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Abstract 

Genetic polymorphisms in drug metabolizing enzymes and drug-drug interactions are 
major sources of inadequate drug exposure and ensuing adverse effects or insufficient 
responses. The current challenge in assessing drug-drug gene interactions (DDGI) for the 
development of precise dose adjustment recommendation systems is to take into account 
both simultaneously. Here, we analyze the static models of DDGI from in vivo data and 
focus on the concept of phenoconversion to model inhibition and genetic polymorphisms 
jointly. These models are applicable to datasets where pharmacokinetic information is 
missing and are being used in clinical support systems and consensus dose adjustment 
guidelines. We show that all such models can be handled by the same formal framework, 
and that models that differ at first sight are all versions of the same linear 
phenoconversion model. This model includes the linear pharmacogenetic and inhibition 
models as special cases. We highlight present challenges in this endeavour and the open 
issues for future research in developing DDGI models for recommendation systems. 
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Phenotypic models of drug-drug-gene interactions mediated 
by cytochrome drug-metabolizing enzymes 

 

Introduction 

Drug interactions and the ensuing side effects are an important clinical and public health 
issue. Major reasons of side effects are individual variability in enzymatic drug clearance 
due to genetic polymorphisms in drug metabolizing enzymes (DMEs, Stingl et al. 2013), 
and to drug-drug interactions (Tornio et al. 2019) causing changes in drug metabolism. In 
patients treated for depression, such changes may affect up to 25% of patients or more, 
highlighting the importance of this issue in personalizing treatment (Preskorn et al. 2013; 
Gloor et al. 2022; see also Mostafa et al. 2021). 

Genetic polymorphisms in cytochrome DMEs such as CYP2C9, CYP2C19 and CYP2D6 
lead to altered enzymatic activity that affects the metabolism of about one third of drugs 
on the market, especially psychoactive drugs (Ingelman-Sundberg 2004). Quantitative 
estimates of clearance changes for individual drug dosing (Kirchheiner et al. 2001, 2004; 
Stingl et al. 2013) and consensus-guided recommendations (such as caution in carriers of 
a genetic variant and a susceptible medication) have long been available (for an overview 
of current guidelines, see Abdullar-Koolmes et al. 2021). A recent study has shown that 
the systematic adoption of a pharmacogenetic recommendation system in the clinic may 
lead to a 30% reduction in adverse drug reactions relative to usual clinical practice (Swen 
et al. 2023). We will refer here to carriers of (wildtype) alleles associated with typical 
enzyme activity as NMs (normal metabolizers), and carriers of variants with no activity 
as PMs (poor metabolizers). 

Drug-drug interactions may arise through diverse mechanisms, but an important 
one arises from increased drug exposure following inhibition of DME activity (inhibitors). 
Since characterization of inhibiting capacity of DME is mandatory to obtain market 
authorization approval from regulators, specific warnings on drug interactions are 
included in drug labels and are included in clinical decision support systems. 

The challenge for the next generation of recommendation systems consists in using 
information on genetic variants and on drug-drug interactions (such as those ensuing 
from inhibition) simultaneously.  The interplay between these two sources of changes in 
drug exposure has long been recognized and termed drug-drug gene interactions (DDGI; 
for reviews, see Bahar et al. 2017; Storelli et al. 2018). There is a wide consensus in the 
field that the extent of the inhibition may vary depending on the phenotype (Cicali et al. 
2021), but different methods are in use to combine pharmacogenetic effects and 
inhibition. Our purpose here is to review the approaches to jointly model 
pharmacogenetic effects and inhibition, a key issue to predict DDGI. 

We focus here on static models estimated entirely from in vivo data, including those 
obtained in clinical settings such as therapeutic drug monitoring (TDM). Such data do not 
provide information that enables estimating pharmacokinetic curves, as in 
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pharmacokinetic models of DDGI (Vieira et al. 2014a; Storelli et al. 2019). Static models 
have the advantage of allowing us the systematic use of a wide range of in vivo data, 
including clinical data, in a meta-analytic framework. Furthermore, by covering many 
substances and DMEs at once, these models are being incorporated in recommendation 
systems and in consensus guidelines. We refer to this static modelling approach as 
phenotypic modelling. 

One possible starting point for static models of DDGIs is the notion, formalized also 
in regulatory guidance (U.S. Department of Health and Human Services Food and Drug 
Administration 2020), that in real-world assessments changes in substrate exposure may 
be all viewed from the standpoint of changes in DME activity (Gibbs et al. 2006). Enzyme 
inhibition from an interacting drug may be characterized as phenoconversion to a 
phenotype with lower enzymatic activity. For example, complete inhibition of a DME in 
an NM individual may be described as phenoconversion from NM to the PM phenotype. 
Hence, an important task for phenotypic models of joint effects of pharmacogenetic 
variants and drug-drug interactions is to verify empirically that joint modelling can be 
based on this notion.  

Before introducing models of phenoconversion, we will preliminarily examine 
existing phenotypic models of effects of genetic polymorphisms on drug metabolism and 
of inhibition from drug-drug interactions, taken separately. These are potentially very 
wide fields, and our exposition will necessarily be limited to the aspects that are relevant 
to formulate the models of joint effects from in vivo data that follow. Importantly, we will 
show that a common formal framework unifies all phenotypic models of pharmacogenetic 
effects and inhibition. This may justify its extension to joint models of both 
pharmacogenetic and inhibition effects on drug metabolism. Our purpose will be to 
express the variety of existing approaches in modelling phenoconversion and DDGIs 
through this unified framework. A list of used abbreviations is at the end of the main text. 

Results 

Phenotypic models of pharmacogenetic effects on metabolism 

Early approaches to estimate effects of pharmacogenetic effects on drug exposure were 
based on computing separate averages of drug clearance measurements in every 
combination of phenotype and drugs (Kirchheiner et al. 2001, 2004; Stingl et al. 2013). 
While intuitive and easily interpretable, these models made no use of knowledge about 
the relationship between measurements of the same drug and phenotype, with possible 
negative consequences on the efficiency of estimates and their generalization capacity. 

An insight emerging from this work was that when the effects of genetic 
polymorphisms are assessed on clearance ratios of the variant phenotype and the wild-
type normal metabolizer type the resulting relation is at least approximately linear. This 
means that, if the activity scores of an allelic combination are known, one can use linear 
regression to estimate the predicted clearance ratio from the activity score AS (Stingl et 
al. 2022). Activity scores, introduced by Gaedigk et al. (2008) as estimates of DME activity 
predicted from the genotype, assign a value of zero to the PM phenotype (no metabolic 
capacity) and increasing values to phenotypes with increasing capacity. Activity scores 
model only the genetic variants that translate into changes in enzyme capacity. 

To aid intuition in showing the relationship between pharmacogenetic effects and 
linear regression, it may be useful to introduce relative activity scores RAS, which are 
activity scores rebased such that the value for NMs is zero and positive and negative 
scores reflect increased or decreased enzyme activity: 𝑅𝐴𝑆 = 𝐴𝑆 − 𝐴𝑆NM, 𝐴𝑆 = 𝑅𝐴𝑆 −
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𝑅𝐴𝑆PM  (here, 𝑅𝐴𝑆PM  is the relative activity score of PMs and 𝐴𝑆NM the activity score of 
NMs). With this substitution, the relationship between clearance and enzyme activity may 
be expressed in its simplest form, 

 𝐶𝐿XM

𝐶𝐿NM
= 1 + 𝐹D × 𝑅𝐴𝑆 (1) 

Here, 
𝐶𝐿XM

𝐶𝐿NM
 is the clearance ratio between carriers of a variant phenotype XM and NM 

individuals with typical enzyme activity, as reported in pharmacogenetic studies. In the 
right term, 𝐹D represents the importance of the DME in question in the metabolism of a 
specific drug D, which also determines the extent to which polymorphism of the DME 
affect its clearance. Negative RAS values, representing reduced metabolic capacity, lead to 
negative change estimates in drug clearance relative to the baseline value of unity, which 
refers to the clearance ratio of normal metabolizers NMs. Changes in the opposite 
directions ensue from positive RAS values. Given RAS, a linear regression with a fixed 
intercept may be used to estimate the coefficient 𝐹D, which gives the slope of the straight 
line representing the relationship between activity scores and predicted clearance ratios 
(see Figure 1A for an example). 

To better understand 𝐹D, let us scale the predictor variable in this regression, i.e. the 
relative activity scores, such that 𝑅𝐴𝑆PM = −1. Solving for 𝐹D in PMs, one obtains  

 
𝐹D =

𝐶𝐿NM − 𝐶𝐿PM

𝐶𝐿NM
  

From this, we see that with this scaling of activity scores, 𝐹D becomes an estimate of the 
fractional contribution of the DME to the clearance of drug D from in vivo data. 

Relative to the earlier models, this approach offers the advantage that only one 
coefficient per drug is estimated by linear regression from the information from all 
phenotype groups, whose data are pooled in the estimate to gain efficiency. After the fit, 
predictions of changes in clearance ratios may be computed also for allelic combinations 
for which data are missing if the activity scores are known. Modelling all drugs together 
also allows testing effects of the types of studies in the database and verify that they do 
not lead to systematic bias.  

While this model uncovers the relationship between activity scores and DME 
activity in its simplest form, it was not the first to be proposed in the literature. Tod et al. 
(2011) may have been the first to propose a static model of pharmacogenetic effects of 
CYP2D6 polymorphism on drug metabolism using a formalism that appears to differ from 
the one presented here. However, expressed in terms of clearance ratios, the model by 
Tod et al. may be shown to be equivalent to the model of eq. 1 (for details of the model 
and proof, see Appendix A1). Both models assume that the fractional contribution of the 
DME in the metabolic pathway of the drug remains the same for different phenotypes. 
This assumption is not likely to hold if a DME is the primary metabolizer of a drugs in NMs, 
as other DMEs may take over metabolism in PMs. However, for the majority of drugs 
linearity can be verified empirically (Stingl et al. 2022). Furthermore, both models assume 
that all polymorphic alleles and their activity scores are known. 

When appropriate, dose adjustments may be based directly on estimated changes in 
metabolic clearance (i.e., a 50% fractional reduction in clearance may be compensated by 
a 50% reduction in doses; Stingl et al. 2013). This remains the case for all models that 
follow and estimate changes in clearance ratios. 
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Static models of inhibition from in vivo data 

Models of inhibition from in vivo data adapted mechanistic static models, i.e. static models 
predicting changes in metabolism from in vitro data (for comprehensive treatments, see 
Fahmi et al. 2009; Guest et al. 2011; Vieira et al. 2014b). One such model was proposed by 
Ohno et al. (2007) for the inhibition of CYP3A4, based on several simplifying assumptions, 
including equal intestinal availabilities:  

𝐴𝑈𝐶∗

𝐴𝑈𝐶
=

1

1 − 𝐶𝑅 × 𝐼𝑅
 

where the asterisk denotes the AUC in the inhibited condition, 𝐶𝑅 is the fraction 
contributed by the DME in the hepatic metabolism of the drug, and 𝐼𝑅 is an inhibition rate 
ranging from zero (no inhibition) to unity (full inhibition) and is defined by 𝐼𝑅 =

𝐼app (𝐼app + 𝐾𝑖)⁄ , where 𝐼app is the apparent time-averaged liver concentration of the 

inhibitor, and 𝐾𝑖 a inhibitor-specific inhibition constant determined in vitro. Instead of 
estimating IR from in vitro data predicting the hepatic concentrations from dosage, Ohno 
et al. (2007) observed that CR and IR can estimated from in vivo AUC or clearance data 
when either one of these values is known. These values are readily available when the 
dose of the inhibitor is large enough to be regarded as exerting the maximal inhibition 
that can be obtained with that inhibitor. Therefore, they bootstrapped their analysis by 
setting CR to unity in a selective CYP3A4 substrate and progressively deriving CR and IR 
from a database of studies of drug-drug interactions. Departing from other mechanistic 
static models, Ohno et al. (2007) argued that 𝐼𝑅, estimated from in vivo data, may be an 
acceptable index of inhibition irrespective of the mechanism through which inhibition 
ensues. Similarly, other sources of variation in the prediction from in vitro to in vivo 
inhibition may be overcame by using in vivo data directly. Over the years, this model was 
updated with the progressive availability of more data on drug interactions (Hisaka et al. 
2010a, b; Loue and Tod 2014; Gabriel et al. 2016; Di Paolo et al. 2021, 2022). Tod et al. 
(2016) showed that the fit of this model compared favourably with that of the PBPK 
approach. 

As noted by Ohno et al. (2007), in selective inhibitors of polymorphic DMEs CR may 
also be estimated from pharmacogenetic studies, since in full inhibition as well as in PMs 
the activity of the DME is zero. This relation may be used to derive an equivalent 
expression of the model by Ohno et al. (2007) in terms of the pharmacogenetic model of 
clearance ratios (eq. 1) introduced in the previous section (for derivation, see Appendix 
2): 

 𝐶𝐿∗

𝐶𝐿
= 1 + 𝐹D × 𝑅𝐴𝑆PM × 𝐼𝑅 (2) 

This model of inhibition takes the same linear form as the pharmacogenetic model (eq. 1, 
with 𝑅𝐴𝑆PM × 𝐼𝑅 replacing RAS). Intuitively, it expresses the inhibition as a fraction of the 
maximal reduction in clearance as one may observe in the PM phenotype. With some 
terminological abuse, this may be viewed as a phenotypic model of inhibition in the sense 
that it characterizes a single quantity observable in vivo irrespective of the mechanisms 
that determine it. 

The original aim of drug interaction models was to predict in vivo from in vitro 
interaction data, which may be relevant for example for drug development. For the 
purposes of drug development, it is more important to establish the very existence of a 
potential interaction than quantify it depending on the dose of the inhibitor. For this 
reason, although IR can in principle express the effects of the dose of the inhibitor (Tod et 
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al. 2013), these models have used mostly data from studies of high doses of the inhibitor, 
which are obviously more appropriate to establish if an inhibitor has an effect on a victim 
drug at all. Static inhibition models from in vivo data may need further validation studies 
to understand their applicability to predict extent of inhibition at different doses of the 
inhibitor, as they may be used in the clinic. 

Phenotypic models of phenoconversion 

A seminal work by Borges and colleagues (Borges et al. 2006) provided evidence that 
drug-drug inhibition differs depending on the DME activity predicted by CYP2D6 genetic 
variants. This work and its sequel (Borges et al. 2010) were at the origin of the most 
common approach to combining information on pharmacogenetic variants and inhibitors 
(see the discussion by Cicali et al. 2021). Before discussing phenoconversion models that 
followed this work, we will introduce here a formal specification of possible alternatives.  

In the phenotypic modelling framework described above, phenoconversion may be 
modelled by a function 𝑓(𝐼𝑅, 𝑅𝐴𝑆) which, given the RAS as predicted by the allelic 
composition of the individual (here referred to as the genetypic RAS) and IR, representing 
the inhibition arising from an inhibitor, returns a phenoconverted activity score that may 
be used in the place of RAS in the pharmacogenetic model of eq. 1: 

𝐶𝐿XM
∗

𝐶𝐿NM
= 1 + 𝐹D × 𝑓(𝐼𝑅, 𝑅𝐴𝑆) 

Note that the phenoconversion function makes no use of information on how 𝐹D is 
determined. This is an important assumption, as it means that data from the importance 
of a DME in the metabolic pathway of a drug (represented by 𝐹D) and data on the capacity 
of the inhibitor contribute independently to the changes in clearance. All 
phenoconversion models in the literature make this assumption. As a further 
consequence, the model remains linear in the phenoconverted activity score. Hence, 
under this assumption the remaining issue concerns the form of the phenoconversion 
function f. There are several conceivable possibilities. 

1. The first is to obtain the phenoconverted activity score by subtracting a quantity 
related to inhibition to the genotypic RAS, bounded below at the PM phenotype. 
This is equivalent to shifting the line predicting the dose recommendation by a 
fixed offset to the right (Figure 1B, offset model). This bound introduces a non-
linearity. 

2. A second possibility is that IR affects the genotypic RAS by a multiplicative factor. 
In this model, the slope of the line estimating the dose adjustment is modified by 
inhibition (Figure 1C, proportional model). By adjusting RAS multiplicatively, this 
model allows for the effect of inhibition to differ in the UM allelic configuration and 
in lower activity configurations while maintaining linearity. 

3. A third possibility is that IR and the genotypic RAS interact in determining 
phenoconversion, or that there is an additional offset term, again bounded below 
by the PM phenotype. This would lead to a non-linear relationship between the 
genotypic RAS and the predicted clearance ratio (Figure 1D, nonlinear model). 
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Figure 1. A: example of a regression of clearance ratio data from pharmacogenetic studies of escitalopram 
on relative activity scores (expressed on the x axis by the CYP2C19 phenotype). The slope of the fitted 
straight line represents the importance of the pathway of a polymorphic DME in the metabolism of this 
drug. The radius of the circles is the sample size of individual datapoints (from Stingl et al. 2022). B: the 
offset phenoconversion model is equivalent to a horizontal shift of this straight line to the right to an extent 
representing inhibition, bounded below by the adjustment for the PM phenotype. C: the proportional model 
uses a multiplicative coefficient to change the slope of this line. D: the non-linear model gives a more 
flexible prediction of phenoconversion. PM, IM, NM, RM, UM: poor, intermediate, normal, rapid, and 
ultrarapid metabolizer phenotypes. 

Models and evidence on phenoconversion in the literature 

A summary of phenoconversion models is given in Table 1, together with existing clinical 
support systems. Perhaps because of their apparent simplicity, offset models are well 
represented in the literature. The first report of DDGI described, without formalizing it, 
data compatible with an offset model (Borges et al. 2006). An offset model was used by 
Mostafa et al. (2019) to evaluate the potential impact of DDGIs in actionable variants in 
an Australian sample. Bousman et al. (2021) shift the phenotype down to the next lower 
phenotype activity for moderate inhibitors, and to PM in strong inhibitors. 

Table 1. Phenotypic models of DDGI used in the literature 

Study DME Method Algorithm Support system 

Borges et al. 2010 CYP2D6 Proportional Multiply activity score by 

zero in strong inhibitors, by 

0.5 in moderate inhibitors 

 

  Non-linear Interaction between activity 

scores and inhibition 

capacity, with larger 

inhibitory effects in high 

enzyme capacity individuals 

 

Tod et al. 2013 CYP2D6 Proportional Linear phenoconversion  

Goutelle et al. 2013 CYP2C19 Proportional Linear phenoconversion  

Castellan et al. 2013 CYP2C9 Proportional Linear phenoconversion  

Gabriel et al. 2016 CYP1A2 Proportional Linear phenoconversion  

Fermier et al. 2018 CYP2C19 

CYP2C9 

CYP2D6 

Proportional Linear phenoconversion www.ddi-predictor.org 

Mostafa et al. 2019 CYP2D6 

CYP2C19 

CYP2C9 

Offset Two phenotype groups 

towards PM in moderate and 

strong inhibitors 

 

Lesche et al. 2020 CYP1A2 

CYP2C19 

CYP2D6 

Proportional Multiply activity score by 

zero in strong inhibitors, by 

0.5 in moderate inhibitors 

 

Mostafa et al. 2021 CYP2D6 

CYP2C19 

CYP2C9 

Proportional Multiply activity score by 

zero in strong inhibitors, by 

0.5 in moderate inhibitors 
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Bousman et al. 2021 CYP2B6 

CYP2C19 

CYP2C9 

CYP2D6 

CYP3A5 

Offset One phenotype group 

towards PM in moderate 

inhibitors, PM in strong 

inhibitors 

www.sequence2script.com 

Cicali et al. 2021 CYP2D6 Proportional Multiply activity score by 

zero in strong inhibitors, by 

0.5 in moderate inhibitors 

precisionmedicine.ufhealth.org/ 

phenoconversion-calculator/ 

All offset models are bounded below by the PM phenotype. All sites accessed 21.10.2023. 

However, most of the phenotypic models in the literature are based on the 
suggestion of Borges et al. (2010), who evaluated two models of phenoconversion, 
corresponding to proportional and nonlinear phenoconversion functions, using data on 
the inhibition of CYP2D6 by concomitant antidepressant medication in tamoxifen-treated 
breast cancer patients. They concluded that the nonlinear model failed to appreciably 
improve the fit, advocating a proportional adjustment of activity scores by a factor of 0.5 
in moderate inhibitors, and zero in strong inhibitors. This proportional model was used 
in most subsequent work (Lesche et al. 2020; Mostafa et al. 2021; Cicali et al. 2021), and 
was also adopted in CPIC guidelines (Crews et al. 2011, 2014, 2021; Hicks et al. 2016; 
Bousman et al. 2023). 

A series of studies by the group of Michel Tod in Lyon, culminating in the systematic 
proposal by Fernier et al. (2018), proposed a model that stands out in that it was 
developed as an extension of the model by Ohno et al. (2007), thus explicitly 
encompassing models of both inhibition and genetic polymorphisms  (Tod et al. 2013). In 
the framework adopted here, the phenoconversion function may be expressed as 

 𝑓(𝐼𝑅, 𝑅𝐴𝑆) = 𝑅𝐴𝑆 − 𝐼𝑅 × (𝑅𝐴𝑆 − 𝑅𝐴𝑆PM) 

(3) 
 = (𝐴𝑆 − 𝐴𝑆NM) − 𝐼𝑅 × 𝐴𝑆 

(see Appendix A3 for derivation). When there is no inhibition, RAS is left unaltered, and 
decreases proportionally to IR otherwise. 𝑅𝐴𝑆 − 𝑅𝐴𝑆PM is the activity score AS, which is 
multiplied by IR in the equation. From this we see that this is a proportional model. 

This linear phenoconversion model combines the linearity of pure pharmacogenetic 
effects and inhibition in NMs of the previous models and contains them as particular 
cases. The proportional phenoconversion proposed by Borges et al. (2010) is also a 
particular case of this model, obtained by setting the IR of moderate inhibitors to 0.5 and 
strong inhibitors to 1. The relationship between these models is illustrated in Figure 2A. 

 
Figure 2. A: the linear phenoconversion model (eq. 3) includes several models as particular cases. B: effect 
of a reduction in the importance of the DME in the metabolic pathway. The two coefficients of the linear 
phenoconversion model change the slope of the linear relationship between phenotype and clearance ratio, 
but the changes pivot around the NM phenotype in one case and around the PM phenotype in the other. 

All straight lines modelling effects of phenotype groups on clearance meet at the PM 
phenotype, irrespective of the extent of inhibition. The value of IR moves downward the 
slope of the straight line of the pharmacogenetic model, but such that all slopes fan out of 
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the PM phenotype. The maximal adjustment occurs at full inhibition (𝐼𝑅 = 1), in which 
case this line is flat at the 𝑅𝐴𝑆PM level irrespective of phenotype. In NMs, where RAS is 
zero, one recovers the inhibition model of eq. 2. Figure 2B shows the effect of a change in 
𝐹D. 

The linear phenoconversion models is highly constrained. With only two 
parameters, it is possible in principle to predict DDGIs from pharmacogenetic and 
inhibition studies without necessarily collecting data on their joint effects (of course, data 
on joint effects are needed to verify the correctness of the model). Borges et al. (2010) 
remains the only study to have evaluated alternative models, and the results of their 
comparison appear to validate the linear phenoconversion model, as their proportional 
model is one such. However, in the presence of strong inhibitors the predictions of all 
models may be very similar, as the clearance is bounded below at the PM level. 

In the approaches used in this literature to estimate IR, variations in the clinical 
doses of the inhibitor, which in practice constitutes co-medication, are not usually 
considered. Either IR is derived directly from clinical studies with inhibitors administered 
at adequate doses to exert their maximal inhibition potential (Ohno et al. 2007), or (based 
on the assumption that inhibition can be regarded equally to pharmacogenetic lack of 
enzyme activity) is estimated from pharmacogenetic studies providing the AUC or 
clearance difference between poor metabolizer and normal metabolizers (Tod et al. 2011). 

The model assumptions we identified in this analysis are summarized in Table 2. 
Their implications are further discussed in the next section. 

Table 2. Important model assumptions 

Assumption Model Consequences of violation of assumptions 

Activity scores only model polymorphisms 

affecting DME activity 

Pharmacogenetic Polymorphisms affecting DME affinity require 

separate modelling 

Polymorphisms affecting DME activity are 

known 

Pharmacogenetic Yet undiscovered alleles not accounted for in 

activity scores 

Activity scores of genetic polymorphisms are 

known 

Pharmacogenetic Lack of precision in activity scores may lead to 

biased estimates of pharmacogenetic effects or 

optimistic confidence intervals of such effects 

The fractional contribution 𝐹D of a DME in 

metabolism is constant across phenotypes 

Pharmacogenetic In IMs and PMs, the relation between phenotypes 

and clearance may be not linear in selective 

substrates 

The fractional contribution 𝐹D of a DME in 

metabolism is constant across inhibition rates 

Inhibition The relation between inhibition and clearance 

may be not linear in selective substrates 

The fractional contribution 𝐹D of a DME in 

metabolism is not affected by inhibition 

modalities 

Inhibition The fractional contribution of a DME may be 

altered by inhibition or induction of other DMEs 

Phenoconversion assumption Phenoconversion Situation where inhibition influences 𝐹D (as in 

multiple inhibitors) or when pharmacogenetic 

variants affect inhibition properties 

Open issues and perspectives 

Pharmacogenetic models generally assume linearity in the activity scores. However, this 
assumption may be violated when a drug is metabolized by one DME as major metabolic 
pathway, because in PMs other DMEs may take over the metabolism of the drug. This 
causes a non-linearity in the response of low-capacity phenotypes. This situation, 
however, needs not invalidate the phenoconversion model. Under the phenoconversion 
assumption, while the relationship between activity scores and clearance is now non-
linear, it may be applied to the phenoconverted activity scores as before. 
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Inhibition is more difficult to model than genetic polymorphism. When inhibitors 
affect multiple DMEs simultaneously (Isoherranen et al. 2012), it may be challenging to 
model the simultaneous effects. The required assumption would be that the fractional 
contributions of the DMEs, estimated when each was affected in isolation, apply unaltered 
in this situation, and that IR for each involved enzyme may be estimated correctly from 
the inhibition model. 

The phenoconversion assumptions formalizes the notion that the fractional 
contribution 𝐹D is not affected by inhibition and vice versa. This assumption seems 
reasonable in the simple situation of an inhibitor and a “victim drug”. However, the 
assumption may be violated in other cases. For example, inhibition may be affected by the 
pharmacogenetic variant itself if the inhibitor is metabolized by a polymorphic DME. 
Another example is reciprocal inhibition between two drugs both metabolized by the 
same polymorphic DMEs. The drug affinity to the enzyme and the drug dose of both 
substrates will determine the inhibition effect, and both drugs may partly act as 
perpetrator and as victim drug, creating a reinforcing loop of ihibition. These problems 
will require assessing the model fit empirically, and whether the phenoconversion 
assumption applies also in such cases. Nevertheless, the clarification of the form of the 
phenoconversion function in the simple situation of a strong inhibitor and a “victim drug” 
remains a necessary first step of any effort to build more complex interaction models. 

For the purpose of individual drug dosing in polypharmacy conditions, these 
predictive models will require validation with pharmacokinetic real-world data. This may 
be a future research goal that could be pursued by creating large real-world data on drug 
plasma concentrations in polypharmacy conditions. 

Selection of studies 

Using Google Scholar, models for drug-drug interactions were systematically investigated 
by looking at the literature on drug-drug-gene interactions (keyword “drug-drug-gene 
interaction”; PubMed gave no hits with this keyword or with “DDGI”), retrieving 345 
studies. Studies were retained that included static models and mechanistic static 
approaches, resulting in the selection of 11 studies and 5 distinct models. Additionally, 
software programs and online tools for drug interactions and subsequent dose 
recommendations used by pharmacies, physicians and hospitals were considered and the 
sources of their modelling identified. 

The static models thus identified were algebraically examined to identify reciprocal 
relationships. The analysis also considered the elementary pure pharmacogenetic or 
inhibition models on which the identified drug-drug-gene interaction models were based. 
The outcome of this analysis is detailed in the Results section, while the Appendix contains 
the algebraic derivations. 
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PM, IM, NM, RM, UM: poor, intermediate, normal, rapid, ultrarapid metabolizer phenotype 

XM: a metabolizer phenotype variable 

AUCPM, AUCNM, AUCXM, AUC*: area under curve measured in PMs, NMs, in the phenotype 
XM, and in the presence of an inhibitor 

CLPM, CLNM, CLXM, CL*: clearance measured in PMs, NMs, in the phenotype XM, and in the 
presence of an inhibitor 

AS: activity score of a genetic polymorphic DME, i.e. one where the value of a PM is zero 

RAS: relative activity score of a genetic polymorphic DME, i.e. one where the value of a NM 
is zero 

FD: a variable estimated in phenotypic models of pharmacogenetic effects, representing 
the importance of a DME in the metabolism of the drug D 

CR: a variable in static models of inhibition representing the fraction contributed by a 
DME in the hepatic metabolism of a drug, being equivalent to FD or to a rescaled 
version thereof 

IR: inhibition rate, a variable representing the effect of an inhibitor on the activity of a 
DME ranging from zero (no inhibition) to unity (full inhibition) 

Iapp: apparent time-averaged concentration of the inhibitor in the liver 

Ki: inhibition constant 

IX: a variable in static models of drug-drug-gene interactions, equivalent to IR. 

FA: a variable in static models of drug-drug-gene interactions representing an activity 
score with value zero in PMs and unity in NMs 

Appendix 

A1. Tod’s model of effects of genotypes 

Tod et al. (2011) presented a phenotypic model of drug exposure in DME genetic 
polymorphisms (eq. 1, p. 583). This model adapted the approach of Ohno et al. to 
pharmacogenetic data. The model refers to the ratio of the areas under the curve (AUC) 
between the genetic variant phenotype XM and the normal metabolizer NM:  

𝐴𝑈𝐶XM

𝐴𝑈𝐶NM
=

1

1 − 𝐶𝑅NM × (1 − 𝐹𝐴)
 

where 𝐶𝑅NM (called the contribution ratio) is the fraction of the apparent drug clearance 
due to the DME at hand, and 𝐹𝐴 (fractional activity) is the fraction of activity in the XM 
phenotype deriving from the mutated alleles, relative to the activity of the reference 
genotype (NM). This quantity is additive in the number of alleles, in the sense that the 𝐹𝐴 
of an allelic composition is the average of the contribution of the individual alleles. 

Rewriting in terms of clearance, 

 𝐶𝐿XM

𝐶𝐿NM
= 1 − 𝐶𝑅NM × (1 − 𝐹𝐴)  

 = 1 − 𝐶𝑅NM + 𝐶𝑅NM × 𝐹𝐴 (A1) 

One can see that this model is linear in the fractional activity FA. The clearance ratio is 
given by the sum of a baseline term, 1 − 𝐶𝑅NM, and a linear term, 𝐶𝑅NM ×  𝐹𝐴. Because 
𝐶𝑅NM is a ratio (the contribution ratio of the DME), 1 − 𝐶𝑅NM represents the contribution 
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ratio not due to the DME at hand. By converse, 𝐶𝑅NM × 𝐹𝐴 is the contribution of the DME, 
weighted by the 𝐹𝐴, which is an activity score. Even if this equation has two terms, there 
is only one parameter given the activity score, because 𝐶𝑅NM appears in both terms. 

Comparison with the phenotypic model of Stingl et al. (2022) 

The phenotypic model of Stingl et al. (2022) is linear and is fit by a linear regression with 
a constant intercept (see eq. 1 of the main text). Given the activity score, this model also 
has one parameter. Both models are linear but differ in that the former is expressed in 
terms of two ratios, 𝐶𝑅NM and 𝐹𝐴, while in the latter 𝑅𝐴𝑆 is the difference in activity of 
the enzyme as predicted by genotype, and 𝐹D is estimated from the data. We now derive 
the relationship between these quantities.  

In Tod’s model, in PMs the fractional activity 𝐹𝐴 is zero, as PMs have no enzymatic 
activity. Hence, according to eq. (A1), the clearance ratio of PMs is 

𝐶𝐿PM

𝐶𝐿NM
= 1 − 𝐶𝑅NM 

In the model of Stingl et al. (eq. 1 of the main text), let 𝑅𝐴𝑆PM be the relative activity score 
of the PM phenotype. Then the clearance ratio of PMs is given by 

𝐶𝐿PM

𝐶𝐿NM
= 1 + 𝐹D × 𝑅𝐴𝑆PM 

Therefore, by equating the second terms of both equations and rearranging, the 
contribution ratio 𝐶𝑅NM may be given by 

 𝐶𝑅NM = 𝐹D × −𝑅𝐴𝑆PM (A2) 

For the purpose of their use in a linear model, as the one of Stingl et al. (2022), 
activity scores may be rescaled without changing the fit. To gain further insight on 𝐶𝑅NM, 
let the scale be that of the changes in induced by PMs, for example let a 𝑅𝐴𝑆 negative unit 
express the contribution of two *2 alleles in CYP2C19 polymorphism. Then, when 
replacing 𝑅𝐴𝑆𝑃𝑀 with 1 in the last equation, we see that the coefficient of the linear 
model is on the same scale as 𝐶𝑅NM: 

𝐶𝑅NM = 𝐹D 

With this scaling of activity scores, 𝐹D estimates the fractional contribution of the DME in 
the metabolism of the drug. 

Let us now assume that the 𝐹𝐴’s in Tod’s model and the 𝑅𝐴𝑆’s in Stingl’s model are 
known. The model by Tod et al. (eq. A1) may then be expressed in terms of 𝐹D by replacing 
𝐶𝑅NM according to eq. A2: 

 𝐶𝐿XM

𝐶𝐿NM
= 1 − 𝐹D × −𝑅𝐴𝑆PM + (𝐹D × −𝑅𝐴𝑆PM) × 𝐹𝐴 (A3) 

Equating with the second term of the model of Stingl et al. (eq. 1 of the main text), we 
obtain 

1 + 𝐹D × 𝑅𝐴𝑆 = 1 − 𝐹D × −𝑅𝐴𝑆PM + (𝐹D × −𝑅𝐴𝑆PM) × 𝐹𝐴 

which, solving for 𝐹𝐴, gives 
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𝐹𝐴 =
𝐹D × 𝑅𝐴𝑆 + 𝐹D × −𝑅𝐴𝑆PM

𝐹D × −𝑅𝐴𝑆PM
 

 = 𝑅𝐴𝑆/−𝑅𝐴𝑆PM + 1 (A4) 

We can see here that FA in the model of Tod’s et al. is an activity score rescaled by minus 
the relative activity scores of PMs, and rebased such as to be unity in NMs. 

Replacing the expression for 𝐹𝐴 (eq. A4) in the formula for the clearance ratio given 
above for the model of Tod et al. (eq. A3), one obtains 

𝐶𝐿XM

𝐶𝐿NM
= 1 − 𝐹D × −𝑅𝐴𝑆PM + 𝐹D × −𝑅𝐴𝑆PM × (𝑅𝐴𝑆/−𝑅𝐴𝑆PM + 1) 

= 1 − 𝐹D × −𝑅𝐴𝑆PM + 𝐹D × 𝑅𝐴𝑆 + 𝐹D × −𝑅𝐴𝑆PM 

= 1 + 𝐹D × 𝑅𝐴𝑆 

which shows that, if 𝐹𝐴’s/𝑅𝐴𝑆’s are known, the models by Stingl et al. and Tod et al. are 
equivalent. 

The model by Tod et al. relies on data in vivo from normal and poor metabolizers or 
co-medication with inhibitors to estimate 𝐶𝑅NM. At a second stage, an empirical Bayesian 
approach was used to compute confidence intervals and extend predictions of other 
phenotypes. Beside the different DMEs, the study of Stingl et al. (2022) differs from Tod 
et al. in the use of Bayesian priors to obtain prudential estimates and credibility intervals 
of pharmacogenetic effects. 

Both models assume linear kinetic and cannot be applied if the DME contribution of 
other enzymes differs in PM’s and in other phenotypes. 

A2. Ohno’s model of inhibition 

Denoting with an asterisk the inhibited condition, Ohno et al. (2007) proposed the 
following model (eq. 11, p. 46): 

𝐴𝑈𝐶∗

𝐴𝑈𝐶
=

1

1 − 𝐶𝑅 × 𝐼𝑅,
 

where 𝐶𝑅 is the fraction contributed by the DME in the hepatic metabolism of the drug, 
and 𝐼𝑅 is the inhibition rate, ranging from zero (no inhibition) to unity (full ihnibition). 
Expressed in terms of clearance ratios, assuming equal intestinal availability in the 
inhibited and unaltered condition: 

𝐶𝐿∗

𝐶𝐿
= 1 − 𝐶𝑅 × 𝐼𝑅 

𝐶𝑅 is estimated from data where drug metabolism under full inhibition or in PMs is 
compared to the metabolism in the reference condition (no inhibitor or NMs, as 
appropriate). To establish the relationship of this model to the variables of the linear 
model of Stingl et al. (2022), we may therefore equate clearance in the conditions of full 
inhibition in Ohno’s model (IR = 1) and clearance in PMs in the model of Stingl et al.:  
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𝐶𝐿full∗

𝐶𝐿
= 1 − 𝐶𝑅 × 1 ≅ 1 + 𝐹D × 𝑅𝐴𝑆PM =

𝐶𝐿PM

𝐶𝐿NM
 

𝐶𝑅 ≅ 𝐹D × −𝑅𝐴𝑆PM  

where we see that in Ohno’s model CR has the same relationship to 𝐹D as 𝐶𝑅NM in the 
pharmacogenetic model by Tod et al. of the previous section (cf. eq. A2). Therefore, 
replacing CR in Ohno’s model of inhibition expressed in terms of clearance ratios, we may 
also write 

 𝐶𝐿∗

𝐶𝐿
= 1 + 𝐹D × 𝑅𝐴𝑆PM × 𝐼𝑅 (A5) 

This equation says that under full inhibition (IR = 1), the clearance ratio is that of PMs, 
and when 𝐼𝑅 = 0 (no inhibition), the clearance ratio is unity, i.e. the clearance is not 
affected. Intermediate values of IR give clearance ratios between PMs and unity. When 𝐹D 
is zero (the DME has no role in metabolizing the drug), then the clearance ratio is not 
altered by inhibiting the enzyme. 

Note that the model is linear in 𝐼𝑅. The clearance ratio decreases when inhibition is 
larger than zero because 𝑅𝐴𝑆PM is negative. However, the clearance ratio cannot become 
negative because it is bounded below by the clearance ratios of PMs. Applied to an 
inducer, where IR < 0, the model can produce clearance ratios larger than unity, as it 
should. 

To gain further insight on this model, let us encode the activity score of PMs as −1. 
In this case, 𝐹D estimates the magnitude of the change in clearance ratios in PMs relative 
to NMs, and the above expression simplifies to  

𝐶𝐿∗

𝐶𝐿
= 1 − 𝐹D × 𝐼𝑅 

We see that here IR encodes the fraction of the magnitude change in PM clearance ratio 
that is brought about by the inhibitor. 

A3. Tod’s model of joint effects of inhibitors and genotypes 

The models by Tod et al. built on the inhibition model by Ohno et al. and is therefore not 
surprising that notions such as CR have the same meaning in both. Furthermore, as we 
have shown in the previous sections, both models can be expressed in terms of the linear 
model of Stingl et al. (2022). The model for the joint effects of inhibitors and genetic 
polymorphisms, reported in Tod et al. (2013), should therefore be amenable to the same 
unified treatment. Here, we also identify its phenoconversion function.  

For two DMEs, the model proposed by Tod et al. (2013) is given by (eq. 2, p. 1243) 

𝐴𝑈𝐶XM
∗

𝐴𝑈𝐶NM
=

1

𝐶𝑅1 × 𝐹𝐴1 × (1 + 𝐼𝑋1) + 𝐶𝑅2 × 𝐹𝐴2 × (1 + 𝐼𝑋2) + (1 − 𝐶𝑅1 − 𝐶𝑅2)
 

Here, the subscript refers to two DMEs, and 𝐼𝑋 ranges from 0 (no inhibition) to 1 
(complete inhibition) and is positive in case of inducers. For inhibition, 𝐼𝑋 is defined 
analogously to Ohno’s 𝐼𝑅 (see Tod et al. 2013, Appendix), but is inverted in sign. 

Expressing the model in terms of clearance ratios, and replacing 𝐼𝑋 = −𝐼𝑅, we obtain 
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𝐶𝐿XM
∗

𝐶𝐿NM
= 𝐶𝑅1 × 𝐹𝐴1 × (1 − 𝐼𝑅1) + 𝐶𝑅2 × 𝐹𝐴2 × (1 − 𝐼𝑅2) + (1 − 𝐶𝑅1 − 𝐶𝑅2) 

To identify the phenoconversion function implicit in this model, let us consider the 
case when only one enzyme is inhibited, and is the only polymorphic enzyme (i.e., 𝐼𝑅2 =
0, 𝐹𝐴2 = 1). Then we have 

𝐶𝐿XM
∗

𝐶𝐿NM
= 1 − 𝐶𝑅1 + 𝐶𝑅1 × 𝐹𝐴1 × (1 − 𝐼𝑅1) 

= 1 − 𝐶𝑅1 × [1 − 𝐹𝐴1  × (1 − 𝐼𝑅1)] 

= 1 − 𝐶𝑅1 × (1 − 𝐹𝐴1 + 𝐹𝐴1 × 𝐼𝑅1) 

Expressed in terms of 𝐹D and RAS (using eq. A2 and eq. A4), and dropping the common 
subscript, 

𝐶𝐿XM
∗

𝐶𝐿NM
= 1 − 𝐹D × −𝑅𝐴𝑆PM × (

−𝑅𝐴𝑆

−𝑅𝐴𝑆PM
+ 𝐼𝑅 +

𝑅𝐴𝑆

−𝑅𝐴𝑆PM
× 𝐼𝑅) 

= 1 + 𝐹D × 𝑅𝐴𝑆 −  𝐹D × −𝑅𝐴𝑆PM × 𝐼𝑅 − 𝐹D × 𝑅𝐴𝑆 × 𝐼𝑅 

= 1 + 𝐹D × [𝑅𝐴𝑆 − 𝐼𝑅(𝑅𝐴𝑆 − 𝑅𝐴𝑆PM)] 

This shows that the phenoconversion function of the model is  

 𝑓(𝐼𝑅, 𝑅𝐴𝑆) = 𝑅𝐴𝑆 − 𝐼𝑅(𝑅𝐴𝑆 − 𝑅𝐴𝑆PM) (A6) 
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