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Abstract 28 

1
H-NMR metabolomics and DNA methylation in blood are widely known biomarkers 29 

predicting age-related physiological decline and mortality yet exert mutually independent 30 

mortality and frailty signals. Leveraging multi-omics data in four Dutch population studies 31 

(N=5238) we investigated whether the mortality signal captured by 
1
H-NMR metabolomics 32 

could guide the construction of novel DNA methylation-based mortality predictors. Hence, we 33 

trained DNA methylation-based surrogates for 64 metabolomic analytes and found that 34 

analytes marking inflammation, fluid balance, or HDL/VLDL metabolism could be accurately 35 

reconstructed using DNA-methylation assays. Interestingly, a previously reported multi-analyte 36 

score indicating mortality risk (MetaboHealth) could also be accurately reconstructed. Sixteen 37 

of our derived surrogates, including the MetaboHealth surrogate, showed significant 38 

associations with mortality, independent of other relevant covariates. Finally, adding our novel 39 

surrogates to previously established DNA-methylation markers, such as GrimAge, showed 40 

significant improvement for predicting all-cause mortality, indicating that our metabolic 41 

analyte-derived surrogates potentially represent novel mortality signal. 42 

  43 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297956doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297956
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 44 

A common goal in geroscience is to identify mechanisms that drive ageing and design 45 

interventions that might slow down or even reverse the rate of ageing [1]. For this purpose, it is 46 

essential to have indicators not only quantifying ageing, but simultaneously marking the 47 

trajectory of overall health decline [2]. While calendar age is a core risk factor for almost any 48 

common disease, it has many limitations for capturing the variability in health-span. Crucially, 49 

calendar age does not capture the effects of an individual’s lifestyle, nor incorporates readouts 50 

of functional decline. Instead, faithful markers of biological age would allow to quantify the 51 

vulnerability to disease irrespective of an individual’s calendar age, and to develop and 52 

monitore effective healthy lifestyle advices and anti-aging interventions. The earliest 53 

approaches to construct such markers of biological age relied on clinical measures of 54 

physiological capacity [3]. Later  molecular and -omics approaches gained popularity, initially 55 

including markers such as leukocyte telomere length [4], followed by multi-marker algorithms 56 

based on high-throughput platforms, such as DNA methylation [5], transcriptomics [6], 57 

metabolomics [7], and proteomics [8]. Importantly, these algorithms were trained to estimate 58 

cross-sectional chronological age. Of these omics approaches, particularly DNA methylation-59 

based algorithms exhibited remarkably high accuracies in predicting calendar age [5], and were 60 

named ‘DNA methylation clocks’. Nonetheless, while interesting by itself, this observation 61 

highlighted a fundamental limitation in this first design of markers of biological age. Since 62 

nearly-perfect age predictors would arrive to similar observations as chronological age, they 63 

would lose their characteristics as age-independent health status indicators [9]. 64 
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Concomitantly, a second generation of -omics markers was introduced, which instead were 65 

trained to predict the mortality risk. Prominent examples of these mortality-trained 66 

multivariate markers include the DNA methylation-based PhenoAge [10] and GrimAge [11] and 67 

the 
1
H-NMR metabolomics-based MetaboHealth [12]. These predictors were trained quite 68 

differently. The wide availability of the Nightingale Health 
1
H-NMR metabolomics in large 69 

prospective population studies, in combination with its relatively narrow though informative 70 

content (~250 analytes), allowed for a more classic and direct approach. Deelen et al. trained 71 

MetaboHealth as a linear combination of 14 metabolic features, showing a strong predictive 72 

value, not only for mortality risk, but also for other outcomes, including pneumonia [13], and 73 

frailty [14]. Conversely, the DNA methylation platform by Illumina contains hundreds of 74 

thousands of features, and thus requires additional guidance to robustly capture the mortality 75 

signal. Hence, the PhenoAge and GrimAge were trained using the so-called two-stage 76 

approaches, in which more widely-available markers associated with mortality were leveraged 77 

to help extract the mortality signal [10,11]. PhenoAge achieved this by first training an all-cause 78 

mortality predictor based on clinical measures (e.g., glucose, C-reactive-protein), which was 79 

then re-estimated using DNA methylation. Similarly, DNAm-GrimAge is composed by a 80 

combination of DNA methylation-based surrogates for molecular or phenotypic markers known 81 

to associate with mortality. Interestingly, both two-step training strategies yielded DNA 82 

methylation-based scores that can associate not only with mortality, but also with a wide 83 

diversity of disease outcomes. These developments indicate that mortality-trained predictors 84 

for biological age can be trained using different omics platforms, and moreover, that DNA-85 

methylation might serve as a platform to integrate these signals captured by different data 86 
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sources. This latter concept was recently further substantiated by the work of Gadd et al., who 87 

systematically trained DNA-methylation-based predictors for 109 plasma proteins showing 88 

significant associations with incident morbidities over 14-years [15].  89 

In a recent study we demonstrated that mortality-based predictors such as MetaboHealth 90 

and GrimAge are instrumental in predicting frailty in studies of middle-aged and elderly 91 

individuals [14]. Importantly, we also showed that these scores confer mutually independent 92 

information for predicting both frailty and mortality. Viewing these developments in the field, 93 

we thus pose the question to what extent the mortality signal captured by 
1
H-NMR 94 

metabolomics could be transferred and integrated with the mortality signals captured by the 95 

DNA-methylation platform. For this purpose, we will evaluate both strategies for training two-96 

stage DNA-methylation based mortality predictors. On one hand, we will train a DNA 97 

methylation-based predictor re-estimating directly MetaboHealth, akin the strategy of 98 

PhenoAge. On the other hand, we will train DNA-methylation surrogates for single 99 

metabolomics features, and combine these in an overall score, akin GrimAge. Moreover, we 100 

will evaluate to what extent DNA-methylation surrogates features from different origins 101 

capture mutually independent signals, also with respect to predicting mortality risk. 102 

103 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297956doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297956
http://creativecommons.org/licenses/by-nc/4.0/


Results 104 

Cross-cohort calibration of 1H-NMR metabolomics data 105 

To derive DNA methylation-based models predicting metabolic features we analyzed 106 

data gathered by partners of the BIOS consortium [16,17], totalling 4,334 individuals for whom 107 

both DNA methylation (Illumina 450k) and 
1
H-NMR Metabolomics (Nightingale Health Plc) data 108 

have been assayed. The resulting dataset had contributions of four independently collected 109 

population studies: LIFELINES-DEEP (LIFELINES), Leiden-Longevity-Study Partners-Offspring (LLS-110 

PAROFFS), Rotterdam-Study (RS), and Netherlands-Twin-Register (NTR), each with their own 111 

inclusion criteria, as reflected by differences in subject characteristics that range from the 112 

younger and leaner population of NTR (mean age=37.57 years and mean BMI=24.32 cm/kg
2
) to 113 

the older and heavier population of RS (mean age=67.15 years and mean BMI=27,71 cm/kg
2
) 114 

(Figure 1, Supplementary Table S1,). A reduced dimensionality projection using a t-distributed 115 

neighbour embedding (tSNE) suggested that the interindividual variance in metabolomics data 116 

could not only be attributed to interindividual phenotypic variability but was also capturing 117 

some systematic differences between studies (Figure S3A-C). Following Makinen et al., we 118 

implemented a calibration technique suitable for cross-cohort harmonization, which starts with 119 

the assumption that individuals with similar phenotypic characteristics should on average 120 

exhibit similar metabolomics profiles [18]. For this purpose, we identified pairs of samples 121 

across cohorts with matching age, sex, and BMI, and used LIFELINES as a common reference to 122 

calibrate the other studies (Figure S2, more details in methods). A t-SNE projection of the 123 

calibrated data revealed a substantial reduction of the systematic differences between studies, 124 
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as also quantified by k-BET (k-nearest neighbor Batch Effect Test) (Figure 2A-B, S3). Principal 125 

Variance Component Analyses (PVCA) further confirmed this observation indicating that the 126 

variation attributable to study differences was attenuated, while maintaining the variation 127 

attributed to relevant biologically variability (Figure 2C).   128 

The construction of the MetaboHealth score as published by Deelen et al. [12] does not 129 

include a cross-cohort calibration, but instead standardizes the individual metabolic features 130 

per study prior to computation of the score (Figure S4). While this does make the 131 

MetaboHealth score more comparable across cohorts, and satisfactory for most meta-analysis 132 

purposes, it does also negate any real biological differences that may exist between studies. 133 

Conversely, when computing the MetaboHealth score on the calibrated data, i.e., after 134 

removing unwanted study differences and supplying all data as one dataset, it produced scores 135 

with interpretable differences and consistent trends across cohorts (Figure 2D-F). For instance, 136 

consistent with our expectation, the calibrated MetaboHealth scores now tend to be higher 137 

among the studies with the older individuals RS and LLS-PAROFFS (Figure S4A). In addition, it 138 

showed a more pronounced age-associated increase in men than in women, consistently over 139 

all cohorts (Figure 2D). Lastly, higher calibrated MetaboHealth percentiles correlated with 140 

increasing age, BMI, high sensitive CRP, and increasing prevalence of diabetes and alcohol 141 

usage (Figure 2E-F). 142 

 143 
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DNA methylation-based predictors recapitulate metabolic markers 144 

previously associated with mortality 145 

Our first objective was to determine if DNA methylation could simulate the MetaboHealth 146 

score, our metabolomics-based mortality predictor (Figure 1). To enforce the selection of 147 

consistent signal in different cohorts, we implement an output-specific pre-selection of 148 

consistent DNA methylation sites in the studies reserved for model development, NTR and 149 

LIFELINES (methods). This Epigenome Wide Association (EWAS) yielded 17,705 CpG sites 150 

showing a consistent univariate association with MetaboHealth, both in direction of association 151 

and nominal significance (p-value<0.05). Pre-selected sites were then used as input for the 152 

ElasticNET regression model predicting the MetaboHealth values (Method). The resulting 153 

model, indicated as “DNAm-MetaboHealth” comprised ~1000 sites and showed good accuracy 154 

in the 5-Fold Cross Validation test sets (5-FCV) (median r~0.52, RMSE~0.43), which was slightly 155 

lower, but stable, in the replication sets (LLS-PAROFF: R~0.34, RMSE~0.38; RS:R~0.33, 156 

RMSE~0.5) (Figure 3).  157 

In parallel, we built distinct predictors for 64 metabolic features from Nightingale Health Plc, 158 

following the same training design as for DNAm MetaboHealth (Figure 1A). The resulting 159 

DNAm-based surrogates for the metabolomic features showed diverse mean accuracies over 160 

the different test sets (5-FCV, LLS-PAROFFS and RS), with 23 models being accurate (mean R 161 

across test sets>0.35), 20 mildly accurate (0.2>mean R across test sets <=0.35), and 21 low 162 

accuracy models (mean R across test sets <0.2) (Figure 3 and S5). In the latter group we find 5 163 

out of 8 amino acids, several LDL-related variables, all the ketone bodies and all the glycolysis 164 

related markers. The middle group is enriched with IDL related markers, 6 out of 14 fatty acids, 165 
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and 2 out of 3 glycolysis related metabolites. The accurate group of DNAm-metabolomic 166 

features included, 8 out of 10 HDL-related markers, 4 out of 8 VLDL-related molecules, 167 

glycoprotein acetyls, creatinine, 3 out of 8 amino acids, and several fluid balance markers (e.g., 168 

MUFA%, Omega6%). Higher accuracies are often accompanied by a higher correlation with age 169 

(e.g. DNAm Leucine and Isoleucine) or sex (e.g. DNAm Creatinine) (Figure 3, inner circles), 170 

similar to what is observed for the GrimAge DNAm based components [11]. Notably, only 7 of 171 

the most accurate surrogate markers were part of the 14 original metabolomic features 172 

composing the MetaboHealth score. Nevertheless, for 18 of the 23 most accurate surrogate 173 

markers, it was previously shown that the respective metabolic features significantly associated 174 

with mortality [12]. 175 

 176 

DNAm metabolomics surrogates confer a unique and relevant signal 177 

To foster the concept that DNA-methylation measurements might potentially serve as a 178 

platform to integrate biomarker signals captured from various data sources, we conducted two 179 

types of experiments. First, we ensured that the signals conveyed by our novel DNAm 180 

surrogates of metabolomic features, constitute mutually independent markers, and not a 181 

multitude of highly similar signals (Figure S6A). Then, comparing the correlations between our 182 

surrogates with the original metabolomic features (Figure S6A, upper triangle), we observed a 183 

structure remarkably congruent with the correlation structure observed between the original 184 

metabolites (Figure S6A, lower triangle), albeit overall at slightly lower magnitude. This 185 

indicates that, apart from the correlation structure between the original markers, no systematic 186 

high inter correlations are observed, which thus suggests that the information in DNA 187 
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methylation measurements are sufficiently rich to reconstitute many closely related biomarker 188 

signals, without introducing artificial interdependency. 189 

Secondly, we explored to what extent our novel DNAm surrogates of metabolomic features 190 

constitute novel signal compared to previously constructed DNA-methylation estimates. 191 

Overall, low correlation (max|R|~0.4) are observed between our DNAm-based metabolomics  192 

surrogates and DNAm-based multivariate clocks (Horvath, Hannum, PhenoAge, and GrimAge) 193 

(Figure 4). Furthermore, correlations with other pre-trained DNAm-based surrogate molecular 194 

markers ( GrimAge components and the 109 protein EpiScores) are generally modest, with a 195 

few notable exceptions. Particularly, the GrimAge surrogates DNAm-leptin and DNAm-adm, and 196 

4 Episcores (2771.35 [Gene: IGFBP1], 4929.55 [Gene: SHBG], 3505.6 [Gene: LTα], CD6), present 197 

a relatively high positive correlation with HDL related surrogate markers and a relatively high 198 

negative correlation with the amino acids (DNAm-Leucine, DNAm-Isoleucine, and DNAm-199 

Valine). We observe the inverse pattern for the GrimAge surrogate DNAm-PAI-1, and 4 other 200 

EpiScores (4930.21 [Gene: STC1], 2516.57 [Gene: CCL21], 3343.1 [Gene: ACY1], 3470.1 [Gene: 201 

SELE]) which also show a high correlation with VLDL surrogate markers. Notably, these 202 

correlations might suggest a link between the metabolome and protein markers related to 203 

immune signaling (LTα, CD6, CCL21, SELE), energy balance and metabolism-related hormones 204 

(IGFBP1, SHGB, ADM, leptin, and STC1), and atherosclerosis/thrombosis inhibitor (PAI1). 205 

Nonetheless, the majority of the markers exhibit limited correlations with their predecessors 206 

(Figure 4), implying the presence of previously unexplored information in DNA methylation 207 

patterns. 208 

 209 
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Metabolomic surrogates improve the mortality predictions of 210 

GrimAge. 211 

Next, we evaluated the DNAm-metabolomics features for their predictive value for all-cause 212 

mortality in the Rotterdam Study (RS). For this purpose, we utilized a total of 1544 samples 213 

from this cohort (mean age at baseline of 64 years, 251 deceased, and a median follow-up of 11 214 

years; Figure 1), by incorporating an additional 863 samples with available Illumina 450k and 215 

mortality information, but not 
1
H-NMR metabolomics. In accordance with previous studies 216 

[11,14,15], we assess univariate Cox proportional hazard models (in years of follow up) 217 

adjusted for relevant covariates, specifically sex, together with age, BMI and cell counts levels 218 

at blood sampling (Figure 5A and S7A).  219 

First, we evaluated our DNAm-MetaboHealth predictor, which showed a significant 220 

association with all-cause mortality (HR=1.29, p=5.57x10
-04

) (Figure 5A), in line with the original 221 

metabolomics-based MetaboHealth score (Figure S8C). Next, we evaluated the individual 222 

DNAm metabolomics features and observed significant associations with mortality for 15 out of 223 

the 64 surrogate metabolites, of which 6 (out of 14) metabolomics features were included in 224 

the original MetaboHealth score. In addition, our estimated effects were overall consistent with 225 

those found by the study performed by Deelen et al. which employed a considerably larger 226 

dataset of 44,168 individuals (Supplemental S7C), with our most significant findings being 227 

amongst their strongest effects. We observed an increased risk for higher estimates of 8 DNAm-228 

based features, with the strongest being DNAm-Glucose (HR=1.22, p=7.29x10
-03

), DNAm-229 

Glycoprotein Acetyls (HR=1.35, p=1.74x10
-05

). Conversely, we observed protective effects for 7 230 

features, such as DNAm-PUFA% (HR=0.81, p=1.63x10
-03

), DNAm-Histidine (HR=0.82, p=1.67x10
-

231 
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03
), DNAm-Valine (HR=0.83, p=1.6x10

-02
), and DNAm-Albumin (HR=0.83, p=9.5x10

-03
). In 232 

addition, 5 nominal significant additional metabolites showed discordant mortality associations 233 

between sexes. Explicitly, for males we observed mortality associations with DNAm-Glutamine, 234 

whereas DNAm-Tyrosine, DNAm-Leucine, DNAm-Total Fatty acids, and DNAm-PUFA associated 235 

with mortality in women (Figure S7B).  236 

Almost all the pre-trained DNAm clocks that we considered (Hannum, PhenoAge, GrimAge 237 

and bAge) and some of their intermediate surrogates exert mortality associations in RS (Figure 238 

S9A-C). Next, we attempted to refine the current standard for biological age estimation, 239 

specifically GrimAge (CI=0.79, p=4.6x10
-77

), by training a multivariate all-cause mortality 240 

predictor including our novel DNAm metabolomics features. As a first exploration, we trained a 241 

Cox regression model with age at blood sampling, sex, DNAm-GrimAge and DNAm-242 

MetaboHealth, which only showed minor, but significant, improvements in the C-index (CI=0.8, 243 

p=4.6x10
-77

) (Figure S10 B). As a second exploration, we performed a stepwise 244 

(backward/forward) Cox regression model to identify a minimal set of features including age, 245 

sex, our 64 DNAm-metabolomic features and DNAm-GrimAge (CI=0.81, p=1.7x10
-83

) (Figure 246 

S10D). Nonetheless, the best performing model was obtained when including age, sex, 3 out of 247 

8 GrimAge components (predicting Leptin and ADM and TIMP_1), 12 of the 109 protein 248 

EpiScores, and 9 out of 64 DNAm metabolites (CI=0.82, p=1x10
-85

) (Figure 5B). The selected 249 

DNAm metabolic features included DNAm-Tyrosine, DNAm-S-VLDL-L, DNAm-S-LDL-L, DNAm-M-250 

LDL-L, DNAm-APOB, DNAm-LA, DNAm-omega3 and DNAm-omega6, and DNAm-MUFA. In any 251 

case, all the newly introduced scores exhibited a significantly improved C-index and a higher 252 

AUC at 5 and 10 years compared to the GrimAge (Figure S10E-H). Overall, this indicates that 253 
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DNAm-surrogates from different origin, phenotypic, proteomic, or metabolomic, might confer 254 

mutually independent information for mortality prediction.  255 

 256 

DNAm metabolomics models introduce relevant CpG selections 257 

After establishing the value of our novel DNAm metabolomics features in predicting 258 

mortality, we explored the nature of the signal included in our models by investigating the CpG 259 

sites picked by the ElasticNET regression, which can shrink contributions of unnecessary 260 

features to zero. Predictors selected a median of ~750 CpG-sites, with a minimum of 234 CpG-261 

sites for DNAm-Acetoacetate and a maximum of 1,569 for DNAm-ApoA1 (Figure 6B). A total of 262 

22,145 probes were included in at least 1 model. Comparison of the genomic positions of the 263 

selected CpG-sites with the rest of the 450k array highlighted an underrepresentation of probes 264 

positioned in CpG Islands, and a preferential selection for CpG shelves and shores, known to be 265 

more dynamic areas (Figure 6A) [19,20]. Noteworthy is the higher tendency to select CpGs co-266 

locating with enhancers, cis-acting short regions of DNA that control the temporal and cell-267 

specific activation of gene expression (Figure 6A) [21].  268 

Functional enrichment analyses using the most proximal genes to the selected CpG-sites 269 

highlighted pathways associated to “developmental processes”, “cell differentiation”, and 270 

“regulation of metabolic processes” from Biological Processes in Gene Ontology (Figure S11C). 271 

Concomitantly, enrichment analyses of phenotypic annotations in the EWAS Catalog and EWAS 272 

Atlas (Figure 6B), indicated that the CpG-sites are known to be largely related to peripheral 273 

tissue differentiation [22], fetal brain development [23] and gestational age [24]. Nonetheless, 274 

the CpG sites with the highest median coefficients across all our models were the ones 275 
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annotated for metabolite-related traits, such as “Triglycerides”, and “Fasting Glucose” (Figures 276 

6B, S11A-B). In total, 203 traits exhibited a significant enrichment for the CpG selections made 277 

by our models. Notably we find also highly significant associations with “Ageing”, and “all-cause 278 

mortality”, indicating that we do identify CpGs related to age-related processes.
 

279 

Despite their interesting overarching signal, the DNAm-metabolic models show little overlap 280 

with each other in their CpG selections, with the majority showing overlaps well below 15%, 281 

apart for a few exceptions of highly correlated metabolites (e.g., 83% between DNAm-282 

Total_cholines and DNAm-phosphoglycerides; Figures S6 and S12). Nonetheless, a handful of 283 

CpG probes were chosen in more than 30 models with largely consistent coefficient signs 284 

(Figure 6C). Interestingly, while some of these 9 features have a higher importance weight on 285 

the DNAm metabolomics models (e.g., cg00574958, or cg06500161), others only exert a more 286 

minor influence (e.g., cg14938561, cg00461022). The 9 CpG sites with higher importance 287 

weight don’t favor one specific metabolic group but seems to be relevant to many metabolic 288 

markers (Figure 6D). Not surprisingly, also the nearest genes to these 9 probes are noteworthy. 289 

For instance, TXNIP, which includes cg19693031 (chosen in 43 DNAm-metabolomics models), 290 

was previously associated to hyperglycemia and insulin resistance, and ABCG1, nearby 291 

cg06500161 (in 42 DNAm-metabolomics models) was associated to plasma lipid levels and 292 

stroke (Figure 6D). 293 

 294 

Discussion 295 

A comprehensive quantification of biological ageing, as a way to assess the overall, holistic 296 

health status and disease susceptibility of individuals [14], would constitute a major advance for 297 

healthcare and preventive research.  A diversity of molecular markers has been proposed as 298 
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indicators of biological age relating to health- and lifespan. Here we integrated well-established 299 

DNA methylation-based and 
1
H-NMR metabolomics resources for biological age prediction with 300 

mortality as a primary endpoint. To our knowledge, the potential synergistic effects arising 301 

from combining these two molecular sources remained thus far largely unexplored, and we 302 

believe that a collection of models predicting metabolomics features may be relevant within 303 

the rapidly growing repertoire of DNA methylation-based estimates [10,11,15]. A structured 304 

training and evaluation design aided us to demonstrate the robustness of our features. We 305 

highlighted the distinct signal expressed by our novel models and their feature selection. 306 

Finally, we explored the use of our novel DNAm-based surrogates of metabolomics features in 307 

combination with previously trained DNAm-based surrogates (e.g., Grimage constituents) 308 

suggesting that these confer complementary information. 309 

We applied ElasticNET regression models to the data of four large population cohorts to 310 

derive DNAm-based surrogates for a previously derived multi-analyte score indicating mortality 311 

(MetaboHealth), and for 64 individual metabolomics features. The direct estimation of 312 

metabolomics-based mortality by constructing a DNAm surrogate for the MetaboHealth score 313 

showed promising results (mean R in test-sets=0.397). Moreover, we were able to construct 314 

DNAm surrogates for many, but not all, metabolomics features with good replication accuracies 315 

(mean R in test-sets>0.35), including health markers for HDL and VLDL metabolism, 316 

inflammation, and fluid balance. Less accurate were the DNAm surrogates for amino-acids, 317 

ketone bodies, glycolysis, and LDL-related markers (mean R in test-sets <0.2). Nevertheless, 318 

considering the limited number of available markers and the low accuracy thresholds previously 319 

used for DNAm scores (R>0.1 in test sets) [15], we continued evaluating all 65 models. This 320 
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decision was further corroborated by a previous report by Stevenson et al. who suggested that 321 

their DNAm surrogate for CRP was a more reliable indication of chronic inflammation than its 322 

measured counterpart, even when considering the modest correlation between CRP and its 323 

surrogate [25]. Overall, our DNAm metabolomic features conveyed a signal coherent with the 324 

quantified metabolomics variables and independent from most of the previously reported DNA 325 

methylation-based clocks and molecular surrogates. 326 

Great emphasis was given to the harmonization of metabolomic data collected across 327 

different cohorts, prior to training our DNAm-based models for individual metabolites or the 328 

MetaboHealth score. Non-biological variability that may originate from inter cohort differences 329 

in sample collection, storage, or handling could confound model training. Typically, this 330 

challenge in epidemiology is addressed by applying a z-scaling per cohort prior to conducting a 331 

meta-analysis, which in effect discards all differences, both technical and biological, between 332 

cohorts. In other words, while allowing to draw conclusions on the similarities in associations 333 

with endpoints between cohorts, this strategy does not allow for a direct comparison of the 334 

underlying molecular profiles between cohorts. To address this issue we applied a calibration 335 

technique, which we developed adapting methodologies previously applied in longitudinal 336 

studies [18]. This novel calibration technique showed its merit in harmonizing the 337 

metabolomics profiles, while preserving the natural biological heterogeneity within and 338 

between the different study populations. Importantly, this approach allowed for an evaluation 339 

of the MetaboHealth score across cohorts, showing consistent age and sex specific trends per 340 

study, and global predictive power for established clinical variables, such as hsCRP and 341 

diabetes. 342 
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Previous studies have shown advantages of pre-selecting CpGs when training ElasticNET 343 

regression models [26–29]. Following this example, we implemented a pre-selection of CpG 344 

sites showing a high variability and consistent association with the outcome of interest during 345 

the training phase of our 5-Fold Cross Validation procedure. Approximately 22,000 CpG sites 346 

were included in at least one DNAm-based models. Enrichment analyses showed that the 347 

selected CpGs are more likely to be enhancers in CpG shelves and shores and are in the 348 

proximity of genes enriched for regulation of metabolic and developmental processes, or cell 349 

differentiation. This finding resonates with a longstanding hypothesis, that the ageing 350 

methylome reflects processes underlying intricate cellular and molecular changes linked with 351 

development and differentiation [30]. Furthermore, CpG sites selected for our surrogates were 352 

also previously associated to age (e.g., Ageing, all-cause mortality), inflammatory (C-reactive 353 

proteins), or metabolically related traits (e.g., triglycerides and metabolic syndrome). Strikingly, 354 

we found a highly recurrent selection of 9 CpGs in at least 30 distinct DNAm surrogate models, 355 

suggesting that these CpGs form a fundamental link between the blood metabolome and DNA 356 

methylome. All these loci have been previously found associated with metabolic traits and 357 

processes [31], and most of these 9 CpGs and their nearest genes are considered powerful 358 

classifiers for diabetes stratification [32–34]. Remarkably, 3 of these 9 CpG probes showed 359 

significant univariate association with mortality within the Rotterdam Study (Figure S8D). This 360 

reassures over the valuable cardiometabolic content latent in our novel DNAm models.  361 

Besides, our main intent was to evaluate the possibility to extrapolate the mortality signal 362 

from the metabolome to DNA methylation. To do so, we tested which of our surrogates might 363 

be indicative of all-cause mortality in a subset of the Rotterdam Study (1544 persons, 285 364 
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deaths). Notably, we observed a successful detection, albeit partial, of the mortality signal 365 

exerted by the metabolomics platform. We could successfully derive a DNAm-based version of 366 

MetaboHealth, which significantly associates with all-cause mortality, although it showed a 367 

lower hazard ratio than the original score [35]. This might in part be explained by the fact that 368 

only 6 of the 14 DNAm surrogates for the metabolites constituting the MetaboHealth showed 369 

associations with all-cause mortality. Overall, we observed significant associations with 370 

mortality for 15 out of 64 DNAm-based metabolites. The detected effects are consistent with 371 

the results previously reported by Deelen et al. in a large study using the original metabolomic 372 

features measured in 44.168 individuals. This consistency further underpins that DNAm 373 

surrogates for metabolomic features could potentially be leveraged as novel epigenetic 374 

markers of biological ageing.  375 

To further explore this concept, we trained a multivariate model for all-cause mortality, that 376 

was allowed to select from all available DNAm surrogates using a stepwise forward/backward 377 

regression. This final model included 9 DNAm metabolomic features together with the 378 

competing covariates age, 3 GrimAge components and 12 plasma protein EpiScores. The 379 

resulting model combining DNAm surrogates from different origin showed a significantly 380 

improved mortality prediction (C-index=0.82) compared to the GrimAge score (C-index=0.79) 381 

(Figure 5 and S10). Our novel composite scores showed a substantial refinement of the AUC at 382 

5 and 10 compared to the original GrimAge (Figure S10G-H). Overall, this suggests that a 383 

broader collection of DNAm-surrogates of independent origin, such as proteomics, phenotypes, 384 

and now also metabolomics, might confer a more comprehensive indication on epigenetic-385 

based biological ageing. 386 
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An important limitation of the current study for leveraging mortality signals is its limited 387 

sample size, which is modest when compared to the large dataset that Deelen et al. employed 388 

to evaluate the mortality associations of the metabolomics features and to build a multi-analyte 389 

predictor for mortality. Despite the limited power, we found significant associations with 390 

mortality for the DNAm surrogates of the multi-analyte score MetaboHealth and 15 individual 391 

metabolic features, which were consistent with those observed by Deelen et al. A second 392 

limitation is the usage of a single endpoint, mortality, for evaluating the potential applications 393 

of our DNAm surrogates as novel marker for biological age. We acknowledge that ageing and its 394 

associated decline in overall health is a complex multi-factorial process, that is only partially 395 

captured by mortality risk. Previous work reported the merits of the 
1
H-NMR metabolomics in 396 

estimating several different types of endpoints [7,13,36,37], or even end-of-life related-397 

phenotypes such as frailty [35], leading us to speculate that our novel DNAm surrogates for 398 

metabolomic features might also be instrumental for capturing these ageing endophenotypes.   399 

In conclusion, we have demonstrated that metabolite markers previously associated with 400 

mortality could be leveraged to help extract the mortality signal captured by the DNA 401 

methylation platforms. Moreover, we showed that our novel DNAm surrogates capture 402 

mortality signal that is independent of the mortality signal captured by previous DNAm scores, 403 

such as GrimAge or its separate DNAm surrogate constituents. Overall, this does suggest that 404 

even more mortality signal could be extracted given the availability of proper novel mortality-405 

associated biomarkers.  406 
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Materials and Methods 407 

1. Dataset description 408 

Cohorts 409 

This study was performed using DNA methylation data (DNAm, Illumina 450k array) and 
1
H-410 

NMR metabolomics (Nightingale Health, platform version 2020) from 4 Dutch cohorts: 411 

LifeLines-Deep (LL), Leiden Longevity Study (LLS-PARTNER-OFFSPRINGS), Netherlands Twin 412 

Register (NTR) and Rotterdam Study (RS), all part of the BIOS consortium [16,17]. For the 413 

current study, the BIOS multi-omics compendium was further extended with 1145 samples 414 

from the NTR for which the entire process of array measurement to quality control and 415 

normalization was done together with the other BIOS-NTR samples [38], and 904 samples from 416 

the Rotterdam Study [35].  A thorough description of all cohorts and their ethics statement are 417 

provided in the Supplementary Materials. The datasets were realized by the Dutch part of the 418 

Biobanking and BioMolecular Resources and Research Infrastructure (BBMRI-NL). The final 419 

dataset contained 5,238 samples. 420 

Metabolomics data 421 

The metabolomics data was generated by the BMBRI-NL Metabolomics Consortium. The 422 

metabolic features were measured in EDTA plasma samples on the high-throughput proton 423 

Nuclear Magnetic Resonance (
1
H-NMR) platform made available by Nightingale Health Ltd., 424 

Helsinki, Finland
 
(platform version 2020). This technique can quantify over 250 metabolic 425 

features, including also ratios and derived features. [39,40]  426 

DNA methylation data 427 

DNA methylation data for all four cohorts was generated by the subsection of BBMRI-NL 428 

named Biobank-based Integrative Omics Study (BIOS) Consortium. The DNAm was assessed 429 
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from whole blood samples with an Illumina iScan BeadChip according to the manufacturer’s 430 

protocol: the Illumina HumanMethylation405 BeadChip (450k array). For compatibility with the 431 

following versions of the Illumina array, we only considered CpG sites which are available in the 432 

Illumina HumanMethylation450 BeadChip and the MeethylationEPIC BeadChip. We analysed 433 

the DNAm �values, which range from 0 to 1, to indicate the proportion of methylated sites at a 434 

specific CpG in a sample. 435 

Mortality data 436 

We evaluated the associations of the DNAm-based features with all-cause mortality in a 437 

subsample of the Rotterdam Study (RS) comprising a total of 1544 samples, only 640 of which 438 

had also Illumina 450k and Nightingale Health metabolomics. The information on the vital 439 

status of the participants in RS was last updated on the 20
th

 of October 2022. The dataset 440 

comprehends 1544 samples, 285 of which are deceased. All the DNAm-based features were z-441 

scaled within the RS. 442 

2. Pre-processing 443 

Quality control of the metabolomics dataset 444 

To ensure the quality of our data, we applied standardized quality control processes, which 445 

have been described in previous publications (summarized in Figure S1) [7,41]. First, we limited 446 

our analyses to a subset of 65 features (out of 250), previously selected to be a mutually 447 

independent subset [7,12,41]. This selection includes fatty acids, routine lipid concentrations, 448 

lipoprotein subclasses and low molecular weight metabolites. A complete list of the variables 449 

can be found in the Supplementary Materials. In addition, pyruvate was excluded due to its 450 

high missingness in NTR (80%). Despite a small percentage of values under detection limit for 451 

acetoacetate (8% in NTR), and an even smaller percentage of outliers in glucose and xl_hdl_c 452 
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(less than 0.15%), we decided to retain all other variables (Figure S1C-E). Samples with more 453 

than 1 outlier (2 from Lifelines and 1 from RS) were further removed. We then used nipals 454 

(from the package pcaMethods) to impute the 584 missing values, which accounted for 0.211% 455 

of the remaining values. The final dataset included 4,334 samples and 64 metabolic measures. 456 

Quality control of the DNA methylation dataset 457 

The quality control and normalization of the DNA methylation (DNAm) was performed using 458 

a workflow developed by the BIOS Consortium for each cohort and thoroughly described in 459 

DNAmArray (https://molepi.github.io/DNAmArray_workflow/). In brief, sample-level QC was 460 

performed with the R package MethylAid [42]. Probes were set to missing based on the number 461 

of available beads (�2), intensity equal to zero, or the detection p value (p<0.01). Probes with 462 

more than 5% missing were excluded from all samples. The remaining missingness was imputed 463 

using impute.knn from the R package impute [43]. Functional normalization was then applied as 464 

implemented in minfi. Finally, we removed an ulterior set of ~60,000 underperforming probes 465 

as suggested by Zhou et al. [44] 466 

Calibration of 1H-NMR-metabolomics 467 

To minimize any bias that may arise from batch effects among the four cohorts included in 468 

our study, we performed a cross-cohort calibration. We followed the assumption that similar 469 

phenotypic characteristics result in similar metabolomics profiles [18]. We used sex, age, and 470 

BMI as matching characteristics, given their well-known association with the  metabolomic 471 

features in the Nightingale Health Platform [7,18,41,45,46]. We considered LIFELINES as our 472 

reference cohort, as it spanned a broad range of age, and BMI and had an equal representation 473 

amongst sexes. To further minimize the impact of sex on our results, we selected the subset of 474 

samples used for cross-cohort matching to have equal numbers of men and women. Following 475 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.02.23297956doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297956
http://creativecommons.org/licenses/by-nc/4.0/


this strategy, we identified the following subsets of participants used for matching: 73 men and 476 

73 women in LLS-PAROFFS; 140 men and 140 women in NTR; 37 men and 37 women in RS 477 

(Supplementary Figure S2).  478 

Based on these matching samples between cohorts, we calculated the shift in mean and 479 

standard deviation for each metabolic feature required to transform the distribution of values 480 

observed in a cohort to match the distribution in the reference cohort. We then applied this 481 

transformation to all samples of each cohort (see Supplementary Materials). The final dataset 482 

was log-transformed and standard normalized (zero mean and unit standard deviation) across 483 

all samples to obtain normally distributed concentration with comparable ranges across all 484 

metabolic features. 485 

T-distributed stochastic neighbor embedding (tSNE, R package Rtsne) was used to visually 486 

inspect the effect of this calibration, comparing the sample similarities before and after 487 

calibration. Moreover, K-nearest neighbor batch effect test (kBET, R package kBET) was applied 488 

to the matching samples of each biobank before and after calibration to quantitatively evaluate 489 

the mixing of the samples [47]. Finally, we used principal variance Component Analysis (PVCA, R 490 

package pvca), to determine if the calibration disrupted the sources of variability of the dataset 491 

[48].  492 

3. Application of previously trained multivariate models 493 

MetaboHealth: The MetaboHealth model is a mortality predictor based on Nightingale 494 

Health metabolomics concentration [12]. We applied this model both on the uncalibrated and 495 

calibrated version of the 
1
H-NMR metabolomics dataset using the R-package MiMIR [49]. 496 
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Epigenetic clocks: We projected the Horvath, Hannum, DNAm PhenoAge in our data using 497 

the R package methylclock and the DNAm GrimAge clocks using Python scripts provided by Lu 498 

et al. [11,50]. About 1000 CpG sites needed to calculate these biological ages were missing in 499 

our cohorts, therefore we imputed them using the “datMiniAnnotation3_GOLD.csv” file, 500 

dispatched by the same authors [11].  501 

EpiScores: We projected the EpiScores and bAge score using the code available from the 502 

work of Bernabeu et al. [28]. 503 

4. Estimation and evaluation of the epigenetic-based metabolic 504 

features. 505 

We derived prediction models for the 64 metabolomics features and the MetaboHealth 506 

score using blood methylation data. For model development and testing we used NTR, and 507 

LIFELINES, respectively the largest cohort and the calibration’s reference cohort. We employed 508 

ElasticNET regression from the R package glmnet to train the models.  509 

Other studies show the benefit of pre-selecting the features before using ElasticNET 510 

regression [28,51]. For this reason, we performed Epigenome Wide Association studies (EWAS) 511 

to identify CpG sites showing linear association with each feature separately in NTR and 512 

LIFELINES (metabolic feature ~ CpG site). We selected the CpG probes with a consistent 513 

association sign (positive or negative in both cohorts) and significant nominal p-value (<0.05), to 514 

avoid excluding too much information.  515 

We used a nested 5-Fold-Cross-Validation (5-Fold CV), to evaluate the models in the external 516 

loop and using the internal loop to optimize the � parameter, which determines the final set of 517 

CpG sites included in each model. The mixing parameter alpha was fixed at 0.5, based on 518 
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previous work [11,41]. The final ElasticNET models were obtained using both NTR and LIFELINES 519 

and the optimized parameters. LLS-PAROFFS and RS were used as replication datasets. Finally, 520 

we report Pearson correlations (R) and the root mean square error (RMSE) of the predicted 521 

DNAm metabolic features with their measured concentrations. 522 

5. CpG sites characterization 523 

To gain more insight into the biological phenomena that characterize our novel DNAm 524 

metabolomics models we evaluated their fully data-driven selection of 22,145 CpG sites. 525 

EWAS enrichment analysis. 526 

We utilized the MRC-IEU EWAS Catalog [52] and the EWAS Atlas [53] to assess the previously 527 

known phenotypic annotation (traits) of the CpG sites selected by our models. Both the EWAS 528 

Catalog and EWAS Atlas are online databases that compile results from Epigenome Wide 529 

Association Study results. By merging these two resources, both downloaded on March 13
th

 530 

2023, we aimed to gather a comprehensive list of previous EWASs. We gathered only the 531 

associations conducted with Illumina 450k and accompanied with a PMID. We then excluded 532 

redundancy between the two catalogs and applied Bonferroni correction using the number of 533 

CpGs in the Illumina 450k (~480.000). This process yielded 742635 CpG-trait associations.  534 

Next, we employed Fisher’s exact test to assess the enrichments of each of the CpG sites 535 

selected by our DNAm models. To account for multiple testing, we used the Benjamini-536 

Hochberg correction. 
 

537 

Annotation of the genomic position of the CpG sites 538 

We used the R package annotatr to annotate the genomic features. CpG sites from the 450k 539 

array were annotated using CpG Island (CGI) centric categories. The annotations we utilized are 540 

as follows: CGI (annotated in the R package AnnotationHub), shores (2Kb upstream or 541 
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downstream the CGI), shelves (2kb flanking the CpG shores), interCGI (the rest of the CpGs). As 542 

for the genic annotations we considered regions 1-5Kb upstream of the transcription starting 543 

site (TSS), promoters (<1Kb upstream of the TSS), 5’UTR, 3’UTR, exons, introns, boundaries 544 

between introns and exons, and intergenic regions. Additionally, we report the annotations of 545 

active enhancers determined by Anderson et al. [21] 546 

For the enrichment analyses of the annotations described above we calculated odds ratios 547 

(OR) of the CpGs included in each model compared to the rest of the 450k array. Statistical 548 

significance was evaluated using the Fisher’s exact test. The significance of the associations was 549 

established with an FDR<0.05. 550 

Gene Ontology enrichment analyses 551 

To gain further insights into the genetic context of the set of CpG sites selected, we 552 

investigated the genes in cis, considering a maximum distance of 100kB of distance.  553 

Next, we utilized the genes associated with each CpG selections from our models to perform 554 

a functional enrichment using Gene Ontology. We employed GOfuncR package to explore the 555 

Biological Processes and Molecular Functions. The significance of the associations was 556 

established with an FDR<0.05. This analysis resulted in 2,365 significant associations between 557 

CpG sites and genes. 558 

6. Associations with mortality in the Rotterdam Study 559 

Univariate mortality associations: We used Cox Proportional hazard to univariately 560 

associate our 65 DNAm metabolomics features, the pre-trained DNAm clocks (e.g., PhenoAge, 561 

GrimAge), and 109 protein EpiScores with mortality (see Supplementary Materials). All models 562 

were corrected for age at blood sampling and sex. Additionally, we evaluated the association 563 
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with mortality of our DNAm metabolomics features when correcting for sex, age and GrimAge. 564 

All p-values were corrected using Benjamini Hochberg and considered significant if the 565 

FDR<0.05. We used the R-package survival to calculate the Cox regressions. 566 

Multivariate mortality models: We then combined the DNAm features with sex and age in 4 567 

different stepwise Cox regression models (see Supplementary Materials). The first base model 568 

included our novel DNAm metabolomics features. The second and third model added to the 569 

first model respectively DNAm-GrimAge and the DNAm-based components of the GrimAge 570 

model. Finally, the fourth model is based on a combination of our DNAm metabolomics 571 

features, the DNAm-based components of the GrimAge and the DNAm-based protein 572 

EpiScores.  573 

To select the interesting DNAm surrogate, we used a stepwise (backward/forward) 574 

procedure for each Cox regression model. For each of the above-described selections, we 575 

started from a model containing the full set of variables and we removed or added an 576 

unselected metabolic surrogate at each round based on the improvement on the model 577 

calculated from the C-index, taking also into account the significance of the p-value of each 578 

variable included in the model. 579 

To compare the performances of the Cox regression models we used the R package 580 

survcomp within the Rotterdam Study [54]. We compared the C-indices of the newly developed 581 

models with baseline (GrimAge) using a Student t-test as described in Haibe Kans et al. [55]. 582 

Moreover, we plotted the ROC curves at 5 and 10 years of all the models. 583 
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Data sharing 584 

BBMRI-nl and BIOS-nl data are available upon request at 585 

https://www.bbmri.nl/services/samples-images-data. All DNAm metabolomics scores can be 586 

obtained with a script at: https://github.com/DanieleBizzarri/DNAm_metabolomics_scores. 587 
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Figure descriptions for 1H-NMR metabolomics guided 756 

DNA methylation mortality predictors 757 

Figure 1: Study and methods overview. A) Study overview. (i) We employed 4334 samples, 758 

from 4 cohort of the BIOS Consortium, DNAm methylation and metabolomics to train and test 759 

our surrogates. (ii) Coupled with 1,544 samples from the Rotterdam Study to evaluate their 760 

associations with mortality. (iii) We applied a calibration to harmonize the metabolomics 761 

dataset. (iv) We then train ElasticNET models, on LIFELINES and NTR. Using the DNA 762 

methylation data we predict two types of outcomes: 1) the pre-trained metabolomics mortality 763 

predictor (MetaboHealth), and 2) the 64 metabolic features. (v) The DNAm models are 764 

evaluated using 1) the hold-out valuation sets (LLS and RS) and 2) a 5-Fold Cross Validation on 765 

the training sets (NTR and LIFELINES). (vi) Finally, we use the DNAm models to generate 766 

surrogate metabolomics features in the RS dataset (1544 samples) and 1) evaluate their 767 

univariate associations to mortality (while correcting for age, sex), and 2) trained a complete 768 

Cox regression combining our DNAm metabolomics features and the pre-trained DNAm 769 

surrogates. B) Availability of data in each cohort and when they are exploited in the study. 770 

 771 

Figure 2: Harmonization of the metabolomics data. A) Distribution of glucose in NTR and 772 

LIFELINES before (upper figure) and after (lower figure) calibration. B) tSNE of the 773 

metabolomics dataset after calibration and colored by the four biobanks (LIFELINES, LLS, RS and 774 

NTR). C) Principal Variance Component Analysis (PVCA) before (red) and after (green) 775 

calibration, estimating the variance explained in the dataset by available clinical variables (e.g., 776 

sex, age, BMI, diabetes). D) Bar-plots showing the differences in men and women in the 777 

calibrated MetaboHealth in the four cohorts. E) Observed mean values of age, BMI, eGFR, 778 

hsCRP and pressure ordered following the calibrated MetaboHealth in different percentiles 779 

over the entire BIOS population. F) Observed percentage of alcohol consumption, current 780 

smoking ordered following the calibrated MetaboHealth in different percentiles over the entire 781 

BIOS population.  782 

 783 

Figure 3: DNAm metabolites accuracies. Circular heatmap representing the accuracies of the 784 

DNAm-based models for 64 
1
H-NMR metabolic features by Nightingale Health and 785 

MetaboHealth. The outer ring shows the correlation between measured and DNAm-based 786 

metabolomics features, while correlation between DNAm surrogates with age and sex are 787 

shown in the middle and inner ring, respectively. Mean CV states for mean cross validation 788 

results in the cohorts LL and NTR together in the training (train) and test (test) sets, while 789 

results in the left-out set are indicated with RS and LLS. Moreover, the metabolomics features 790 

are annotated for their metabolomics group type (e.g., amino acids, fatty acids etc.) and if they 791 

were or were not included in MetaboHealth. Finally, we indicated with asterisks the tertiles of 792 

mean accuracies over the test sets. 793 

 794 

Figure 4: Correlations with pre-trained DNAm scores. Correlations between our DNAm 795 

metabolic features and previously trained clocks, the DNAm surrogates included in GrimAge 796 

and the 109 DNAm-based surrogates for proteins (EpiScores) by Gall et al. 797 

 798 
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 799 

 800 

 801 

Figure 5: Associations with Time to Death. A) Significant univariate associations of the 802 

DNAm metabolomics features with time to all-cause mortality in RS (N = 1542 with 285 803 

reported deaths). The associations are grouped based on the metabolomics groups colored by 804 

the significant associations or the metabolites with mortality in Deelen et al. The asterisks (*) 805 

separates nominal significant DNAm metabolomics features from the FDR significant ones. B) 806 

Stepwise Cox regression predicting of time to all-cause mortality optimized in RS, composed 807 

combining age, 3 DNAm surrogates included in GrimAge, and 9 DNAm metabolic models and 12 808 

protein EpiScores. 809 

 810 

Figure 6: CpG selections of the ElasticNET models. A) Log2 Odds ratio indicating the 811 

enriched in annotations of the CpG by our ElasticNET models. B) The central heatmap reports 812 

the log 10 P-values of the enrichments CpG sites selected by our models (rows) and the 50 most 813 

significant traits in the EWAS Catalog and Atlas enriched (rows). Bottom: the median 814 

coefficients in each DNAm model, and the number of CpGs per model. Right: the median 815 

coefficients given by our DNAm model to the overlapping CpGs with each trait. C) The nine 816 

most used probes (rows) over the 65 ElasticNET models (columns), colored by metabolic 817 

groups. Top: The models were ordered by the mean accuracy over the test sets (CV, LLS, and 818 

RS). Right: The number of models which include each CpG and their nearest genes. D) 819 

Manhattan plot-like figure indicating the Variable importance of the single CpG probes in the 820 

DNAm metabolic models.  821 
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Figure 2: Harmonization of the metabolomics data and its effect on MetaboHealth 
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Figure 3: DNAm metabolomics accuracies
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Figure 4: Correlations with pre-trained DNAm scores
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Figure 6: CpG selections of the ElasticNET models
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