
 

 

 

 

Evaluating the impact of modeling choices on the performance of integrated genetic and clinical models 

Theodore J. Morley1,2*, Drew Willimitis3,*, Michael Ripperger3, Hyunjoon Lee4,5, Lide Han1,2, Yu Zhou4,5, 

Jooeun Kang1, Lea K. Davis1,3,6, Jordan W. Smoller4,5,7, Karmel W. Choi4,5, Colin G. Walsh1,2,3,6,+, Douglas M. 

Ruderfer1,2,3,6,+ 

 
Affiliations 
1. Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville TN  
2. Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville TN 
3. Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville TN 
4. Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston MA  
5. Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston MA  
6. Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 
7. Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA   
 
*Authors contributed equally 
 
+ Corresponding authors: 
Douglas M. Ruderfer (douglas.ruderfer@vumc.org) 
Colin G Walsh (colin.walsh@vumc.org) 
 

Abstract 

 The value of genetic information for improving the performance of clinical risk prediction models has 

yielded variable conclusions. Many methodological decisions have the potential to contribute to differential 

results across studies. Here, we performed multiple modeling experiments integrating clinical and demographic 

data from electronic health records (EHR) and genetic data to understand which decision points may affect 

performance. Clinical data in the form of structured diagnostic codes, medications, procedural codes, and 

demographics were extracted from two large independent health systems and polygenic risk scores (PRS) were 

generated across all patients with genetic data in the corresponding biobanks. Crohn’s disease was used as the 

model phenotype based on its substantial genetic component, established EHR-based definition, and sufficient 

prevalence for model training and testing. We investigated the impact of PRS integration method, as well as 

choices regarding training sample, model complexity, and performance metrics. Overall, our results show that 

including PRS resulted in higher performance by some metrics but the gain in performance was only robust 

when combined with demographic data alone. Improvements were inconsistent or negligible after including 
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additional clinical information. The impact of genetic information on performance also varied by PRS 

integration method, with a small improvement in some cases from combining PRS with the output of a clinical 

model (late-fusion) compared to its inclusion an additional feature (early-fusion). The effects of other modeling 

decisions varied between institutions though performance increased with more compute-intensive models such 

as random forest. This work highlights the importance of considering methodological decision points in 

interpreting the impact on prediction performance when including PRS information in clinical models. 

 

 

Introduction  

Multiple recent studies have sought to integrate genetic information, often in the form of polygenic risk 

scores (PRS), which index the genome-wide contributions of common variants, with clinical data to establish 

models that improve risk stratification and clinical prediction1–13. These studies hypothesize that genetic 

information may enhance prediction of clinical outcomes above and beyond the performance of models using 

only clinical features. Further, since a patient’s genome can be assayed at birth, this information provides a 

potential opportunity to understand risk and intervene prior to the development of disease. However, the results 

of these efforts have offered conflicting evidence on the value of PRS, with some supporting the benefits of 

including genetic information and others finding no benefit at all. 

The focus on whether genetic information improves clinical risk prediction obscures the many 

methodological decisions that might impact these results. In addition to the properties of the selected phenotype 

(e.g. prevalence, severity), prediction models depend on numerous decisions that could impact performance.  

These include 1) whether genetic data are incorporated as additional feature(s) at the time of model training 

(“early fusion14”) or combined with the predictions from an existing non-genetic model (“late fusion14”), 2) 

whether to use a model trained in a larger, broader patient population or within the specific targeted population, 
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3) which statistical methods are used for model building from pre-processing to model selection and tuning, and 

4) how model performance is quantified and evaluated.  

The increasing accessibility and use of electronic health records (EHR) have provided an opportunity to 

leverage real world clinical data to establish prediction models to inform risk15. The linking of biobanks to these 

EHRs enables the inclusion of genetic information at scale for assessment of models using both clinical and 

genetic data. Although incorporating genomic data requires pragmatic considerations (e.g., cost and time to 

acquire, selection bias, etc.,), this information can be input alongside other known risk factors to generate 

prediction models. Importantly, studies are already prospectively collecting genetic data and providing results 

back to patients clinically to assess their utility16,17,18.  

 Here, we sought to assess the impact of methodological decisions on predictive performance when 

combining clinical data from EHR with genetic information in the form of polygenic risk scores. An ideal 

phenotype to test the impact of these decisions would have substantial genetic contribution, be sufficiently 

prevalent19, and readily defined from high quality phenotypic definitions20 derived from EHRs. One such 

phenotype is Crohn’s disease, a heritable inflammatory bowel disease that is common (age standardized 

prevalence = 0.42%)21 and for which EHR-based phenotyping algorithms have been established22. Rigorously 

evaluating these modeling decisions might inform strategies to develop integrated models of clinical and genetic 

data for predicting a wide range of phenotypes while also providing better understanding of the impact of 

genetic information in predicting the onset of Crohn’s Disease. 

 

Methods 

Study population 

Clinical and genetic data were extracted from the EHRs and biobanks of Vanderbilt University Medical 

Center (VUMC) and Mass General Brigham (MGB) as part of the PsycheMERGE23 network. VUMC is an 

academic medical center in Nashville, Tennessee, that manages over 2 million patient visits every year across 
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Tennessee and its neighboring states. The Synthetic Derivative (SD)11 is a deidentified repository used to store 

clinical EHR data at VUMC.  The VUMC biobank (BioVU) is directly linked to the SD and includes over 

300,000 DNA samples. MGB is a major healthcare system including Massachusetts General Hospital, Brigham 

and Women’s Hospital, and other community and specialty hospitals located in Boston, Massachusetts. The 

deidentified clinical EHR data were extracted from the MGB Research Patient Data Registry (RPDR)24, a data 

warehouse that covers over 20 years of data from more than 6.5 million patients. The MGB biobank (MGBB) is 

linked to RPDR and includes over 80,000 DNA samples. For each study site, we defined two independent 

samples: 1) those with only clinical information from the EHR but no available genetic information (“EHR 

only”) and 2) those with both EHR and genetic information (“genetic sample”). All analyses were approved by 

the institutional review boards at each site. 

 

Phenotype definition 

We defined cases at each site based on a phenotyping algorithm for Crohn’s disease from PheKB25 

excluding the use of clinical notes. Specifically, cases were patients who had at least two independent ICD-9/10 

codes for Crohn’s disease and at least one of a list of medications used to treat Crohn’s disease, e.g., 

methotrexate. Because other gastrointestinal or autoimmune diseases may occasionally be misdiagnosed as 

Crohn’s disease, we excluded individuals who had any diagnoses of ulcerative colitis or other autoimmune 

conditions. Controls included all patients who had never received any Crohn’s disease diagnostic code as 

defined above. A minimum data criterion was applied at each site requiring patients to have at least 2 visits over 

30 days apart before the censoring date (24 hours before the first Crohn’s disease diagnosis date for cases and 

the last diagnosis date for controls).  

 

Demographic and clinical features extracted from EHRs 
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Candidate predictors at VUMC were drawn from routinely collected EHR data including: demographics 

(age at censoring date in years, categorical coded sex [male, female, unknown], coded race [White, Black, 

Asian, Other, Unknown]), coded ethnicity [Hispanic, Not-Hispanic, Unknown], diagnostic codes (log-

transformed counts of historical Clinical Classification Software Level 2 codes26), medications (log-transformed 

counts of RXNORM-mapped ingredients27) and body mass index. Candidate predictors at MGB were the same 

as those of VUMC except for BMI which was not available. Missing BMI values were imputed using a single 

multivariable imputation by the aregImpute function from the Hmisc package28. Diagnostic codes and 

medications given after the first Crohn’s disease diagnosis code for cases and last diagnosis code for controls 

were removed. 

 

Polygenic risk score (PRS) calculation 

Crohn’s disease PRS were calculated in genotyped patients from both VUMC and MGB using the 

summary statistics from the most recent IBD GWAS29. PRS scoring was performed using PRS-CS which places 

a continuous shrinkage prior on SNP effect sizes using a Bayesian regression framework30. The continuous 

shrinkage priors adapt the amount of shrinkage applied to each SNP to the strength of the associated GWAS 

signal based on the LD structure estimated from an external reference panel. After ancestry estimation from 

principal component analysis, sample sizes were large enough only in the European ancestry sample. The 1,000 

Genomes European reference panel was used to estimate LD between SNPs. The PRS were summed for each 

individual of the target cohort using Plink 1.931,32.  A linear regression was performed to derive a residualized 

PRS after including the first 10 principal components of genetic ancestry. 

 

EHR-based prediction models  

Models were trained separately at both sites using either the EHR-only sample or the genetics sample, 

but all models were evaluated on the genetics sample. In total, 10 models were trained with each addressing a 
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specific scientific question (Supplementary Table 1). The first three models tested the baseline performance of 

PRS, demographics and the combination of the two. Specifically, a logistic regression using the Crohn’s PRS 

(Model 1) was used to assess performance of PRS alone, a random forest classifier was trained using only 

demographics (age at censoring date, coded sex, BMI, coded race, and coded ethnicity; Model 2) and a logistic 

regression of the demographic data and the PRS (Model 3) was used to test the value of PRS when added to the 

demographic information. Next, to test the impact of training sample on performance we generated two L1-

penalized regression models using all demographic and clinical features trained on the EHR-only sample 

(Model 4) or trained on the genetics sample (Model 5). We then developed two late-fusion models to assess the 

impact of PRS on each of these clinical models simply by including the PRS in a logistic regression including 

an interaction term between the two features based on the EHR-only sample (Model 6) and the genetics sample 

(Model 7). Our final 3 models leveraged more compute-intensive classifier selection approaches which 

evaluated multiple different classification methods to generate a clinical only model (Model 8) and to compare 

two different methods on integrating the genetic information: late-fusion (Model 9) and early-fusion (Model 

10). Model 8 was a random forest selected classifier using all demographic and clinical features trained on the 

genetic sample. Model 9 used a logistic regression approach to integrate the clinical prediction score from 

Model 8 with the PRS and Model 10 was also a random forest classifier that included the PRS as an additional 

feature in model training. 

For models trained on the EHR-only sample, we refit the model and generated out of sample predictions 

on the independent genetic sample. For models trained on the genetic sample we applied 5-fold nested-cross 

validation as follows. We first used an “outer” stratified cross-validation loop to produce “outer” train and 

“outer” test folds. Then, within each iteration of this “outer” loop, we applied an “inner” cross-validation with 

randomized hyperparameter search on the “outer” training fold and used the best model parameters to predict on 

the “outer” test fold for each classification algorithm33. After this process is finished, out of sample predictions 

are produced from each optimized classification algorithm for the entire genetic sample resulting in five sets of 
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predictions and performance metrics. Models 2, 3, 8, 9, and 10 further implemented a model development and 

selection routine that evaluated three additional classifier types – logistic regression, random forest, and 

adaboost. Scikit-Learn34 was used for all modeling procedures. 

In order to meet assumptions for logistic regression when used in late fusion we applied a quantile 

transformation to generate a normal distribution on the predicted probabilities from the initial clinical model, 

and used the standard scaler from scikit-learn34 on the PRS. In the clinical model, we also used the standard 

scaler on BMI and age. We found that the highest performance was gained when including these preprocessing 

steps. 

Model performance was evaluated with discrimination metrics: Area Under the Receiver Operating 

Characteristic (AUROC) and Area Under the Precision-Recall Curve (AUPRC). To evaluate performance of the 

methods overall, we calculated the mean across sets for both AUROC and AUPRC. 

 

Quantifying impact of PRS on performance overall and stratified by age 

 To assess the change in model performance due to inclusion of the PRS, we calculated the Integrated 

Discrimination Index (IDI)35, and the Net Reclassification Improvement (NRI)35 which both aim to quantify the 

impact of new information on a predictive method, with the IDI doing so through the shift in mean probabilities 

and the NRI doing so through examining the proportions of both cases and controls whose probabilities shift 

either upwards or downwards. Both methods are sensitive to differences in calibration as a product of the 

different classification methods. To correct for these differences, we performed logistic calibration36 to 

recalibrate the probabilities and more accurately compare with the late fusion regression model. 

To assess whether PRS was having a disproportionate impact among demographic groups (age and sex), 

we additionally stratified the cohort by sex and below or above the median age of first Crohn’s diagnosis at 

VUMC (30 years old) and MGB (47 years old) and calculated ∆AUPRC between models, which we calculated 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.23297927doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297927
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

by taking the AUPRC for both the clinical only model and the clinical+PRS model in each scenario and finding 

the difference between them to evaluate the improvement from adding PRS. 

 

Results 

Comparison of baseline genetic and demographic models for Crohn’s disease across two institutions 

Patients with Crohn’s disease were identified from EHR data based on presence of diagnostic codes and 

medications specific to Crohn’s and exclusive of ulcerative colitis (see Methods). Across two healthcare 

institutions, VUMC and MGB, 4,786 patients met algorithm criteria for Crohn’s disease (VUMC: 2,366, MGB: 

2,566). Patients were subsequently divided into those with corresponding genetic data (“genetic sample”) and 

those without (“EHR only”). Among the samples with genetic information, we observed 189 cases at VUMC 

and 53 cases at MGB, representing outcome prevalence rates of 0.35% and 0.22%, respectively. Controls in the 

EHR only sample were randomly selected to match the prevalence rates in the genetics sample (VUMC: 53,496, 

MGB: 23,669, Table 1). 

 

Table 1: Demographics of the EHR and genetic samples at VUMC and MGB. BMI data were not available at 

MGB. 

 

Crohn's 
Disease

(N=1,072)

Control 
(N=559,416)

Crohn's 
Disease 

(N=2,566)

Controls 
(N=1,145,936)

Crohn's 
Disease
(N=189)

Control 
(N=53,495)

Crohn's 
Disease 
(N=53)

Controls 
(N=23,669)

Age Mean at index time 34.83 43.28 44.25 48.63 33.28 53.89 48.43 62.3
Sex Female 547 309,925 1,345 647,635 96 29,991 29 12,553

Male 525 249,477 1,220 498,241 93 23,504 24 11,116
Unknown 0 14 1 60 0 0 0 0

Race White 898 424,067 2,224 859,127 188 50831 53 23,145
Black 122 64,043 89 73,670 0 42 0 7
Asian 15 9,808 59 54,169 0 20 0 4
Other 37 61,498 194 158,970 1 2602 0 513

Ethnicity Hispanic 20 20,609 42 52,739 0 246 0 2
Non-Hispanic 1,028 484,257 2,524 1,093,197 186 50846 53 23667

Unknown 24 54,550 NA NA 3 2403 0 0
BMI Mean 28.65 27.45 NA NA 26.35 28.51 NA NA

Full EHR Genetic sample

Demographic

VUMC MGB VUMC MGB

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.23297927doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297927
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

To establish baseline comparisons, we evaluated the independent predictive performance of a model 

including only the Crohn’s disease PRS (Model 1, Table 2) or only demographic features (Model 2).  The PRS 

only model yielded an AUROC of 0.68 for VUMC and 0.67 for MGB and AUPRC of 0.018 and 0.011 for 

VUMC and MGB, respectively (Figure 1). The model with demographic information alone had AUROC of 

0.75 for VUMC and 0.74 for MGB and AUPRC of 0.013 and 0.028 at VUMC and MGB, respectively. A model 

that included PRS and demographic features (Model 3), achieved higher AUROCs (VUMC: 0.80, MGB: 0.76) 

and AUPRCs (VUMC: 0.029, MGB: 0.046) at both sites. 

 

Minimal increase in performance seen when adding PRS to clinical models 

 We incorporated the PRS into our best-performing clinical prediction model using two approaches: 1) a 

“late-fusion” approach where a model is trained on only the PRS and the predicted probability of the clinical 

model, and 2) an “early-fusion” approach in which the model is trained with all clinical features plus the PRS. 

The best performing clinical model (Model 8) performed well at both VUMC (AUROC = 0.91, AUPRC = 0.22) 

and MGB (AUROC = 0.98, AUPRC = 0.61). Integrating the PRS with that model using late-fusion (Model 9) 

resulted in improved average performance in both VUMC (AUROC = 0.92, AUPRC=0.24) and MGB (AUROC 

= 0.98, AUPRC=0.62). The best performing early fusion model at VUMC provided the same performance as 

the clinical model alone (AUROC = 0.91, AUPRC = 0.22). At MGB, the early fusion model had the same 

average AUROC but higher average AUPRC than the late fusion model (AUROC=0.98, AUPRC=0.64).   
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Figure 1. Performance metrics (top: AUROC, bottom: AUPRC) are presented within each institution (left: 

VUMC, right: MGB) for each model scenario. Colors represent whether the model included PRS (Blue) or was 

based only on EHR data (Red). Models run on the genetics sample required five-fold nested cross-validation 

and each point represents the on split that is consistent across all models for comparability. Dashed lines 

represent the baseline performance in each site for the given metric. 

 

 

A B

C D

Mean Range  Mean Range Mean Range  Mean Range
Model 1 PRS 0.68 0.63-0.74 0.018 0.0084-0.036 0.67 0.63-0.72 0.011 0.005-0.023
Model 2 Demographics 0.75 0.71-0.80 0.013 0.0083-0.018 0.74 0.70-0.81 0.028 0.005-0.10
Model 3 PRS+Demo 0.80 0.75-0.84 0.029 0.013-0.087 0.76 0.72-0.81 0.046 0.007-0.10
Model 8 Clinical Model 0.91 0.84-0.96 0.22 0.11-0.32 0.98 0.94-0.99 0.61 0.50-0.77
Model 9 Late Fusion 0.92 0.86-0.96 0.24 0.12-0.34 0.98 0.94-0.99 0.62 0.44-0.74
Model 10 Early Fusion 0.91 0.87-0.96 0.22 0.11-0.29 0.98 0.94-0.99 0.64 0.49-0.83

Model Names

MGB
AUROC AUPRC

VUMC
AUROC AUPRC

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.23297927doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297927
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Table 2: AUROC and AUPRC at VUMC and MGB, for each of the primary models. Each modelling approach 

was evaluated across five splits in the nested cross validation approach, and performance is reported by the 

mean value and the range across the splits. 

  

 
PRS improves discrimination over demographic features alone but not in models with high-dimensional 

clinical information 

 To quantitatively assess the impact of adding PRS, we calculated the change in performance metrics 

(∆AUROC, ∆AUPRC) as well as the integrated discrimination index (IDI) and net reclassification index (NRI) 

for both late and early fusion approaches (Model 9 and 10) compared to the clinical model that they are fused 

with (Model 8). As a comparator, we included the scenario where PRS was integrated with the demographics 

only (Model 3, Figure 2). Adding PRS to the demographics only model resulted in consistent improvements 

across splits for all metrics at both VUMC (∆AUROC = 0.051, ∆AUPRC = 0.015, NRI = 0.58, IDI = 0.0054) 

and MGB (∆AUROC = 0.025, ∆AUPRC = 0.018, NRI = 0.45, IDI = 0.0026). For late-fusion, consistent 

positive values were seen for ∆AUROC and NRI but IDI and ∆AUPRC spanned zero in VUMC and all metrics 

spanned zero for MGB (Figure 2). No metric showed consistent improvement for early-fusion at either VUMC 

or MGB. 
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Figure 2. Change within ∆AUPRC (A), ∆AUROC (B), IDI (C), and NRI (D) after the integration of genetic 

information in each scenario, and within each site. 

 

PRS has most value among young Crohn’s patients in model combined with demographics only 

A B

C D

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 2, 2023. ; https://doi.org/10.1101/2023.11.01.23297927doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297927
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

We examined changes in AUPRC stratified by coded sex and age (above vs. below median age at first 

diagnosis, 30 at VUMC, 47 at MGB) to assess whether PRS had a stronger effect on performance in a particular 

subgroup of the sample when only including demographic information (Figure 3). A consistent increase in 

performance was seen among the younger half of the sample in both VUMC and MGB (Figure 3). No 

difference was observed by sex. 

 

Figure 3: Change in performance for each subgroup at VUMC (A) and MGB (B) when adding genetic 

information to the demographic information only model (includes BMI at VUMC). 

 

Discussion 

The increasing availability of genetic information presents a potential avenue to improve clinical risk 

prediction. However, published evidence to date on the benefit of genetic information on predictive 

performance has been inconsistent. Here, we aimed to better understand the implications of different 

methodological decisions in integrating clinical data from the EHR with genetic data for risk prediction using 

A B
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the example of Crohn’s disease. We examined the effect of varying training sample (see supplement), classifier 

selection, performance metric and method of combining PRS with clinical variables on model performance. We 

observed consistent performance gains when introducing more complex classification methods (e,g. using 

random forest vs. logistic regression) and from adding PRS to only demographic information. The inclusion of 

clinical information substantially reduces the incremental predictive value of the PRS, with late-fusion 

outperforming early-fusion but only in a subset of performance metrics at one of the sites.  

Improvement in predictive performance and discrimination is clear across all metrics when adding PRS 

to demographic information alone. The greatest marginal benefit of adding PRS to demographic features was 

seen among younger patients (i.e., those below the median of age), consistent with the expected relationship of 

greater genetic influence among those with earlier onset of disease. This finding suggests the incremental value 

of PRS might be greater when limited longitudinal clinical data are available or when existing clinical risk 

models have relatively poor performance (such that any improvement in predictive performance might be 

useful). Indeed, the value of genetic information largely disappears when the clinical information is included, 

regardless of approach to integration. While the clinical data may reflect expression of underlying genetic risk, 

once disease manifests sufficient to be reflected in clinical data, genetic information provides less value. 

Identifying the optimal clinical timepoints where incorporating genetic information (e.g., when a patient is first 

seen in the system, or in early life) would be add value remains an important open question.  

To compare different integration strategies, we built models using both late and early fusion of PRS with 

clinical data. Early-fusion did not show significant performance improvement across any metric at either site. In 

the presence of high-dimensional clinical features, much of which is likely correlated with genetic risk, it may 

be that the addition of a single PRS feature provides little additional signal. Late-fusion also showed minimal 

benefit, though with nominal improvement in AUROC and IDI at one site (VUMC). Although neither 

integration approach produced meaningful performance improvements in this study, the finding that late-fusion 
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performed as well or better than early fusion is notable as late-fusion (which adds PRS to existing model 

predictions) provides a more time- and cost-effective approach for combining PRS and clinical information. For 

example, the full clinical model at VUMC took approximately 32 hours in training and cross-validation as well 

as a significant amount of development work to set up compared to the late-fusion model which can be run in 

minutes. 

We chose to include four metrics that capture different aspects of predictive performance and 

discrimination.  Our results illustrate that the interpretation of incremental value of incorporating PRS in clinical 

models may depend on how performance is evaluated. When all four metrics consistently show improvement as 

in the case of adding PRS to demographics, it is easy to interpret that PRS is improving performance. In other 

situations, such as late-fusion, that interpretation might depend on which specific metric was used with potential 

value being seen at VUMC from ∆AUROC and NRI but not ∆AUPRC or IDI. The over reliance on any single 

metric or the over interpretation of any numerical increase might not be robust. Ultimately, specific analyses 

that quantify the improvement in clinical utility as a product of including genetic information will be required.  

There are several limitations to this work. First, our methodologic comparisons focused on a single 

exemplar phenotype, Crohn’s disease, chosen because of its established polygenic basis and the availability of a 

validated algorithm for EHR-based phenotyping. Whether our findings apply to risk models for other diseases 

remains to be established. Second, the precision of our performance metrics was constrained by available 

sample sizes for the test sets despite our examination of two large healthcare systems and their biobanks. Third, 

reflecting the limited ancestral diversity of the participating biobanks, our analyses were restricted to patients of 

European ancestry, and it will be important for future studies to evaluate the applicability of our results in 

transancestry prediction models. There are several barriers to the immediate uptake of genetics in the clinical 

beyond utility including but not limited to cost and known disparities in prediction performance among different 

ancestral groups37. 
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This work provides an example of the implications of important methodological decision making when 

designing and implementing a clinical prediction model incorporating genetic information. Overall, we find that 

incorporating PRS into clinical prediction models, whether by early- or late-fusion, provides limited 

improvements in performance. Future work is needed to determine under which circumstances and for which 

diseases incorporating PRS may have the biggest impact. Ultimately, incorporating genetic information in 

clinical prediction models will likely become more common and the impact of decision points described here 

can inform the design and implementation of those models. 
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