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Abstract 

As the heritability of abdominal aortic aneurysm (AAA) is high and AAA partially shares genetic 

architecture with other cardiovascular diseases, there is interest in whether genetic information 

could inform AAA screening strategies. Exploiting pleiotropy and meta-analysing summary data from 

large AAA studies, we constructed a polygenic risk score (PRS) for AAA. Compared with the low PRS 

tertile, the intermediate and high PRS tertiles had hazard ratios for AAA of 2.13 (95%CI 1.61, 2.82) 

and 3.70 (95%CI 2.86, 4.80) respectively, after adjusting for known clinical risk factors. Using 

simulation modelling, we compared PRS- and smoking-stratified screening with inviting men at age 

65 and not inviting women (current UK strategy). In a futuristic scenario where genomic information 
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is available on the population, our modelling suggests inviting male current smokers with high PRS 

earlier than 65 and targeting screening in female smokers with high/intermediate PRS at 65 and 70 

respectively, may improve cost-effectiveness. 

 

Abdominal aortic aneurysm (AAA) is an enlargement of the abdominal aorta to greater than 3 cm 

diameter. To promote early detection and management of AAA (which reduces the likelihood of 

fatal aortic ruptures), authorities in the UK, Sweden, and Oslo, Norway, offer screening to all men 

aged 651. By contrast, the US Preventive Services Task Force (USPSTF) recommends a one-off 

screening with ultrasound scan (USS) in men aged 65-75 who have ever smoked and recommends 

selective screening based on clinical judgement in men who have never smoked2. However, despite 

the introduction of such screening programmes, ruptured AAA continues to be a significant source of 

morbidity and mortality, exemplified by AAA’s contribution to around 0.8% of deaths in men aged 65 

and older and 0.4% in women aged 65 and older in England and Wales3.  

Rupture of AAAs occurs primarily in people not captured by current screening programmes. They 

include, for example women, men under 65, men invited to screening at 65 but who did not attend, 

and men with a normal aortic ultrasound scan at age 65 but who develop an AAA later in life. A small 

number of ruptures also occur in screen-detected AAAs4 either prior to reaching the threshold for 

elective intervention, whilst waiting for this intervention, or after being declared unfit for 

intervention. However, the prevalence of AAA is falling over time. For example, less than 1% of men 

screened as part of the UK National Health Service (NHS) abdominal aortic aneurysm screening 

programme (NAAASP) in 2021 were observed to have an AAA3. By contrast, the prevalence of AAA 

was 4.9% in the UK Multicentre Aneurysm Screening Study (MASS)5, carried out in 1997-9. This 

temporal decline in the population burden of AAA suggests that the cost-effectiveness of AAA 

screening may also be changing, encouraging consideration and evaluation of more targeted 

screening approaches6. The USPSTF has, for example, highlighted that research is needed to define 
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the benefits of screening in particular subgroups, suggesting that a stratified approach may have net 

benefit over current strategies
2
. One potential subgroup is current cigarette smokers, for whom a 

strong association with AAA
7
 has been reported (7-fold increase in risk in men, and 15-fold in 

women).  

As the heritability of abdominal aortic aneurysm (AAA) is high (perhaps as high as 70%8) and genome 

wide association studies (GWAS) have identified numerous variants associated with AAA 

susceptibility9–11, there is interest in whether use of genetic information could supplement and/or 

support population screening strategies for AAA. Polygenic risk scores (PRS), which aggregate the 

effects of genetic variants across the genome, can help stratify populations to help identify 

individuals with higher risk of disease12,13. As AAA often co-occurs with other forms of cardiovascular 

diseases14 and as the condition partially shares genetic architecture with other cardiovascular 

diseases15, we hypothesise that methods16–18 leveraging shared genetic effects across multiple 

correlated clinical traits should optimise the performance of an AAA PRS.  

 

In this study, we developed a state-of-the-art PRS for AAA. We then adapted a discrete event 

simulation model previously developed to evaluate the potential cost-effectiveness of screening 

females for AAA
19

 to explore the potential clinical impact and cost-effectiveness of a stratified 

screening programme informed by our PRS. 

 

Results 

Overview of our study 

Our analysis plan comprised three stages relating to (i) development of a novel PRS for AAA, (ii) 

evaluation of the association of this PRS with AAA, and (iii) use of a discrete event simulation model 

to assess the potential for using this PRS and smoking status to inform screening for AAA.   
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To develop our PRS, we assembled the largest to-date training dataset for AAA by combining 

information from multiple large biobanks (Methods). To further improve performance, based on 

clinical experience of known co-morbidities of AAA we incorporated information from other 

cardiovascular diseases into our PRS, utilising a recently developed method that leverages shared 

genetic effects
16

. Our final PRS was built by LDpred2
20

 and evaluated on a non-overlapping subset of 

participants in the UK Biobank study. We then tested our PRS’s association with incident AAA using 

Cox regression models on the age time-scale. Finally, to explore how a PRS-informed age at 

invitation strategy may influence long-term clinical and cost outcomes, we deployed a previously 

validated discrete event simulation (DES) model for AAA screening, with PRS tertile-specific AAA 

prevalences estimated from a Fine and Gray regression model treating non-AAA mortality as a 

competing risk. Incremental net benefit estimates from the DES were then used to propose and 

evaluate policy recommendations. Full details of our methods can be found in the Online methods 

section. See Supplementary Figure 1 for a summary of the study design. 

 

AAA polygenic risk score development 

We benchmarked a number of different PRS and selected the best-performing model, which 

integrated information from all available AAA studies and also from GWAS summary data from two 

traits that shared genetic aetiology with AAA: coronary artery disease (CAD) and AAA-related (a 

composite phenotype of conditions related to AAA) (full list of conditions provided in Table S2). Our 

best-performing PRS was selected using area under the receiver-operator curve (AUC) in our test-set 

for prevalent/incident AAA risk combined (prevalent cases can be included here as only considering 

PRS in the model, thus eliminating the possibility of reverse causality). The full details of all PRS 

models, their development and performance summaries can be found in the Methods section and 

Table S3. The performance of the best PRS, evaluated using the incident time-to-AAA outcome in our 

test-set, is shown in Fig 1.  
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Association of PRS with AAA  

Amongst the 91,731 individuals in the UK Biobank test set, 634 (1.7%) men and 106 (0.2%) women 

had an AAA event (i.e. events captured by the definition and data in UK Biobank, hereafter referred 

to as AAA; see Methods) during the follow-up period. 72,928 (79.5%) had complete data on all risk 

factors; of these, 464 men (1.5%) and 81 women (0.2%) had an AAA. Median follow-up was 12.0 (IQR 

11.2 to 12.7) years. Only 222 (0.2%) individuals were censored. A summary of risk factors and 

missing data is provided in Table S5; events and frequencies by sub-group are given in Table S6.   

Hazard ratios from multivariable Cox regression modelling are provided in Table 1, based on the 

complete case analysis. The results demonstrated a higher rate of AAA across the PRS risk groups - 

defined as tertiles of the PRS distribution - even after adjustment for the other risk factors. 

Compared to the low PRS risk group, the intermediate PRS risk group had a 2-fold higher hazard of 

AAA (HR 2.13, 95% CI 1.61 to 2.82), and the high PRS risk group a nearly 4-fold increase (HR 3.70, 

95% CI 2.86 to 4.80). Alternatively, if PRS was modelled as a continuous predictor, the adjusted HR 

per 1 standard deviation increase was 1.77 (95% CI 1.63 to 1.93). As expected, the hazard of AAA 

was also higher in ex and current smokers compared to never smokers (HRs: 2.36, 95% CI 1.82, 3.05; 

and 7.74, 95% CI 5.83, 10.29 respectively). There was no evidence of an interaction between sex and 

PRS (either as categorical, p=0.4, or continuous, p=0.8) or deviation from the proportional hazards 

assumption (p>0.05 for all covariables in models with categorical and continuous PRS, using 

Schoenfeld residuals).  

 

Sensitivity analysis addressing missingness 
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Results of a sensitivity analysis based on multiply imputed data are shown in Supplementary Table 

S7. The results were similar to the primary analysis, though the adjusted hazard ratio for the high 

risk PRS group was higher (4.46, 95% CI 3.52, 5.66).  

 

Estimation of AAA prevalence 

In a Fine and Gray competing risks model including only sex, the modelled estimated prevalence of 

AAA in men at age 65 was 0.41%. This finding suggests our data identified just under half of the AAAs 

observed in NAAASP at this age, where the observed prevalence was around 0.91%
21

. The lower 

yield of AAA cases in UK Biobank was likely due to a combination of the “healthy cohort” effect and 

the outcome definition which only captured AAAs identified at a hospital visit. We derived a scaling 

factor (F) to estimate population PRS-specific AAA prevalences for the DES from the UK Biobank AAA 

prevalence modelled here as the ratio of the NAAASP and UK Biobank prevalences in men (0.91/0.41 

= 2.2). No equivalent data were available for UK women due to the lack of a systematic screening 

programme, so in our modelling we assumed F to be the same for both men and women.   

 

Discrete event simulation modelling 

Incremental net benefit by PRS and smoking status 

Figures 2 and 3 show the impact on incremental net monetary benefit (INB) for a range of different 

ages at invitation in men (followed up from age 60) and women (followed up from age 65) 

respectively, based on a willingness-to-pay of £30,000 per quality-adjusted life-year (QALY). The 

results depend on AAA prevalence at the starting age, so the INB is presented for a range of 

prevalences (modelled as known input parameters) corresponding to different sub-groups based on 

PRS risk and smoking status, i.e. these are sub-group INB estimates. Vertical lines indicated on 

Figures 2 and 3 represent point estimates of smoking/PRS sub-group prevalences, though these are 
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estimated with uncertainty. Results based on PRS risk or smoking status alone, and based on a 

willingness-to-pay of £20,000 per QALY, are given in Supplementary Figures 2-5.  

For men, when AAA prevalence was below 0.2% at age 60, the INB was negative at all invitation ages 

- indicating no benefit in offering screening (Figure 2). Ever smokers with low/intermediate PRS and 

ex-smokers with low PRS had AAA prevalences estimated in this range. For current smokers in the 

highest PRS risk group (prevalence around 1.5% at age 60), there was a positive INB at all ages at 

invitation for this subgroup of the population, and an increase in INB for invitation earlier than age 

65; the INB was maximised by inviting this group at age 60. For all the remaining smoking/PRS 

subgroups (i.e. never smokers with high PRS, ex-smokers with intermediate/high PRS and current 

smokers with low/intermediate PRS; prevalences range from 0.2 - 0.7% at age 60), there was 

evidence that invitation to screening confers a positive net benefit, particularly at earlier invitation 

ages. The results showed the highest INB in these subgroups occurred following invitation between 

ages 60 and 62. There was little difference in terms of INB between inviting at age 60 or 62 because 

of the trade-off between missing late-developing AAAs and the relatively small numbers who may 

benefit from early intervention when the prevalence at age 60 is below 1%.  

In women, when AAA prevalence was below 0.25% at age 65, the sub-group INB was negative at all 

invitation ages (Figure 3). When considering subgroups of the population in isolation, only current 

smokers with intermediate PRS (prevalence 0.35% at age 65) and current smokers with high PRS 

(prevalence 0.8% at age 65) showed a small positive benefit. For the former this occurred at 

invitation age 70, and for the latter at invitation ages 65 and 70.  

 

Incremental net benefit by population strategy 

Evaluation of the impact of strategies stratified by PRS and/or smoking scaled to the whole 

population are given in Table 2, i.e. these are population-level INB estimates.  
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In men, for a healthcare provider willing to pay £30,000 per QALY gained, offering universal 

screening at age 62 improved the incremental net benefit compared to the current strategy of 

universal screening at age 65 (mean population INB £41 v £11, Table 2a). When extrapolated to the 

population of 348,000 60-year-old men in England
22

, this equated to an overall net gain of around 

£10.4m at a willingness-to-pay of £30,000 per QALY. Using PRS-specific or smoking-specific age at 

invitation improved this further (both mean population INB £42; net gain £10.9m over the whole 

population). The largest gains in men arose from a policy stratifying on a combination of both PRS 

and smoking, with an estimated net gain of £12.6m over the whole population. Specifically, this 

policy invites men who are current smokers with high PRS risk at age 60, no invitation for never-

smokers with low/intermediate PRS or ex-smokers with low PRS, and invites the remainder of the 

male population at age 62. In addition, this policy demonstrated the largest reduction in number of 

scans, with a 41% reduction compared to current policy (Table 2a). In comparison, a policy of inviting 

all at age 62 marginally increased scans compared to current policy. 

In women, adopting a policy of inviting current smokers with high and intermediate PRS at ages 65 

and 70 respectively conferred a modest improvement over the current approach of no screening 

(population INB around £3, Table 2b). This equates to around £0.9m over the population of 298,000 

65-year-old women in England
22

. This is marginally higher than the overall gain over the population 

of £0.6m estimated for a policy of inviting all current female smokers at age 65. Inviting all women 

with high PRS at age 70 conferred a negative population INB.  

Discussion 

Our results may have several implications. First, it highlights that leveraging shared genetic aetiology 

by combining information from multiple traits can substantially improve PRS performance.. This is 

particularly relevant for lower prevalence diseases such as AAA, where there are fewer GWAS 

studies with a lower number of cases (compared to coronary artery disease, for example). Second, 

current screening may not be optimal in terms of cost-effectiveness and does not capture AAAs in 
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some individuals before rupture occurs. PRS could be used to identify individuals in the population 

who are currently not eligible for AAA screening, but are at high risk (such as females who are 

smokers or with high PRS, or men aged less than 65 who are smokers or with high PRS), and to 

optimise timing of invitation. We provide evidence from a previously-validated simulation model 

that PRS-stratified AAA screening has the potential to improve cost-effectiveness over current 

strategies. 

Results from the simulation model suggested that adopting a stratified approach to screening 

invitation age in men, and applying targeted screening in women, could be cost-effective for a 

healthcare provider willing to pay £30,000 per QALY when compared to current strategy. In men, 

whilst PRS-based stratification conferred some increase in incremental net benefit, improvement 

arising from smoking-based stratification was almost identical. However, the largest gains were 

estimated to arise from using PRS and smoking in combination. Our modelling suggests that inviting 

male current smokers with high PRS at age 60 alongside no invitation for those with very low risk 

(never/ex-smokers with low PRS and never smokers with intermediate PRS) and invitation at age 62 

for the remaining men, may improve cost-effectiveness. In women, combining smoking and PRS 

information enabled identification of a subgroup (current smokers with high and intermediate PRS, 

invited at age 65 and 70 respectively) in whom screening was cost-effective.  

Our proposed smoking and PRS-risk-based AAA screening invitation strategy incorporates earlier 

invitations than currently offered for those in the highest PRS-risk groups where AAA may develop 

earlier. Conversely, those without a high PRS are offered a later (or no) invitation. This does not 

necessarily imply an increase in missed AAAs for these individuals, since there is a trade-off in 

optimising identification of AAAs (i.e. early enough to maximise capture before rupture, late enough 

to minimise missing AAAs that develop post-screening) with maximising life-years gained by 

intervening at younger ages. In addition, the continued exclusion of very low risk groups from 

screening (women who are never/ex-smokers and those with low PRS) limits the potential for harms 
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associated with overdiagnosis in those who would likely not go on to experience AAA intervention or 

rupture
19

. 

We report a strong association between our AAA PRS and reported AAA outcome alongside an 

apparently more modest improvement for a PRS-stratified screening approach in terms of mean INB. 

This is in part because benefits are only accrued in those with an AAA, but are averaged over the 

whole screened population when calculating cost-effectiveness measures. Additionally, the 

possibility for a PRS that is strongly associated with the outcome to translate into a modest impact 

on a screening programme has been previously documented23. For a given PRS cut-off, even though 

the proportion of cases to non-cases may be considerably lower amongst those with low PRS 

(reflecting a large hazard or odds ratio when assessing association), the majority of cases may still 

occur in this group when a relatively small proportion of the population has a high PRS. If translated 

into a screening programme based on a PRS cut-off, this would result in missing many cases. We 

address this here by taking a lifetime perspective and by considering variations to the timing of 

screening invitation in addition to comparisons to no screening. The use of the DES to evaluate the 

outcomes associated with each policy ensures that increases in AAA prevalence and AAA ruptures 

during the unscreened period for those with low/intermediate PRS are accounted for in the results.   

 

Limitations 

Our work makes the assumption that generating a PRS profile might, in the future, not carry an 

additional cost, given expectations that PRS might one day be offered at the population-level and 

utilised across a range of diseases, implying a negligible per-trait cost. We acknowledge this is a 

major assumption. However, this scenario - i.e. one in which genomic information will become part 

of routine healthcare and available for screening purposes
24–28

 - has been advocated by some leading 

authorities
29

. Such a programme of systematic collection of genomics data - with reasonable level of 
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uptake in the population - would, of course, need to be in place to facilitate implementation of a 

PRS-stratified screening strategy as described here. 

We modelled AAA incidence data in UK Biobank, which is not directly linked to the AAA national 

screening programme in the UK. UK Biobank also has a “healthy volunteer bias” that could impact 

the performance of our PRS – however, we anticipate that the cost-effectiveness of PRS-stratified 

AAA screening would be more favourable, given the expected higher and earlier disease prevalence 

in a cohort without healthy volunteer bias. Relatedly, we do not present a risk prediction model or 

provide optimism-corrected model evaluations. Our test set, while it did not overlap with our 

training set, was from the same population (UK Biobank). Before wider deployment, our models may 

need to be evaluated in an external validation set. The PRS contains only common genetic variants 

(MAF > 0.01) and there may be rare and low-frequency variants that impact risk of AAA. We assume 

that the outcomes of AAA repair, growth rates/rupture risk of AAA, and non-AAA mortality rates are 

consistent across all strata of smoking and PRS for AAA susceptibility, and by age, which may not be 

the case. We have modelled upon an assumption that there is one single screening point, but 

alternative approaches with repeat screening of high-risk individuals may further improve clinical 

and cost-effectiveness outcomes. Finally, due to the limited data availability, our study participants 

were restricted to individuals of European ancestry. The portability of PRS across populations has 

been shown to be reduced due to differences in patterns of linkage disequilibrium, allele frequencies 

and effect sizes
30

, thus we expect that our model to be mainly relevant to European ancestry 

populations. Due to the low prevalence of AAA, large population studies across multiple ancestries 

will be required, such as those provided by the Our Future Health
31

 and All of Us
32

 projects, to 

increase the representation of more diverse populations in future AAA studies.   

 

In summary, we have developed a novel PRS for AAA that demonstrates independent association 

with incident AAA above clinical risk factors. We found that PRS-informed screening could identify 

subpopulations who are currently excluded from screening policy (such as intermediate and high 
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PRS female smokers), in whom screening may be cost-effective. We also report that screening in 

men could be optimised by varying the age at invitation according to polygenic risk and smoking 

status. 

 

Online methods 

 

Development of a polygenic risk score  

The polygenic risk score presented here relies on two AAA data sources as follows: (i) GWAS 

performed in the UK BioBank (UKB)
33

 (1,068 cases and 127,011 controls, selected in a way to exclude 

all individuals who are part of the AAAGen study), and (ii) summary level data from the AAAgen 

cohort8 without the UKB (effective sample size of ~104,179; see details in Supplement S1). The full 

study details can be found in Table S1. We also considered summary association data from other 

phenotypes which we believed may share genetic aetiology with AAA: (i) coronary heart disease 

(CHD)8 , (ii) stroke34, and (iii) conditions related to AAA in the UKB (Table S2). We adopt the 

assumption of the GWAS from which our PRS was sourced from, i.e. that the risk liability can be 

estimated from the combined set of prevalent and incident cases. Detailed data processing, quality 

control steps applied to each dataset and the full list of ICD10 codes for the “AAA-related” 

phenotype can be found in the Supplementary Information. 

To maximise performance, we performed a fixed-effect meta-analysis on all AAA studies. We then 

evaluated two PRS pre-processing methods that exploit genetic overlaps between the aetiologies of 

different traits, shaPRS
16

 and MTAG
35

, to additionally integrate information from CAD, stroke and 

AAA-related traits. To generate the final PRS from the subset of the 831,447 SNPs that met our 

quality control criteria in the HapMap3 panel, we also evaluated two methods, PRS-CS and LDpred2. 

The best individual PRS was chosen by comparing the AUC (from a univariable logistic regression 
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model assuming a linear relationship with continuous PRS) and the squared Pearson correlation 

coefficient (r
2
) between predicted and observed phenotypes evaluating the performance of all PRS 

models in a non-overlapping, randomly selected test set of 91,731 European ancestry individuals in 

UKB, which included 921 (prevalent and incident combined) AAA cases. 

Our final PRS model is deposited in the PGS Catalog36 (PGS003429) and is also available to download 

from the Supplementary Data. The combined raw SNP summary association statistics, together with 

the estimated coefficients of the conventional risk factors are also available in the Supplementary 

data. 

 

Modelling the independent association of PRS with AAA 

The non-overlapping subset of 91,731 individuals in UK Biobank also served as the test set for our 

risk prediction model, using 740 incident time-to-AAA as the outcome of interest to allow for 

appropriate adjustment of other potentially time-varying risk factors. Date and cause of death 

together with date of loss-to-follow-up were collected. The outcome was defined as first hospital 

inpatient admission with AAA code (either AAA-related surgical procedure or AAA code recorded at 

admission for other cause) or AAA death. This includes ICD-10 codes I71.3 and I71.4 together with 

surgical procedure codes (see Table S4 for full list); as such this definition does not relate to specific 

diagnostic criteria such as aneurysm size. This outcome may strictly be defined as “recorded AAA” to 

reflect the fact that it captures only a proportion of existing AAAs in the population (since those with 

an unidentified unruptured AAA and those with an unruptured AAA who do not attend hospital in 

the follow-up period will not be included here), though for simplicity will be hereafter referred to as 

AAA. Under this definition, the AAA may be known either because of rupture, surgical intervention 

or detection either via NAAASP or opportunistically. Individuals with a prevalent AAA event at entry 

into UKB were excluded from this analysis. 
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Cox regression models on the age time-scale were used to explore the independent association 

between PRS and time to AAA with and without adjustment for known risk factors. Individuals were 

censored on the date of loss-to-follow-up, end-of-follow-up on 31
st
 March 2021, age 80, or date of 

non-AAA mortality, whichever was sooner. Models were fitted using data for men and women 

combined, with adjustment for sex and testing for sex x PRS interaction, due to the low number of 

AAA cases in women. We selected conventional risk factors based on their likely availability at the 

clinic: date of birth, BMI, self-reported smoking status (never, ex, current), self-reported alcohol 

consumption (non-drinker, drinker), diabetes, anti-hypertensive drug use, lipid-lowering drug use, 

systolic blood pressure (SBP), high-density lipoprotein (HDL), total cholesterol, Townsend 

deprivation index, and family history of CVD, as recorded at entry into UKB. Linearity was assumed 

for continuous variables in the Cox modelling. In contrast to the PRS development stage where 

exploration of the associations between genetic factors and blood pressure implicates the use of 

underlying blood pressure and cholesterol (i.e. adjusted for medication to estimate the pre-

medication values), this stage of modelling uses baseline SBP and cholesterol measurements as the 

relevant predictors of future AAA risk.  

Tertiles of PRS were used to allow continuity with the simulation modelling component of this work, 

which requires grouping of PRS for evaluation of stratified screening. Tertiles were selected to 

minimise impact on precision of estimates - particularly important in the analysis of this relatively 

rare condition - and for ease of interpretation. Key results are also presented per standard deviation 

increase in PRS. In a sensitivity analysis, we additionally explore the impact of using multiple 

imputation to account for missing values of risk factors. Full details of methods are given in the 

Supplementary Material.  

 

Discrete event simulation modelling 
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We further use the UK Biobank data to explore the potential impact of setting PRS-sex-specific ages 

for screening invitation, and determine the costs and benefits of this AAA screening programme. 

Fine and Grey regression modelling is employed to calculate cumulative incidence functions (CIFs) 

for time to AAA whilst accounting for competing risks due to non-AAA mortality. This model is used 

to estimate the prevalence of AAA in men at age 65 in UKB, which is benchmarked against the 

observed prevalence of AAA at this age in the National Health Service Abdominal Aortic Aneurysm 

Screening Programme (NAAASP). This measure gives an indication of the proportion of AAAs that are 

captured by the definition of recorded AAA used in UKB and is used as a scaling factor (F) for sub-

group baseline prevalences estimated from the Fine and Gray model at age 60 in men and age 65 in 

women that are then taken forward to make group-specific inferences on results from the DES. Since 

women are not screened in the UK, it is not possible to estimate a separate scaling factor for 

women, so we assume that the ratio of recorded:underlying AAAs (and thus, F) is the same in 

women as in men. 

To explore how a PRS-sex-specific age at invitation strategy may influence long-term outcomes, we 

adapted a previously developed discrete event simulation (DES) model for AAA screening. The SWAN 

model has been described and validated previously, with full details of model structure and input 

parameters provided elsewhere
13

. In brief, the DES combines growth and rupture rate models 

reflecting the natural history of AAA with information from screening programmes on uptake, 

detection (including that taking place outside of systematic screening), distribution of AAA 

diameters, and both elective and emergency surgical intervention. The model input parameters are 

informed by systematic review and meta-analysis where possible, with non-AAA mortality informed 

using national summary statistics.   

We use the model to track clinical events and costs from age 60 to 95 (men) or age 65 to 95 

(women) in 1m hypothetical individuals, separately for men and women. Younger ages are not 

considered here since model input parameters (e.g. attendance at screening, rates of dropout, 
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incidental detection and re-intervention) are largely derived from populations aged 65+. Models are 

run for a range of prevalences at the starting age (60 in men; 65 in women) and for different 

invitation ages between 60 and 67 in men and between 65 and 75 in women, treating the 

prevalences as known input parameters and plotting final results over the full range of values.  

Results are summarised in terms of mean quality-adjusted life-years (QALYs) and mean costs, for 

each baseline prevalence and invitation age. The incremental net benefit (INB) is also calculated to 

provide an estimate of the mean net monetary gain for invitation at a particular age compared to a 

no-invite strategy (for a given baseline prevalence) by assigning a willingness-to-pay (WTP) per QALY 

gained, set here at £30,000 per QALY. Population strategy is optimised by identifying the age at 

invitation corresponding to the highest INB within each sub-group. Results corresponding to each 

sub-group are then combined to provide an overall population cost-effectiveness by scaling 

according to the observed proportion in the UKB test set.  

 

 

 

Data and code availability 

Code to perform all PRS development analyses reported in this manuscript is available at 

github.com/mkelcb/aaa-paper. The final AAA PRS file is available from the Supplementary data and 

from the PGS Catalog with score ID PGS003429. The full DES model is available at 

https://github.com/mikesweeting/AAA_DES_model. 
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Fig 1    Observed non-parametric cumulative incidence curves for recorded AAA in the UKB test set, 

in women (left) and men (right). PRS groups correspond to tertiles of PRS risk.  
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Fig 2    Incremental net benefit compared to no invitation, by age at invitation and baseline 

prevalence at age 60 in men. INB is evaluated at a willingness-to-pay of £30,000 per QALY. Points 

plotted are point estimates with 95% uncertainty interval derived from 100 bootstrap PSA samples. 

PRS/smoking sub-group prevalences estimated from UKB test set as CIF x inflation factor; indicated 

on the x-axis. 
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Fig 3    Incremental net benefit compared to no invitation, by age at invitation and baseline 

prevalence at age 65 in women. INB is evaluated at a willingness-to-pay of £30,000 per QALY. Points 

plotted are point estimates with 95% uncertainty interval derived from 100 bootstrap PSA samples. 

PRS/smoking sub-group prevalences estimated from UKB test set as CIF x inflation factor; indicated 

on the x-axis. 
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Table 1  Hazard ratios for recorded AAA from multivariable Cox regression 

Risk factor HR (95% CI) p-value 

PRS group     

  

<0.001 

  Low risk 1 

  Intermediate risk 2.13 (1.61, 2.82) 

  High risk 3.70 (2.86, 4.80) 

Sex     

<0.001 
  Female 1 

  Male 4.56 (3.54, 5.88) 

Townsend deprivation index (per 

1 unit increase) 

1.02 (0.99, 1.05) 0.1 

Alcohol intake     

0.001 
  Non-drinker 1 

  Drinker 0.57 (0.42, 0.79) 

Family history of CVD     

0.6 
  No 1 

  Yes 1.05 (0.88, 1.25) 

Diabetic     

0.6 
  No 1 

  Yes 1.09 (0.78, 1.53) 

Smoking status     
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  Never smoker 1 
<0.001 

  Ex-smoker 2.36 (1.82, 3.05) 

  Current smoker 7.74 (5.83, 10.29) 

BMI     

0.2 
 (per kg/m

2
 increase) 1.02 (0.99, 1.04) 

Systolic blood pressure     

0.3 
(per 10mm/Hg increase) 0.97 (0.93, 1.02) 

Anti-hypertensive medication 

No 

Yes 

 

1 

2.88 (2.36, 3.52) 

 

<0.001 

Total cholesterol     

0.02 
(per mmol/L increase) 1.12 (1.01, 1.23) 

HDL cholesterol     

<0.001 
(per mmol/L increase) 0.27 (0.20, 0.39) 

Lipid-lowering medication 

No 

Yes 

 

1 

2.82 (2.27, 3.51) 

 

<0.001 
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Table 2  Population incremental net benefit estimates arising from different invitation age 

strategies in (a) men, and (b) women 

(a)  

  Strategy 

Current: 

invite all age 

65 

Invite all age 

62 

Invite age 

determined by 

PRS
$ 

Invite age 

determined by 

smoking
$$ 

Invite age 

determined by 

PRS + 

smoking
$$$ 

Mean INB (95% 

UI)* 

£11.03 

(-£1.74, 

£37.12) 

£40.89 

(£25.75, 

£58.49) 

£42.49 

(£25.86, £54.63) 

£42.31 

(£36.78, £66.66) 

£47.28 

(£39.29, £70.87) 

Mean QALYs 17.1603 17.1614 17.1611 17.1611 17.1612 

Mean costs £271.79 £275.63 £265.96 £265.91 £263.80 

Net gain over 

population** 

NA £10.4m £10.9m £10.9m £12.6m 

            

Events per 10,000 

invited 

          

Scans*** 9229 9560 6250 6196 5474 

Elective 

operations 

108.3 111.2 110.9 110.8 111.0 

Emergency 

operations 

42.9 42.1 42.0 42.2 41.9 

Ruptures 118.1 115.9 116.1 116.3 115.9 

AAA-related 

deaths 

97.3 96.0 96.2 96.3 96.2 

Note: These results account for the differing proportions of the population within each sub-group, as 

observed in the test set. 

$
 Invite intermediate and high PRS only, at age 62 (maximises PRS-specific INBs) 

$$
 Invite ex and current smokers only, at age 62 (maximises smoking-specific INBs) 

$$$
 Invite current smokers with high PRS at age 60; no invite for never smokers with low/intermediate PRS; no 

invite for ex-smokers with low PRS; invite remainder at age 62 (maximises PRS/smoking-subgroup-specific 

INBs) 

* Mean incremental net benefit compared to no invite derived from point estimate; 95% uncertainty interval 

derived 5
th

/95
th

 centiles of INB from 100 PSA bootstrap samples 

** based on UK population estimates for 60-year-old men (N=348,000). Comparison to current strategy, based 

on willingness-to-pay of £30,000 per QALY  
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*** includes both initial screen and follow-up monitoring scans for those with detected AAA; input parameter 

for attendance set to 75% for men / 72% for women (as per original DES)  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 6, 2023. ; https://doi.org/10.1101/2023.11.02.23297906doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.02.23297906
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

(b) 

 

 

  

Strategy 

Current: no invite Invite high PRS 

only
$
 

Invite current 

smokers only
$$ 

Invite age 

determined by 

PRS + smoking
$$$ 

Mean INB (95% UI)* N/A -£3.74 

 

(-£8.25, £6.24) 

£2.09 

(-£0.06, £14.01) 

£2.95 

(£0.47, £12.78) 

Mean QALYs 15.2443 15.2445 15.2445 15.2445 

Mean costs £72.57 £81.63 £75.14 £74.51 

Net gain over 

population** 

NA -£1.1m £0.6m £0.9m 

         

Events per 10,000 invited        

Scans*** 0 2629 569 395 

Elective operations 17.5 18.1 17.9 17.8 

Emergency operations 18.7 18.5 18.6 18.6 

Ruptures 72.4 71.8 72.0 72.1 

AAA-related deaths 65.5 65.2 65.3 65.3 

$
 Invite high PRS at age 70; otherwise no invite 

$$
 Invite current smokers at age 65; otherwise no invite 

$$$
 Invite current smokers with high PRS at age 65; invite current smokers with intermediate PRS at age 70; 

otherwise no invite (maximises PRS-smoking-subgroup-specific INBs) 

* Mean incremental net benefit compared to no invite derived from point estimate; 95% uncertainty interval 

derived 5
th

/95
th

 centiles of INB from 100 PSA bootstrap samples 

** based on UK population estimates for 65-year-old women (N=298,000). Comparison to current strategy, 

based on willingness-to-pay of £30,000 per QALY  

*** includes both initial screen and follow-up monitoring scans for those with detected AAA 
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