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Abstract  

Chronic inflammation is a hallmark of ageing and age-related disease states. The effectiveness of 
inflammatory proteins such as C-reactive protein (CRP) in assessing long-term inflammation is 
hindered by their phasic nature. DNA methylation (DNAm) signatures of CRP may act as more reliable 
markers of chronic inflammation. We show that inter-individual differences in DNAm capture 50% of 
the variance in circulating CRP (N=17,936, Generation Scotland). We develop a series of DNAm 
predictors of CRP using state-of-the-art algorithms. An elastic net regression-based predictor 
outperformed competing methods and explained 18% of phenotypic variance in the LBC1936 cohort, 
doubling that of existing DNAm predictors. DNAm predictors performed comparably in four additional 
test cohorts (ALSPAC, HELIOS, SABRE, LBC1921), including individuals of diverse genetic ancestry and 
from different age groups. The newly-described predictor surpassed assay-measured CRP and a 
genetic score in its associations with 26 health outcomes. Our findings forge new avenues for assessing 
chronic low-grade inflammation in diverse populations. 
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1 Introduction 
Chronic low-grade inflammation is a common feature of many age-related disease states, including 
heart disease, stroke and type 2 diabetes1,2. C-reactive protein (CRP) is a sensitive marker of systemic 
inflammation3. However, individual measurements can fluctuate substantially following infection or 
injury. Therefore, single time-point measures of CRP in clinical settings may provide an incomplete 
index of an individual’s long-term inflammatory status4. Identifying inflammatory biomarkers with 
enhanced temporal stability could improve patient stratification and facilitate robust health outcome 
testing.   
 

DNA methylation (DNAm) is a reversible epigenetic mechanism in which methyl groups bind to DNA, 
most commonly within cytosine-guanine dinucleotides (CpG sites). DNAm is affected by a confluence 
of genetic and environmental factors and is known to regulate gene expression levels5. Two large-
scale epigenome-wide association studies (EWAS) have observed >1,000 CpG sites across the genome 
that associate with blood CRP levels6,7. DNAm predictors of CRP levels have been constructed using 
weighted linear combinations of these CpG sites and explain approximately 10% of inter-individual 
variation in circulating CRP7,8. They show greater longitudinal stability than measured CRP as well as 
stronger associations with cognitive and cardiometabolic health outcomes6,8-10, indicating they are 
likely to be robust to short-term CRP fluctuations.  
 

Addressing the following points will be critical to further extending our understanding of how DNAm 
informs the biology and prediction of CRP. There is a need to estimate the expected proportion of 
variance in CRP captured by genome-wide DNAm probes. Variance component estimates would guide 
an upper bound for the amount of variance in CRP that can be captured by DNAm predictors, as well 
as inform the molecular architecture of CRP regulation. Existing predictors are constructed using 
weights from individual linear regressions. The approach neglects correlations between CpG sites and 
unknown confounding influences. Bayesian regression methods and several commonly-employed 
feature selection methods, such as penalised regression and principal component analysis (PCA), may 
overcome these limitations11,12. Furthermore, studies examining the relationship between DNAm and 
CRP are primarily restricted to adults of European ancestry. It is unclear if DNAm predictors of CRP are 
generalisable to other stages of the life-course (e.g. childhood and later-life) or across genetically 
diverse individuals.  
 

We address four primary objectives by leveraging blood-based methylation and CRP measurements 
across six diverse cohorts (Nrange=170 to 17,936). First, we bolster biological insights into the 
relationship between DNAm and CRP by conducting a large-scale EWAS of CRP in the family-based 
study Generation Scotland (GS, N=17,936). We also employ two complementary methods, restricted 
maximum likelihood estimation and Bayesian penalised regression, to estimate the proportion of 
inter-individual variation in CRP attributable to genome-wide DNAm11,13. Second, we address unmet 
prediction efforts by applying three common feature selection and transformation methods to 
develop new DNAm predictors of CRP levels. They are elastic net regression, Bayesian penalised 
regression and principal component analysis. Third, we compare their predictive performances against 
one another and to existing predictors in the literature. GS serves as the training cohort in prediction 
analyses. Five diverse test cohorts are employed: Avon Longitudinal Study of Parents and Children 
(ALSPAC, mother and child pairs), Health for Life in Singapore (HELIOS, adults of self-reported Chinese, 
Malay or Indian ethnicity), Southall and Brent REvisited (SABRE, adult males of self-reported European 
or South Asian ethnicity) and the Lothian Birth Cohorts of 1921 and 1936 (community-dwelling older 
adults). Fourth, we compare newly-described DNAm predictors of CRP against assay-measured CRP in 
their associations with 26 cardiometabolic risk factors and health outcomes. Fig. 1 shows a visual 
summary of the study design.  
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Fig. 1. Blood epigenome-wide analyses on C-reactive protein levels across a diverse set of population cohorts. (A) There were 
17,936 individuals in Generation Scotland with complete high-sensitivity CRP measurements and genome-wide DNAm profiling. 
This allowed for a large epigenome-wide scan for associations between differential DNA methylation and blood CRP levels, 
alongside a variance component analysis of molecular phenotypes and CRP. (B) A suite of feature selection and transformation 
methods were implemented to develop new DNAm predictors of CRP. These methods account for the correlation structure 
between features (CpG sites) and may offer improved predictive performances over existing methods (i.e. methylation risk 
scores with weights from linear regression models). (C) The predictive performances of CRP predictors derived from feature 
selection methods in (B) were compared against existing predictors. The five test cohorts harboured cross-sectional samples 
that encompass the life-course (i.e. cord blood samples and childhood through to later-life), adult males and females, and 
individuals from different ethnic backgrounds and countries of residency. Of the test cohorts, the Lothian Birth Cohort 1936 
was selected for health outcome testing given that the study population was at elevated risk for age-related disease states 
when compared to other cohorts and sub-groups. It also constituted a larger analytical sample than the Lothian Birth Cohort 
1921. ALSPAC, Avon Longitudinal Study of Parents and Children; CpG, cytosine-phosphate-guanine dinucleotide; CRP, C-
reactive protein; DNAm, DNA methylation; EWAS, epigenome-wide association study; GS, Generation Scotland; HELIOS, Health 
for Life in Singapore; LBC1921, Lothian Birth Cohort 1921; LBC1936, Lothian Birth Cohort 1936; SABRE, Southall And Brent 
REvisited. Image created with Biorender.com.  
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2 Methods  

2.1 Cohort studies  

DNA methylation preparation and CRP quantification across all cohorts are detailed in full in 
Additional file 1. To align with the previous literature, CRP levels were log-transformed after adding a 
constant of 0.01 to prevent undefined values. Measurements that were outside the median value ±4 
times the standard deviation were excluded6.   

 

2.1.1 Training Cohort: Generation Scotland  

Generation Scotland: Scottish Family Health Study (GS) is a family-structured, population-based 
cohort study of >24,000 Scottish individuals14,15. Recruitment took place between 2006 and 2011. 
Blood draws were taken during a clinical visit at the study baseline alongside detailed health, lifestyle, 
cognitive and sociodemographic data. Whole-blood DNAm was measured using the Illumina Infinium 
MethylationEPIC array. Serum CRP levels (mg/L) were quantified at the University of Glasgow using a 
commercial high-sensitivity assay on an automated analyser (c311, Roche Diagnostics, UK). There 
were 17,936 individuals with genome-wide DNAm and CRP measurements following quality control 
and 752,722 CpG sites were available for analyses (Additional file 1).  

 

2.1.2 Test Cohorts  

Here, we will present a brief description of each test cohort including the number of individuals with 
paired CRP and DNAm measurements. Complete information on the test cohorts is available in 
Additional file 1. Table 1 shows data on demographics and CRP measurements for each test cohort.  
 

Avon Longitudinal Study of Children and Parents 

Pregnant women who were residing in Avon, UK and with expected dates of delivery from April 1, 
1991 to December 31, 1992 were invited to take part in The Avon Longitudinal Study of Children and 
Parents (ALSPAC)16-18. The analytical sample in our study included 773 mothers who had DNAm and 
CRP measured 18 years after the baseline (i.e. after the study pregnancy)19. Four longitudinal 
measurements of DNAm and CRP were available for the children at the following ages (in years): age 
0 (cord blood), 9, 15 or 17, and 24. The number of samples available at each time-point was 389, 336, 
945 and 745, respectively. There were 483,068 CpG sites available for testing (Additional file 1). 

 

Health for Life in Singapore 

HELIOS is a population-based cohort of approximately 10,000 Asian men and women living in 
Singapore. The cohort comprises Singapore citizens or Permanent Residents aged 30–84 years old and 
excludes pregnant and breastfeeding women, those with major illness requiring hospitalisation or 
surgery, those who received cancer treatment in the past year or those who participated in drug trials 
within the month prior to recruitment. Ethnicity was based on self-report data and agreed closely with 
genetically-determined ancestry20. The three primary self-reported ethnicities are: (i) Chinese and 
other East Asian (Chinese), (ii) Malay and other South-East-Asian (Malay) and (iii) South Asian (Indian 
and other countries from Indian subcontinent). There were 1,778, 242 and 225 individuals within the 
Chinese, Malay and Indian ethnicity groups who had paired DNAm and CRP measurements, 
respectively. The HELIOS dataset contained 837,722 CpG sites (Additional file 1).  
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Southall And Brent REvisited 

Southall And Brent REvisited (SABRE) is a population-based study that includes 1,711 first-generation 
South Asian migrants and 1,762 European-origin individuals, all resident in the UK. Recruitment 
occurred between 1988 and 1991 in West London, UK. Follow-up clinics were held approximately 20 
years later between 2008 and 201321,22. Follow-up samples from male participants were used in the 
present study. Paired DNAm and CRP measurements were available for 588 male participants at the 
follow-up visit and comprised 315 and 273 participants of self-reported European and South Asian 
ethnicity, respectively. The final SABRE DNAm dataset contained 484,781 CpG sites (Additional file 1). 

 

The Lothian Birth Cohorts of 1921 and 1936  

The Lothian Birth Cohorts of 1921 (LBC1921; N=550) and 1936 (LBC1936; N=1,091) are longitudinal 
studies of healthy aging. There were five waves of data collection for LBC1921 at mean ages of 79, 83, 
87, 90 and 92 years. The LBC1936 has completed six waves of testing at mean ages of 70, 73, 76, 79, 
82 and 86 years23,24. Low-sensitivity CRP measures were present at Wave 1 of LBC1936 and Waves 3 
and 4 of LBC1921. High-sensitivity CRP measurements were available at Waves 2, 3 and 4 of LBC1936. 
The number of individuals contributing to our analyses were 885, 756, 536 and 492 at Waves 1, 2, 3 
and 4 of the LBC1936, and 170 and 49 at Waves 3 and 4 of the LBC1921, respectively. There were 
459,309 CpG sites following quality control (Additional file 1).  

 

2.2 Epigenome-wide association studies on CRP levels 

2.2.1 Linear regression  

Our study analysed primary data from 17,936 individuals in GS. For comparability, we approximated 
the modelling approach of a recent EWAS meta-analysis of CRP by Wielscher et al., which was 
performed in 30 independent studies (N=22,774)6. Specifically, 752,722 CpGs were entered separately 
into linear regression models using the lm function in base R. A basic model and fully-adjusted model 
were considered. The basic regression model directly matched the strategy of Wielscher et al. as 
follows: 

 

White blood cell proportions were estimated via the Houseman method25. The cell types were B cells, 
CD4+ T cells, CD8+ T cells, granulocytes, monocytes and natural killer cells. The proportions of 
granulocytes were omitted from regression models to avoid collinearity given that the proportions of 
all six cell types sum to 1. Look-up analyses of associations identified in the basic model were 
performed via the EWAS Catalog26. 
 

The fully-adjusted model was unique to our study and further considered population structure and 
five common lifestyle factors given their possible confounding influences on inflammatory and 
methylation profiles. The lifestyle factors were alcohol consumption, body mass index, deprivation 
(Scottish Index of Multiple Deprivation), a methylation-based smoking score (EpiSmokEr)27, and years 
of education, and were selected to align with previous publications in the GS cohort28,29. 
Multidimensional scaling (MDS) was applied to GS genotype data to obtain an estimate of population 
structure. The first 20 MDS components were fitted as fixed-effect covariates. Demographic and 
covariate data for GS are presented in Additional file 2: Table S1. Their associations with CRP are 
shown in Additional file 2: Table S2. The fully-adjusted model was as follows:  

log(CRP+0.01) ~ CpG (beta-value) + age + sex + estimated white blood cell proportions  
 + experimental batch 
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2.2.2 Bayesian penalised regression   

Models considering linear associations between outcomes and individual molecular traits do not 
account for correlation structures within molecular datasets and omitted variable bias30. A number of 
methods have been proposed to overcome these limitations, which include Bayesian penalised 
regression. The BayesR+ framework implements Bayesian penalised regression and Gaussian mixture-
based variance partitioning to inform the molecular architecture of phenotypes11. The joint and 
conditional effects of all 752,722 CpG sites on blood CRP levels were examined. Linear regression 
models were used to adjust log-transformed CRP levels for age and sex. They were also used to regress 
CpG beta-values on age, sex, WBC proportions and experimental batch. Residuals from the regressions 
were scaled to mean zero and unit variance. The prior mixture variances were set to 0.001, 0.01 and 
0.1, which corresponds to CpGs that capture 0.1%, 1% and 10% of variation in CRP6,7. Details of 
posterior sampling are provided in Additional file 3. Probes with a posterior inclusion probability ≥20% 
were first identified as lead probes. We then grouped probes that were within 2.5kb of, and highly 
correlated (absolute Pearson’s correlation coefficient >0.5) with, a lead probe. Groups where the 
combined posterior inclusion probability was >80% were considered of relevance and the lead probe 
was highlighted for clarity.  

 

2.3 Estimating proportion of variance in CRP levels attributable to genetics and DNAm 

BayesR+ was one of two methods implemented in variance component estimation. Here, the same 
pipeline from EWAS was applied. Variance components estimates were taken as the mean of the sum 
of squared standardised posterior effect sizes across 1,000 iterations. The 2.5%ile and 97.5%ile 
(iteration rank 25 and 975) formed the lower and upper bounds of the 95% credible interval, 
respectively.  
 

Variance partitioning was also performed using OSCA (OmicS-data-based Complex trait Analysis) 
software13. The software estimates the phenotype variance captured by a given set of genome-wide 
molecular trait or omic data (e.g. DNAm) by first constructing an omics relationship matrix (ORM) 
using all input probes. The ORM describes the covariance pattern across individuals. A univariate linear 
mixed model is then implemented and fits the ORM as a random effect component. The variance 
attributed to the molecular component is obtained via restricted maximum likelihood (REML) 
estimation. Phenotype and methylation data were adjusted as per the BayesR+ strategy. The ORM 
was constructed from the residuals of all CpG sites (n=752,722 sites).  

 

A combined genetic-epigenetic model was also performed in BayesR+ and OSCA to enable an estimate 
of additive and independent effects of DNAm and genetic data over CRP (Additional file 3).  

 

 

 

log(CRP+0.01) ~ CpG (beta-value) + age + sex + estimated white blood cell proportions  + experimental 
batch + alcohol consumption (units/week) + log(body mass index (kg/m2)) + deprivation index (Scottish 

Index of Multiple Deprivation) + education (an 11-category ordinal variable) + methylation-based 
smoking score (EpiSmokEr) + 20 genetic components (population structure) 
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2.4 DNAm prediction of CRP levels 

Three primary methods were used to build weighted linear predictors of CRP from genome-wide 
DNAm: (1) elastic net regression, (2) Bayesian penalised regression and (3) PCA combined with elastic 
net regression (‘PCA+elnet’). The training dataset in all instances was GS (N=17,936). An adjusted 
BayesR+ pipeline was applied in prediction when compared to EWAS and variance partitioning. 
Phenotype and methylation data were adjusted for potential confounders in EWAS and variance 
component analyses given that the aim was biological inference. Here, log-transformed CRP and 
DNAm were not adjusted prior to entry in BayesR+; however, they were scaled to mean zero and unit 
variance. This enabled us to capture reciprocal and external influences on DNAm and CRP, aiding in 
external prediction efforts. Further, the number of probes in prediction models was restricted to those 
present in ALSPAC, GS, LBC and SABRE following quality control (n=374,785 sites). A weighted linear 
combination of these probes and their effect sizes was used to compute the resultant Bayesian 
penalised regression-based predictor in all test cohorts (see Data Availability). Of note, this probe set 
(n=374,785) was used to develop our predictors. However, we also wished to understand how missing 
CpG sites would impact prediction reflecting a real-world scenario where external cohorts utilise our 
weights but may not contain all of the same CpG sites. Whereas, ALSPAC, GS, LBC and SABRE contained 
all 374,785 sites (by design), the HELIOS dataset possessed 374,592 of the sites thereby lacking 193 
sites in the Bayesian predictor. 

 

Elastic net regression is a commonly-employed technique to develop DNAm predictors of human 
traits31. Regression models were run using the R package glmnet32. Log-transformed CRP values were 
entered as the dependent variable and CpG beta-values (scaled to mean zero and unit variance) served 
as the independent variables (n=374,785 sites). The mixing parameter was set to 0.5 (a common 
default parameter for elastic net models) and twenty-fold cross-validation was applied. The model 
with the lambda value that corresponded to the minimum mean cross-validated error was selected. 
The optimal model contained 1,468 probes (Additional file 2: Table S3). HELIOS harboured 1,466 of 
these sites while all other test cohorts contained all 1,468 sites.  
 

The third method we considered was PCA with elastic net regression. Higgins-Chen et al. enhanced 
the reliability of epigenetic age estimates by combining PCA with elastic net12. In this approach, PCA is 
applied to all CpG sites of interest in a training dataset in order to identify sets of multi-collinear sites. 
Elastic net regression is then used to identify an optimal combination of PCs that can predict trait 
values in external test samples. Here, we first truncated the training DNAm dataset to probes that 
were deemed significant in a CRP EWAS from Wielscher et al. The authors identified 1,511 
independent sites at a p-value threshold of 1 x 10-7. There were 1,379 of these 1,511 sites in our 
training dataset (i.e. GS). All test cohorts also contained the same set of 1,379 sites including HELIOS. 
We further considered an additional series of p-value thresholds (beyond 1 x 10-7) for probe filtering 
as sensitivity analyses (see Section 3.5). PCA was performed using the prcomp function in R and 
training data were mean-centred but not scaled as described by Higgins-Chen et al12. Elastic net 
regression was implemented using the parameters described in the previous section (i.e. elastic net 
regression without PCA) in order to support cross-method comparability. However, it is important to 
note that the independent variables in this elastic net regression step were PCs rather than individual 
CpG sites (Additional file 2: Table S4). Additional file 4: Fig. S1 shows associations between the first 
20 PCs and relevant covariates in GS.  
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2.5 Evaluation of DNAm predictors of CRP   

The relative performances of five distinct DNAm predictors of CRP were compared (hereafter also 
referred to as DNAm CRP). The measures included those derived from elastic net regression (1), 
Bayesian penalised regression (2) and PCA with elastic net regression (3). The remaining two 
predictors were derived using EWAS weights from Wielscher et al. (4) and our own linear EWAS (5). 
Details on assessing the longitudinal trajectories of CRP measures are available in Additional file 3. 
Two metrics were used to assess performance. First, Pearson’s correlations between log-transformed 
CRP and DNAm CRP measures were computed across all test cohorts. Second, incremental r-squared 
(R2) modelling was applied only to a selected test cohort, which was the Lothian Birth Cohort 1936. 
The cohort was selected in order to align with health outcome association testing (see Section 3.6). 
The time-point of Wave 2 (or age 73, N=756) was selected rather than Wave 1 (age 70, N=885) as high-
sensitivity CRP was available at the former but not latter time-point. The incremental r-squared (R2) 
was calculated by subtracting the R2 of the full model from that of the null model as shown below:  

 

2.6 Health outcome association tests  

The second Wave of LBC1936 (i.e. at mean age 73 years) was used in health outcome association 
testing over other cohorts given that the study population was at risk for age-related disease states 
and frailty phenotypes. The LBC1921 was not used given its smaller analytical sample (N≤170).  

 

Continuous variables were scaled to mean zero and unit variance. Assay-derived CRP or DNAm CRP 
served as the independent variable in regression models. Linear regression models were used to 
examine associations between CRP measures and 21 cardiometabolic and fitness variables 
(dependent variable). Logistic regression tested for associations between CRP measures and lifetime 
history of four separate conditions (0=’No’, 1=’Yes’). Cox proportional hazard models assessed the 
relationship between CRP and all-cause mortality. The time-at-risk ran from age at Wave 2 (~age 73) 
until the date of recorded death (cases) or the end-of-censor period (controls). All regression models 
were adjusted for age and sex. Height (in cm) was fitted as an additional fixed-effect covariate for lung 
function measures and the six metre walk test in linear regression models. A summary of all 
phenotypes in the LBC1936 is presented in Additional file 2: Table S5. Correction for multiple testing 
was applied using the false discovery rate (FDR p < 0.05)33.  

 

 

 

 

 

 

 

 

Null model: Log-transformed CRP ∼ chronological age + sex 

Full model: Log-transformed CRP ∼ chronological age + sex + DNAm CRP (from one of five methods) 
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3 Results   

3.1 Study characteristics and demographics   

The six cohorts included in this study had disparate sample sizes and demographic profiles (Table 1). 
The number of individuals included in analyses ranged from 49 (at age 90 in LBC1921) to 17,936 (age 
range 18-99 years in GS). Mean CRP levels (mg/L) increased across the life-course from 0.2 at birth 
(cord blood in ALSPAC) to 8.4 at age 90 years (LBC1921).  
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Table 1. Summary of demographics and C-reactive protein measurement across six diverse cohorts. 

Sample N Age (years)  
Mean, SD 

Sex 
N Female,  % 

Female 

CRP (mg/L) 
Mean, SD Assay 

ALSPAC 

Age 0 389 - 198, 50.1% 0.2, 0.9 High-sensitivity 

Age 9 336 9.8, 0.3 163, 48.5% 0.6, 1.1 High-sensitivity 

Age 15 or 17 945 17.1, 1.1 492, 52.1% 1.1, 1.8 High-sensitivity 

Age 24 745 24.5, 0.8 365, 49.0% 1.7, 2.5 High-sensitivity 

Mothers (follow-up) 773 47.8, 4.3 773, 100% 1.8, 2.2 High-sensitivity 

Generation Scotland 

Whole sample 17936 47.5, 14.9 10536, 58.7% 3.3, 2.9 High-sensitivity 

HELIOS 

Chinese Ethnicity 1778 54.6, 11.8 729, 61.9% 1.5, 3.8 Wide-range 

Malay Ethnicity 242 55.4, 11.1 148, 61.2% 2.9, 4.9 Wide-range 

Indian Ethnicity 225 51.3, 11.8 126, 56.0% 4.4, 7.6 Wide-range 

SABRE 

European ethnicity 315 69.9, 6.3 0, 0% 3.6, 7.9 High-sensitivity 

South Asian ethnicity 273 69.3, 6.2 0, 0% 2.7, 3.8 High-sensitivity 

LBC1936 

Age 70 (W1) 885 69.6, 0.8 439, 49.6% 5.3, 6.9 Low-sensitivity 

Age 73 (W2) 756 72.5, 0.7 361, 47.8% 3.0, 5.5 High-sensitivity 

Age 76 (W3) 536 76.3, 0.7 258, 48.1% 3.1, 4.8 High-sensitivity 

Age 79 (W4) 492 79.3, 0.6 240, 48.8% 2.5, 5.6 High-sensitivity 

LBC1921 

Age 87 (W3) 170 86.6, 0.4 92, 54.1% 5.5, 7.2 Low-sensitivity 

Age 90 (W4) 49 90.2, 0.1 29, 59.2% 8.4, 11.7  Low-sensitivity 
Low-sensitivity assays could not reliably detect values below 3 mg/L. These values were set to 1.5 mg/L in line with previous 
LBC publications8 and may have contributed to altered distribution properties at time-points and cohorts that used low-
sensitivity platforms. ALSPAC, Avon Longitudinal Study of Parents and Children; CRP, C-reactive protein; HELIOS, Health for 
Life in Singapore; LBC, Lothian Birth Cohorts; SABRE, Southall and Brent REvisited; SD, standard deviation; W, Wave. 
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3.2 Epigenome-wide association study to identify individual CpG sites associated with CRP levels 

We first investigated marginal associations between log-transformed blood CRP levels and 752,722 
CpG sites in GS (N=17,936). There were 33,939 associations with p < 3.6x10-8 in a basic model that 
adjusted for chronological age, sex, estimated white blood cell proportions and experimental batch 
(Additional file 2: Table S6). Mixed-effects models that included a kinship matrix were used to account 
for relatedness as sensitivity analyses34. Approximately 75% of associations remained associated 
(n=25,634 with p < 3.6x10-8) after accounting for relatedness, and the remainder of associations had 
p < 1x10-4. Only 2,805 (8.3%) associations had p < 3.6x10-8 in a fully-adjusted model that further 
accounted for five lifestyle factors and population structure (Fig. 2A, Additional file 2: Table S7). The 
substantial attenuation observed after accounting for lifestyle behaviours highlights their associations 
with DNAm and chronic low-grade inflammation.  
 

A look-up analysis using the EWAS Catalog revealed that 1,496 associations (4.4%) from the basic 
model were previously reported in the literature6,7,26,35,36. Effect sizes for 1,379 significant CpG 
associations in the largest existing EWAS on CRP were correlated 97% with corresponding associations 
in our study6 (Additional file 4: Fig. S2). Lastly, we repeated the basic model using Bayesian penalised 
regression, which can better account for correlations among probes. This method identified 47 lead 
CpG sites with a posterior inclusion probability greater than 80%, 38 of which had p < 3.6x10-8 in the 
linear model (see Methods, Additional file 2: Table S8). Our EWAS findings show strong agreement 
with the existing literature and highlight that a small subset of densely correlated regions show robust 
associations with CRP levels.  

 

3.3 Estimating the proportion of variance in CRP levels captured by global DNAm and genetic 
factors  

Next, we assessed whether global patterns of DNA methylation were associated with individual 
differences in blood CRP profiles within GS (N=17,936). BayesR+ was used to perform Bayesian 
penalised regression and Gaussian mixture-based variance partitioning11. The proportion of variance 
captured by genome-wide DNAm alone was 51.7% [95% credible interval (CrI): 48.0%, 55.0%], guiding 
an upper bound for the performance of DNAm CRP predictors.  

 

Unlike genetic (or SNP-based) heritability estimates, the variance captured by DNAm probes may 
reflect both cause and consequence on the phenotype. Disentangling the independent and combined 
contributions from genetic and DNAm variation would refine insights into the molecular architecture 
of CRP. Using BayesR+, the proportion of variance explained by genetic variation alone was 13.4% 
[95% CrI: 11.6%, 15.5%], aligning well with a recent SNP-based heritability estimate of 13% from the 
largest existing GWAS on CRP37.  

 

Using BayesR+, the joint variance captured by genetics and DNAm was 61.0% [95% CrI: 57.6%, 64.0%]. 
The contribution of DNAm to this estimate was 49.0%, which is similar to the estimate from DNAm 
analysis alone (51.7%) and suggests it was largely independent from underlying genetic factors. 
Sensitivity analyses were performed in OSCA using a linear mixed model approach with an epigenetics 
relationship matrix. Estimates from OSCA were highly consistent with those from the Bayesian 
strategy as illustrated in Fig. 2B (Additional file 2: Table S9).   
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Fig. 2. Epigenome-wide association and variance component analyses of blood CRP levels in Generation Scotland. (A) A 
Manhattan plot shows associations between genome-wide CpG probes and log-transformed CRP levels (N=17,936). 
Associations from the fully-adjusted model are displayed. The green line denotes the epigenome-wide significance threshold 
at p < 3.6 x 10-8. The seven strongest associations (smallest p-values) are annotated for clarity. (B) The proportion of variance 
captured by genome-wide genetic and methylation factors, separately, are shown in gold and dark green bars, respectively. 
The beige bar details the joint variance captured by genetic and methylation variation when conditioned on one another. 
Vertical bars denote the 95% credible (Bayesian PR) and confidence (restricted maximum likelihood) intervals, respectively. 
CpG, cytosine-phosphate-guanine dinucleotide; CRP; C-reactive protein; PR, penalised regression.  
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3.4 Comparing feature selection methods in developing DNAm predictors of CRP  

We focused on five distinct methods to generate DNAm predictors of CRP. We trained three predictors 
using (1) elastic net regression, (2) Bayesian penalised regression and (3) PCA with elastic net 
regression (‘PCA+elnet’) (N=17,936). We also derived two additional predictors using EWAS weights 
from (4) Wielscher et al. and (5) our own linear EWAS. We then projected them into ALSPAC, HELIOS, 
SABRE, LBC1936 and LBC1921 (summary data presented in Additional file 2: Table S10 and Additional 
file 5).  

 

We first assessed the longitudinal stabilities of assay-measured CRP and DNAm CRP (all five predictors) 
in the LBC1936 (Additional file 3). Longitudinal analyses were restricted to Waves 2, 3 and 4 as high-
sensitivity CRP measures were only present at these time-points, which enabled consistent 
comparisons. DNAm predictors showed higher intra-class correlation coefficients (0.84-0.94) than 
assay-measured CRP (0.78), indicating greater stabilities (Additional file 2: Table S11). Linear mixed 
models were then used to assess whether assay-measured and DNAm CRP derived at Wave 2 showed 
longitudinal associations with CRP levels over subsequent Waves (i.e. in effect predicting CRP profiles). 
Assay-measured CRP showed the strongest association with repeat measurements (interaction term 
between Wave 2 CRP and age: β=−0.20, p < 1.6 x 10-38) (Additional file 2: Table S12, Additional file 3). 
The elastic net-, Bayesian- and ‘PCA+elnet’-based predictors also exhibited significant albeit weaker 
associations (β=-0.05 for all, range of p=[3.9 x 10-3, 7.7 x 10-3]). Neither EWAS-based predictor showed 
a strong association (Additional file 2: Table 12). The longitudinal decline in CRP levels in the LBC1936 
is apparent in Table 1 and may reflect attrition bias.  
 

Next, we evaluated correlations between DNAm CRP and assay-measured CRP in all cohorts to identify 
the best-performing prediction method. Predictors built using elastic net regression, Bayesian 
penalised regression and ‘PCA+elnet’ showed comparable Pearson's correlation coefficients with one 
another in adult samples. Their correlation coefficients ranged from 0.27 to 0.53, 0.28 to 0.49 and 0.28 
to 0.47 across cohorts, respectively (Fig. 3A, Additional file 2: Table S13). Correlations were consistent 
between males and females, and across genetically diverse individuals in HELIOS and SABRE. Notably, 
correlations were weaker in childhood samples from ALSPAC including at age 0 (r~0.07) and at age 9 
years (r~0.20). These analyses suggested that DNAm predictors of CRP were robust to differences in 
sex and ethnicity but less so to age variation.  
 

The linear predictor – analogous to a polygenic score – based on association effect sizes in the 
Wielscher EWAS (p < 1 x 10-7, n≤1,379 sites, see Methods) tended to be less correlated with assay-
measured CRP (r~0.2). Retraining the predictor using ‘PCA+elnet’ (and focusing on the same CpG sites) 
almost doubled the correlations (Fig. 3A). There was a negligible correlation between CRP levels and 
a weighted score derived from our EWAS (n≤33,939 sites with p < 3.6x10-8), likely reflecting random 
noise from many more weakly associated individual sites.  
 

The same patterns held true for incremental R2 estimates of CRP variance explained beyond age and 
sex. A predictor from elastic net regression explained 17.7% of the variance in CRP over age and sex, 
with comparable estimates from ‘PCA+elnet’ and Bayesian approaches (Fig. 3B). EWAS-based 
predictors explained only 0-4% of phenotypic variance. A genetic score explained 5.1% of the variance 
in CRP. DNAm predictors captured variance in CRP independently from the genetic predictor, 
consistent with the variance partitioning analyses.  
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3.5 Elastic net regression is sufficient to enhance DNAm prediction of CRP  

The primary ‘PCA+elnet’-based approach was applied to 1,379 sites that associated with CRP at p < 
1.0 x 10-7 in the Wielscher et al. study. The strategy was repeated across a range of pre-filtering p-
value thresholds to determine its sensitivity to specific thresholds (p < 0.05 as the least stringent to p 
< 1 x 10-20 as the most stringent). The ‘PCA+elnet’ predictor performed similarly regardless of the 
threshold (r=0.33-0.42). We also trained the predictor using sites common to all cohorts (n=374,785) 
to directly match the original strategy used by Higgins Chen et al.12. The resulting correlation 
coefficient was slightly lower (r=0.30).  

 

By contrast, the performance of the EWAS-based predictor tended to improve at more stringent p-
value thresholds. The correlation coefficient ranged from -0.01 (using sites at p < 0.05) to 0.26 (p < 1 
x 10-20) (Fig. 3C, Additional file 2: Table S14).  

 

Additionally, we repeated the approach without the PCA step and retrained predictors using elastic 
net regression alone. Elastic net alone outperformed the combined ‘PCA+elnet’ strategy, on average, 
by 10%, suggesting that the PCA step did not enhance predictive performance.    
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Fig. 3. DNAm prediction of blood CRP levels using five separate strategies. (A) Pearson’s correlation coefficients 
between log-transformed CRP levels and five different DNAm predictors of circulating levels. Weighted linear DNAm 
predictors for CRP levels were derived from (1) elastic net regression (Elastic Net), (2) Bayesian penalised regression 
(Bayesian PR), (3) PCA combined with elastic net regression (Wielscher-PCA), (4) an EWAS by Wielscher et al. (Wielscher-
EWAS) and (5) the present EWAS (Hillary-EWAS). Low-sensitivity and high-sensitivity CRP measures were available at age 
73 (Wave 2) of the LBC1936 and are included in this plot to enable cross-assay comparison. The high-sensitivity measures 
alone are reported in the main text for this time-point. (B) The proportion of variance captured in log-transformed CRP 
levels by a polygenic score alone and DNAm CRP from (A) are shown for Wave 2 of the LBC1936 (incremental R2 estimates 
above null model, see main text). An additive genetic and DNAm model is also shown for each of the five prediction 
strategies. (C) The PCA and elastic net regression method in the main text relied on pre-filtering sites to those that 
surpassed genome-wide significance in the Wielscher et al. EWAS (i.e. p < 1.0 x 10-7). The method was then repeated 
using different p-value thresholds to filter probes prior to PCA. The resulting predictors were compared against (i) 
weighted linear combinations using EWAS weights alone and (ii) elastic net regression on the filtered CpGs (i.e. bypassing 
the PCA step). Pearson’s correlations were computed between log-transformed CRP and DNAm CRP for all three methods 
and for p-value thresholds with increasing stringency. Vertical lines denote the 95% confidence interval. ALSPAC, Avon 
Longitudinal Study of Parents and Children; CpG, cytosine-phosphate-guanine dinucleotide; CRP; C-reactive protein; 
DNAm, DNA methylation; Eth., Ethnicity; EWAS, epigenome-wide association study; HELIOS, Health for Life in Singapore; 
LBC1936, Lothian Birth Cohort 1936; PCA, principal component analysis; PR, penalised regression.   
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3.6 Comparing DNAm and assay-measured CRP in their associations with cardiometabolic health 
outcomes  

Lastly, we compared DNAm CRP and assay-measured CRP in their associations with 26 health 
outcomes at age 73 years in the LBC1936 (see Methods). Previous studies have focused on EWAS-
based predictors alone. Here, we focused on the elastic net-based predictor given that it was the best-
performing method in correlation analyses and incremental R2 modelling. Overall, assay-measured 
CRP and DNAm CRP displayed similar relationships with continuous outcomes with 15 and 13 
associations (from 21 outcomes) having pFDR < 0.05, respectively (Fig. 4, Additional file 2: Table S15).  

 

However, for cardiometabolic disease outcomes, DNAm CRP outperformed assay-measured CRP (Fig. 
4). Whereas DNAm CRP was strongly associated with history of cardiovascular disease (odds ratio 
(OR)=1.28, pFDR=6.6 x 10-3), hypertension (OR=1.30, pFDR=2.3 x 10-3), stroke (OR=1.63, pFDR=3.4 x 10-3) 
and type 2 diabetes (OR=1.72, pFDR=8.0 x 10-5), assay-measured CRP was weakly associated only with 
hypertension (OR=1.19, pFDR=0.03) and stroke (OR=1.41, pFDR=0.03). Both measures were similarly 
associated with risk of all-cause mortality (hazard ratios=1.47 and 1.45, pFDR=3.0 x 10-6 and 3.7 x 10-6, 
respectively, Fig. 4).  

 

Association patterns were similar for the Bayesian- and ‘PCA+elnet’-based predictors, which 
associated with 19 and 20 outcomes at pFDR < 0.05, respectively. The EWAS-based predictors 
associated with 8 (our EWAS) and 15 outcomes (Wielscher EWAS) (Additional file 4: Fig. S3-S8). 
Associations for the genetic score did not withstand multiple testing correction. Therefore, our newly-
described DNAm models capture adverse health outcomes better than assay-measured CRP as well 
as existing DNAm and genetic models of CRP.   
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Fig. 4. Associations of health outcomes with DNAm CRP from elastic net regression and phenotypic CRP. Linear and 
logistic regression models were used to test for cross-sectional associations of DNAm and assay-measured (i.e. phenotypic) 
CRP with cardiometabolic, lifestyle and self-report disease variables at Wave 2 of the LBC1936. Cox proportional hazard 
models tested for associations between CRP (assay-measured or DNAm) derived at Wave 2 and time-to-death due to all-
cause mortality. Here, only DNAm CRP from elastic net regression was utilised given that it was deemed the best-
performing method in correlation analysis and incremental R2 modelling. Association tests using DNAm CRP from other 
prediction strategies and a polygenic score for CRP are shown in Additional file 4: Fig. S3-S8. CRP; C-reactive protein; DCCT; 
Diabetes Control and Complications Trial; DNAm, DNA methylation; HDL, high-density lipoprotein; Thrombopl., 
thromboplastin.      
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4 Discussion  

We developed a DNAm predictor of CRP that explains up to 20% of the variance in circulating 
concentrations, almost doubling that captured by existing predictors7,8. DNAm CRP also outperforms 
genetic scores and assay-measured CRP in association analyses with cardiometabolic disease 
outcomes and risk factors. While the DNAm predictor was developed using data from over 17,000 
Scottish adults, it is generalisable across cohorts with distinct birth periods, DNAm normalisation 
pipelines, sex differences and individuals of different ethnic backgrounds. These analyses 
comprehensively outline the utility of DNAm as a biomarker of chronic low-grade inflammation and 
provide new opportunities to capture inflammatory burden across diverse populations.    

 

We identified elastic net regression as the best-performing method to proxy chronic low-grade 
inflammation from DNAm. Recently, Higgins Chen et al. showed that PCA prior to elastic net regression 
improved the reliability of epigenetic age estimators12. Similarly, Doherty et al. found that PCA in 
advance of elastic net regression outperformed 12 other strategies including elastic net regression 
alone in the DNAm prediction of telomere length38. Trejo-Banos et al. showed that DNAm predictors 
of BMI and cigarette smoking developed using Bayesian penalised regression captured more 
phenotypic variance than those from conventional penalised regression methods11,39. Here, elastic net 
regression without PCA offered a slight increase in performance over these methods (~1-2%) in 
explaining CRP variance. We show that this benefit holds over a range of pre-filtering criteria. The 
method also offers greater interpretability in having fewer selected features and lower computational 
expense than the PCA-based approach. Furthermore, it provides faster run times than BayesR+ 
(minutes versus hours based on current software versions). Nevertheless, the optimal method for a 
given trait is likely to depend on the precise relationship between the phenotype and molecular 
dataset in question.      

 

Existing DNAm predictors of inflammation represent additive weighted scores that consider CpG sites 
and weights (i.e. coefficients) from EWAS alone. This approach is analogous to the development of 
polygenic scores. Verschoor et al. showed that an aggregate score derived from the recent EWAS by 
Wielscher et al. outperformed assay-measured CRP as a marker of cardiopulmonary disease and long-
term health status. However, neither measure associated with all-cause mortality, which is in contrast 
with our study10. A seven-CpG score derived from an earlier EWAS by Ligthart et al. has also been 
associated with a wide range of neurocognitive health outcomes in adults and neonates7-9,40-42. These 
aggregate EWAS scores have shown promise in correlating with cardiometabolic disease risk and risk 
factors6,7. However, we show that predictors or measures from feature selection methods (i.e. elastic 
net regression) capture much more trait variance and associate with a greater number of outcomes. 
Our newly-described predictors performed comparably in residents of the UK and Singapore with 
diverse self-report ethnicities, which indicates its potential as a biomarker of inflammation in different 
populations. However, there remains a need to expand prediction efforts to individuals across other 
global regions and of additional ethnic backgrounds and ancestries in order to capture a fuller range 
of genetic and environmental contexts. Our predictors were developed using whole-blood adult 
samples but performed poorly at the extremes of the life-course including in neonates and in the ninth 
decade of life. Indeed, the predictors had near-zero correlations in cord blood samples. Cord blood 
DNAm serves a better proxy for cord blood CRP than maternal blood DNAm43. Therefore, additional 
tissue sources may be required to improve the generalisability of inflammatory biomarkers alongside 
environmental, technical and statistical considerations.         
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The strengths of this study include the use of a diverse range of cohorts that span the life-course and 
allow for a comprehensive examination of generalisability. We also utilise multiple methods to inform 
the molecular architecture of circulating CRP levels and provide robust estimates for the contribution 
of genome-wide DNAm to inter-individual variability. Limitations of the study include the non-
consideration of medication data and cross-sectional measurements preventing evaluation of the 
capacity of CRP models to predict health outcomes. The non-consideration of medication data and 
the advanced age of the LBC1936 cohort could have influenced associations between measured CRP 
and cross-sectional health outcomes. Additional limitations include different platforms for 
methylation typing and CRP measurements, small numbers of analytical samples in some cohorts (e.g. 
LBC1921) and the potential for non-linear associations between CRP and CpG methylation. Future 
work should focus on considering further advanced statistical methodologies that can consider 
nuanced and complex relationships between DNAm and CRP in addition to other human traits.  
 

5 Conclusion 

Genome-wide DNAm serves as a strong proxy for chronic low-grade inflammation, capturing up to 
50% of inter-individual variation in circulating CRP levels. Our newly-described DNAm predictors of 
CRP are generalisable across the population cohorts tested and offer new and improved opportunities 
to examine the association between chronic inflammation and health outcomes across disparate 
clinical and regional populations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23298000doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23298000
http://creativecommons.org/licenses/by/4.0/


21 
 

References  

1. Alfaddagh, A. et al. Inflammation and cardiovascular disease: From mechanisms to 
therapeutics. American journal of preventive cardiology 4, 100130 (2020). 

2. Tsalamandris, S. et al. The Role of Inflammation in Diabetes: Current Concepts and Future 
Perspectives. Eur Cardiol 14, 50-59 (2019). 

3. Kaptoge, S. et al. C-reactive protein concentration and risk of coronary heart disease, stroke, 
and mortality: an individual participant meta-analysis. Lancet 375, 132-40 (2010). 

4. Bogaty, P. et al. Time variability of C-reactive protein: implications for clinical risk 
stratification. PLoS One 8, e60759 (2013). 

5. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates 
intrinsic and environmental signals. Nature Genetics 33, 245-254 (2003). 

6. Wielscher, M. et al. DNA methylation signature of chronic low-grade inflammation and its 
role in cardio-respiratory diseases. Nature Communications 13, 2408 (2022). 

7. Ligthart, S. et al. DNA methylation signatures of chronic low-grade inflammation are 
associated with complex diseases. Genome Biology 17, 255 (2016). 

8. Stevenson, A.J. et al. Characterisation of an inflammation-related epigenetic score and its 
association with cognitive ability. Clinical Epigenetics 12, 113 (2020). 

9. Barker, E.D. et al. Inflammation-related epigenetic risk and child and adolescent mental 
health: A prospective study from pregnancy to middle adolescence. Dev Psychopathol 30, 
1145-1156 (2018). 

10. Verschoor, C.P., Vlasschaert, C., Rauh, M.J. & Paré, G. A DNA methylation based measure 
outperforms circulating CRP as a marker of chronic inflammation and partly reflects the 
monocytic response to long-term inflammatory exposure: A Canadian Longitudinal Study on 
Aging analysis. Aging Cell, e13863 (2023). 

11. Trejo Banos, D. et al. Bayesian reassessment of the epigenetic architecture of complex traits. 
Nat Commun 11, 2865 (2020). 

12. Higgins-Chen, A.T. et al. A computational solution for bolstering reliability of epigenetic 
clocks: Implications for clinical trials and longitudinal tracking. Nat Aging 2, 644-661 (2022). 

13. Zhang, F. et al. OSCA: a tool for omic-data-based complex trait analysis. Genome Biology 20, 
107 (2019). 

14. Smith, B.H. et al. Cohort Profile: Generation Scotland: Scottish Family Health Study 
(GS:SFHS). The study, its participants and their potential for genetic research on health and 
illness. Int J Epidemiol 42, 689-700 (2013). 

15. Smith, B.H. et al. Generation Scotland: the Scottish Family Health Study; a new resource for 
researching genes and heritability. BMC Med Genet 7, 74 (2006). 

16. Boyd, A. et al. Cohort Profile: the 'children of the 90s'--the index offspring of the Avon 
Longitudinal Study of Parents and Children. Int J Epidemiol 42, 111-27 (2013). 

17. Fraser, A. et al. Cohort Profile: the Avon Longitudinal Study of Parents and Children: ALSPAC 
mothers cohort. Int J Epidemiol 42, 97-110 (2013). 

18. Northstone, K. et al. The Avon Longitudinal Study of Parents and Children (ALSPAC): an 
update on the enrolled sample of index children in 2019. Wellcome Open Res 4, 51 (2019). 

19. Relton, C.L. et al. Data Resource Profile: Accessible Resource for Integrated Epigenomic 
Studies (ARIES). Int J Epidemiol 44, 1181-90 (2015). 

20. Chan, S.H. et al. Analysis of clinically relevant variants from ancestrally diverse Asian 
genomes. Nature Communications 13, 6694 (2022). 

21. Tillin, T., Forouhi, N.G., McKeigue, P.M. & Chaturvedi, N. Southall And Brent REvisited: 
Cohort profile of SABRE, a UK population-based comparison of cardiovascular disease and 
diabetes in people of European, Indian Asian and African Caribbean origins. Int J Epidemiol 
41, 33-42 (2012). 

22. Jones, S. et al. Cohort Profile Update: Southall and Brent Revisited (SABRE) study: a UK 
population-based comparison of cardiovascular disease and diabetes in people of European, 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23298000doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23298000
http://creativecommons.org/licenses/by/4.0/


22 
 

South Asian and African Caribbean heritage. International Journal of Epidemiology 49, 1441-
1442e (2020). 

23. Deary, I.J. et al. The Lothian Birth Cohort 1936: a study to examine influences on cognitive 
ageing from age 11 to age 70 and beyond. BMC Geriatr 7, 28 (2007). 

24. Taylor, A.M., Pattie, A. & Deary, I.J. Cohort Profile Update: The Lothian Birth Cohorts of 1921 
and 1936. Int J Epidemiol 47, 1042-1042r (2018). 

25. Houseman, E.A. et al. DNA methylation arrays as surrogate measures of cell mixture 
distribution. BMC Bioinformatics 13, 86 (2012). 

26. Battram, T. et al. The EWAS Catalog: a database of epigenome-wide association studies 
[version 2; peer review: 2 approved]. Wellcome Open Research 7(2022). 

27. Bollepalli, S., Korhonen, T., Kaprio, J., Anders, S. & Ollikainen, M. EpiSmokEr: a robust 
classifier to determine smoking status from DNA methylation data. Epigenomics 11, 1469-
1486 (2019). 

28. Hillary, R.F. et al. Blood-based epigenome-wide analyses of 19 common disease states: A 
longitudinal, population-based linked cohort study of 18,413 Scottish individuals. PLOS 
Medicine 20, e1004247 (2023). 

29. Hillary, R.F. et al. Epigenetic measures of ageing predict the prevalence and incidence of 
leading causes of death and disease burden. Clinical Epigenetics 12, 115 (2020). 

30. van Iterson, M., van Zwet, E.W., Consortium, B. & Heijmans, B.T. Controlling bias and 
inflation in epigenome-and transcriptome-wide association studies using the empirical null 
distribution. Genome biology 18, 1-13 (2017). 

31. Yousefi, P.D. et al. DNA methylation-based predictors of health: applications and statistical 
considerations. Nature Reviews Genetics 23, 369-383 (2022). 

32. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via 
coordinate descent. Journal of statistical software 33, 1 (2010). 

33. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. Journal of the Royal statistical society: series B 
(Methodological) 57, 289-300 (1995). 

34. Therneau, T. coxme: Mixed effects Cox models. R package version 2.2–16. 2020. (2021). 
35. Marzi, C. et al. Epigenetic Signatures at AQP3 and SOCS3 Engage in Low-Grade Inflammation 

across Different Tissues. PLoS One 11, e0166015 (2016). 
36. Chilunga, F.P. et al. Genome-wide DNA methylation analysis on C-reactive protein among 

Ghanaians suggests molecular links to the emerging risk of cardiovascular diseases. npj 
Genomic Medicine 6, 46 (2021). 

37. Said, S. et al. Genetic analysis of over half a million people characterises C-reactive protein 
loci. Nature Communications 13, 2198 (2022). 

38. Doherty, T. et al. A comparison of feature selection methodologies and learning algorithms 
in the development of a DNA methylation-based telomere length estimator. BMC 
Bioinformatics 24, 178 (2023). 

39. McCartney, D.L. et al. Epigenetic prediction of complex traits and death. Genome Biology 19, 
136 (2018). 

40. Green, C. et al. Structural brain correlates of serum and epigenetic markers of inflammation 
in major depressive disorder. Brain Behav Immun 92, 39-48 (2021). 

41. Conole, E.L.S. et al. DNA Methylation and Protein Markers of Chronic Inflammation and Their 
Associations With Brain and Cognitive Aging. Neurology 97, e2340-e2352 (2021). 

42. Conole, E.L.S. et al. Immuno-epigenetic signature derived in saliva associates with the 
encephalopathy of prematurity and perinatal inflammatory disorders. Brain Behav Immun 
110, 322-338 (2023). 

43. Yeung, E.H. et al. Cord blood DNA methylation reflects cord blood C-reactive protein levels 
but not maternal levels: a longitudinal study and meta-analysis. Clinical Epigenetics 12, 60 
(2020). 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23298000doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23298000
http://creativecommons.org/licenses/by/4.0/


23 
 

Acknowledgements  

This research was funded in whole, or in part, by Wellcome [104036/Z/14/Z, 220857/Z/20/Z, 
217065/Z/19/Z, 067100, 37055891, 086676/7/08/Z, 221890/Z/20/Z]. For the purpose of open 
access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript 
version arising from this submission.  
 

We are extremely grateful to all participants, team members and support staff in GS, HELIOS, SABRE 
and the LBCs for their invaluable contributions to this study. Further, for ALSPAC, we are extremely 
grateful to all the families who took part in this study, the midwives for their help in recruiting them, 
and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, 
clerical workers, research scientists, volunteers, managers, receptionists and nurses. 
 

GS received core support from the Chief Scientist Office of the Scottish Government Health 
Directorates [CZD/16/6] and the Scottish Funding Council [HR03006]. Genotyping and DNA 
methylation profiling of the GS samples was carried out by the Genetics Core Laboratory at the 
Edinburgh Clinical Research Facility, Edinburgh, Scotland, and was funded by the Medical Research 
Council UK and Wellcome (Wellcome Trust Strategic Award STratifying Resilience and Depression 
Longitudinally [STRADL; Reference 104036/Z/14/Z]). The DNA methylation data assayed for GS was 
partially funded by Wellcome [220857/Z/20/Z], a 2018 NARSAD Young Investigator Grant from the 
Brain & Behavior Research Foundation [27404; awardee: Dr David M Howard] and by a JMAS SIM 
fellowship from the Royal College of Physicians of Edinburgh [Awardee: Dr Heather C Whalley]. Roche 
Diagnostics supported this study through provision of free reagents and a grant for measurement of 
CRP in GS. We thank Elaine Butler, Ross Hepburn, and Ellen Macdonald, University of Glasgow, for 
excellent technical support. The UK Medical Research Council and Wellcome [217065/Z/19/Z] and the 
University of Bristol provided core support for ALSPAC. A comprehensive list of grants funding is 
available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-
acknowledgements.pdf). Methylation data in the ALSPAC cohort were generated as part of the UK 
BBSRC-funded [BB/I025751/1, BB/I025263/1] Accessible Resource for Integrated Epigenomic Studies 
(ARIES, https://www.ariesepigenomics.org.uk). The ALSPAC study was further supported by the 
National Institute for Health and Care Research Bristol Biomedical Research Centre. The views 
expressed are those of the author(s) and not necessarily those of the NIHR or the Department of 
Health and Social Care. The HELIOS study was supported by the Singapore Ministry of Health’s 
National Medical Research Council under its OF-LCG funding scheme [MOH-000271-00] and 
intramural funding from Nanyang Technological University, Lee Kong Chian School of Medicine and 
the National Healthcare Group of Singapore. SABRE was supported at baseline by the Medical 
Research Council, the British Heart Foundation and Diabetes UK. At follow-up, the SABRE study was 
funded by Wellcome [067100, 37055891, 086676/7/08/Z], the British Heart Foundation [PG/06/145, 
PG/08/103/26133, PG/12/ 29/29497, CS/13/1/30327] and Diabetes UK [13/0004774]. The SABRE 
study team also acknowledges the support of the National Institute of Health Research Clinical 
Research Network [NIHRCRN]. The LBC1936 is jointly core-funded by the Biotechnology and Biological 
Sciences Research Council and the Economic and Social Research Council [BB/W008793/1], and 
received support from Age UK (Disconnected Mind programme), the Milton Damerel Trust, the 
Medical Research Council [MR/M01311/1] and the University of Edinburgh. LBC1921 data collection 
was supported by grants from the Biotechnology and Biological Sciences Research Council 
[15/SAG09977] and the Chief Scientist Office of the Scottish Executive Health Department 
[CZB/4/505, ETM/55, CZH/4/213, CZG/3/2/79]. Methylation typing was supported by the Centre for 
Cognitive Ageing and Cognitive Epidemiology (Pilot Fund award), Age UK, The Wellcome Trust 
Institutional Strategic Support Fund, The University of Edinburgh, and The University of Queensland.   
 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23298000doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23298000
http://creativecommons.org/licenses/by/4.0/


24 
 

R.F.H. is supported by a British Heart Foundation Immediate Fellowship [FS/IPBSRF/22/27042]. H.R.E. 
is supported by the Medical Research Council Integrative Epidemiology Unit at the University of Bristol 
[MC_UU_00011/5]. F.H. and K.D. were supported within a Unit that received support from the UK 
Medical Research Council [MC_UU_12019/1]. S.R.C. was supported by a Sir Henry Dale Fellowship 
jointly funded by Wellcome and the Royal Society [221890/Z/20/Z]. R.E.M. is supported by an 
Alzheimer’s Society major project grant [AS-PG-19b-010]. P.D.Y. and M.S. are supported by the 
Medical Research Council Integrative Epidemiology Unit at the University of Bristol [MC_UU_00011/5] 
and Cancer Research UK [C18281/A29019].  
 

Author contributions 

R.F.H., C.L.R., R.E.M., P.D.Y. and M.S. conceptualised the study design. R.F.H., H.K.N., P.D.Y. and M.S. 
performed the analyses. D.L.Mc.C., H.R.E., R.M.W., A.C., F.H., D.K., P.W., N.S., J.C., C.H., C.S., A.M.M., 
K.L.E, S.R.C., J.C.C. and M.L. were involved in data generation and preparation. All authors reviewed 
and approved of the manuscript. 
 

Ethics statements  

Generation Scotland All components of Generation Scotland received ethical approval from the NHS 
Tayside Committee on Medical Research Ethics [REC Reference Number: 05/S1401/89]. Generation 
Scotland has also been granted Research Tissue Bank status by the East of Scotland Research Ethics 
Service [REC Reference Number: 20-ES-0021], providing generic ethical approval for a wide range of 
uses within medical research. All participants provided written informed consent. 
 

ALSPAC Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and 
the Local Research Ethics Committees. Informed consent for the use of data collected via 
questionnaires and clinics was obtained from participants following the recommendations of the 
ALSPAC Ethics and Law Committee at the time. Consent for biological samples has been collected in 
accordance with the Human Tissue Act (2004). 
 

HELIOS The HELIOS study was approved by the National Technological University (NTU) Institutional 
Review Board [IRB-2016-11-030], with written informed consent obtained from each participant 
before the commencement of the study. 
 

 

SABRE The SABRE study was approved by St Mary's Hospital Research Ethics Committee 
[07/H0712/109] and all participants provided written informed consent. 
 

Lothian Birth Cohort 1936 Ethical approval was obtained from the Multicentre Research Ethics 
Committee for Scotland (age 70, [MREC/01/0/56]), the Lothian Research Ethics Committee (age 70, 
[LREC/2003/2/29]), and the Scotland A Research Ethics Committee (ages 73, 76, 79, 82, 
[07/MRE00/58]). All participants provided written informed consent. 
 

Lothian Birth Cohort 1921 Ethical approval was provided by the Lothian Research Ethics Committee 
for test waves 1–3 at ages 79, 83 and 87 [LREC/1998/4/183, LREC/2003/7/23, 1702/98/4/183] and 
the Scotland A Research Ethics Committee for test wave 4 at age 90 [10/MRE00/87, 10/MRE00/87]. 
All participants provided written informed consent.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23298000doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23298000
http://creativecommons.org/licenses/by/4.0/


25 
 

Availability of data and materials  

According to the terms of consent for GS participants, access to data must be reviewed by the GS 
Access Committee. Applications should be made to access@generationscotland.org. ALSPAC data 
access is through a system of managed open access. Submissions and queries should be directed to 
alspac-data@bristol.ac.uk. For HELIOS, data access request proposals should be directed to 
helios_science@ntu.edu.sg for the consideration of the HELIOS Study’s principal investigators. SABRE 
data used for this submission will be made available on request to mrclha.swiftinfo@ucl.ac.uk. Further 
details regarding data sharing can be found on the cohort web pages 
(https://www.sabrestudy.org/home-2/data-sharing/). Lothian Birth Cohort data access requests can 
be made by following the information at https://www.ed.ac.uk/lothian-birth-cohorts/data-access-
collaboration.  
 

Epigenome-wide association statistics from linear models will be made available at the EWAS Catalog 
[URL to follow at publication]. Epigenome-wide association statistics from Bayesian penalised 
regression will be made available at the University of Edinburgh Datashare site [URL to follow at 
publication]. CpGs and weights derived from elastic net regression, Bayesian penalised regression and 
the combined PCA and elastic net regression strategies will also be available at the Edinburgh 
Datashare site [URL to follow at publication]. CpGs and weights for the elastic net regression and 
‘PCA+elnet’-based approaches from this version of the manuscript are available in Additional file 2: 
Tables S3 and S4. The Bayesian penalised regression predictor is not made available in Additional file 
2 due to the large number of CpGs involved (>300,000). All code associated with this manuscript, 
including scripts to project DNAm CRP into test samples, is available open access at the following 
GitHub repository: https://github.com/robertfhillary/dnam-crp.   

 

Competing interests 

R.F.H. and R.E.M. act as scientific consultants for Optima Partners. R.E.M. is an advisor to the 
Epigenetic Clock Development Foundation. R.F.H. has received consultant fees from Illumina. P.W. 
reports grant income from Roche Diagnostics in relation to and outside of the submitted work, as well 
as grant income from AstraZeneca, Boehringer Ingelheim, and Novartis, outside the submitted work 
and speaker fees from Novo Nordisk, and Raisio outside the submitted work. N.S. has consulted for 
Afimmune, Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Hanmi Pharmaceuticals, Merck Sharp 
& Dohme, Novartis, Novo Nordisk, Pfizer, and Sanofi; and received grant support paid to his University 
from AstraZeneca, Boehringer Ingelheim, Novartis, and Roche Diagnostics outside the submitted 
work. All other authors declare no competing interests.  

 

 

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23298000doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23298000
http://creativecommons.org/licenses/by/4.0/


26 
 

Supplementary information captions 

• Additional file 1 – Cohort Descriptions.  

• Additional file 2 - Supplementary Tables. Table S1. Summary data for Generation Scotland 
data. Table S2. Associations between blood CRP and covariates in Generation Scotland. Table 
S3. CpGs and weights for elastic net predictor. Table S4. CpGs and weights for PCA-based 
predictor. Table S5. Summary data for LBC1936 phenotypes. Table S6. Results from basic 
model - epigenome-wide association study. Table S7. Results from fully-adjusted model - 
epigenome-wide association study. Table S8. Results from Bayesian penalised regression - 
epigenome-wide association study. Table S9. Variance components estimation. Table S10. 
Summary data for DNAm CRP predictors across cohorts. Table S11. Intra-class correlation 
coefficients for DNAm and assay-measured CRP over three waves of the LBC1936. Table S12. 
Longitudinal associations between CRP measures at Wave 2 and assay-measured CRP in the 
LBC1936. Table S13. Correlation between DNAm CRP and phenotypic CRP using five 
strategies. Table S14. Influence of pre-filtering threshold on the performance of DNAm 
prediction. Table S15. Health outcome association testing in the LBC1936.   

• Additional file 3 – Supplementary Methods. Additional descriptions on (i) Bayesian penalised 
regression, (ii) variance component estimation – combined analysis, (iii) assessing longitudinal 
stability of CRP measures, (iv) assessing relationship between assay-measured or DNAm CRP 
and future CRP measurements, (v) polygenic score profiling in Lothian Birth Cohort 1936 and 
(vi) note on elastic net regression.  

• Additional file 4 - Supplementary Figures. Fig. S1. Correlation between the first 20 principal 
components on CRP-associated probes and continuous covariates in Generation Scotland. Fig. 
S2. Correlation of effect sizes between epigenome-wide association studies by Wielscher et 
al. and the present study (Hillary et al.). Fig. S3. Association of 21 continuous cardiometabolic 
and lifestyle variables with measured CRP, genetic score for CRP and five DNAm predictors of 
CRP. Fig. S4. Associations of health outcomes with a genetic score for CRP or assay-measured 
CRP in the Lothian Birth Cohort 1936. Fig. S5. Associations of health outcomes with DNAm CRP 
(Hillary EWAS-based predictor) or assay-measured CRP in the Lothian Birth Cohort 1936. Fig. 
S6. Associations of health outcomes with DNAm CRP (Wielscher EWAS-based predictor) or 
assay-measured CRP in the Lothian Birth Cohort 1936. Fig. S7. Associations of health outcomes 
with DNAm CRP (PCA-based predictor) or assay-measured CRP in the Lothian Birth Cohort 
1936. Fig. S8. Associations of health outcomes with DNAm CRP (Bayesian PR-based predictor) 
or assay-measured CRP in the Lothian Birth Cohort 1936. 

• Additional file 5 - Correlations between DNAm predictors within each cohort and sub-group.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23298000doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23298000
http://creativecommons.org/licenses/by/4.0/

