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ABSTRACT

Alzheimer Disease (AD) poses a significant and growing public health challenge
worldwide. Early and accurate diagnosis is crucial for effective intervention and
care. In recent years, there has been a surge of interest in leveraging Electroen-
cephalography (EEG) to improve the detection of AD. This paper focuses on the
application of Graph Signal Processing (GSP) techniques using the Graph Dis-
crete Fourier Transform (GDFT) to analyze EEG recordings for the detection of
AD, by employing several machine learning (ML) and deep learning (DL) mod-
els. We evaluate our models on publicly available EEG data containing 88 patients
categorized into three groups: AD, Frontotemporal Dementia (FTD), and Healthy
Controls (HC). Binary classification of dementia versus HC reached a top accu-
racy of 85% (SVM), while multiclass classification of AD, FTD, and HC attained
a top accuracy of 44% (Naive Bayes). We provide novel GSP methodology for de-
tecting AD, and form a framework for further experimentation to investigate GSP
in the context of other neurodegenerative diseases across multiple data modalities,
such as neuroimaging data in Major Depressive Disorder, Epilepsy, and Parkinson
disease.

1 INTRODUCTION

Alzheimer Disease (AD) is a progressive and irreversible neurodegenerative disorder characterized
by memory loss, impaired problem-solving, reasoning, language difficulties, and physical decline
(Scheltens et al., 2016); (Porsteinsson et al., 2021). Advancing age is the predominant risk factor
for AD due to the accumulation of abnormal proteins like Aβ plaques and tau tangles, along with
reduced neuronal repair capacity during the aging process (Lesné et al., 2006); (Binder et al., 2005);
(Knopman et al., 2021). Genetic predisposition and co-morbidities further increase risk for this
multi-factorial disease (Rabinovici, 2019); (Lindsay et al., 2002); (Silva et al., 2019).

AD and Frontotemporal Dementia (FTD) represent two distinct yet complex disorders with overlap-
ping clinical features (Götz & Ittner, 2008); (Lindau et al., 2000); (Pachana et al., 1996). FTD is
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another neurodegenerative disorder affecting cognitive functions. Unlike AD, which predominantly
impacts the hippocampal and cerebral cortex regions, FTD is localized to the frontal and temporal
lobes of the brain that govern behavior, personality, and language (Olney et al., 2017); (Levy et al.,
1996). Subtypes of FTD manifest with specialized symptoms, including behavioral and language
variants (Olney et al., 2017); (Pasquier et al., 2004). Given their symptomatic overlaps, distinguish-
ing between AD and FTD in a clinical setting can be challenging (Warren et al., 2013); (Ritter et al.,
2017); Rosen et al. (2002).

AD constitutes a significant majority of dementia cases, contributing to approximately 60-70% of
diagnoses (Giridharan et al., 2022); (van der Flier & Scheltens, 2005). The World Health Organi-
zation (WHO) reported that, in 2020, a total of 50 million individuals lived with dementia glob-
ally, with projections suggesting a rise to 152 million by 2050. (Nichols et al., 2022); (Houmani
et al., 2018); (Giridharan et al., 2022). Dementia-related disorders are diagnosed upon the emer-
gence of symptoms through neurological assessments and managed through lifestyle modifications
aimed at attenuating cognitive decline (Yiannopoulou & Papageorgiou, 2020); (Wahl et al., 2019);
(Dominguez et al., 2021). With an aging demographic, there is a pressing need for the implementa-
tion of diagnostic tools capable of detecting the onset of these diseases (Knopman et al., 2021).

AD shows distinct alterations in the synchronicity and complexity of brain waves compared with
normal brain and other types of dementia (Zande et al., 2018); (Houmani et al., 2018); (Dauwels
et al., 2010); (Jeong, 2004). Electroencephalography (EEG), a non-invasive and cost-effective tech-
nique, stands as a promising modality to discern these changes (Thakor & Sherman, 2012); (Dauwels
et al., 2010). EEG has proven to be invaluable, particularly in the detection and study of epilepsy,
where it aids in detecting abnormal brain activity associated with seizures (Mansouri et al., 2012);
(Smith, 2005). Previous studies have also explored the application of Graph Signal Processing
(GSP) to model epileptic activity, showcasing the versatility and potential of utilizing EEG to detect
clinically relevant conditions, for which we adapt to the context of dementia in this paper (Meena
et al., 2022); (Mathur & Chakka, 2020).

2 RELATED WORK

In recent years, the analysis of EEG signals has emerged as a promising avenue for the early de-
tection of AD and several other neurodegenerative diseases (Cassani et al., 2018). Several studies
have successfully harnessed the functional connectivity of electrode sites in EEG signals by feature
engineering with GSP, utilizing standard machine learning (ML) models, or employing state-of-the-
art Deep Learning (DL) methods such as Graph Neural Networks (GNNs) (Meena et al., 2022);
(Mathur & Chakka, 2020); (Padole et al., 2018); (Song et al., 2021); (Vicchietti et al., 2023). This
study contributes to this ongoing effort by benchmarking several ML models using GSP features
created and the Graph Discrete Fourier Transform (GDFT) for AD detection in EEG data. We give
an outline of the following sections below.

In (3.1) we provide a description of the dataset containing the EEG signals of AD, FTD, and Healthy
Control (HC) patients. We describe our method for graph structure formation given from the raw
EEG signal (3.2) and its derived GSP features including the GDFT (3.3). We benchmark these
features on various ML and DL models (3.4), outlining model performance statistics in (4), before
discussing our findings and conclusions in (5).

3 METHODS

3.1 DATA

We utilized the OpenNeuro ds004504 dataset, derived from recordings made at the 2nd Department
of Neurology of AHEPA General Hospital, Thessaloniki (Miltiadous et al., 2023). The data was
captured using a Nihon Kohden EEG 2100 clinical device fitted with 19 scalp and 2 reference elec-
trodes, operating at a 500 Hz sampling rate and with a high-frequency filter at 70 Hz. The dataset
contained three patient groups: AD, FTD, and HC, with average recording durations of 13.5 min-
utes, 12 minutes, and 13.8 minutes respectively. The cumulative durations for AD, FTD, and HC
were 485.5 minutes, 276.5 minutes, and 402 minutes respectively.
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During the preprocessing phase, raw data was transformed into a BIDS-compliant .set format, ini-
tially exporting it in .eeg format. The preprocessed and denoised recordings were stored in des-
ignated sub-0XX folders within a derivatives subfolder, segregating unprocessed and processed
data. The preprocessing pipeline included a Butterworth band-pass filter at the 0.5-45 Hz range,
re-referencing to A1-A2, and utilizing Artifact Subspace Reconstruction (ASR). Independent Com-
ponent Analysis (ICA) was executed to shape the data into 19 ICA components, and automatic rejec-
tion of eye and jaw artifacts was implemented. The researchers abstained from including automatic
annotations of artifacts to circumvent language compatibility issues. This preprocessed dataset can
be found in the derivatives folder, containing the files used for this study. The following table
below depicts additional information for each group including mean Mini-Mental State Examination
(MMSE) and Median Disease Duration (MDD).

Table 1: Summary of patient characteristics for the OpenNeuro ds004504 dataset.

Characteristics
Group n Mean Age (years) Mean MMSE MDD (months)

Alzheimer Disease 36 66.4± 7.9 25 13.5
Frontotemporal Dementia 23 63.6± 8.2 N/A 12

Healthy Controls 29 67.9± 5.4 N/A 13.8

Figure 1: Box plot of age by group. Figure 2: Box plot of MMSE by group.

3.2 GRAPH STRUCTURES

In graph theory, we define an undirected weighted graph by a triplet G = (V, E ,W), where V
is a set of nodes (or vertices) representing individual objects, and E is an edge set representing
relations between those objects with each element of the form (i, j,Wi,j) for some i, j ∈ V and
W ∈ R| V |×| V | being the weight matrix that represents the quantitative relationship between each
node pair. An EEG signal is a matrix X ∈ RN×M where N is the number of electrodes and M is
the number of discrete time points, written as:

X =


x(1)
x(2)

...
x(N)

 , (1)

where each x(i) ∈ RM is an individual electrode signal for 1 ≤ i ≤ N . Given X, a graph G =
(V, E ,W) is formed where the vertex set V = {1, 2 . . . , N} are the nodes representing the set of
electrodes. The edge set E and weight matrix W are created as follows. For parameters θ, k ∈
(0,∞), we first define W ∈ RN×N via a Gaussian kernel (ter Haar Romeny, 2003):
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Wi,j =

{
exp

(
− d(x(i),x(j))2

2θ2

)
if d(x(i), x(j)) ≤ k

0 otherwise
, (2)

for each 1 ≤ i, j ≤ N , which represents the degree of connectivity between each electrode pair
(i, j). For our experiments, we chose d to be the metric induced by the Euclidean norm ∥ · ∥2, i.e.
d(x, y) = ∥ x− y ∥2. The edge set is defined as the indices of the nonzero entries in W:

E = {(i, j) | Wi,j ̸= 0, 1 ≤ i, j ≤ N}. (3)

3.3 GRAPH SIGNAL PROCESSING

We introduce the relevant GSP methods to create the input features from the EEG signal X and
graph G, before using these features to train our ML models in 3.4 (Ortega et al., 2018); (Dong
et al., 2020);(Li et al., 2021). For standard methods in GSP see (Ortega, 2022). The first step is to
obtain the Combinatorial Graph Laplacian matrix (Chung & Langlands, 1996):

L = D−W, (4)

where D is the diagonal degree matrix defined by:

Di,j =

{∑N
k=1 Wi,k if i = j

0 otherwise
. (5)

Since L is normal, by the Spectral Theorem we can write L = U K U∗ where the columns of
U ∈ RN×N are the eigenvectors of L. Here, L is a real symmetric matrix. Therefore, all eigenvalues
and eigenvectors are real. Hence, we can simply write L = U K UT . The GDFT is given by (Mathur
& Chakka, 2020):

XGDFT = UT X . (6)
Let C be the covariance matrix of XGDFT. We project C onto the space of the Laplacian’s eigenvec-
tors to obtain:

T = UT C U, (7)
for which we compute the Stationary Ratio defined as:

r =
∥diag(T)∥2
∥T ∥F

, (8)

where ∥·∥F denotes the Frobenius norm (Meena et al., 2022). Let P = L X. We define the Tik-norm
by:

y =
(∑

i,j

(X⊙P)i,j
)2

, (9)

where ⊙ is the Hadamard product and the sum is taken over all entries of X⊙P (Meena et al., 2022).
Other input features include:

1. Total Variation (TV): Total Variation measures the overall variation or dissimilarity in the
data represented by matrix X (Sandryhaila & Moura, 2014). It is defined as:

TV (X) =

√∑
i,j

Wi,j ∥ x(i) − x(j) ∥22.

Higher Total Variation indicates greater dissimilarity among data points within the dataset.
2. Graph Energy: Graph Energy is a measure that captures the structural properties of a

graph represented by the Laplacian matrix L (Balakrishnan, 2004). It is calculated by:

E(G) =
N∑
i=1

|λi|,

where λ1, . . . , λn are the eigenvalues of L. A higher Graph Energy indicates a more com-
plex and interconnected graph structure.
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3. Spectral Entropy: Spectral Entropy quantifies the uncertainty or randomness in the spec-
tral distribution of a matrix U Rényi (1961). It is defined as:

H(U) = −
∑
i,j

U2
i,j log

(
U2

i,j

)
.

Higher Spectral Entropy values indicate a more diverse and less predictable spectral distri-
bution.

4. Signal Energy: Signal Energy measures the total energy or magnitude of the data repre-
sented by matrix X (Rihaczek, 1968). It is computed as:

β =
∑
i,j

X2
i,j .

Higher Signal Energy values indicate data with higher overall magnitude of the signal.
5. Signal Power: Signal Power, denoted by σ2, is equivalent to the variance of the data in

matrix X defined by:

σ2 = Var(X) =
1

N

N∑
i=1

∥ x(i) −µ ∥22,

where µ = 1
N

∑N
i=1 x(i) is the mean of the dataset X (Rao & Swamy, 2018). High Signal

Power values indicate greater variability in the data.
6. Unique Spectral Cluster Labels: Unique Spectral Cluster Labels, denoted by γ, repre-

sents the number of distinct clusters or groups identified when applying spectral clustering
to the weight matrix W. Spectral clustering is a technique for grouping data points based on
their connectivity in a graph. γ indicates the number of distinct clusters found. In our exper-
iments we applied the spectral clutseringmethod to W with the scikit-learn
package to compute γ (Pedregosa et al., 2011).

7. Average Degree: Average Degree, denoted by µD, quantifies the average connectivity of
nodes in a graph represented by the degree matrix D (Ortega, 2022). It is calculated as:

µD =
1

N

N∑
i=1

Dii .

A higher µD indicates greater connectivity of the graph.
8. Heat Trace: Heat Trace, represented by h, is calculated by taking the trace (sum of diag-

onal elements) of a modified Laplacian matrix L′, where each element is exponentiated by
L′
i,j = exp(−Li,j) (Xiao et al., 2009). It is defined as:

h = Tr(L′).

The Heat Trace is related to diffusion processes on graphs and can capture how information
or “heat” spreads across the graph.

9. Diffusion Distance: Diffusion Distance, denoted by h′, measures the overall spread or
extent of diffusion in a graph (Hammond et al., 2013). It is calculated with:

h′ =
∑
i,j

L′
i,j .

The Diffusion Distance of a graph provides insight into how information or influence prop-
agates across the graph.

For each patient EEG signal, we generate the following features using the methods above:

Features = (r, y, TV (X), E(G), H(U), β, σ2, γ, µD, h, h
′) (10)
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Figure 3: Plot of stationary ratio versus Tik-norm
by group for AD, FTD, and HC.

Figure 4: Plot of stationary ratio versus Tik-norm
by group for Dementia and HC.

Figure 5: Box plot of Tik-norm by group. Figure 6: Box plot of stationary ratio by group.

Figure 7: Box plot of total variation by group. Figure 8: Box plot of graph energy by group.
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Figure 9: Box plot of spectral entropy by group. Figure 10: Box plot of signal energy by group.

Figure 11: Box plot of signal power by group.
Figure 12: Box plot of unique spectral clusters
by group.

Figure 13: Box plot of average degree by group. Figure 14: Box plot of heat trace by group.
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Figure 15: Box plot of diffusion distance by
group.

Figure 16: Plot of UMAP projected EEG features by group.

3.4 MODELS

We test our features from Equation 10 by training and evaluating several ML models below on the
task of multiclass classification (AD, FTD, HC), and binary classification (Dementia, HC) where
the Dementia group comprises of AD and FTD.

(a) k-Nearest Neighbours (k-NN) Classification : Given a new observation x0, the k-
NN algorithm searches through the training dataset to find the k training examples
that are closest to x0 based on a distance metric (e.g., Euclidean distance). The pre-
dicted label is then obtained by majority voting among the k nearest neighbours (Fix
& Hodges, 1989).
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(b) Random Forest: A Random Forest is a collection of decision trees {h(x; Θk), k =
1, . . .}, where Θk are the parameters of each tree. A decision tree is a flowchart-
like structure where each internal node represents a feature (or attribute), the branch
represents a decision rule, and each leaf node represents the outcome. The root node
is the feature that best splits the dataset into classes based on a decision criterion, and
this process is recursively applied to the sub-sets of data reaching each internal node,
constructing the tree until it reaches a specified depth or purity. The final prediction in
a Random Forest is obtained by averaging the predictions of all the trees for regression,
or by majority voting for classification (Ho, 1995).

(c) XGBoost: XGBoost builds an ensemble of decision trees. The prediction is given by
f(x) =

∑K
k=1 hk(x), where hk(x) is an individual tree, and K is the number of trees

(Chen & Guestrin, 2016).
(d) Logistic Regression: Logistic Regression is a statistical model used for binary clas-

sification, where the probability of the positive class is modeled as P (Y = 1|x) =
1

1+exp(−(wTx+b))
, where w is the weight vector, and b is the bias term (Menard, 2002).

To convert this probability into a binary outcome, a threshold value, typically 0.5, is
chosen. If P (Y = 1|x) ≥ 0.5, the prediction is 1; otherwise, the prediction is 0. The
threshold can be adjusted based on the specific needs of a problem, such as minimiz-
ing false positives or negatives. In a multiclass setting, Logistic Regression can be
extended using techniques like One-Versus-Rest (OvR) or Multinomial Logistic Re-
gression, where the model estimates the probability of each class and picks the class
with the highest estimated probability.

(e) Support Vector Machine (SVM): SVM finds the hyperplane that maximizes the mar-
gin between the two classes. The decision function is given by f(x) = wTx+b, where
w is the normal vector to the hyperplane (a subspace of 1 dimension lower) and b is
the bias term (Cortes & Vapnik, 1995). For instance, in a 2-dimensional space (i.e.
the Cartesian plane), a hyperplane is simply a line. If we have two classes of points
scattered on the plane, SVM will find the line that best separates these two classes
while keeping the maximum distance from the nearest points of each class to this line.

(f) Naive Bayes: Naive Bayes is a probabilistic classifier based on applying Bayes’ Rule,
which relates the conditional and marginal probabilities of random events, with the
“naive” assumption of independence between features. Bayes’ Rule is expressed as
P (c|x) = P (x|c)P (c)

P (x) . However, computing P (x|c) directly can be challenging due
to the high dimensionality of x. The naive independence assumption simplifies this
to P (x|c) =

∏n
i=1 P (xi|c), leading to the formula P (c|x) ∝ P (c)

∏n
i=1 P (xi|c),

where n is the number of features (Rish et al., 2001). This simplification allows for
efficient computation and training of the model. The classifier then predicts the class
c that maximizes P (c|x), i.e., the class that is most probable given the feature vector
x.

(g) TabTransformer: TabTransformer employs self-attention mechanisms to capture in-
teractions among features in tabular data (Huang et al., 2020). The self-attention
mechanism is a key component of the transformer architecture, which allows the
model to weigh the importance of different parts of the input differently when making
predictions. Specifically, self-attention computes a weighted sum of all input fea-
tures, where the weights are determined by the similarity between the query and
key representations of the features, allowing each feature to attend over all others
in a flexible manner. The self-attention formula is given by Attention(Q,K,V) =

softmax(QKT

√
dk

)V, where Q, K, and V are the query, key, and value matrices, re-
spectively, and dk is the dimension of the key vectors (Vaswani et al., 2017). This
mechanism enables TabTransformer to effectively capture feature interactions in tab-
ular data, even when relationships among features are complex and non-linear.

4 RESULTS

For each model, we utilized the full dataset, splitting it into a training set (35%), validation set
(35%), and test set (30%). Tables 2 and 3 display accuracy for each classification task and model,
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and Tables 4 and 5 display precision, recall, F1-score, and support for each class and each task.

Accuracy =
TP

TP + TN + FP + FN
, (11)

Precision =
TP

TP + FP
, (12)

Recall =
TP

TP + FN
, (13)

F1-Score =
2(Precision · Recall)
Precision + Recall

. (14)

Here, TP, TN,FP, and FN are the number of true positives, true negatives, false positives, and
false negatives respectively. Precision measures the reliability of a model’s positive classifications,
while recall gauges its completeness in capturing positive samples. The F1-score offers a balanced
evaluation of both, using their harmonic mean to provide a holistic view of model performance.
Support refers to the number of occurrences of each class.

Table 2: Model performance on the test set for multiclass classification of AD, FTD, and HC.
Highest accuracy is bolded.

Method Accuracy
k−NN Classifier 0.37
Random Forest 0.33

XGBoost 0.41
Logistic Regression 0.41

SVM 0.37
Naive Bayes 0.44

TabTransformer 0.21

Table 2 displays Naive Bayes as the model with highest test accuracy at 44%, while the TabTrans-
former model had the lowest accuracy, achieving 21%. Aside from the TabTransformer, model
performance is relatively close, implying that the TabTransformer may be overfitted to the training
dataset, with poor generalization to the test set. With the strong assumption of independence of the
features in Naive Bayes in 3.4, it may be the case that the features from 10 are sufficiently inde-
pendent to harness the advantage of Naive Bayes. However, with a top accuracy that is just above
random guessing rate (33%), this suggests that the choice of model is likely not to be substantially
impacting accuracy, and points to an issue of separability of the classes and the inherent data distri-
bution for AD, FTD, and HC; or the inability for the features in Equation (10) to incorporate enough
information to distinguish between the three classes.

Table 3: Model performance on the test set for binary classification of dementia (AD, FTD) versus
HC. Highest accuracy is bolded.

Method Accuracy
k−NN Classifier 0.70
Random Forest 0.67

XGBoost 0.74
Logistic Regression 0.63

SVM 0.85
Naive Bayes 0.59

TabTransformer 0.71

Table 3 presents the performance of each model in the binary classification setting, trained to dis-
tinguishing between cases of dementia (AD, FTD) and HC. The SVM model, employing a linear
kernel, displayed the highest accuracy of 85%, while the Naive Bayes model lagged with an ac-
curacy of 59%. The SVM model’s superior performance suggests that the dataset may be largely

10
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linearly separable, although this should be further validated (Cortes & Vapnik, 1995). Conversely,
the suboptimal performance of Naive Bayes is likely attributable to the violation of its feature inde-
pendence assumption, signifying that the features are likely dependent in this binary classification
context (Rish et al., 2001).

Table 4: Other model performance metrics on the test set for multiclass classification of AD, FTD,
and HC.

Method Precision Recall F1-Score Support
AD Classification

k−NN Classifier 0.50 0.54 0.52 13
Random Forest 0.40 0.46 0.43 13

XGBoost 0.44 0.31 0.36 13
Logistic Regression 0.67 0.31 0.42 13

SVM 0.60 0.23 0.33 13
Naive Bayes 0.50 0.15 0.24 13

TabTransformer 0.25 0.14 0.18 7

FTD Classification
k−NN Classifier 1.00 0.20 0.33 10
Random Forest 0.00 0.00 0.00 10

XGBoost 0.67 0.40 0.50 10
Logistic Regression 0.75 0.30 0.43 10

SVM 1.00 0.30 0.46 10
Naive Bayes 0.75 0.60 0.67 10

TabTransformer 0.50 0.17 0.25 6

HC Classification
k−NN Classifier 0.09 0.25 0.13 4
Random Forest 0.25 0.75 0.38 4

XGBoost 0.25 0.75 0.38 4
Logistic Regression 0.24 1.00 0.38 4

SVM 0.21 1.00 0.35 4
Naive Bayes 0.27 1.00 0.42 4

TabTransformer 0.12 1.00 0.22 1

Table 4 further evaluates each models’ performance in the multiclass classification setting, display-
ing precision, recall, F1-Score, and support. For AD classification, Logistic Regression shows the
highest precision at 67%, making it the most reliable in terms of positive predictive value, possibly
due to its parametric nature which might be capturing the underlying data distribution effectively
(Menard, 2002).

In FTD classification, k−NN and SVM both achieve perfect precision but differ substantially in
recall and F1-Score; this could be indicative of k-NN’s sensitivity to noise and outliers, as well as
SVM’s capacity for finding a more discriminative hyperplane in the feature space (Fix & Hodges,
1989); (Rish et al., 2001). Naive Bayes emerges as the most balanced model for FTD with the
highest F1-Score of 67%, perhaps owing to its probabilistic framework that may better capture the
conditional dependencies among features (Rish et al., 2001).

For HC, all models exhibit low precision, with Naive Bayes performing the best at 27%. This
may indicate that the feature representation is not robust enough for effectively distinguishing this
class, suggesting that the current features in Equation 10 are not sufficient for the task of multiclass
classification. Additionally, given a low support of only n = 4 for HC, as a function of the relatively
small dataset size of n = 88, values within the HC table are highly susceptible to the outcome of
this random sample.
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Table 5: Other model performance metrics on the test set for binary classification of Dementia and
HC.

Method Precision Recall F1-Score Support
Dementia Classification

k−NN Classifier 0.89 0.74 0.81 23
Random Forest 0.94 0.65 0.77 23

XGBoost 0.94 0.74 0.83 23
Logistic Regression 0.81 0.74 0.77 23

SVM 0.85 1.00 0.92 23
Naive Bayes 1.00 0.52 0.69 23

TabTransformer 1.00 0.69 0.82 13

HC Classification
k−NN Classifier 0.25 0.50 0.33 4
Random Forest 0.27 0.75 0.40 4

XGBoost 0.33 0.75 0.46 4
Logistic Regression 0.00 0.00 0.00 4

SVM 0.00 0.00 0.00 4
Naive Bayes 0.27 1.00 0.42 4

TabTransformer 0.20 1.00 0.33 1

Table 4 extends the evaluation to the binary classification task, assessing the models’ ability to
distinguish between dementia cases and HC. In the dementia setting, all models scored relatively
high for precision. Although, Naive Bayes achieved perfect precision, it had the lowest recall of
52% suggesting that its assumptions of feature independence may only hold in the positive class
Rish et al. (2001). SVM achieved relatively high precision and perfect recall, suggesting the data
distribution is likely linear separable in these two classes Cortes & Vapnik (1995). All models
achieved relatively high F1-score with SVM being the highest.

The precision for all models in the HC classification was notably lower compared to the dementia
classification, suggesting that while our features from Equation (10) are effective in identifying
dementia traits, they may not be sufficient to distinguish attributes of healthy individuals. It is also
worth noting that due the support value of 4, the values in HC Classification section are potentially
subject to fluctuations and can vary by training run.

5 CONCLUSION

Our method introduces a novel approach utilizing GSP techniques with the GDFT for generating
features to detect AD in EEG recordings. SVM was accurate in differentiating between dementia
and HC in 85% of cases. However distinguishing AD from FTD was challenging in the multiclass
classification setting across all models, yielding a top accuracy of only %44. We conclude that our
features from Equation (10) are useful for identifying healthy versus dementia patients, but they are
not applicable for determining the type of dementia a patient might have.

The discrepancy between performance in binary classification and multiclass classification suggests
that distinguishing AD and FTD is significantly more challenging and may require a more nuanced
approach. We speculate that this challenge arises due to: (1) the similarities between AD and FTD
features given by GSP; (2) the wide variability in FTD types (e.g., sporadic, behavioural); (3) the
variability of disease stages in AD; (4) the lack of model fit (e.g., TabTransformer overfitting, tradi-
tional ML models underfitting).

In future work, we aim to address the variation seen within AD by incorporating multiclass classifi-
cation of different stages of AD, including the pre-clinical, mild, moderate and severe stages, as well
as implementing a similar approach for FTD types. This would not only provide more information
for the machine learning model to use, but would also allow for potential earlier disease detection
and informed diagnoses to prevent subsequent worsening of symptoms. We acknowledge the limi-
tations of using mostly standard machine learning models, so we plan to implement state-of-the-art
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deep learning (DL) methods such as graph neural networks (GNNs) that utilize node features, edge
features, and graph-level features given by our GSP method. It is worth noting that these methods
are useful to explore but require technical proficiency to integrate into a clinical setting. Therefore,
future work can also include clinician education and improving ease of use.
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