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Abstract:  
 

Objective: To determine the sensitivity, specificity, accuracy, positive predictive value 
(PPV), and negative predictive value (NPV) of Rapid ICH, a commercially available AI 
model, in detecting intracranial hemorrhage (ICH) on non-contrast computed tomography 
(NCCT) examinations of the head at a single regional medical center. 
Methods: RapidAI’s Rapid ICH is incorporated into real time hospital workflow to assist 
radiologists in the identification of ICH on NCCT examinations of the head. 412 
examinations from August 2022 to January 2023 were pulled for analysis. Scans in which 
it was unclear if ICH was present or not, as well as scans significantly affected by motion 
artifact were excluded from the study. The sensitivity, specificity, accuracy, PPV, and 
NPV of the software were then assessed retrospectively for the remaining 406 NCCT 
examinations using prior radiologist report as the ground-truth. A two tailed z test with α 
= 0.05 was preformed to determine if the sensitivity and specificity of the software in this 
study were significantly different from Rapid ICH’s reported sensitivity and specificity. 
Additionally, the software’s performance was analyzed separately for the male and 
female populations and a chi-square test of independence was used to determine if model 
correctness significantly depended on sex.  
Results: Of the 406 scans assessed, Rapid ICH flagged 82 ICH positive cases and 324 
ICH negative cases. There were 80 examinations (19.7%) truly positive for ICH and 326 
examinations (80.3%) negative for ICH. This resulted in a sensitivity of 71.3%, 95% CI 
[61.3%-81.2%], a specificity of 92.3%, 95% CI [89.4%-95.2%], an accuracy of 88.2%, 
95% CI [85.0%-91.3%], a PPV of 69.5%, 95% CI [59.5%-79.5%], and an NPV of 92.9%, 
95% CI [90.1%-95.7%]. Two examinations were excluded due to no existing information 
on patient sex in the electronic medical record. The resulting sensitivity was significantly 
different from the sensitivity reported by Rapid ICH (95%), z = 2.60, p = .009 although 
the resulting specificity was not significantly different from the specificity reported by 
Rapid ICH (94%), z = 0.65, p = .517. The model performance did not depend on sex per 
the chi-square test of independence: X2 (1 degree of freedom, N = 404) = 1.95, p = .162 
(p > 0.05).  
Conclusion: Rapid ICH demonstrates exceptional capability in the identification of ICH, 
but its performance when used at this site differs from the values advertised by the 
company, and from assessments of the model’s performance by other research groups. 
Specifically, the sensitivity of the software at this site is significantly different from the 
sensitivity reported by the company. These results underscore the necessity for 
independent evaluation of the software at institutions where it is implemented. 
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Introduction: 
 
Artificial intelligence (AI) is becoming increasingly popular for the analysis of diagnostically 
pertinent data in healthcare. Radiology has been particularly affected by this shift; algorithms are 
used for the automated detection of pathological findings on medical imaging. It is predicted that 
the medical imaging machine learning market will hit $2 billion by 2023 (Harris, 2019). This 
robust financial statistic reflects the demand for efficient, systematized, and accurate medical 
imaging machine learning algorithms.  
 
This demand for medical imaging software emerges within the context of a chronic shortage of 
radiologists in the US where COVID-19 has instigated unprecedented resignation rates (Reeves, 
2022). Radiology had been disproportionality affected by resource shortages, even prior to the 
COVID-19 pandemic; with the development of more complex imaging equipment and increasing 
reliance on scans for diagnosis, scan volume has increased. Additionally, the routine inclusion of 
double reading within hospital workflow potentiates this issue (Bruls & Kwee, 2020; Rao et al., 
2021) and there is escalating concern about burnout in the field. The threat of burnout induced 
medical errors (Ruutiainen et al., 2013) within this resource strained environment accentuates the 
applicability of AI for medical imaging.  
 
There exist several FDA approved AI models (Chen et al., 2021), some of which are already in 
use by healthcare centers. Some of these commercially available products are specifically used 
for the detection of intracranial hemorrhage (ICH) on non-contrast computed tomography 
(NCCT) examinations of the head. Early diagnosis of ICH is crucial for optimizing patient 
outcomes (Elliott & Smith, 2010) and this software can rapidly detect bleeds, creating a 
streamlined triage process that decreases the time between presentation and treatment while 
promising to reduce the resource strain on healthcare centers and physicians. 
 
Although AI has the potential to optimize the reading of medical imaging, there is evidence to 
suggest that these models are not completely generalizable and do not identify ICH with the 
same proficiency across different sites. One group evaluated AIDoc, a commercially approved 
deep learning software, in the detection of ICH (Kau et al., 2022). They found an accuracy of 
94%, a marked decrease from a different study reporting an accuracy of 98% (Ojeda et al., 
2019). Kau and colleagues also noted that residents and radiologists under time pressure 
significantly outperformed the model.  
 
These discordant results introduce the fundamental question of generalizability. It is particularly 
important to explore this question with rigor given that FDA approval of these algorithms only 
requires internal review, not peer review (Tariq et al., 2020), thus generalizability is not 
sufficiently accounted for in model validation. What is required is comprehensive evaluation of 
the performance of these models in various clinical settings so that their limits are entirely 
understood.  
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Another commercially available, FDA approved model distributed by RapidAI, Rapid ICH, 
advertises a sensitivity of 95.0% and specificity of 94.0%(RapidAI, 2020). We aim to assess the 
sensitivity, specificity, and accuracy of Rapid ICH, when utilized for the detection of ICH at a 
single regional hospital center site. In this retrospective analysis, we intend to better understand 
the generalizability of this model so that it may be appropriately applied within the clinical 
environment to systematically optimize hospital workflow and ultimately improve patient 
outcomes.  
 
Materials & Methods 
 
This retrospective, single-center study was approved by Pearl IRB, an independent institutional 
review board. Permission to access patient data was granted by the institutional review board. 
The institutional review board waived the requirement for informed consent given the 
retrospective nature of this study. 
 
Patient Population 
 
Inpatient and emergency room NCCT examinations of the head preformed between August 2022 
and January 2023, on patients between the ages of 11 to >=89 (patient ages greater than 89 were 
masked per HIPAA regulations), were included in this study. Patients with an age >= 89 were 
treated as having an age of 89. Scans were obtained from a single regional medical center and 
represent patients with a variety of clinical presentations. Both repeat acquisitions and initial 
scans were included in the study, so multiple scans from different time points for a singular 
patient existed in this image cohort. Scans with significant motion artifact, even in the case that 
motion most likely had an impact on the AI software output, were included unless there existed a 
repeat acquisition with no motion impact. In this case, the repeated examination was used in 
place of the motion impacted examination. Ambiguous scans were reviewed by a board-certified 
radiologist. If the determination of positive or negative ICH remained unclear so that the ground 
truth could not be determined, the scan was excluded from the final analyses (Figure 1).  
 
Image Acquisition 
 
NCCT imaging was performed on GE Lightspeed volumetric computed tomography (VCT) 64 
slice scanner with version vct_zeta.4 software. Scans were acquired under the following 
parameters: single collimation width, 0.625 mm; pixel dimension of image, 512x512; tube 
voltage, 120 kVP; adaptive tube current, 269 mA; pixel spacing, 0.488281/0.488281; windowing 
width/level, 80/40; convolution kernel, standard; rotation direction, counterclockwise; revolution 
time, 1 s; reconstruction diameter, 250 mm. Radiologists would have manually altered window 
settings during image review if necessary.  
 
AI Software: RapidAI 
 
The scans were analyzed by the commercially available software, RapidAI, for the presence of 
ICH. RapidAI is an FDA approved software developed to automatically detect and flag ICH 
positive scans. According to the company’s literature, the model was trained on images 
representing a diverse array of pathologies from US and Australian patients, on multiple scanner 
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types. The ground truth in the training data set was defined by a radiologist. Clinical validation 
was performed on a separate dataset from patients from US and Brazil. The company states that 
following adjudication by radiologists, the model had a sensitivity of 95% and specificity of 94% 
for the detection of ICH (RapidAI, 2020). Following their most recent FDA clearance in 
November 2022, RapidAI currently advertises a sensitivity of 98.1%, specificity of 99.7% for the 
detection of ICH, the highest sensitivity and specificity on the market for commercially available 
ICH detection products, with the ability to detect bleeds as small as 0.4 ml (Rapid ICH Receives 
New FDA Clearance with Highest Sensitivity and Specificity on the Market, 2022; RapidAI, 
2023). In the current study, the older software version with a sensitivity and specificity of 95.0% 
and 94.0% was used since the site had not upgraded at the time of image analysis. The software 
is configured to detect ICH subtypes including intraparenchymal (IPH), intraventricular (IVH), 
subdural (SDH), and subarachnoid (SAH) but is not trained to detect hemorrhagic 
transformation.  
 
412 NCCT examinations of the head with Rapid interpretations were retrospectively reviewed. 
Rapid outputs were contained in a separate series on the study. The outputs of the software were 
compared to the physician notes which were used to establish the ground-truth. A model error 
rate was then generated. The scans and ground truth labels were secondarily reviewed by the 
authors, including a board-certified radiologist. The software outputs were manually labelled as 
false positive (FP), true positive (TP), true negative (TN), and false negative (FN). Patient sex 
was obtained from the electronic medical record. Two patients in the sex specific analysis were 
excluded because of missing information in the electronic medical record.    
 
Statistical Analysis 
 
Statistical analyses were run on version 16.69.1 of Microsoft Excel and version 6.5.4 of Jupyter 
Notebook, a computing platform used with version 3.11.5 of Python. The SciPy library, a free 
and open-source Python library, was used for computations. The sensitivity and specificity of the 
software in this study were compared to the sensitivity and specificity published by Rapid using 
a two-tailed Z test. A sampling distribution of sensitivity and specificity was generated using 
100,000 random samples of 100 batches of outcomes (TP, FP, TN, and FN) from the dataset to 
generate a standard deviation for the population. The observed sensitivity and specificity and the 
standard deviation derived from random sampling were compared to the expected sensitivity of 
95% and specificity of 94% published by Rapid to produce the z score and p value with α = 0.05. 
Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value 
(NPV) were calculated for the entire set of cases and for females and males separately. 95% 
confidence intervals were then calculated for these statistics. Additionally, a chi-square test of 
independence was performed to determine if there is a statistically significant association 
between model performance and sex since a previous group (Voter et al., 2021) found that model 
performance was influenced by demographic factors. 
  
Results 
 
A total of 412 NCCT examinations of the head were analyzed by the RapidAI software, and 6 
scans were excluded prior to the final analyses due to motion artifact or unclear diagnosis 
(Figure I). 82 (20.2%) scans were flagged as positive for ICH and 324 (79.8%) scans were 
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flagged as ICH negative by the software (Figure I). There were actually 80 examinations (19.7%) 
with true ICH and 326 examinations (80.3%) without ICH. Scans represented a patient 
population of 202 (50%) females and 202 (50%) males with a mean female age of 66.6 and mean 
male age of 60.3. ICH was truly present in 15.3% of females and 24.3% of males (Table II).  
 
Of the software outputs, 25 (6.2%) were FP and 57 (14.0%) were TP (Figure I). The image 
features contributing to the FP results are described in Table III. FP outputs were a result of 
various features, but motion and residual contrast were the primary identifiable contributors. 
Additionally, 4 examinations triggered a positive output by the software in the absence of a bleed 
with no identifiable artifact noted on the scan.  
 
Of the 324 cases flagged as ICH negative by the software, 23 (5.7%) were FN and 301 (74.1%) 
were TN (Figure I). FN cases were parsed by bleed type; 7 (30.4%) of FN outputs represented an 
intra-axial bleed (IPH), while 15 (65.2%) of these outputs represented an extra-axial bleed (SDH, 
SAH, or EH). One bleed type (4.3%) was unclear from the scan (Figure II).  
 
The sensitivity of the software was 71.3%, 95% CI [61.3%-81.2%], the specificity was 92.3%, 
95% CI [89.4%-95.2%], and the accuracy was 88.2%, 95% CI [85.0%-91.3%]. Additionally, it 
determined that the PPV was 69.5%, 95% CI [59.5%-79.5%], and the NPV was 92.9%, 95% CI 
[90.1%-95.7%] (Table I). The resulting sensitivity was significantly different from the sensitivity 
reported by Rapid ICH (95%), z = -2.60, p = .009 but the observed specificity was not 
significantly different from the specificity reported by Rapid ICH (94%), z = 0.65, p  = .517. 
 
Model success was evaluated by sex. The percentages of FP, FN, TP, and TN outputs for females 
were: 5.9%, 7.9%, 7.4%, and 78.7% (Figure I). This resulted in the following sensitivity, 
specificity, accuracy, PPV, and NPV: 48.4%, 95% CI [30.8%-66.0%], 93.0% [89.2%-96.8%], 
86.1% [81.4%-90.9%], 55.6% [36.8%-74.3%], and 90.9% [86.6%-95.1%] (Table I).  
 
For males, the percentages of FP, FN, TP, and TN outputs were 5.9%, 3.5%, 20.8%, and 69.8% 
respectively (Figure I). This resulted in the following sensitivity, specificity, accuracy, PPV, and 
NPV: 85.7%, 95% CI [75.9%-95.5%], 92.2% [87.9%-96.4%], 90.6% [86.6%-94.6%], 77.8% 
[66.7%-88.9%], and 95.3% [91.9%-98.7%] (Table I).  
 
A chi-square test of independence was performed to assess whether correct (FP or TP) or 
incorrect (FN or TN) software output is dependent on sex. It was determined that model 
correctness is not dependent on sex: X2 (1 degree of freedom, N = 404) = 1.95, p = .162 (p > 
0.05). 
 
Discussion: 
 
In this study of 406 cases, the diagnostic performance of Rapid ICH was retrospectively 
assessed. Rapid ICH exhibited a lower sensitivity and specificity at our site than advertised, 
although its performance was only significantly different by the measurement of sensitivity. 
Sensitivity is a measure of how adept a test is at identifying true cases of a condition and 
decreases with increasing counts of FN outputs, or, in our case, missed bleeds. Thus, institution 
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specific analysis of Rapid’s behavior is crucial so that the software’s limitations are understood, 
and the model is utilized appropriately by physicians.  
 
We identified the common etiologies associated incorrect model outputs. The model produced 
more FP outputs than FN outputs. The most common FP outputs produced by the software 
resulted from motion, residual contrast, or could not be associated with a feature. FP results are 
particularly significant because they add to the burden on hospitals and physicians by 
unnecessarily flagging cases for review. This undermines AI’s primary selling point of increased 
efficiency. It is pertinent to identify the features that trigger FP results, as these represent areas 
for improvement in the model in selecting for ICH.  
 
It is of the utmost importance that FN outputs are identified and classified so that the algorithms 
for automatic ICH detection can be improved and confidently integrated into hospital workflow. 
We found that most FN outputs occurred on scans with SDH and IPH at our site. There is 
increasing concern about growing radiologist workload and how fatigue may impact error rates 
(Bruls & Kwee, 2020). AI models have the potential to address this concern, and given their 
automatic nature, even compensate for human error. But they can only do so if the FN frequency 
is lower than that of the overburdened radiologist. Otherwise, this software could contribute to 
missed bleeds and catastrophic patient outcomes when incorporated into hospital workflow.  
 
The error rate of radiologists is incredibly low (Strub et al., 2007) and previous assessment of 
other ICH detection software (AIDoc) has shown that residents, even when under time pressure, 
outperform the algorithm (Kau et al., 2022). We found that scans presenting SDH resulted in the 
highest frequency of FN outputs (Figure II). Interestingly, in their assessment of misidentified 
ICH by residents, Strub and colleagues found that SDH was the primary bleed type incorrectly 
assessed by their doctors (39% of cases) (Strub et al., 2007). This points to both areas for 
improvement in the algorithm and avenues for further research: RapidAI could potentially 
compensate for the human error in SDH diagnosis specifically if the model is fine-tuned to 
identify SDH. As RapidAI continues to update their software, further studies comparing doctor 
to AI performance are warranted.  
 
We add to the growing body of studies that assess the reported performance of AI in identifying 
ICH on new datasets, thus exploring the generalizability of these models. As these models 
become increasingly prevalent in the clinical workspace it is important to understand how well 
they function so that they can be appropriately utilized. It is also the responsibility of doctors and 
hospitals to identify shortcomings in the software so that areas of improvement can be addressed 
by developers. This will drive necessary change so that AI achieves its potential of improving 
patient outcomes while simultaneously reducing physician burden. Table IV shows the 
sensitivity and specificity of two commonly used commercially available AI products for the 
detection of ICH and the values found in subsequent studies. These statistics vary across sites. In 
their 2021 study, Heite and colleagues analyzed the performance of RapidAI in a study of 308 
scans and found the following sensitivity, specificity, PPV, and NPV for the software: 95.6%, 
95.3%, 95.6%, and 95.3%. The disparity between our findings, and other assessments of 
RapidAI’s performance indicate the need for further investigation of the generalizability of the 
model.  
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In another study, AIDoc was assessed and it was determined that its performance was not 
consistent across trials (Table IV; (Voter et al., 2021)). The performance of the model as a 
function of age and sex was also analyzed to determine if patient demographic factors contribute 
to varying model performance. In the univariable analysis but not their multivariable analysis, it 
was determined that model performance did in fact depend on sex. In the current study, 
erroneous outputs did not significantly depend on sex. This points to further investigation into 
the impact of patient demographic factors on the model’s behavior.  
 
This study must be considered within the context of its limitations. A larger sample size would 
bolster statistical power and representativeness of the data. The confidence intervals were wide, 
particularly for the overall sensitivity and PPV, female sensitivity and PPV, and male sensitivity, 
specificity, and PPV. Future studies with more examinations would provide a robust description 
of the model’s performance and allow more thorough investigation of the impact of demographic 
factors. Moreover, this study involved scans from only one scanner model. A more rigorous 
analysis would involve data from multiple scanner models to determine if the software’s varying 
performance depends on scanner type. Lastly, Rapid ICH has since been updated to a new 
version with advertised improvements in sensitivity and specificity(Rapid ICH Receives New 
FDA Clearance with Highest Sensitivity and Specificity on the Market, 2022). The present study 
considers the previous version of the software. The performance of the software as it is updated 
should be considered in future studies so that physicians can understand the capabilities and 
shortcomings of this tool as it evolves over time. 
 
Despite its limitations, this study is the first to quantify the performance of Rapid ICH at our site, 
adding to the growing body of evidence supporting independent validation of machine learning 
products for medical imaging at all sites in which they are utilized.  
 
Conclusion 
 
In conclusion, the sensitivity Rapid ICH is not in concordance with the values published by the 
FDA when the software was used to identify ICH at this regional medical center. Additionally, 
the performance of RapidAI does not significantly vary with sex. These results underscore the 
essentiality in per-hospital evaluation of AI software for automatic ICH detection prior to 
implementation into the hospital workflow. Currently, Rapid ICH is most appropriately utilized 
in conjunction with a doctor.  
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Total head CT (n = 412)

Total ICH Positive per Rapid ICH
n = 82, (20.2%)

Total ICH Negative per Rapid ICH
 n = 324, (79.8%)

Scans assessed by RapidAI imaging 
software (n = 412 )

FP*
n = 25, (6.2%)

TP 
n = 57, (14.0%)

TN*
n = 301, (74.1%)

FN 
n = 23, (5.7%)

RapidAI outputs compared to the radiologist reports from the electronic medical record. Scans re-reviewed by a 
neuroradiologist and study team member. (n=406)

Total Scans Excluded (n=6)
Motion artifact (n=4)
Obscure scan (n=2)

Figure I. General study workflow and primary results of analysis of software output versus ground truth as defined by the radiologist  

FP Female
n = 12, 
(5.9%)

FP Male
n = 12, 
(5.9%)

TP Female
n = 15, 
(7.4%)

TP Male
n = 42, 
(20.8%)

FN Female
n = 16, 
(7.9%)

FN Male
n = 7, 
(3.5%)

TN Female
n = 159, 
(78.7%)

TN Male
n = 141, 
(69.8%)

*One examination excluded during sex specific analysis due to missing chart data.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297974doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297974
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table I. Performance parameters of Rapid ICH when applied to all examinations and for males and females separately

Statistic Overall (%, [95% CI]) Female (%, [95% CI]) Male (%, [95% CI])

Sensitivity 71.3, [61.3-81.2] 48.4, [30.8-66.0] 85.7, [75.9-95.5]

Specificity 92.3, [89.4-95.2] 93.0, [89.2-96.8] 92.2, [87.9-96.4]

Accuracy 88.2, [85.0-91.3] 86.1, [81.4-90.9] 90.6, [86.6-94.6]

Positive Predictive Value 69.5, [59.5-79.5] 55.6, [36.8-74.3] 77.8, [66.7-88.9]

Negative Predictive Value 92.9, [90.1-95.7] 90.9, [86.6-95.1] 95.3, [91.9-98.7]
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Table II. Population Characteristics: Sex, true counts of bleeds, and age

Characteristic Total Count (n, %) True Bleed Present 
(TP + FN) (n, %)

Age (Mean, SD) Mean Age When Bleed 
Truly Present (Mean, SD)

Female 202, 50 31, 15.3 66.6, 18.3 70.3, 16.4

Male 202, 50 49, 24.3 60.3, 19.4 62.0, 15.8
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Table III. Frequency of false positive outputs and assessment of cause

Reason Count

Motion 4

Residual Contrast 4

Unidentified Reason 4

Streak 3

Dural Thickening/Calcifications (Falx/Tentorium) 3

Meningioma 2

Basal Ganglia Calcification and Streak 1

Chronic Post-Surgical Dural Thickening (Craniotomy) 1

Hemoconcentrated Blood the Dural Venous Sinuses 1

Parenchymal Calcifications 1

Volume Averaging or Hemoconcentration 1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297974doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297974
http://creativecommons.org/licenses/by-nc-nd/4.0/


43.5

17.4

4.3

30.4

4.3
0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

SDH SAH EH IPH Unclear

Pe
rc

en
t

Bleed Type

Percent of False Negatives by Bleed Type

Percent

Figure II. Frequency of false negative outputs per bleed type*

* SDH = subdural hemorrhage, SAH = subarachnoid hemorrhage, EH = epidural hemorrhage, IPH = intraparenchymal hemorrhage
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Model Sensitivity (%) Specificity (% ) n

AIDoc (Ojeda 
et al., 2019) 95.0 99.0 7,112

RapidAI 
(RapidAI, 
2020) 

95.0 94.0 Unavailable

Table IV. Sensitivity and specificity for two commercially available AI products for the detection of ICH and sensitivity and 
specificity found in follow-up studies 

Values Reported in Follow-Up StudiesValues Reported

Model Sensitivity (%) Specificity (%) n

AIDoc (Voter 
et al., 2021) 92.3 97.7 3,605

RapidAI (Heit 
et al., 2021)
 

95.6 95.3 308
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