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1 Abstract    
2  
3 South Africa is among the world’s top eight TB burden countries, and despite a focus on 
4 HIV-TB co-infection, most of the population living with TB are not HIV co-infected. The 
5 disease is endemic across the country with 80-90% exposure by adulthood. We investigated 
6 epidemiological risk factors for tuberculosis (TB) in the Northern Cape Province, South Africa: 
7 an understudied TB endemic region with extreme TB incidence (645/100,000) and the lowest 
8 provincial population density. We leveraged the population’s high TB incidence and community 
9 transmission to design a case-control study with population-based controls, reflecting similar 

10 mechanisms of exposure between the groups. We recruited 1,126 participants with suspected TB 
11 from 12 community health clinics, and generated a cohort of 878 individuals (cases =374, 
12 controls =504) after implementing our enrollment criteria. All participants were GeneXpert Ultra 
13 tested for active TB by a local clinic. We assessed important risk factors for active TB using 
14 logistic regression and random forest modeling. Additionally, a subset of individuals were 
15 genotyped to determine genome-wide ancestry components. Male gender had the strongest effect 
16 on TB risk (OR: 2.87 [95% CI: 2.1-3.8]); smoking and alcohol consumption did not significantly 
17 increase TB risk. We identified two interactions: age by socioeconomic status (SES) and 
18 birthplace by residence locality on TB risk (OR = 3.05, p = 0.016) – where rural birthplace but 
19 town residence was the highest risk category. Finally, participants had a majority Khoe-San 
20 ancestry, typically greater than 50%.  Epidemiological risk factors for this cohort differ from 
21 other global populations. The significant interaction effects reflect rapid changes in SES and 
22 mobility over recent generations and strongly impact TB risk in the Northern Cape of South 
23 Africa. Our models show that such risk factors combined explain 16% of the variance (r2) in 
24 case/control status. 
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46 Introduction
47 Tuberculosis (TB) is among the world’s leading causes of death due to infectious disease, 
48 recently surpassed by COVID-19 (1). The TB causative agent, Mycobacterium tuberculosis 
49 (M.tb), is an obligate, exclusive Homo sapiens pathogen mainly infecting the lungs, and 
50 sometimes other organs (2,3). Determinants of active TB progression are multifaceted including 
51 human host genetics, nutrition, social and economic conditions, behavior, and sex-specific 
52 biology (1,4,5).  The extent of these determinants’ effects varies across and within populations, 
53 necessitating epidemiological studies in differing contexts and communities (5). These factors 
54 have also been shown to vary between low and high/intermediate-incidence populations, with 
55 lower odds ratios in high/intermediate-incidence populations (6).  Here, we characterize the TB 
56 epidemiology of a district in the Northern Cape Province, South Africa, a TB-endemic region 
57 with relatively low HIV.         
58 South Africa is amongst the top 30 ‘high burden’ countries, burdened by TB, TB/HIV co-
59 infection, and multi-drug resistance or rifampicin-resistant TB (MDR/RR-TB).  TB is South 
60 Africa’s leading natural cause of death (7) with an extremely high prevalence (852/100,000, (8)) 
61 and accounts for 3.3% of all global TB cases (1). HIV is commonly identified as the leading risk 
62 factor for TB. In South Africa, 59% of TB patients on a TB programme (screened by a clinician 
63 and on TB medication) are co-infected with HIV. South Africa’s first national TB prevalence 
64 survey (n=35,000), however, found only 28% of TB cases were co-infected with HIV(8). This 
65 discrepancy is partly explained by those with TB who go undetected, mainly symptomatic men 
66 not living with HIV who have limited clinical contact (8). Many individuals who are 
67 diagnostically TB+ may also go undetected because 78% of TB+ HIV- individuals exhibit only 
68 one or no classic TB symptoms (e.g. cough for two weeks, fever, night sweats, and weight loss; 
69 61% have no symptoms)(8).
70 In case-control studies, controls should have similar disease exposure profiles to the 
71 cases.  Population-based controls risk differential disease exposure, a concern in low-incidence 
72 populations that can bias statistical associations. However, in high-incidence populations with 
73 well-characterized disease burdens and transmission, population controls greatly improve 
74 statistical power (9). In South Africa, TB is community spread moreover than household (10,11) 
75 and TB latency increases with age, reaching 80% by age 30 (12–15), an epidemiological scenario 
76 that ensures cases and controls have approximate disease exposure profiles.
77 Mycobacterium tuberculosis has a long coevolutionary history with different human 
78 populations likely leading to population-specific genetic signatures (2,16). TB susceptibility 
79 phenotypes have a heritability of 11-92% (17), yet few critical genetic variants have replicated 
80 across genome-wide association studies (GWAS) (18), potentially reflecting these population-
81 specific signatures. This result has spurred several studies to examine the relationship between 
82 genetic ancestry and TB risk (19–23). For instance, native Amerindian ancestry was shown to be 
83 a risk factor for TB progression in an admixed Amazonian population, and genetic variants in 
84 Peruvian populations have been associated with early active TB progression (19–21). A major 
85 challenge in identifying genetic risk factors associated with TB progression is decoupling the 
86 social and environmental effects that accompany ancestry. To this end, Asgari et al. controlled 
87 for environmental effects (e.g., sanitation, water supply, and socioeconomic status [SES])) and 
88 found indigenous Peruvian ancestry to be an independent, significant predictor of TB 
89 progression. Chimusa et al. also corrected for SES and demonstrated an association between 
90 Khoe-San ancestry and TB progression in South Africa (22). 
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91 In this study, we investigated ancestry proportions as well as several common TB 
92 epidemiological variables identified in earlier studies (24).  Smoking, alcohol consumption, and 
93 intravenous drug use have independently been associated with TB. Meta-analyses have found 
94 alcohol use and smoking (25,26), and specifically heavy alcohol use (26–28) to increase TB risk, 
95 though not always consistently. Our study is part of the Northern Cape Tuberculosis Project 
96 (NCTB), investigating the human-host genetics of TB among admixed Khoe-San descent 
97 populations in rural or peri-urban communities. Characterizing the TB epidemiology in this 
98 region will identify nongenetic risk factors that can serve as control variables in future genetic 
99 studies of TB risk.

100
101 Methods
102
103 Research ethics statement
104 This study has been approved by the Health Research Ethics Committee (HREC) of 
105 Stellenbosch University (N11/07/210A) and the Northern Cape Department of Health 
106 (NC2015/008). All participants were adults (18 years and older) and provided written informed 
107 formal consent. Authors Justin W. Myrick, Jamie Saayman, Lena van der Westhuizen and Marlo 
108 Möller had access to identifiable information about participants as they were directly involved in 
109 data collection or database management. Access to these records commenced on 26th January 
110 2016, and is still ongoing as it is an integral part of the ongoing Northern Cape Tuberculosis 
111 Project (NCTB).
112
113 Study Design and Recruitment 
114 Participants (18 years and older) provided written informed consent and were recruited 
115 from 12 community health clinics from the ZF Mgcawu district in the Northern Cape Province of 
116 South Africa from 26th January 2016 - 15 May 2017, and 11 December 2018 - 11 March 2020.  
117 Community health clinics are the front line for TB screening and treatment, visited by 87% of 
118 people who seek TB care (8). TB nurses referred patients with suspected TB (with ≥2 TB 
119 symptoms: cough for ≥2 weeks, night sweats, weight loss, and fever ≥2 weeks or a TB contact) 
120 and TB patients to our on-site RAs.  All study participants took a clinic-administered sputum 
121 GeneXpert Ultra test for active TB at the time of the study interview and provided saliva for 
122 genotyping.  Clinic medical charts were accessed by a staff research nurse to record GeneXpert 
123 test results and verify HIV status and TB history.  
124
125 Case-Control Assignment 
126 Cases and controls were assigned reckoning the participant’s medical charts and self-
127 reported data (see Fig. 1). Cases include anyone with active pulmonary TB in their lifetime and 
128 are HIV-negative and followed two tracks: 1) Clinically confirmed active TB (n= 343) and 2) 
129 self-reported past TB episode(s) (n=228). GeneXpert results, diagnostic test date, TB strain (drug 
130 resistance), and TB medication regimen were used to determine clinically confirmed progression 
131 to active TB.  Past TB episodes are self-reported, mainly due to older medical charts not reliably 
132 available, discarded, or difficult to locate by clinic staff.  
133 Controls are patients with suspected TB who have a negative GeneXpert Ultra result and 
134 have no history of active pulmonary TB at the time of study enrollment and are largely assumed 
135 to be latently infected with M.tb (LTBI). A majority of the population in high TB burden South 
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136 African suburbs are LTBI, 88% by ages 31-35 (12,13) and studies have consistently shown LTBI 
137 in South Africa to be above 75% by age 25, increasing across adulthood (14). Our population-
138 control design relies on population-wide TB exposure, as traditional screening methods, 
139 tuberculin skin test (TST) and interferon-gamma release assay (IGRA; e.g., QuantiFERON), are 
140 limited both in the concordance and positive predictive value (29,30). IGRA and TST are used to 
141 infer M.tb infection, but cannot be used to determine previous exposure to the bacterium. Certain 
142 individuals living in high M.tb exposed populations test persistently negative for these tests and 
143 do not develop active disease, but display Mtb-specific antibody titres. These individuals are 
144 known as “resisters” or “early clearers”  (31,32).
145 Our exclusion criteria removed participants with unknown TB or HIV status, as well as 
146 individuals with dual HIV and TB infections.
147
148 Fig 1.  Case-Control Decision Tree. Study participants were 
149 categorized as cases or controls based on medical record 
150 information and self-reported data.  All participants were 
151 GeneXpert tested for active TB infection at the time of enrollment. 
152 Past TB episodes were self-reported and cross-referenced with 
153 medical records when available. 
154
155 Study covariates 
156 We collected demographic information that included date of birth, place of birth, current 
157 residence, self-identified gender, self-reported ethnic identity, and parental ethnic identities. 
158 Behavioral variables include smoking and alcohol consumption (See Supplementary Materials in 
159 S1 Text). In our analyses, we only used binary measures for smoking and alcohol (“Do you 
160 smoke?”, “Do you drink alcohol?”). Residence and birthplace locations are categorized as rural 
161 (≤2000 people) and town (>2,000 people). Population size was derived from the South African 
162 census and when census data was absent, e.g., a farm, we used Google Earth (earth.google.com) 
163 to estimate population size based on the number of dwellings.  Age was used as a continuous 
164 variable for all analyses and binned for calculating empirical odds (see Fig 2B).  SES was 
165 operationalized as someone’s number of years of education, i.e., the highest completed level of 
166 education.  McKenzie et al. have shown education level, in this dataset, positively predicts body 
167 mass index in TB controls, tracking access to resources and food security (33). 
168
169 Fig 2.  Case-Control status shifts across Age groups. A) 
170 Overlapping density plots of age distribution stratified by TB 
171 status (n= 878). At the oldest and youngest ages, most of our study 
172 participants are cases whilst at middle-age groups, the majority 
173 are controls.  B) Empirical odds of active TB by age group. The x-
174 axis bins our participants into 7 age groups and the y-axis: the 
175 empirical odds of active TB. Empirical odds are calculated by 
176 dividing the number of controls divided by the number of cases in 
177 each age bin. The size of the dots corresponds to the sample size 
178 of the age group. Our data reveal a signal of survivor bias. Since 
179 age is a cumulative measure of exposure, the empirical odds of TB 
180 should increase with age. This pattern is observed from our 
181 youngest age group up to age 58. The empirical odds of TB 
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182 progressively decrease after age 58. Older age groups are biased 
183 towards controls due to the mortality of TB. 
184
185 Data Analyses
186 Statistical analyses were performed in R (version 4.0.2).  We calculated Pearson 
187 correlations with the R package ggcorrplot. All categorical variables were numerically coded to 
188 “0” and “1”. Classification models for our binary, qualitative dependent variable (“case”/ 
189 “control”) included logistic regression and random forest—a machine learning classifier robust 
190 to non-linear associations and unknown variable interactions (34) (see Supplementary Materials 
191 in S1 Text). Random forest is a growing analytic tool in epidemiology (35–37). The coefficients 
192 of the logistic regression models were converted to odds ratios using the R package gtools (38), 
193 and marginal effects were plotted using the R package effects (39). Each model was Bonferroni 
194 corrected by dividing, 0.05, by the number of variables in said model.
195
196 Our first model, the common risk factor model (n=878), includes seven covariates known 
197 to be common risk factors for TB.  
198
199 TB Status ~ gender + smoking + drinking + diabetes + residence + age + SES
200
201 Health disparities are one of the many consequences of apartheid in South Africa (40,41). 
202 The end of apartheid improved social mobility and educational access, however, health 
203 disparities in the Northern Cape still remain (42). To capture the effect of lived experience vis-à-
204 vis Apartheid on TB outcomes we designed the “SES model” (n=878). This model includes the 
205 common risk factor model and interacts with age and SES. Age is kept as a continuous variable 
206 because Apartheid was not a historically binary event.
207
208 TB Status ~ common risk factor model + age * SES
209
210 Residing in an urban or rural environment is an established risk factor for TB status. In 
211 the “residence model”, we test the relationship between current residence and birthplace 
212 residence on TB status. Here, we build on the common risk factor model to include an interaction 
213 between current residence and birthplace. Setting this interaction allows us to examine four 
214 patterns, namely: rural birthplace to urban residence, urban birthplace to rural residence, lifetime 
215 rural residence, and lifetime urban residence. 
216
217 TB Status ~ common risk factor model + residence * birthplace 
218
219 Genetic Data Processing & Ancestry Estimation
220 Genetic data processing involved DNA extraction from saliva samples, genotyping for >2 
221 million SNPs, common variant calling with GenomeStudio, rare variant calling with zCall, and 
222 further data cleaning using plink2 with specific parameters (Supplementary methods in S1 
223 Text).Prior to genetic ancestry estimation, SNPs out of Hardy-Weinberg equilibrium (--hwe 0.001) 
224 and rare alleles (--maf 0.01) were removed from the dataset. The dataset was also pruned for 
225 linkage disequilibrium (--indep-pairwise 200 25 0.4). Individuals from Luhya, Maasai, Himba, 
226 British, Palestinian, Chinese, Bangladeshi, Tamil, Ju|’hoansi San, Khomani San, Nama 
227 populations were used as reference groups. Global ancestry estimates were calculated using 
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228 ADMIXTURE v1.13(43). This was done in groups of maximally unrelated individuals to avoid 
229 biasing the ancestry estimates. ADMIXTURE was run for k=5 on unsupervised mode for each of 
230 the running groups. After matching clusters, we merged ancestry estimates across all running 
231 groups, averaging individuals that appeared in multiple running groups using pong (44)
232
233 Results
234
235 TB case-control classification 
236 1,126 participants were partitioned into preliminary cases, preliminary controls, and 
237 unverified TB status (571,504, and 51 respectively; Table C in S1 Text). After excluding, 
238 participants with unverified TB status, preliminary cases with unverified HIV status, and 
239 participants co-infected with TB and HIV, 878 participants remained in the study (374 cases and 
240 504 controls; Table A in S1 Text).  
241
242
243 Socio-behavioral covariates and demographics
244 Men and women were equally represented in the dataset (422:441, respectively, Table A 
245 in S1 Text).  Men were more likely to drink alcohol (r = -0.14, p < 0.05; Fig I in S1 Text) and 
246 smoke (r = -0.22, p < 0.05; Fig I in S1 Text). Most of our participants smoked (66%) and 45% 
247 drank alcohol; smoking and drinking were moderately correlated with each other (r = 0.36, p < 
248 0.05; Fig I in S1 Text).  Women were more likely to have diabetes (r = 0.12, p < 0.05; Fig I in S1 
249 Text) and, on average, had more education than men (female mean= 8.3 years, male mean = 7.7 
250 years).
251 Cases and controls had similar distributions for age (mean = 43.1, SD =13.2 and mean 
252 =42.4, SD =15.2, respectively, Table A in S1 Text). “Age” is defined here as the age at the time 
253 of study enrollment and importantly, is a cumulative outcome: that is, it includes cases who 
254 currently and/or previously had TB, not the age of the TB episode.  Age also captures the amount 
255 of time someone is exposed to TB. The empirical odds of active TB in our data reveal a signature 
256 of survivorship bias (Fig. 2B). We use the number of years of education as a proxy for “SES”. 
257 The mean educational attainment is 8 years, equivalent to completing primary school, and 
258 similar between rural areas and towns (ANOVA, p > 0.1). In the ZF Mgcawu District census 
259 (45) 13% of people have not completed primary school compared to 25.3% of our participants.  
260 Age was moderately correlated with SES (r = -0.5, p < 0.05; Fig I in S1 Text) such that older 
261 participants tended to have lower SES. 
262
263 Ethnicity and Khoe-San Ancestry
264 Genetic ancestry analyses were performed for 159 participants (see Supplementary 
265 Methods in S1 Text) from the Northern Cape Tuberculosis Project on host-genetic susceptibility 
266 to TB. To our knowledge, this is the first study to report ancestry proportions of a clinical 
267 population in the Northern Cape Province, South Africa. Khoe-San ancestry varied across clinic 
268 locations (Fig. 3A) but remained the majority ancestry at each site (mean = 56%), followed by 
269 Bantu-speaking African ancestry (mean = 21%), European ancestry (mean = 16%), South Asian 
270 ancestry (mean = 5%), and East Asian ancestry (mean = 2%) (Fig. 3B).  
271
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272 Fig 3. Khoe-San Ancestry is the Primary Genetic Ancestry in Clinics 
273 from the Northern Cape, South Africa.  A subset of participants 
274 (n=159) was genotyped for preliminary ancestry analysis.  A) The 
275 study population is admixed with 5 distinct ancestries with the 
276 Southern African indigenous Khoe-San ancestry being the largest 
277 proportion of ancestry across all study sites. (B) Although Khoe-
278 San ancestry is the largest proportion of ancestry in our sample, 
279 it varies significantly across study sites.
280
281 Individuals were asked to self-identify their ethnicity without prompting. 88.4% of 
282 participants (both TB cases and controls) self-identify as, coloured, followed by 4.2% as a Khoe-
283 San ethnicity (e.g., Nama, San), 4.6 % as Tswana, 1.3 % as Xhosa, and 1.9 % as “other”.  Whilst 
284 we acknowledge that in some contexts the term, coloured, has derogatory connotations, it is a 
285 recognized ethnicity and used culturally in South Africa. People who self-identify using this term 
286 have different ancestries of different geographic origins, including the indigenous Khoe-San 
287 groups (e.g., Khoekhoe, San), Bantu-speaking, European, Indian, Malaysian (Southeast Asian) 
288 slaves, or people of mixed ancestry and their descendants (46). 
289
290 Logistic Regression Results
291 We designed three logistic regression models (47) to examine the risk factors’ odds ratios 
292 for the binary dependent variable, TB case/control. The common risk factor model included age, 
293 SES, gender, residence, smoking, diabetes, and alcohol as covariates. The SES model extended 
294 the common risk factor model to include an interaction between age and SES. Lastly, the 
295 residence model extended the common risk factor model to include an interaction between 
296 birthplace and current residence.  The SES model (AIC = 1099; pseudo r2 = 17%, Table 1) 
297 performed slightly better than the common risk factor model (AIC= 1108; pseudo r2 =16%, Table 
298 1). The residence model had a similar pseudo r2 (15% (Table B in S1 Text)) as the other two, 
299 however, we could not compare their AICs due to different sample sizes. All significance levels 
300 were Bonferroni corrected. This was carried out by dividing 0.05 by the number of variables 
301 used in the model.
302
303 Table 1: Odds ratios and p-values for the Demographic and Socio 
304 Behavioral Variables used in the Common Risk Factor Model and SES 
305 Model
306
307

 Common Risk Factor 
Model

SES Model

Odds Ratio (CI) p-value
Odds Ratio 

(CI) p-value

Intercept 0.305 [0.13, 
0.72]

0.007  2.237 [0.46, 
11.18]

0.32 

Gender - 2.87 [2.10, 7.842e-12 2.85 [2.12, 6.545e-
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Male 3.80] 3.85]    12   
Years of 
Education 

(SES)

0.95 [0.90, 
1.00]   

0.03 0.75 [0.63, 
0.88]   

0.0007

Age 0.996 [0.99, 
1.00]

0.55 0.959 [0.931, 
0.986]  

0.003 

Drinks 
Alcohol - 

Yes

1.05[0.77, 
1.43]   

0.77 1.02 [0.75, 
1.40]  

0.88

Diabetes - 
Yes

1.36[0.73, 2.50] 0.35 1.37 [0.74, 
2.52] 

0.31

Current 
Residence - 

Rural 
(reference)

1 1

Current 
Residence - 

Town

2.88 [2.07, 4.02] 5.316e-10 2.91 [2.09, 
4.09]

3.912e-
10 

Smoker - 
Yes

1.31 [0.94, 
1.84]   

0.114 1.27[0.90, 
1.78]   

0.171

Years of 
Education * 

Age

1.005[ 1.002, 
1.009]  

0.003 

N 878

Significant 
p-value 

p < 0.007 p < 0.006

AIC 1108 1099

Pseudo-R² 
(Cragg-
Uhler) 

0.15 0.17

308
309 Gender, Alcohol, Smoking, and Diabetes
310 Males have three times the odds of active TB than females (OR = 2.85, p < 0.001; Table 
311 1 and Fig. 4). All logistic regression models showed insufficient statistical evidence for smoking 
312 (common risk factor model: OR =1.31, p = 0.11; Table 1, Table B in S1 Text), alcohol 
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313 consumption (common risk factor model: OR = 1.05, p = 0.77; Table 1 and Table B in S1 Text) 
314 and diabetes (common risk factor model: OR =1.36, p =0.32; Table 1 and Table B in S1 Text) on 
315 TB risk. Despite the lack of significance, we note that smoking had an effect size in the expected 
316 direction (Fig. 4).
317
318 Figure 4.  Effect Plots demonstrating the relationship between 
319 Active TB Status and A) Gender, B) Current Residence and C) 
320 Smoking. These plots are reported from the best-performing 
321 logistic regression model (SES model). Y-axes for all panels 
322 show the odds of active TB.  We find that the odds of active TB 
323 are 3 times higher in Males. Individuals currently residing in 
324 Towns have about 2.5 times higher odds of active TB as compared 
325 to individuals currently residing in rural areas. Smoking 
326 slightly increases the odds of active TB but is not 
327 statistically significant.
328
329 Age Interacts with SES 
330 In the common risk factor model, age (OR= 0.996 [0.99, 1.00], p=0.55) and SES (OR = 
331 0.947, p=0.0324; see Table 1) have no effect on TB risk. To examine this unexpected finding, we 
332 interacted age with years of education (proxy for SES). SES significantly affects TB status 
333 depending on age group (OR =1.005, p = 0.004, Table 1). The effect takes on a U-shaped 
334 relationship across ages, such that higher SES at younger ages (18-39 years old) is protective 
335 against TB, and higher SES at older ages (>59 years) increases risk (Fig. 5). Middle-aged 
336 individuals (40-59 years old) show no relationship between age and SES on TB risk (Fig. 5).    
337
338 Fig 5.  Logistic regression interaction plots. A) The odds of 
339 active TB by education level vary across age groups (shown above 
340 by the different color lines). More years of education decreases 
341 the odds of active TB in younger age groups, but this pattern 
342 reverses in the oldest age groups. In middle-aged individuals, 
343 there is no relationship between age and years of education. B) 
344 Effect plot from the residence model visualizing an interaction 
345 term between birthplace residence and current residence. 
346 Regardless of birthplace, the odds of active TB is highest in 
347 individuals who currently reside in towns. Individuals born in 
348 towns and currently residing in rural areas have the lowest odds 
349 of active TB.
350
351 TB Risk is Highest in Towns 
352 The odds of active TB were significantly higher for people residing in towns (common 
353 risk factor model: OR = 2.88 [2.07-4.03], p <0.0001; Table 1 and Fig. 4).  For the residence 
354 model, we analyzed the impact of moving between rural areas and towns during an individual’s 
355 lifetime (birthplace by residence) on TB status. We expected to see a difference in odds for TB 
356 risk between life-long residents and those who have moved between locales. Under such a 
357 model, lifelong rural dwellers would have the lowest odds and lifelong town dwellers would 
358 have the highest odds. We set an interaction term between current residence and birthplace 
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359 classified into town/rural; this interaction was marginally significant (OR = 3.05, p = 0.016; 
360 Table B in S1 Text). Our results show that regardless of birthplace, current residence in a town 
361 area increases the risk of active TB (Fig. 3B).  Interestingly, individuals who were born in a town 
362 and later moved to rural areas are even more protected than individuals born and currently 
363 residing in rural areas (Fig. 3B). 
364
365 Random Forest Modeling
366 Similar to logistic regression, random forest is a binary classifier yet differs in that is 
367 robust against non-linear associations and unknown interactions (34).  Random forest utilizes a 
368 permutation-based approach to generate a hierarchical list of important variables but is unable to 
369 quantify the “significance” between an independent and dependent variable.  
370 5000 subsets of our dataset were used to grow 5000 classification trees using baseline 
371 variables as predictors for active TB status. The model assigned gender, current residence, and 
372 SES respectively as the overall top important independent variables (Fig II-A in S1 Text). Age, 
373 diabetes, alcohol, and smoking were classified as uninformative predictors for TB. The random 
374 forest model also stratified the variable importance by cases and controls. Gender was the top 
375 predictor for case status, followed by current residence and SES (Fig II-B in S1 Text). SES was 
376 the top predictor for control status followed by gender and current residence (Fig II-C in S1 
377 Text). Interestingly, age had some predictive relevance for case status but was the worst-
378 performing predictor for controls (Fig II-C in S1 Text). The model had an overall “out-of-bag” 
379 misclassification rate of 38%, with misclassification lower in controls (controls =30%, cases 
380 48%; Supplementary Materials in S1 Text).
381
382 Discussion
383
384 This present work represents the largest TB epidemiological study on a Northern Cape 
385 clinical population (n=878).  In this study, we demonstrate the utility of population-based 
386 controls when disease exposure is known and transmission is community-spread (48) as seen in 
387 other studies in low-resource, high-burdened countries (9,49).  Logistic regression and random 
388 forest models both show gender and residence as significant and important TB risk predictors.  
389 Random forest assigned SES as an important variable, and SES was only significant when 
390 interacting with age in logistic regressions. Neither smoking, alcohol consumption, nor diabetes 
391 is associated with increased TB risk in any model. Two logistic regression models, interacting 
392 SES by age (SES model), and birthplace by residence (residence model), had similar explanatory 
393 power, improving on the common risk factor model.  This study demonstrates a possible unique 
394 historical context to South Africa, (post-)Apartheid differential effects between 
395 sociodemographic and health outcomes.
396 Age and TB risk have a general inverted U-shape relationship. During childhood, infants 
397 are at the greatest risk of TB decreasing through adolescence, increasing between 25-35 years 
398 old followed by a decrease, and another peak after 65 years (50,51).  In our study population 
399 (≥18 years), the empirical odds of active TB increase with age and peak in the 49-58-year-old 
400 age group, followed by a steady decline in empirical odds after age 58 until the oldest age group 
401 (Fig. 2B).  This drop in empirical odds after age 58 is most likely due to the mortality of 
402 individuals with TB, potentially a signal of survivor bias (52). This interpretation is seen in the 
403 shifting proportions of cases and controls across age groups (Fig. 2A). From ages 21 - 58, most 
404 of the population are cases, and from ages 59 - 88 most of the population controls (Fig. 2A). 
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405 Age was neither a significant (logistic regression) nor an important (random forest) 
406 variable except when interacted with SES.  SES’s protective effect on TB risk is most prominent 
407 among 18-39 year-olds and becomes a risk factor among the eldest individuals (>65 years; Fig. 
408 5A)—those who grew up and reached adulthood during Apartheid (Fig. 5A).  Higher SES 
409 increasing TB risk is contrary to findings in populations in the United States and Mexico (51). 
410 This unique pattern may reflect South Africa’s recent history of Apartheid and post-Apartheid 
411 societal and economic shifts. During Apartheid, individuals from historically marginalized 
412 backgrounds had limited career options, but some were able to become teachers, police officers, 
413 or nurses. Such occupations are associated with higher education requirements and would have 
414 facilitated access to larger salaries, transportation, and mobility.  
415 Higher SES could result in apparent greater odds of TB because these individuals would 
416 have had better access to healthcare both facilitating diagnosis and treatment. Universal access to 
417 education increased post-Apartheid but given the wide variation of years of education among the 
418 youngest generations, it likely still covaries with SES. Given the unusual interaction here 
419 between age and years of education, future work should validate additional SES measures to 
420 resolve mechanisms of TB risk. 
421 Consistent with previous research (53–56), we find TB risk is associated with living in 
422 larger towns.  In our prior work, mobility in the Northern and Western Cape populations changed 
423 over the past 3 generations with the highest levels of mobility in the grandparental generation 
424 (57). Therefore, we tested whether mobility (different birthplace and residence) affected TB risk.  
425 As expected, the protective effect of living rurally vanishes when someone moves to a larger 
426 town. Further, the individuals with the lowest TB risk are those born in a town and move to a 
427 rural area. These findings are consistent with TB exposure nearing ~ 90% by 25-30 years old 
428 (13), with transmission occurring via community contacts during adolescence and adulthood. We 
429 hypothesize that those born in towns who later moved to a rural area benefit from both BCG 
430 vaccination and decreased adult exposure thereby overall decreasing their odds of TB. BCG 
431 vaccination is standard for children in South Africa, however, children in rural areas may have 
432 lower vaccination rates (observation communicated by clinical staff in the study catchment).  
433 Future work should consider collecting birthplace in addition to current residence to better 
434 identify TB risk.  
435  Invariably across studies, men are on average 1.7 times more likely to have TB (58–60). 
436 Sex biases like this are common in other infectious diseases (61,62) and are attributable to an 
437 intersection of sex (biological factors, e.g., immune function) and gender (social and behavioral 
438 factors, e.g., risk-taking behavior) (63). Despite smoking not being a significant TB risk, we 
439 found 75.5% of men smoke compared to 55.8% of women, indicating at least some gender 
440 differences in risky behaviors in the Northern Cape population. 
441 Smoking and alcohol consumption has been shown to increase TB risk and mortality in 
442 the Northern Cape and at the national level (64–67). In our models smoking had the expected 
443 effect on TB risk and alcohol consumption had no effect. Both variables lacked statistical power 
444 in regression models and failed to meet any level of importance in the random forest model. Self-
445 reporting biases in observational studies like this one are a concern for variables like smoking, 
446 alcohol consumption, and SES measures (68).  Our sample, however, reports much higher levels 
447 of smoking compared to large-scale national surveys (e.g., (69), men: 75.5.% vs. 41%; women: 
448 55.8% vs. 21%, respectively suggesting minimal self-report bias in our study. It is possible that 
449 these weak effects of smoking and alcohol observed from our models are due to our method of 
450 binary classification. We collected fine-scale smoking and alcohol phenotypes (Supplementary 



13

451 Methods in S1 Text) but because of the high missingness of these phenotypes, we ultimately 
452 classified participants as Smokers/Non-smokers and Drinkers/Non-Drinkers. This stratification 
453 may mask the heterogeneity of drinking and smoking behaviors such as casual and binge 
454 substance use or differences in the types of alcohol and smoking materials consumed. Further TB 
455 epidemiological studies in the Northern Cape should explore these smoking and alcohol 
456 phenotypes in more detail. 
457 Active TB progression is a multifactorial process involving the environment, genetics, and their 
458 interaction (1,4). Our results from the NCTB cohort indicate that sociodemographic variables 
459 strongly impact active TB risk. Effects that are unique to the Northern Cape Province may reflect 
460 how changes in the pre- to post-apartheid environment modified social factors, such as SES and 
461 mobility, which in turn impacted lifetime TB risk. This work provides a baseline to design well-
462 informed future studies, such as exploring host genetic correlates of active TB progression in this 
463 population (Supplementary Discussion in S1 Text).
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