Spearman’s ρ = 0.91, R2 = 0.82, mean brain-PAD ± standard deviation = 0.44 ± 3.17

years). When applying transfer learning, the winning configuration consisted of fine-tuning

the second set of spatially separable convolutions (starting with layer

‘conv_block_1/conv2_1’ in Supplementary Table 1) and all the layers above, using learning

rates of 0.001 and 0.0001 in the first and second phase, respectively. This yielded a strong

correlation between the brain-predicted and chronological age (Pearson's r = 0.99,

Spearman’s ρ = 0.81, p < 0.001 for both correlations) on the transfer learning validation set,

and the model was highly accurate in predicting age (MAE = 2.63 years, RMSE = 3.20 years,

R2 = 0.97, mean brain-PAD ± standard deviation = 0.12 ± 3.21 years; Fig. 2).

SFCN-reg achieved even better brain age prediction performance on the UK Biobank

validation (MAE = 2.16 years, RMSE = 2.72 years, Pearson’s r = 0.94, Spearman’s ρ = 0.94,

R2 = 0.88, mean brain-PAD ± standard deviation = 0.18 ± 2.71 years) and test sets (MAE =

2.17 years, RMSE = 2.71 years, Pearson’s r = 0.94, Spearman’s ρ = 0.94, R2 = 0.87, mean

brain-PAD ± standard deviation = 0.14 ± 2.71 years) than the 3D CNN model. The winning

transfer learning configuration consisted of fine-tuning the 6th convolutional layer (‘conv6’

in Supplementary Table 2) along with the reinitialized output layer, using a dropout rate of

0.1 and learning rates of 0.01 in the first and 0.001 with step decay in the second phase. This

yielded remarkably good, albeit slightly lower brain age prediction accuracy on the transfer

learning validation set (MAE = 2.92 years, RMSE = 3.73 years, Pearson’s r = 0.98,

Spearman’s ρ = 0.85, R2 = 0.96, mean brain-PAD ± standard deviation = 0.19 ± 3.75 years;

Fig. 2), than in the case of 3D CNN.
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Fig. 2. Correlation between chronological and brain-predicted age (in years) for the 3D CNN

(upper row) and SFCN-reg (lower row) models on the UK Biobank validation and test sets,

and the transfer learning validation set. Gray and cyan lines correspond to the lines of

identity and the regression lines, respectively.

3.2. Brain-predicted age and clinical quality scores

Testing the fine-tuned models on the full MR-ART set (Table 4) revealed that the models

generalized reasonably well in terms of absolute error to good quality (score 1; 3D CNN

MAE = 3.67 years, SFCN-reg MAE = 3.20 years) and medium quality (score 2; 3D CNN

MAE = 3.79 years, SFCN-reg MAE = 3.54 years) images. The results also show poor age

prediction performance in the case of bad quality (score 3) images (Fig. 3), and an increase in

brain-PAD with worsening image quality for both models (Fig. 4). For descriptive statistics

and visualization of brain age prediction performance as a function of acquisition condition,

see Supplementary Table 3 and Supplementary Fig. 1 and 2.
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Fig. 3. Correlations between chronological and brain-predicted age (in years) for the 3D CNN

(upper row) and SFCN-reg (lower row) models on the full MR-ART set (N = 148 subjects)

grouped according to image quality. Gray and cyan lines correspond to the lines of identity

and the regression lines, respectively.
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Fig. 4. Distribution of brain-predicted age difference (brain-PAD) on the full MR-ART set (N

= 148 subjects) for the clinically good (score 1), medium (score 2), and bad quality (score 3)

images.
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Table 4. Brain age prediction performance on the full MR-ART set (N = 148 subjects) for the

clinically good (score 1), medium (score 2), and bad quality (score 3) images. All correlations

are significant with p < 0.001. MAE = mean absolute error (in years), RMSE = root mean

squared error (in years), R2 = coefficient of determination, brain-PAD = brain-predicted age

difference (brain-predicted minus chronological age in years), std = standard deviation.

Image
quality Good (N = 129) Medium (N = 109) Bad (N = 198)

Model 3D CNN SFCN-reg 3D CNN SFCN-reg 3D CNN SFCN-reg

MAE 3.67 3.20 3.79 3.54 9.35 7.42

RMSE 4.58 4.00 5.66 4.73 12.57 9.85

R2 0.85 0.89 0.81 0.87 -0.10 0.32

Pearson’s r 0.92 0.94 0.91 0.94 0.69 0.77

Spearman’s ρ 0.68 0.74 0.61 0.66 0.49 0.47

mean brain-
PAD ± std

-0.75
± 4.54

-0.91
± 3.91

1.42
± 5.50

0.97
± 4.65

8.14
± 9.60

6.09
± 7.76

The results obtained when evaluating the fine-tuned models on the images of the subjects

selected for ANOVA with clinical score as a three-level factor (IS1)—exhibited an overall

similar pattern, with reasonably good prediction performance in terms of absolute error for

good quality (score 1; 3D CNN MAE = 3.78 years, SFCN-reg MAE = 3.60 years) and

medium quality (score 2; 3D CNN MAE = 3.58 years, SFCN-reg MAE = 3.59 years) images

(see Table 5, Fig. 5 and 6). Brain-PAD was on average 2.70 years higher for medium (mean

brain-PAD ± standard deviation = 1.62 ± 4.45 years) than good quality scans (mean

brain-PAD ± standard deviation = -1.08 ± 4.42 years) for the 3D CNN model. A similar

difference was observed for SFCN-reg, with brain-PAD being higher for medium (mean

brain-PAD ± standard deviation = 0.92 ± 4.15 years) than good quality images (mean

brain-PAD ± standard deviation = -1.33 ± 4.04 years). Brain age prediction performance was

remarkably reduced in the case of bad quality (score 3) scans, with a substantial increase in
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mean absolute error (3D CNN MAE = 8.01 years, SFCN-reg MAE = 6.94 years) and

brain-PAD (3D CNN mean brain-PAD ± standard deviation = 7.05 ± 7.98 years, SFCN-reg

mean brain-PAD ± standard deviation = 5.79 ± 6.89 years) for both models. The repeated

measures ANOVA revealed a significant difference in brain-PAD across clinical scores (F =

35.57, p < 0.001). There was no significant main effect of ‘model’ (F = 1.39, p = 0.2458), and

the interaction was also not significant (F = 0.65, p = 0.4761). Post hoc analysis showed that

brain-PAD significantly increased in the case of medium quality images when compared to

good quality ones (p < 0.001). Brain-PAD also increased significantly for bad quality images

when compared to either good (p < 0.001) or medium quality (p < 0.001) images.

Table 5. Brain age prediction performance for the selected MR-ART test set subjects (N = 35)

with a clinically good (score 1), medium (score 2), and bad quality (score 3) image acquired

without (STAND), with low (HM1), and with high (HM2) levels of head motion, respectively

(IS1). All correlations are significant with p < 0.001. MAE = mean absolute error (in years),

RMSE = root mean squared error (in years), R2 = coefficient of determination, brain-PAD =

brain-predicted age difference (predicted minus chronological age in years), std = standard

deviation.

Image
quality Good (N = 35) Medium (N = 35) Bad (N = 35)

Model 3D CNN SFCN-reg 3D CNN SFCN-reg 3D CNN SFCN-reg

MAE 3.78 3.60 3.58 3.59 8.01 6.94

RMSE 4.49 4.20 4.68 4.19 10.56 8.93

R2 0.78 0.81 0.76 0.81 -0.20 0.14

Pearson’s r 0.90 0.91 0.89 0.91 0.72 0.73

Spearman’s ρ 0.60 0.68 0.63 0.66 0.53 0.53

mean brain-
PAD ± std

-1.08
± 4.42

-1.33
± 4.04

1.62
± 4.45

0.92
± 4.15

7.05
± 7.98

5.79
± 6.89
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Fig. 5. Correlations between chronological and brain-predicted age (in years) for the 3D CNN

(upper row) and SFCN-reg (lower row) models for the selected MR-ART test set subjects (N

= 35) with a clinically good (score 1), medium (score 2), and bad quality (score 3) image

acquired without (STAND), with low (HM1), and with high (HM2) levels of head motion,

respectively (IS1). Gray and cyan lines correspond to the lines of identity and the regression

lines, respectively.
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Fig. 6. Distribution of brain-predicted age difference (brain-PAD) for the selected MR-ART

test set subjects (N = 35) with a clinically good (score 1), medium (score 2), and bad quality

(score 3) image acquired without (STAND), with low (HM1), and with high (HM2) levels of

head motion, respectively (IS1). Brain-PAD is defined as brain-predicted minus

chronological age in years.

With regard to the analysis focusing on the differences between good and medium quality

images using all available score 1-score 2 image pairs (IS2; ), a significant difference in

brain-PAD was also observed in this case, with brain-PAD being higher for medium than

good quality images (main effect of ‘clinical score’: F = 31.45, p < 0.001; Table 6, Fig. 7 and

8) There was no significant main effect of ‘model’ (F = 0.16, p = 0.6899), and the interaction

was also not significant (F = 0.06, p = 0.8108).

The above reported findings were robust in that we obtained the same results after performing

either of the two brain age bias correction procedures (section S1.2 in Supplementary

materials and methods).
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Table 6. Brain age prediction performance for all MR-ART subjects (N = 54) with a

good-medium quality image pair (IS2). All correlations are significant with p < 0.001. MAE

= mean absolute error (in years), RMSE = root mean squared error (in years), R2 = coefficient

of determination, brain-PAD = brain-predicted age difference (predicted minus chronological

age in years), std = standard deviation.

Image quality Good (N = 54) Medium (N = 54)

Model 3D CNN SFCN-reg 3D CNN SFCN-reg

MAE 3.50 3.36 3.94 3.96

RMSE 4.21 3.96 6.38 5.32

R2 0.89 0.90 0.74 0.82

Pearson’s r 0.95 0.95 0.87 0.91

Spearman’s ρ 0.67 0.73 0.63 0.65

mean brain-
PAD ± std

-1.21
± 4.07

-1.34
± 3.76

1.75
± 6.19

1.52
± 5.15
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Fig. 7. Correlations between chronological and brain-predicted age (in years) for the 3D CNN

(upper row) and SFCN-reg (lower row) models for all MR-ART subjects (N = 54) with a

good (score 1) - medium (score 2) quality image pair (IS2). Gray and cyan lines correspond

to the lines of identity and the regression lines, respectively.
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Fig. 8. Distribution of brain-predicted age difference (brain-PAD) for all MR-ART subjects

(N = 54) with a good (score 1) - medium (score 2) quality image pair (IS2). Brain-PAD is

defined as brain-predicted minus chronological age in years.

3.3. Correlation between brain-predicted age difference

and image quality metrics

By considering all available MR-ART images, significant correlations (pc < 0.05) were found

between brain-PAD and all IQMs for both 3D CNN and SFCN-reg models regardless of the

type of correlation coefficient (Pearson and Spearman, Fig. 9. top row). The sign of all

correlations suggested increase of brain-PAD for decrease of image quality. The absolute

value of correlation coefficients (rabs) was in the [0.18 0.68] range indicating strongest

correlations between brain-PAD and cjv, cnr, snr_gm, snr_wm, snr_total and Euler IQMs.

When splitting the images according to their clinical image quality score, a very similar
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profile of correlation coefficients was found for bad quality images (Score 3, Fig. 9. bottom

row), but with slightly weaker correlations in the rabs = [0.25 0.66] range and lack of

significant correlations for the snr_csf IQM. For medium quality images (Score 2), the profile

of correlation coefficient was similar to that found for bad quality images, but with much less

significant correlations and lower absolute coefficient values (rabs = [0.20 0.47]). In the case

of good quality images (Score 1), the level of association further decreased resulting in

significant correlations found only for the cjv IQM (rabs = [0.26 0.27]). Compared to the

correlations obtained by splitting the images according to their clinical image quality score

(Fig. 9) a very similar profile of correlations was found when splitting the images based on

their experimental conditions (STAND, HM1 and HM2; see Supplementary Fig. 3).

However, the number and the strength of significant correlations were greater when splitting

the images according to their experimental condition.

Fig. 9. Correlations between brain predicted age difference (brain-PAD) and image quality

measures for all available MR-ART images. Pearson’s (r-p) and Spearman’s (r-sp) partial

correlations are shown for both 3D CNN and SFCN-reg models. Correlations were calculated

by considering all images together (All) as well as by taking into account images with

different clinical image quality scores (1, 2 and 3) separately. Plus and asterisk denote
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significant correlation coefficients without (pu < 0.05) and with FDR correction (pc < 0.05),

respectively.

The correlation results shown in Fig. 9 were also validated by considering the IS1 selection of

images assuring this way the independence of samples (Fig. 10). In general, the profile of

correlations between brain-PAD and IQMs using this subsample of images was very similar

to that found based on all available MR-ART scans, but there were less significant

correlations. The uncorrected significant correlations (pu) found for Score 2 images did not

survive the FDR correction, and significant correlation was found for Score 1 images only in

the case of the SFCN-reg model. The strength of significant correlations obtained on selected

images (all images rabs = [0.21 0.66]; Score 1 rabs = [0.46 0.50], Score 3 rabs = [0.37 0.68]) was

comparable to those found based on all available MR-ART scans. Testing the correlations

between corrected brain-PAD measures and the IQMs on the selected images revealed a very

similar distribution of correlation coefficients (Supplementary Figs. 4 and 5) to those

obtained using the uncorrected brain-PAD values.

Fig. 10. Correlations between brain predicted age difference (brain-PAD) and image quality
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measures for the selected MR-ART test set subjects (N = 35) with clinically good (Score 1),

medium (Score 2), and bad quality (Score 3) images acquired without (STAND), with low

(HM1), and with high (HM2) levels of head motion, respectively (IS1). Pearson’s (r-p) and

Spearman’s (r-sp) partial correlations are shown for both 3D CNN and SFCN-reg models.

Correlations were calculated by considering the images of selected subjects all together (All)

as well as by taking into account images with different clinical image quality scores (1, 2 and

3) separately. Plus and asterisk denote significant correlation coefficients without (pu < 0.05)

and with FDR correction (pc < 0.05), respectively.

Finally, to investigate the background of differences that could be observed between

Pearson’s and Spearman’s correlation coefficients, we also inspected the scattergrams

between the brain-PAD and the IQMs showing the strongest correlations (Figs. 11 and 12).

Although the scattergrams indicate linear relationship between the variables in general, weak

nonlinearity could also be observed for some of the IQMs depending also on the image

quality. No substantial differences could be found between the 3D CNN and SFCN-reg

models considering the scattergrams, and the correction of brain-predicted age does not seem

to affect the scattergrams either.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 4, 2023. ; https://doi.org/10.1101/2023.11.03.23297761doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.03.23297761
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 11. Scattergrams between brain predicted age difference (brain-PAD) and image quality

measures for the 3D CNN model. Scatter plots were generated based on all available

MR-ART images (left column) and by considering the selected MR-ART test set subjects (N

= 35, middle and right columns) with clinically good (Score 1, blue), medium (Score 2,

ocher), and bad quality (Score 3, green) images acquired without (STAND), with low (HM1),
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and with high (HM2) levels of head motion, respectively (IS1). In the right column,

brain-PAD with correction #1 was used (see section 1.2 in the Supplementary Material).
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Fig. 12. Scattergrams between brain predicted age difference (brain-PAD) and image quality

measures for the SFCN-reg model. Scatter plots were generated based on all available

MR-ART images (left column) and by considering the selected MR-ART test set subjects (N

= 35, middle and right columns) with clinically good (Score 1, blue), medium (Score 2,

ocher), and bad quality (Score 3, green) images acquired without (STAND), with low (HM1),

and with high (HM2) levels of head motion, respectively (IS1). In the right column,

brain-PAD with correction #1 was used (see section 1.2 in the Supplementary Material).

4. Discussion

In the present work, we have shown that the degradation of image quality due to head motion

produces a systematic bias in brain-predicted age based on structural MRI scans. In

particular, we trained two different 3D convolutional neural network models using a large

amount of data to predict the age of participants based on minimally preprocessed

T1-weighted scans and observed that head motion increases brain-PAD – the estimated age of

the participants increased relative to their chronological age as the quality of the brain scans

deteriorated. Importantly, this effect remained significant even when excluding bad quality

scans that were deemed unusable from a clinical diagnostic perspective. Moreover, we found

significant correlations between brain-PAD and several different IQMs, showing in general

that worsening image quality was associated with increased brain-PAD. This association was

the strongest for bad quality (score 3) images and the weakest for good quality (score 1) ones,

however, even in the latter case a significant correlation was found between brain-PAD and

the cjv IQM related to head motion artifacts [58]. The results were robust when applying

previously established bias correction methods to brain-predicted age. Taken together, these

findings suggest that head motion is a potential confounding factor when using

brain-predicted age based on structural neuroimaging data as a proxy measure for brain

health.

The systematic effect of head-motion on brain-PAD demonstrated in the current study is

especially problematic because it mimics the effect of advanced brain aging. Thus, increased

brain age reported in certain neuropsychiatric and neurodegenerative disease states may be

confounded by the effects of head motion on image quality. For example, several studies have

provided evidence for a higher brain-PAD in schizophrenia, mild cognitive impairment, and

Alzheimer’s disease than in healthy controls (for reviews, see [74,75]). Given the known
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propensity for movement during MRI scanning in these patient populations [45,47], some of

the reported effects may be overestimated when head motion is not rigorously controlled for.

Moreover, given that motion may potentially be correlated with the severity of symptoms and

medication use, extra care should be taken when brain-PAD is applied for the assessment of

disease severity and the evaluation of treatment outcomes.

Due to the black box nature of deep neural network algorithms [76,77], further research is

required to uncover the source of the observed bias in brain-predicted age. It is possible that

head motion introduces artifacts to the image that mimic the signs of advanced brain aging.

Previous research has shown that motion has a systematic effect on brain morphometric

measures derived from T1-weighted MRI scans. In these studies, head motion was associated

with a decrease in cortical gray matter thickness and volume estimates [45,51,78,79]. This

bias, observed when using several different image processing software packages, does not

seem to reflect the processing failure of these tools, but rather stem from alterations in the

images themselves that resemble the loss of brain tissue [51]. Moreover, in one study, a

substantial overlap was reported between the brain regions most affected by

movement-related effects and areas that are reported to show pronounced age-related cortical

atrophy [79]. These findings have potential implications for brain age prediction as well. A

recent study has shown that the predictions of an XGBoost brain age algorithm [52], which

uses the measurements output by the popular morphometric tool FreeSurfer [72] as features,

had a modest correlation with image quality [81]. In the present work, the neural network

models were trained end-to-end to predict age based on minimally preprocessed structural

images rather than precomputed morphometric estimates. However, their particularly good

performance on the task might be the result of successfully learning to extract features from

the image that, on the one hand, reflect age-related neuroanatomical changes, and on the

other hand may be systematically biased by motion-induced artifacts that mimic brain

atrophy.

Several different methods have been applied to tackle the issue of head motion during MR

image acquisition, however, no universal solution exists to this problem. Apart from motion

restriction, shortening scanning duration may attenuate movement-related artifacts, as head

motion has been shown to increase over time in the scanner, and this effect is amplified in

older age [82]. Extremely rapid T1-weighted brain scans (~1 min scanning time) have been

demonstrated to produce reliable morphometric measures in healthy older adults and in

individuals suffering from neurodegenerative disease [83], providing a potential avenue for

improving the robustness of structural brain age prediction in populations that are more prone
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to motion. Visual assessment by experts can help alleviate the movement-induced reduction

in the estimates provided by morphometric analysis tools, however, evidence shows that this

effect is detectable even when analyzing only those images that passed a rigorous quality

checking procedure and are free from visible motion artifacts [45,51,78]. Similarly, we found

a significant association between brain-PAD and the cjv IQM, a metric that is sensitive to

head motion artifacts [58], even in the case of clinically good quality images. This underlines

the importance of controlling for movement even when the analysis is restricted to only good

quality images. Including a measure of head motion—derived from an online motion-tracking

system [51], from functional MRI measurements acquired in the same session [45,78,79], or

from retrospective quality assessment by an image processing software tool [84]—as a

covariate in the statistical model may help further mitigate the potential biasing effect of

movement in brain age estimation. Although we observed an overall linear relationship

between brain-PAD and IQMs, weak deviations from this pattern were also apparent,

suggesting that non-linear correction methods may be even more effective in correcting the

aforementioned bias. In addition, several methods are available for the correction of

motion-corrupted images—e.g. prospective motion correction using volumetric navigators

(vNavs) can be applied effectively to reduce the motion-induced bias in morphometric

estimates [85], and recent deep learning-based algorithms have provided promising results in

the retrospective removal of motion artifacts from MRI scans [86,87], although the potential

benefit of these algorithms in the context of brain age prediction remains to be investigated.

Despite their complexity, 3D convolutional neural networks have shown exceptional

performance in various domains of medical image analysis [88], and can be used to provide

accurate and biologically relevant age prediction based on structural MRI scans [19–23].

Recently, there is an abundance of different neural network architectures developed for brain

age prediction. Our results suggest that, besides optimizing to estimate individual age and

testing for the association between brain-PAD and different biological and clinical

phenotypes, increasing the robustness of the models to the degradation of image quality

should also be of high priority in model development. 2D CNN architectures commonly used

for the recognition of natural images are known to be susceptible to image distortions

including but not limited to blur [89–94]. Training the networks on degraded images can

improve classification performance [92,94–96], however, these models might generalize

poorly to types of distortions they have not encountered previously [94,95]. Accordingly,

using an ensemble of expert networks specialized to different types of distortions has been

shown to increase the robustness of natural image recognition to low quality images [95,97].
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Moreover, certain modifications comprising the addition of extra layers to existing

architectures can increase the inherent robustness of the networks to image degradation

[91,98]. Brain age prediction using deep convolutional neural networks may also benefit from

the application of these strategies to tackle the issue of head motion and potentially other

sources of deteriorated image quality.

A limitation of the current study is that the MR-ART test set covers only a part of the human

lifespan. The relationship between head motion and brain-PAD should be investigated in

younger children and adolescents as well, given the increased tendency for movement in

these participant groups [45]. In the case of MR-ART subjects, the correlations between

brain-PAD and IQMs sensitive to movement were observed despite controlling for the

potential covariate effects of chronological age, suggesting that these associations are rather

stable during adulthood. A further limitation is that the brain age prediction models in the

present study were trained solely on good quality research-grade T1-weighted scans. It is

likely that using training and validation sets that are more heterogeneous in terms of image

quality would yield models that generalize better to artifactual MRI scans. However, severely

motion-corrupted images are rarely archived and shared either in research projects or in

clinical settings, making it difficult to compile a sufficiently large and qualitatively diverse

dataset for developing robust deep neural networks. An alternative strategy is data

augmentation using motion artifact simulation, however, even in this case it is essential to test

the algorithms on real-world imaging data.

5. Conclusions

Our results demonstrate that brain age prediction is susceptible to movement-induced

artifacts, and that head motion may result in a spurious effect of advanced brain aging even in

scans deemed usable from a clinical diagnostic point of view. Special care must be taken

when using brain-predicted age as a proxy for brain health, including the use of image quality

assessment and control protocols and the development of robust algorithms for brain age

prediction.
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