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Abstract  

Background: Gestational age (GEAA) estimated by newborn DNA methylation (GAmAge) is 

associated with maternal prenatal exposures and immediate birth outcomes. However, the 

association of GAmAge with long-term overweight or obesity (OWO) trajectories is yet to be 

determined.  

Methods: GAmAge was calculated for 831 children from a US predominantly urban, low-

income, multi-ethnic birth cohort using Illumina EPIC array and cord-blood DNA samples. 

Repeated anthropometric measurements aligned with pediatric primary care schedule allowed us 

to calculate body-mass-index percentiles (BMIPCT) at specific age and to define long-term 

weight trajectories from birth to 18 years.  

Results: Four BMIPCT trajectory groups described the long-term weight trajectories: stable 

(consistent OWO: “early OWO”; constant normal weight: “NW”) or non-stable (OWO by year 1 

of follow-up: “late OWO”; OWO by year 6 of follow-up: “NW to very late OWO”) BMIPCT. 

were used GAmAge was a predictor of long-term obesity, differentiating between group with 

consistently high BMIPCT and group with normal BMIPCT patterns and groups with late OWO 

development. Such differentiation can be observed in the age periods of birth to 1year, 3years, 

6years, 10years, and 14years (p<0.05 for all; multivariate models adjusted for GEAA, maternal 

smoking, delivery method, and child’s sex). Birth weight was a mediator for the GAmAge effect 

on OWO status for specific groups at multiple age periods.  

Conclusions: GAmAge is associated with BMI trajectories from birth to age 18 years, 

independent of GEAA and birth weight. If further confirmed, GAmAge may serve as an early 

biomarker for future OWO risk. 
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Introduction 

Biological aging, a process not completely correlated with chronological age, can be assessed 

using biological molecules and markers, (1–5) , including DNA methylation (DNAm) (6–8). The 

biological age predicted by DNAm (mAge) has been studied for the correlation with 

chronological age and associations with health outcomes over the past decade; The mAge was 

found to be associated with body mass index (BMI) (9), abdominal adipose tissues (10), and 

liver fat (10). The residuals of mAge regressed of age (age acceleration), or the differences 

between methylation and chronological ages (“age diff” or Dage), is considered a strong 

predictor of all-cause mortality (11,12), cardiovascular mortality (13), and the incidence of 

cardiovascular disease (14).  

Age prediction by DNAm and the associations with morbidity are not limited to adults. In 

newborns and children, epigenetic clocks can estimate the gestational and chronological age 

using DNA extracted from different tissues (saliva, peripheral, and cord blood) (15). Cord-blood 

age acceleration (the residuals of gestational age (GEAA) methylation age (GAmAge) regressed 

on GEAA) was associated with maternal exposures such as vitamin D supplementation during 

pregnancy in a sample of White, African American, and Hispanic mothers (16), pre-pregnancy 

BMI and smoking in a sample of British mothers (17,18), and gestational diabetes in Chinese 

mothers (19). In European decedents’ newborns, GAmAge and cord-blood age acceleration were 

associated with higher cord-blood vitamin B12 levels (20), delivery method (c-section) [15,17], 

and immediate birth outcomes of weight, length, and head circumference (17,21). Data on the 

long-term associations of GAmAge and age acceleration measured in cord blood and child’s 

phenotypes are sparse; Cord blood age acceleration was directly associated with a child’s weight 

and height up to 6 months and inversely associated with a child’s weight at 10 years of age (21). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297965doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297965


In this analysis, we used data from a multi-ethnic mostly Black and Hispanic population 

birth cohort with extended time points for anthropometric measurements from birth to 21 years. 

We examined GAmAge as a predictor of childhood obesity and longitudinal trajectories from 

birth up to age 18 years, as reflected by distinct overweight or obesity (OWO) groups. We also 

examined whether birth weight can mediate these long-term associations. All of the above 

associations were examined beyond the impact of GEAA using appropriate statistical models to 

elucidate further the role of DNAm-based biological age as an indicator of health status.   

Methods 

This study included 831 mother–newborns pairs from the Boston Birth Cohort (BBC; registered 

in ClinialTrial.gov NCT03228875), a US predominantly urban, low-income, Black and Hispanic 

population. The BBC was initiated in 1998 with rolling enrollment at the Boston Medical Center 

in Boston, MA, as detailed elsewhere (22,23). In brief, mothers who delivered a singleton live 

birth at the Boston Medical Center were invited to participate 24-72 hours after a vaginal 

delivery. The BBC is enriched by preterm (< 37 weeks of gestation) and low birth weight (< 

2500 g) births by design of over-sampling PTB at enrollment. Pregnancies resulting from in vitro 

fertilization, multiple gestations (e.g., twins, triplets), fetal chromosomal abnormalities, major 

birth defects, or preterm birth due to maternal trauma were excluded. After mothers provided 

written informed consent, research assistants (RAs) administered a standardized questionnaire 

interview on maternal sociodemographic characteristics, lifestyle, including smoking and alcohol 

consumption, diet, and reproductive and medical history. Maternal and newborn clinical 

information, including birth outcomes, was abstracted from the medical records. The study 

protocol has received initial and annual approval from the Institutional Review Boards (IRBs) of 

Boston Medical Center and the Johns Hopkins Bloomberg School of Public Health.  
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Main covariates 

Mother-child characteristics: For background characteristics and adjustment of the statistical 

models, we used the following data: maternal age at delivery, parity (nulliparous or multiparous), 

maternal education (below college or college and higher), maternal self-reported race 

(Black/African American, White, and Hispanic), maternal pre-pregnancy BMI, maternal diabetes 

(non, gestational diabetes or pre-existing diabetes mellitus), delivery method, child’s sex (female 

versus male), maternal smoking, birth weight (as continuous and binary with above/below 2500g 

defined as the low birth weight (LBW) (24)), birth length, birth head circumference, and GEAA 

as continuous outcomes presented as weeks. We further characterized groups according to 

delivery week: extremely preterm (<28 weeks), very preterm (28 to 32 weeks), moderate to late 

preterm (week 32 to 37; WHO definitions), term (37 to 41 weeks), late-term (41 to 42 weeks), 

and post-term (>42 weeks; ACOG definitions; (25)). The estimation of GEAA was detailed 

before (22) and was performed using an established algorithm based on both the last menstrual 

period and the result of early ultrasound (<20 weeks’ gestation). Fetal growth groups– small for 

gestational age (SGA), appropriate for gestational age (AGA), and large for gestational age 

(LGA) were determined by the birth weight and gestational age as described before (26).  

Long-term obesity groups and BMIPCT 

Out of the data available for the BBC, we selected 3029 children with height and weight 

measurements with sufficient follow-up data. We calculated BMIPCT using WHO (birth to 2 

years old; (27)) and CDC growth charts (age 2 years and up;(28)) for these children. As child 

well-care visits had different frequencies, the BMIPCT data was divided into the following 32 

time windows: monthly measurements in the first year, quarterly measurements in the second, 
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and yearly measurements from month 36 (3rd year) to the 216th month. Out of the 3029 children 

with BMIPCT, 940 had available DNAm measured.  

Obesity-related age periods: In accordance with our previous work (29), we primarily focused 

on seven age periods representing different developmental phases previously identified as 

obesity-related critical periods: birth to 1 year old, birth to 2 years, birth to 3 years, birth to 6 

years, birth to 10 years, birth to 14 years and birth to 18 years. Based on the first age period in 

this analysis (birth to 1) and the availability of children with DNAm analysis, we selected 

children with at least one BMIPCT measurement at each age period. We refined the similar 

sample size at each period, thus resulting in a sample size of 831 for each age period allowing us 

to follow the same sample of children across multiple age periods for their observed or 

discovered BMIPCT trajectory. 

BMIPCT missing data and OWO groups: Imputation of BMIPCT missing data was detailed 

before (30) and in Supplemental methods 1. The OWO groups were constructed separately for 

each period, as follows: first, we applied k-means clustering with k=2. Next, we used Principal 

Component Analysis (PCA) to find the 1st and 2nd principal components. Since the first principal 

component primarily determines the k-means clustering, we divided the two groups above into 

four using the 2nd principal component, as previously demonstrated (31). The groups resulting 

from this procedure represent four distinctive OWO trajectories, with two consistent-weight 

groups and two non-consistent weight-increase groups named retrospectively after examining the 

trajectories, as published before (29): 1. Early OWO: children with early onset OWO who 

demonstrated a consistent high BMIPCT from birth to the end of each age period; 2. Late OWO: 

late onset OWO children that were NW at birth but experienced a rapid weight increase in the 

first months of life to become OWO by year one; 3. NW to very late OWO: children 
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distinguished from the late OWO by maintaining NW at early ages but becoming OWO by year 

six; 4. NW children consistently kept NW from birth to the end of each age period.  

DNA methylation profiling and calculation of gestational methylation age  

The blood draw procedure and quality control (QC) steps were detailed before (29,32). In 

summary, the labor and delivery service's trained nursing staff obtained cord blood after 

delivery. Genome-wide DNA profiling from 963 samples (plus 21 replicates) was performed 

using the MethylationEPIC BeadChip (850K). (33). Sample-level QC: We excluded 23 samples: 

7 sex mixed-up samples, 2 samples with call rate <98% methylation sites, 12 samples with mean 

log2 intensity < 10, and 2 samples with logistic error. Probe-level QC: We performed the single-

sample Noob (ssNoob) methods for background and dye bias correction (34). For a total of 

865,859 CpG sites, we extracted beta values. No probes were removed to calculate GAmAge, in 

accordance with a previous publication (35), which presented a GAmAge prediction model 

based on the EPIC array. GAmAge, measured in days, was calculated for 831 children with 

available DNAm data from cord blood samples and calculated OWO trajectory groups using the 

“methylclock” R package (36).  

Statistical analysis 

The primary aim of this study is to examine the association between GAmAge and BMIPCT 

trajectories across several age periods during childhood. Summary statistics were performed to 

compare newborns' demographic and clinical characteristics across OWO groups using the chi-

square test for categorical variables and ANOVA for continuous variables. ANOVA post hoc 

correction for multiple comparisons was performed using Bonferroni correction. Pearson 

correlation was used to examine the correlation between continuous variables. Multinomial 

regression was used to associate OWO groups with GAmAge, with adjustment for covariates 
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that may affect birth weight and week and were associated with OWO groups in univariate 

analysis: gestational age, child’s sex, maternal smoking, and delivery method. Linear regression 

models were used to examine the association with continuous dependent outcomes. Mediation 

analysis using the “mediation” R package (37) was performed to examine the mediatory role of 

birth weight in the association between GAmAge and OWO groups. Since OWO trajectory is a 

four-factor variable, we used logistic regression to perform the mediation analysis with the early 

OWO as the reference group and performed 3 comparisons for the mediation (reference group 

vs. late OWO or NW to very late or NW) per age period. All statistical analyses were performed 

using R (version 4.1; R Foundation for Statistical Computing).  

Results 

Population characteristics 

Maternal and child characteristics across OWO birth to 1y groups were presented in Table 1. 

Significant differences were observed in the children’s sex (p=0.031), with the smallest relative 

number of girls in the NW to very late OWO group and maternal smoking (p=0.003), with most 

mothers reporting ever smoking in the NW to very late OWO group. The early OWO group had 

the highest birth weight (p=1.2e-10 vs. late OWO, p=1.5e-4 vs. NW). The NW to very late OWO 

group had the lowest birth weight compared with the early OWO and NW (p<2.2e-16 for both) 

and were born in an earlier week compared with the other three groups (p=1.6e-14 vs. early 

OWO, p=8.1e-07 vs. late OWO, p=9.1e-12 vs. NW). The NW to very late OWO had the highest 

percentage of children born preterm and SGA.  

GAmAge associations with long-term obesity 

GAmAge (275.5±12.5 days) and GEAA (270.0±17.5 days) were strongly correlated (r=0.89, 

p<2.2e-16). Stratifying by the OWO groups at each age period examined, we observed the 
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strongest correlation of GAmAge and GEAA among NW to very late OWO children, compared 

with the other groups, across multiple age periods (Figure 1; Figure S1): early OWO vs. late 

OWO vs. NW to very late OWO vs. NW: 0.734 vs. 0.886 vs. 0.926 vs. 0.858, respectively 

(p<2.2e-16 for all). 

Next, we examined whether GAmAge could predict long-term BMIPCT patterns 

represented by OWO groups. The OWO groups differed in GAmAge in the following age 

periods (birth to 1: p=5.93e-16; birth to 2: 0.0279; birth to 3: p=0.0186; birth to 6: p=0.00865; 

birth to 10: p=0.00622; birth to 14: p=0.022; birth to 18: p=0.0478). Post-hoc correction for 

multiple comparisons showed that significant differences between early age periods (birth to 1, 

2, 3, and 6 years) were mostly observed between the early OWO and the late OWO and NW to 

very late OWO (Table S1). For later age periods (birth to 10 and birth to 14), the differences 

were mostly between the early OWO and NW to very late OWO (p=0.00018 and p=0.001, 

respectively). After accounting for GEAA, child’s sex, delivery method, and maternal smoking, 

GAmAge was associated with OWO groups in multiple age periods: significantly higher 

GAmAge was observed in both consistent BMIPCT groups, early OWO and NW, compared 

with the non-consistent late and NW to very late OWO groups (Figure 2; Table 2). Setting NW 

as the reference group, the relative odds ratio of 0.98 for a one-unit increase in GAmAge in the 

NW vs. the very late OWO group was consistent for the age periods birth to 1 years, 3 years, and 

6 years (p<0.05 for all). A similar observation for the relative odds ratio of 0.96-0.98 for a one-

unit increase in GAmAge in the NW vs. the late OWO was found for age periods birth to 1 

years, birth to 6 years, birth to 10 years, and birth to 14 years (p<0.05 for all).  

We also examined whether GAmAge provides additional information over GEAA to 

predict long-term OWO. We compared the GAmAge and GEAA coefficients in the multivariate 
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models that included mutual adjustment for both predictors across several age periods (Table 2). 

In the age periods of birth to 1, 3, 6, 10, 14, and 18 years, GAmAge explained more than GEAA 

the differences between some OWO groups, as reflected by significant z-score (e.g., birth to 1, 

late OWO vs. early OWO: 3.23 vs. -0.06 z-scores for GAmAge vs. GEAA, respectively; birth to 

3, NW vs. NW to very late OWO: -2.03 vs. -0.62; birth to 6, NW vs. late OWO: -2.43 vs. 1.85). 

On the other hand, at some age periods (birth to 1, 2, 3, 10, 14, and 18 years), GEAA explained 

more of the association with some OWO groups (e.g., birth to 1, late OWO vs. NW to very late 

OWO: -0.60 vs. 2.33 z-scores for GAmAge vs. GEAA, respectively; birth to 2, early OWO vs. 

NW to very late OWO: 1.35 vs. 2.33).   

We repeated the analysis for the associations with long-term obesity to examine the 

association with GAmAge acceleration (the residuals from linear regression using GEAA as a 

predictor for GAmAge). Results from this analysis presented at Table S2. Unlike the 

associations in the joint model, using GAmAge acceleration instead of GAmAge and GEAA did 

not results in any significant associations with the OWO groups, in all age periods.  

GAmAge and GEAA contribution to birth weight variation 

Birth weight was associated with GAmAge after adjusting for GEAA, child’s sex, delivery 

method, and maternal smoking (beta=7.66, p=0.0064). Examining the R2 of this model, i.e., how 

much variation in birth weight was explained by the model, starting with the association of birth 

weight with the child’s sex, delivery method, and maternal smoking (R2=0.031), adding 

GAmAge (R2=0.449) or GEAA (R2=0.516), showed the highest R2 with both GAmAge and 

GEAA in the model (R2=0.521), suggesting GAmAge explained additional 0.4% variation in 

birth weight on top of GEAA, sex, delivery method, and maternal smoking. 
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Since GEAA showed a similar high proportion of the explained variance in birth weight 

for the above model, we further stratified the birthweight model by subgroups of the delivery 

week. We found that the association of birth weight and GAmAge was the strongest in the 

extremely to very preterm strata (extremely preterm to very preterm: beta=21.60, p=0.024, 

R2=0.582 when both GAmAge and GEAA in the model; moderate to late preterm: beta=12.63, 

p=0.029, R2=0.305; term: beta=6.39, p=0.08, R2=0.198; late to post-term: beta=-11.13, p=0.264, 

R2=0.053). In the extremely to very preterm strata, for a model adjusted just for child’s sex, 

delivery methods, and maternal smoking (R2=0.059), adding GAmAge (R2=0.575) contributed 

more to the model than adding GEAA (R2=0.442). This was not observed within the moderate to 

late preterm strata, where adding GEAA to the model contributed more than adding GAmAge 

(R2 of a model without GAmAge or GEAA=0.048; R2 for adding GAmAge=0.221; R2 for 

adding GEAA instead of GAmAge=0.276). This was also observed within the term strata 

(R2=0.045, R2=0.1234, R2=0.194; for models without GAmAge or GEAA, a model with 

GAmAge added, a model with GEAA added, respectively).   

Mediation of the GAmAge association with OWO groups by birth weight 

In the subsequent analysis, we examined whether birth weight mediated the association between 

GAmAge and long-term OWO groups. We performed a mediation analysis using the early OWO 

as a reference in a two-group comparison logistic model. We found that birth weight mediated 

the association between GAmAge and the OWO groups, consistently between the early OWO 

and the NW in the age periods of birth to 2, 6 years, 10 years, 14 years, and 18 years. A summary 

of the casual mediation analysis is presented in Table S3. 

Discussion 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297965doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297965


In our study of 831 children, the GAmAge was associated with long-term obesity and was lower 

in late and very late OWO trajectories compared with early OWO. These associations were 

mediated by birth weight in multiple age periods, specifically for the associations between the 

consistent BMIPCT groups: early OWO and NW.  

We found that among children assigned to the group NW to very late OWO, the strongest 

correlation between GAmAge and GEAA was observed compared with the other OWO group at 

multiple age periods. The NW to very late OWO group was characterized by having the lowest 

birth week and the highest percentage of preterm and SGA children. This may reflect the 

differences in DNAm between preterm and term babies (38), as a previous study of 36 sex-

matched preterm infants (birth < 33 weeks gestation) and 36 sex-matched term babies (birth > 37 

weeks gestation) found 83 CpGs differentially methylated between the groups. Another study 

investigated the epigenetic impact of preterm birth in isolated hematopoietic cell populations 

(39). They concluded that some epigenetic markers in hematopoietic cells might also differ by 

prematurity due to differences in the preterm immune system compared with term neonates in 

both cell composition and function. These observations highlight the need to further investigate 

DNAm patterns and regulatory mechanisms among groups of delivery week.  

The data on the associations between GAmAge and long-term weight trajectories are 

limited. In a prospective study that followed 785 children from birth to 10 years old (21), the 

association of regressed GAmAge of GEAA was directly associated with the increase in age-

specific time windows weight measurements up to 6 months. However, these associations 

reversed from the age of 5 years onwards, and the regressed GAmAge of age was inversely 

associated with the child’s weight: a non-significant trend in the ages of 5 to 9 years and a 

significant association at the age of 10 were observed. In our analysis, we demonstrated the 
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associations of GAmAge with OWO patterns in several age periods from birth to 18 years. The 

use of epigenetic markers as an early indicator for later life obesity was also demonstrated in our 

previous epigenome-wide association study, where specific DNAm sites were associated with 

OWO trajectory patterns, differentiating between the OWO groups (29). Here, we found that 

consistent BMIPCT trajectories groups early OWO (children with elevated BMIPCT from birth) 

and NW (children with NW pattern from birth) significantly differ in GAmAge from the non-

consistent BMIPCT trajectories groups late (OWO by the end of year 1) and very late OWO 

(NW until 6 years old, and OWO onwards). The accumulating evidence for the predictive ability 

of early-life epigenetic signatures on later-life obesity should be further examined. Moreover, the 

associations of early epigenetic signatures with later-life morbidity should also be studied.  

Birth weight was a mediator for this association up to year 2, and an independent 

predictor for OWO trajectories in later age periods. The two non-consistent BMIPCT trajectory 

groups started with a median BMIPCT below the 50th percentile, but by the end of year 1 and 

year 6, respectively, children in these groups become OWO. Birth weight has been studied for 

the associations with short- and long-term obesity and other health outcomes; a U-shaped 

association between birth weight and childhood obesity was observed in a cohort of 5141 

children between the ages of 9 to 11 (40). In this study, beyond factors such as highest parental 

education, maternal history of gestational diabetes, child age, infant feeding mode, gestational 

age, unhealthy diet pattern scores, and sleep quality, the odds ratio of being >4000g at birth was 

1.77 for boys and 2.48 for girls. Also, children from high-income countries had a higher risk of 

childhood obesity with birth weight > 4000g, whereas children from low- or middle-income 

countries had an increased risk starting at 3500g of birth weight. On the other hand, low birth 

weight was associated with cardiometabolic diseases in adulthood (41) and with childhood and 
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adulthood obesity (42,43). Yet, it has to be noted that not all findings indicate that low birth 

weight might lead to childhood obesity (42). Therefore, utilizing GAmAge as an independent 

marker at birth may assist in identifying late-onset obesity in children that are NW and with a 

lower birth week in their early life without other indication for the long-term OWO trajectory.  

There are some limitations to this study. In the casual mediation analysis – birth weight 

and GAmAge were measured at the same time. Second, the findings' reproducibility depends on 

available birth cohorts with dense repeated BMIPCT measurements and DNAm, as the BBC has. 

The strengths of this study, beyond its large sample size and extended time points for BMIPCT 

measurements from birth to 18 years, are the novel associations described of GAmAge with 

long-term OWO trajectories.   

In conclusion, biological signatures based on DNAm are independent of GEAA in long-

term association with OWO. GAmAge may early-detect the onset of late and very late OWO.  
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Table 1: Prenatal and perinatal characteristics across subgroups of child BMI longitudinal 
trajectories from birth to 1y1 

 Entire 
(N=831) 

Early OWO 
(N=229) 

Late OWO 
(N=216) 

NW to very 
late OWO 
(N=187) 

NW 
(N=199) p-value2 

GAmAge (days)     

Mean (SD) 275 (12.5) 279 (8.08) 275 (12.2) 269 (15.8) 278 (11.3)  

Maternal age at delivery (years)       

Mean (SD) 28.4 (6.54) 28.4 (6.71) 29.3 (6.26) 27.8 (6.56) 28.0 (6.56) 0.086 

Maternal pre-pregnancy BMI (kg/m2)       

Mean (SD) 26.9 (6.41) 27.4 (6.61) 27.2 (6.89) 26.6 (5.9) 26.2 (6.07) 0.208 

Gestational age at delivery (weeks)       

Mean (SD) 38.6 (2.5) 39.2 (1.67) 38.6 (2.46) 37.3 (3.14) 39.1 (2.21) <0.001 

Term groups (n (%)       

Extremely to very preterm  24 (2.9%) 0 (0%) 5 (2.3%) 17 (9.1%) 2 (1.0%) <0.001 

Moderate to late preterm  123 (14.8%) 24 (10.5%) 34 (15.7%) 46 (24.6%) 19 (9.5%)  

Term  612 (73.6%) 178 (77.7%) 158 (73.1%) 119 (63.6%) 157 (78.9%)  

Late to post-term 72 (8.7%) 27 (11.8%) 19 (8.8%) 5 (2.7%) 21 (10.6%)  

Fetal growth groups (n (%))       

SGA 87 (10.5%) 12 (5.2%) 20 (9.3%) 36 (19.3%) 19 (9.5%) <0.001 

AGA 661 (79.5%) 170 (74.2%) 180 (83.3%) 150 (80.2%) 161 (80.9%)  

LGA 82 (10.0%) 47 (20.5%) 16 (7.4%) 1 (0.5%) 19 (9.5%)  

Parity (n (%))       

Nulliparous 374 (45.0%) 89 (38.9%) 100 (46.3%) 97 (51.9%) 88(44.2%) 0.064 

Multiparous 457 (55.0%) 140 (61.1%) 116 (53.7%) 90 (48.1%) 111 (55.8%)  

Maternal race (n (%))       

Black/African American 602 (72.4%) 164 (71.6%) 158 (73.2%) 137 (73.3%) 143 (71.9%) 0.812 

White 44 (5.3%) 11 (4.8%) 15 (6.9%) 10 (5.3%) 8 (4.0%)  

Hispanic 185 (22.3%) 54 (23.6%) 43 (19.9%) 40 (21.4%) 48 (24.1%)  

Maternal diabetes (n (%))3       

No 763 (92.5%) 214 (94.3%) 198 (92.6%) 174 (93.6%) 177 (89.4%) 0.194 

Gestational diabetes 35 (4.2%) 11 (4.8%) 8 (3.7%) 6 (3.2%) 10 (5.1%)  

Pregestational diabetes 27 (3.3%) 2 (0.9%) 8 (3.7%) 6 (3.2%) 11 (5.5%)  

Maternal education (n (%))       

Below college 551 (66.3%) 156 (68.1%) 144 (66.7%) 124 (66.3%) 127 (63.8%) 0.825 
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College and higher 280 (33.7) 73 (31.9%) 72 (33.3%) 63 (33.7%) 72 (36.2%)  

Maternal smoking (n (%))      0.003 

Never smoked 619 (74.5%) 178 (77.7%) 155 (71.8%) 124 (66.3%) 162 (81.4%)  

Ever smoked 212 (25.5%) 51 (22.3%) 61 (28.2%) 63 (33.7%) 37 (18.6%)  

Baby’s sex (n (%))       

Female 396 (47.7%) 112 (48.9%) 114 (52.8%) 72 (38.5%) 98 (49.2%) 0.031 

Male 435 (52.3%) 117 (51.1%) 102 (47.2%) 115 (61.5%) 101 (50.8%)  

Child’s birth weight (g)       

Mean (SD) 3120 (667) 3460 (552) 3080 (601) 2650 (671) 3220 (580) <0.001 
1 BMI trajectory is defined using longitudinal BMI percentile data from birth to 12 months of age. Early OWO: 
children with consistently high BMIPCT; Late OWO: children with BMIPCT increased to OWO by the end of the 
first year; NW to very late OWO: children with NW in early life that was increased to OWO by the 6th year; NW: 
children with consistently normal BMIPCT.  2 Tested using ANOVA or chi-square tests. AGA, appropriate for 
gestational age; BMI, body mass index; GAmAge, gestational methylation age; LGA, large for gestational age; NW, 
normal weight; OWO, overweight or obesity; SGA, small for gestational age. 3 Data available for N=825. 
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Table 2: The association between GAmAge, GEAA, and OWO groups across different age 
periods. The model includes mutual adjustment for GAmAge and GEAA and the following 
covariates: maternal smoking, delivery method, and child sex. Results presented for the 
GAmAge and gestational age predictors. N=831. GAmAge, gestational methylation age; GEAA, 
gestational age   

GAmAge GEAA 
Birth to 1 Effect z-score p-value OR [95%CI] z-score p-value OR [95% CI] 
Ref: NW Early OWO 0.53 0.60 1.00 [0.98,1.03] 0.29 0.77 1.00 [0.98,1.03]  

Late OWO -2.63 0.008 0.96 [0.94,0.99] 0.36 0.72 1.00 [0.98,1.03]  
NW to very 
late OWO -2.03 0.04 0.98 [0.95,0.99] -1.79 0.07 0.98 [0.95, 1.00] 

Ref: NW to 
very late 
OWO 

Early OWO 
2.58 0.009 1.03 [1.01,1.06] 2.10 0.035 1.03 [1.00,1.05] 

 
Late OWO -0.60 0.54 0.99 [0.97,1.01] 2.33 0.019 1.03 [1.00,1.05] 

Ref: Late 
OWO 

Early OWO 3.23 0.001 1.04 [1.01,1.06] -0.06 0.95 0.99 [0.97,1.02] 

Birth to 2 Effect z-score p-value OR [95% CI] z-score p-value OR [95% CI] 
Ref: NW Early OWO -0.002 0.99 0.99 [0.97,1.02] 0.73 0.36 1.01 [0.98,1.03] 
 Late OWO -1.25 0.21 0.98 [0.96,1.01] 0.39 0.69 1.00 [0.98,1.03] 
 NW to very 

late OWO -1.35 0.17 0.98 [0.96,1.01] -1.61 0.11 0.98 [0.96,1.00] 

Ref: NW to 
very late 
OWO 

Early OWO 
1.35 0.18 1.02 [0.99,1.04] 2.33 0.02 1.03 [1.00,1.05] 

 Late OWO 0.14 0.89 1.00 [0.98,1.02] 2.08 0.04 1.02 [1.00,1.05] 
Ref: Late 
OWO 

Early OWO 1.27 0.21 1.01 [0.99,1.04] 0.36 0.72 1.00 [0.98,1.03] 

Birth to 3 Effect z-score p-value OR [95% CI] z-score p-value OR [95% CI] 
Ref: NW Early OWO -0.49 0.63 0.99 [0.97,1.02] 1.48 0.14 1.02 [0.99.1.04] 
 Late OWO -1.78 0.07 0.98 [0.96,1.00] 0.84 0.40 1.01 [0.99,1.03] 
 NW to very 

late OWO -2.03 0.04 0.98 [0.95,0.99] -0.62 0.53 0.99 [0.97,1.02] 

Ref: NW to 
very late 
OWO 

Early OWO 
1.52 0.13 1.02 [0.99,1.04] 2.06 0.04 1.02 [1.00,1.05] 

 Late OWO 0.28 0.78 1.00 [0.98,1.03] 1.48 0.14 1.02 [0.99,1.04] 
Ref: Late 
OWO 

Early OWO 1.30 0.19 1.01 [0.99,1.04] 0.66 0.51 1.01 [0.99,1.03] 

Birth to 6 Effect z-score p-value OR [95% CI] z-score p-value OR [95% CI] 
Ref: NW Early OWO -0.74 0.46 0.99 [0.97,1.01] 1.83 0.07 1.02 [0.99,1.04] 
 Late OWO -2.43 0.02 0.97 [0.95,0.99] 1.85 0.06 1.02 [0.99,1.04] 
 NW to very 

late OWO -2.04 0.04 0.98 [0.95,0.99] 0.04 0.97 1.00 [0.98,1.02] 

Ref: NW to 
very late 
OWO 

Early OWO 
1.29 0.20 1.01 [0.99,1.04] 0.47 0.08 1.02 [0.99,1.05] 

 Late OWO -0.31 0.75 0.9 [0.97,1.02] 0.43 0.07 1.02 [0.99,1.04] 
Ref: Late 
OWO 

Early OWO 1.69 0.09 1.02 [0.99,1.04] 0.006 0.99 1.00 [0.98,1.02] 

Birth to 10 Effect z-score p-value OR [95% CI] z-score p-value OR [95% CI] 
Ref: NW Early OWO -0.87 0.38 0.99 [0.97,1.01] 2.07 0.04 1.02 [1.00,1.05] 
 Late OWO -2.28 0.02 0.97 [0.95,0.99] 1.87 0.06 1.02 [0.99,1.05] 
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 NW to very 
late OWO -0.60 0.55 0.99 [0.97,1.02] -0.52 0.60 0.99 [0.97,1.02] 

Ref: NW to 
very late 
OWO 

Early OWO 
-0.26 0.79 0.99 [0.97,1.02] 2.58 0.009 1.03[1.01,1.06] 

 Late OWO -1.67 0.09 0.98 [0.96,1.00] 2.43 0.01 1.03 [1.01,1.05] 
Ref: Late 
OWO 

Early OWO 1.45 0.15 1.02 [0.99,1.04] 0.26 0.79 1.00 [0.98,1.02] 

Birth to 14 Effect z-score p-value OR [95% CI] z-score p-value OR [95% CI] 
Ref: NW Early OWO -0.70 0.48 0.99 [0.97,1.01] 1.72 0.08 1.02 [0.99,1.04] 
 Late OWO -2.05 0.04 0.98 [0.96,0.99] 1.35 0.17 1.01 [0.99,1.04] 
 NW to very 

late OWO -0.79 0.43 0.99 [0.97,1.01] -0.32 0.75 0.99 [0.97,1.02] 

Ref: NW to 
very late 
OWO 

Early OWO 
0.13 0.89 1.00 [0.98,1.02] 2.05 0.04 1.02 [1.00,1.05] 

 Late OWO -1.21 0.23  0.99 [0.96,1.01] 1.71 0.09 1.02 [0.99,1.04] 
Ref: Late 
OWO 

Early OWO 1.43 0.15 1.02 [0.99,1.04] 0.46 0.65 1.00 [0.98,1.03] 

Birth to 18 Effect z-score p-value OR [95% CI] z-score p-value OR [95% CI] 
Ref: NW Early OWO -0.20 0.84 0.99 [0.97,1.02] 1.37 0.17 1.02 [0.99,1.04] 
 Late OWO -1.36 0.17 0.98 [0.96,1.01] 0.64 0.52 1.01 [0.98,1.03] 
 NW to very 

late OWO 0.56 0.58 1.01 [0.98,1.03] -0.79 0.43 0.99 [0.96,1.02] 

Ref: NW to 
very late 
OWO 

Early OWO 
-0.79 0.42 0.99 [0.97,1.01] 2.21 0.03 1.03 [1.00,1.05] 

 Late OWO -1.99 0.046 0.98 [0.96,0.99] 1.52 0.13 1.01 [0.99,1.04] 
Ref: Late 
OWO 

Early OWO 1.28 0.20 1.01 [0.99,1.03] 0.86 0.39 1.01 [0.99,1.03] 
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Figure 1: GAmAge and gestational age. The correlation between GAmAge and gestational age 
across OWO group at age period birth to 1y.  
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Figure 2: Child’s GAmAge across OWO groups in selected age periods. Left: results of the 
multinomial regression with NW as the reference group. Models adjusted for gestational age in 
days, maternal smoking, delivery method, and child sex. Results presented for the GAmAge and 
gestational age predictors. N=831. Right: box plots for GAmAge across OWO groups for age 
periods birth to 1, birth to 6, and birth to 18. GAmAge, gestational methylation age; NW, normal 
weight; OWO, overweight or obese. * Denotes significant difference at p<0.05 level.  
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