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ABSTRACT 

BACKGROUND: Therapeutic targets supported by genetic evidence from genome-wide association 1 

studies (GWAS) show higher probability of success in clinical trials.  GWAS is a powerful approach to 2 

identify links between genetic variants and phenotypic variation; however, identifying the genes driving 3 

associations identified in GWAS remains challenging. Integration of molecular quantitative trait loci 4 

(molQTL) such as expression QTL (eQTL) using mendelian randomization (MR) and colocalization 5 

analyses can help with the identification of causal genes. Careful interpretation remains warranted 6 

because eQTL can affect the expression of multiple genes within the same locus. METHODS: We used a 7 

combination of genomic features that include variant annotation, activity-by-contact maps, MR, and 8 

colocalization with molQTL to prioritize causal genes across 4,611 disease GWAS and meta-analyses 9 

from biobank studies, namely FinnGen, Estonian Biobank and UK Biobank. RESULTS: Genes identified 10 

using this approach are enriched for gold standard causal genes and capture known biological links 11 

between disease genetics and biology. In addition, we find that eQTLs colocalizing with GWAS are 12 

statistically enriched for corresponding disease-relevant tissues. We show that predicted directionality 13 

from MR is generally consistent with matched drug mechanism of actions (>78% for approved drugs). 14 

Compared to the nearest gene mapping method our approach also shows a higher enrichment in 15 

approved therapeutic targets (risk ratio 1.38 vs 2.06). Finally, using this approach, we detected a novel 16 

association between the IL6 receptor signal transduction gene IL6ST and polymyalgia rheumatica, an 17 

indication for which sarilumab, a monoclonal antibody against IL-6, has been recently approved. 18 

CONCLUSIONS: Combining variant annotation and activity-by-contact maps to molQTL increases 19 

performance to identify causal genes, while informing on directionality which can be translated to 20 

successful target identification and drug development. 21 
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BACKGROUND 24 

Genome-wide associations studies (GWAS) have been successful in identifying genes associated with 25 

traits, diseases, and molecular phenotypes.[1, 2] Discoveries from GWAS have increased substantially 26 

over the years due to low cost of genomic profiling technologies, an increased number of studies, larger 27 

cohorts, and meta-analyses, as well as the formation of deeply phenotyped datasets.[3] The later 28 

include large-scale biobank projects such as UK Biobank (UKB)[4, 5], Estonian Biobank[6],and 29 

FinnGen.[7] As an example, the UK Biobank alone has contributed to over 3,200 publications 30 

(https://www.ukbiobank.ac.uk/enable-your-research/publications), and the FinnGen project is set to 31 

increase the number of discoveries emerging from rare variants enriched in the Finnish population.[7] 32 

Similarly, the Estonian Biobank, with its extensive dataset, has enhanced rare and low-frequency genetic 33 

variation discoveries.[8-10]  34 

Discoveries from genetic studies provide a highly valuable resource for drug discoveries. For example, 35 

therapeutic targets with genetic support are >2 times more likely to succeed in clinical trials.[11, 12] A 36 

notable example is the association between a loss-of-function missense variant in IL23R gene and 37 

Crohn’s disease, suggesting that IL-23 blockage could be beneficial.[13-16] Drugs targeting the IL-23 38 

receptor including Ustekinumab and Risankizumab have recently been approved by the FDA for the 39 

treatment of Crohn’s disease following successful clinical trials.[17-19] Other notable examples of 40 

targets supported by GWAS include IL6R for rheumatoid arthritis (Sarilumab, Tocilizumab) and HMGCR 41 

for high levels of low-density lipoprotein (statins).[20, 21]   42 

While these examples clearly show that disease-associated genetic information is important for drug 43 

development, it remains a challenge to accurately assign causal genes driving disease risk from GWAS as 44 
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most variants identified in GWAS fall in non-coding regions of the genome.[22-24] While it’s been 45 

observed that the nearest gene often is the causal gene, this is not a guarantee as genetic variants can 46 

influence traits over large genomic distances.[25] In addition, this observation may be biased towards 47 

genes that have been well-characterized because they fall at the center of genetic association 48 

signals.[26]  49 

Several approaches have been used to predict causal genes, including selecting the nearest gene, variant 50 

pathogenicity predictions, epigenetic interactions, and integration of molecular quantitative trait loci 51 

(molQTL) such as expression QTL (eQTL). Mendelian randomization (MR) integrating GWAS and molQTL 52 

can help identify causal relationships while informing on directionality but may be confounded due to 53 

linkage disequilibrium (LD). [27-29] On the other hand, colocalization approaches can be used to detect 54 

whether molQTL and GWAS signals share a common causal variant in a specific locus.[30, 31] While 55 

colocalization approaches can link genetic variation to changes in gene expression in specific tissue or 56 

cell-type contexts, they also tend to be pleiotropic and often impact the expression of multiple genes 57 

within the same locus.[26, 32, 33]  They can also impact expression across multiple tissues and cell 58 

types, decreasing their utility to identify pathogenic cell types.[32, 34, 35] In addition, a large fraction of 59 

GWAS loci don’t show eQTL signals, potentially due to the unavailability of data for relevant cell types or 60 

specific biological contexts or variants affecting disease risk due to different mechanisms such as 61 

splicing.[32, 36, 37]  Despite these challenges, eQTL have successfully been used to identify causal 62 

genes.[38, 39]. In addition, recent prioritization approaches such as the Locus to Gene (L2G) scores from 63 

Open Targets have shown that incorporating molecular trait information does increase performance to 64 

identify relevant genes.[26] 65 

Here, we sought to use currently available eQTL information to identify disease relevant genes in the 66 

context of drug discovery. We first derived a simple approach to prioritize causal genes based on 67 

MR[40], eQTL colocalization[31], activity-by-contact (ABC) enhancer-promoter interactions[41], and 68 
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variant annotations[42].  We used this combinatorial approach as a way to mitigate the pleiotropic 69 

effect of eQTL while retaining important information about directionality. We show that this approach 70 

enriches for gold standard genes[26] and captures known target biology.  In addition, genes prioritized 71 

by this approach are enriched for drug targets with successful clinical trials, and directionality inferred 72 

by MR or coding variants recapitulate drug mechanisms of action (MoA). Finally, we show that this 73 

approach can be used to identify drug indication expansion opportunities using genes related to the IL6-74 

R as a case study and identify a novel association between IL6ST and polymyalgia rheumatica.  75 

 76 

METHODS 77 

Estonian Biobank GWAS 78 

The Estonian Biobank (EstBB) is a population-based biobank with 200k participants. The 198k data 79 

freeze was used for the analyses described here. All biobank participants have signed a broad informed 80 

consent form. 81 

All EstBB participants have been genotyped at the Core Genotyping Lab of the Institute of Genomics, 82 

University of Tartu, using Illumina Global Screening Array v1.0 and v2.0. Samples were genotyped and 83 

PLINK format files were created using Illumina GenomeStudio v2.0.4. Individuals were excluded from the 84 

analysis if their call-rate was <95% or if sex defined based on heterozygosity of X chromosome did not 85 

match sex in phenotype data. Before phasing and imputation, variants were filtered by call-rate <95%, 86 

HWE p valueM<M1e-4 (autosomal variants only), and minor allele frequency <1%. Variant positions were 87 

updated to b37 and all variants were changed to be from TOP strand using GSAMD-24v1-88 

0_20011747_A1-b37.strand.RefAlt.zip files from https://www.well.ox.ac.uk/~wrayner/strand/ webpage. 89 

Chip data pre-phasing was done using Eagle v2.3 software [43] (number of conditioning haplotypes 90 

Eagle uses when phasing each sample was set to:–Kpbwt=20000) and imputation was done using Beagle 91 
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v.28 Sep18.7932 [44] with effective population size neM=M20,000. Population specific imputation 92 

reference panel of 2297 WGS samples was used.[44] 93 

FinnGen 94 

The FinnGen study (https://www.finngen.fi/en) was described previously.[7]  The study is a public-95 

private research project that combines genetic and healthcare data of over 500,000 Finns. The objective 96 

of the FinnGen study is to identify novel medical and therapeutical insight into human diseases. It is a 97 

pre-competitive partnership of Finnish biobanks, universities and university hospitals, international 98 

pharmaceutical industry partners, and Finnish biobank cooperative (FINBB). A full list of FinnGen 99 

partners is published here: https://www.finngen.fi/en/partners. 100 

Disease GWAS processing 101 

We retrieved GWAS results from FinnGen release 10 (R10), UK Biobank pan meta-analysis[45], and a 102 

meta-analyses between FinnGen, UK Biobank, and Estonian biobank. For simplicity, we use the term 103 

GWAS to refer to both single study GWAS and meta-analyses throughout the manuscript. In total, we 104 

included 4,611 GWAS with at least one variant with P<1x10
-6

. When appropriate, we lifted over variants 105 

from hg38 to hg19 using the liftOver R package[46]. Variant with a minor allele frequency (MAF) < 106 

0.0001 were excluded from the analysis. For each GWAS, we considered genes located within 250kb of a 107 

variant with P<1x10
-6

 for further analysis. For gold standard and clinical trial enrichment analyses 108 

(described below), only genome-wide significant loci were included (P<5x10
-8

). We excluded the human 109 

leukocyte antigen (HLA) region in all analyses.  110 

Disease EFO mapping 111 

In order to perform semantic integration of genetic data and clinical trial data, the ontological system 112 

Experimental Factor Ontology (EFO) was used. We used the EFO to map traits to their corresponding 113 
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EFO categories and when multiple EFO terms could be mapped to the same trait, we assigned the trait 114 

to each possible term. We used the EFO version 3.52.0 (https://www.ebi.ac.uk/efo/). 115 

Variant annotation 116 

We used variant effect predictor (VEP v102) [42] to annotate the impact of variants with the following 117 

options: --everything --offline --check_existing . Coding variants were defined as those impacting protein 118 

coding transcript annotated as missense variant or predicted to have “high” impact. We also retrieved 119 

predicted gain or loss of function (GoLoF) variants from LoGoFunc[47], and linked non-coding variants to 120 

genes using activity-by-contact (ABC) maps[41]. ABC scores represent the contribution of an enhancer to 121 

the regulation of gene, measured by multiplying the estimates of enhancer activity and three-122 

dimensional contact frequencies between enhancers and promoters. ABCmax refers to variant-gene 123 

pairs with the highest ABC score. We also retrieved disease mutations from the Human Gene Mutation 124 

Database (HGMD) (license acquired via Qiagen, Maryland)[48] 125 

Mendelian randomization & colocalization 126 

We performed transcriptome wide MR using the R package TwoSampleMR [40]. When more than one 127 

instrument was present, we used the inverse variant weighted approach, otherwise we used the Wald 128 

Ratio approach. We considered the following exposures: protein quantitative trait loci (pQTL) from Sun 129 

et al [49], and expression quantitative trait loci from Blueprint[50], eQTLGen [51] and other datasets 130 

from the EBI eQTL catalogue[51-75].  In total, 110 molQTL from 26 studies were included. For each of 131 

those studies, we excluded variants with a MAF < 1%. We clumped variants using PLINK[76] using the 132 

options –clump-p1 1 –clump-p2 1 –clump-r2 0.01 – clump-kb 10000 and using the European ancestry 133 

subset of the 1000 Genomes Project phase 3 data as reference[77]. We only considered genes 250kb 134 

around significant loci in this analysis. For each QTL, independent variants with P<1x10
-4

 were used as 135 

instruments. For genes with significant MR results (false discovery rate < 0.05), we also performed 136 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 1, 2023. ; https://doi.org/10.1101/2023.11.01.23297926doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297926
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 

 

Internal

colocalization analysis using COLOC[31], using a region of 250kb around the local lead GWAS variant. 137 

Harmonization between the QTL and GWAS datasets was performed using the harmonise_data function 138 

in the TwoSampleMR package[40].  Only autosomes were included in this analysis. 139 

Causal gene prioritization 140 

We prioritized genes as putatively causal using a combination of evidence including MR, colocalization 141 

H4 posterior probabilities (PP) with molQTL, presence of an associated GoLoF variant[47] or other 142 

coding variants, distance to lead variant, and enhancer-promoter ABC scores[41]. Specifically, we ranked 143 

genes as follow: 144 

Rank Criteria 

Very High Lead GoLoF variant;  

Or 

Colocalization (H4 PP> 80%) with molQTL of the target gene in >2 dataset; and 

maximum ABC score for a regulatory element overlapping the lead variant  

High Lead coding variant; 

Or 

Associated (P<1x10
-6

) GoLoF variant;  

Or 

Colocalization (H4 PP> 80%) with molQTL of the target gene in >2 dataset or 

significant MR with protein QTL (q-value < 0.05); and maximum ABC score for an 

associated variant overlapping a regulatory element (P<1x10
-6

) 

Moderate Colocalization with molQTL of the target gene (H4 PP>80%) 

Or 

Significant MR with genome-wide protein QTL (q-value < 0.05) 

Or 

Maximum ABC score for an element overlapping the lead variant  

Or 

Associated (P<1x10
-6

) coding variant  

Weak Colocalization with molQTL of the target gene (H4 PP>30%) 

Or 

Nearest gene to the lead variant 

Or 

Maximum ABC score for an element overlapping an associated variant (P<1x10
-6

)  

Or 

ABC link (any score) between an element overlapping the lead variant and target 

gene 

Very weak Significant MR with eQTL 

Or 

ABC link (any score) between an element overlapping the lead variant and target 
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gene 

 145 

For a given locus, we then prioritized the best gene(s) as the one with the highest rank. In case of ties, 146 

we prioritized the nearest gene to lead variant if it is within the set of genes with highest scores, 147 

otherwise all highest ranked genes were prioritized equally. 148 

Enrichment of gold standard genes 149 

We retrieved GWAS causal gene gold standards supported by functional experiments or observations or 150 

expert curation from Open Targets (version 191108).[26, 78] We linked the current analysis with the 151 

gold standard gene list using Ensembl gene identifiers and EFO codes. That is, for a given gene-disease 152 

pair in the current analysis, we consider it a gold standard association if the gene and GWAS EFO code 153 

are present in the Open Targets gold standard gene-disease set. For each indication, we filtered out 154 

genes not represented in loci where a gold standard gene is located. We calculated the enrichment of 155 

gold standard genes in prioritized genes by different features or rankings as described above using 156 

Fisher exact tests. In addition, we calculated the precision (number of prioritized genes that are gold 157 

standards over all prioritized genes), recall (number of prioritized genes that are gold standards over the 158 

total number of gold standard genes), and F1 scores for each feature.   159 

Single gene colocalizing cell-type eQTL enrichment 160 

To identify enriched colocalizing cell types for single genes, we calculated the ratio of indications for 161 

which this gene is prioritized to be causal by a given molQTL dataset (H4 PP > 80%) over the total 162 

number of prioritized indications (as defined by unique EFO) for that gene.  We collapsed GWAS by 163 

corresponding EFO code so that a gene was only counted once per indication (and not multiple times for 164 

GWAS of the same disease). We then compared this ratio to the fraction of prioritized indications via 165 

colocalization of the same eQTL dataset over all prioritized indications genome wide. In other words, we 166 
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are looking for genes that show an overrepresentation of colocalizing eQTL cell types across all 167 

associated indications compared to the genome-wide distribution. This corresponds to the following 168 

contingency table: 169 

 

∑ �����   ∑ ∑ ��������  170 

∑ ∑ ��������  ∑ ∑ ∑ �����������   171 

Where Cijk=1 if disease i colocalize with prioritized gene j in tissue k and 0 if not. P-values and odds ratios 172 

were calculated using Fisher exact tests. False discovery rate (FDR) adjusted P-values < 0.05 were 173 

considered significant.  174 

Enrichment of disease categories for single genes 175 

To identify enrichment disease categories for single genes, we calculated the ratio of the number of 176 

GWAS where the genes is prioritized for a given EFO category over the total number of prioritized GWAS 177 

for that gene. We then compared this ratio to the genome-wide ratio of GWAS for this EFO category 178 

over the total number of tested GWAS. This corresponds to the following contingency table: 179 

 

∑ �����   ∑ ∑ ��������  180 

∑ ∑ ��������  ∑ ∑ ∑ �����������   181 

Where Dijk=1 if disease i is prioritized for gene j and belongs to category c and 0 if not. P-values and odds 182 

ratios were calculated using Fisher exact tests.  FDR adjusted P-values < 0.05 were considered 183 

significant.  184 

Disease colocalizing molQTL cell-type enrichment 185 
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We identify enriched cell types in GWAS disease EFO categories supported by colocalization as in King et 186 

al. 2021.[79] Briefly, we extracted all GWAS colocalizing molQTL (H4 probability > 0.8). Then, for a given 187 

cell type K and disease category I, we generated the following contingency table: 188 

∑ �	���    ∑ ∑ �	������  189 

∑ ∑ ������	�  ∑ ∑ ∑ ������	����   190 

Where Cijk=1 if at least one disease GWAS of category i colocalize with gene j in tissue k and 0 if not. P-191 

values and odds ratios were calculated using Fisher exact tests.  We performed the analysis considering 192 

all molQTL separately, as well as by grouping similar cell types and tissues together prior to testing for 193 

enrichment. FDR adjusted P-values < 0.05 were considered significant.  194 

Drug target- indication pairs in clinical trials 195 

Information about drugs approved or in clinical trials was obtained from the Citeline data from Informa 196 

Pharma Intelligence, which is a superset of the most used data sources.  In addition to multiple data 197 

streams, including nightly feeds from official sources such as ClinicalTrials.gov, Citeline also contains 198 

data from primary sources such as institutional press releases, financial reports, study reports, and drug 199 

marketing label applications, and secondary sources such as analyst reports by consulting companies.  200 

Secondary sources are particularly important to reduce potential biases to the organizations’ tenancy to 201 

report only successful trials, especially those before the FDA Amendments Act of 2007, which requires 202 

all clinical trials to be registered and tracked by ClinicalTrials.gov.  Citeline database contains information 203 

from both US and non-US sources.  Any cancer or cancer related indications were excluded from this 204 

analysis. 205 

In order to map gene-disease pairs in the genetic data to target-indication pairs in the drug data, we 206 

used experimental factor ontology (EFO), which provided a systematic description of many data 207 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 1, 2023. ; https://doi.org/10.1101/2023.11.01.23297926doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297926
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

 

Internal

elements available in EBI databases.  A target-indication pair is said to have genetic evidence if there is 208 

genetic evidence of association between the gene and disease sufficiently similar to the indication, 209 

based on semantic similarity.  Two methods were used to calculate semantic similarity matrix.[80, 81]  210 

Semantic similarities between each pair of EFO headings were computed in the ontologySimilarity R 211 

package.[82] The average of the two methods was calculated and standardized similarities had a 212 

maximum value of 1 for each disease or indication. Two diseases are considered similar if the similarity 213 

is greater than or equal to a previously published value of 0.7.[11] 214 

Prediction of drug mechanism of action directionality 215 

We retrieved information about drug mechanism of action from the Informa Pharma Intelligence 216 

dataset described above. For targets for which decreased expression or loss of function (LoF) is 217 

beneficial, we considered datasets with the following keywords: “antagonist”, “inhibitor”, and 218 

“degrader”. For targets for which increased expression or function is beneficial, we considered the 219 

following keyworks: “agonist”, and “activator”. We considered drugs and targets in phase II clinical trial 220 

or above. We performed two analyses to infer directionality from GWAS. First, we assess directionality 221 

using the effect size of low-frequency lead coding variant (MAF < 5%). We assumed that these variants 222 

are disruptive or LoF. Therefore, a LoF coding variant associated with increased risk suggests that a drug 223 

MoA of agonist or activator would be beneficial, whereas for a protective LoF coding variant, an 224 

inhibitor or antagonist would be beneficial. Next, we assessed directionality based on the direction of 225 

effect of gene expression on disease risk predicted by MR using molQTL as exposure (q-value < 0.05). 226 

We included only molQTL colocalizing with local GWAS signal (H4 PP > 80%). For gene-disease pairs 227 

supported by multiple colocalizing molQTL, a consensus direction was inferred if the MR direction of 228 

effect was consistent across > 75% of the molQTL. Here, a negative consensus MR direction suggests 229 

that increased gene expression leads to decreased disease risk. Therefore, an activator or agonist drug 230 

targeting this gene would be beneficial. Conversely, a positive consensus MR direction suggests that 231 
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increased gene expression increases disease risk, and an inhibitor or antagonist drug would be 232 

beneficial. We calculated enrichment of concordant direction of effect between GWAS and drug MoA 233 

using Fisher exact tests. 234 

Identification of causal links between diseases and genes related to the IL6 receptor 235 

We aimed to apply our proposed approach to a specific case example. Using the causal gene 236 

prioritization and GWAS datasets described above, we extracted all disease GWAS for which IL6, IL6R, or 237 

IL6ST were predicted to be causal. We predicted directionality of effect of gene expression on disease 238 

risk by MR as above using a threshold of q-value < 0.05. We generated local association of plots molQTL 239 

and GWAS using LocusZoom[83]. We performed fine-mapping of IL6ST genetic variants associated with 240 

polymyalgia rheumatica using SuSIE[84] as previously described for FinnGen[7].  241 

 242 

RESULTS 243 

Prioritization of putative causal genes in thousands of GWAS 244 

We aimed to prioritize causal genes across 4,611 GWAS from 3 different sources (Table 1): UK Biobank 245 

(UKB)[45], FinnGen release 10 (R10), and meta-analyses of UK Biobank, FinnGen R10, and Estonian 246 

biobank.[6]  For simplicity, we refer to both single studies and meta-analyses as GWAS throughout the 247 

manuscript. While molecular QTLs (molQTL) such as expression quantitative trait loci (eQTL) have been 248 

used previously to prioritize causal genes, they are often pleiotropic with the same variant associated 249 

with multiple genes within the same locus.[26, 32, 33]  Additional genomic information such as the ABC 250 

model have been shown to increase performance to identify causal genes, in particular when selecting 251 

genes with the highest ABC score (ABCmax).[41]  Therefore, we derived a ranking scheme to prioritize 252 

genes using different features including ABC, molQTL, presence of an associated coding or gain or loss of 253 
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function (GoLoF) variants, and distance to lead variant (Figure 1A, methods). We integrated 110 molQTL 254 

datasets from 26 studies using MR to infer causality and directionality of gene expression on disease 255 

risk. We also performed colocalization analysis to confirm that both GWAS or meta-analyses and molQTL 256 

signals shared at least one causal variant. Top ranking genes were selected as those that either 257 

contained an associated lead coding variant or were supported by both ABCmax and colocalization 258 

across >2 cell types or tissues. We did not include distance to lead variant for higher ranks because we 259 

wanted to first prioritize genes for which we could identify potential biological mechanisms. However, 260 

for loci without such evidence, or in cases where multiple genes showed identical ranks, the nearest 261 

gene to the lead variant was selected as the putative causal gene if it was among the best candidates. 262 

Overall, between 1.1 and 1.4 genes were prioritized per locus (before breaking ties with the nearest 263 

gene), with 17-49% of loci supported by molQTL colocalization or coding variants (Table 1). 264 

Enrichment of genomic features for gold standard genes 265 

Comparing the enrichment of different genomic features alone for curated gold standard genes[26], we 266 

found a strong enrichment for genes supported by ABCmax with lead variant (Odds ratio (OR)=8.0-18.7, 267 

P=0.0002-4x10
-6

) (Additional file 1: Figure S1; Additional file 2: Table S1). molQTL colocalization also 268 

enriched for gold standard genes (colocalization H4 posterior probability (PP) > 95%, OR=3.4-17.7, 269 

P=0.001-2x10
-12

). However, the strongest enrichment was generally observed for genes with associated 270 

lead coding variants[47] (OR>36.2, P=0.0002-2x10
-10

) and the nearest gene (OR=17.7-38.7, P=3x10
-9

-271 

1x10
-25

). The strong enrichment for nearest genes is expected given that the gene closest to the lead 272 

variant is often the causal gene. In addition, several of the gold standard genes have been selected 273 

because they are supported by coding variants or tend to fall in the center of GWAS peaks and have 274 

been investigated more closely[26]. However, when using these features in combination, we found that 275 

our ranking approach performed well and generally better than selecting the nearest gene alone, with a 276 
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mean increase in F1 score of 0.08 (-0.03 – 0.23) (Additional file 1: Figure S2-S3; Additional file 2: Table 277 

S1).  278 

Gain and Loss of function variants identify genes linked to monogenic disorders 279 

Integrating information about GoLoF variants retrieved variants linked to monogenic disorders including 280 

PSEN1 with Alzheimer’s disease (AD)[85] (rs764971634, p.Ile437Val, P=2x10
-12

), SQSTM1 and Paget’s 281 

disease[86] (rs104893941, p.Pro392Leu, P=6x10
-11

 ), and HFE and disorders of iron metabolism[87] 282 

(rs1800562, p.Cys282Tyr, P=1x10
-178

) (Figure 1B; Additional file 2: Table S3). We also identified 283 

protective GoLoF variants such as APP p.Ala673Thr (rs63750847, P=7x10
-11

) reducing odds of developing 284 

AD[88], and ALOX15 p.Thr560Met protecting against nasal polyps (rs34210653, P=2x10
-15

)[89]. Of 208 285 

genes prioritized with at least one predicted GoLoF variant, 179 had at least one disease mutation 286 

reported in the Human Gene Mutation Database (HGMD)[48] (OR = 2.3 [1.5-3.6], P=5x10
-6

). Potential 287 

novel associations included COLGALT2 and arthrosis (rs35937944, p.Tyr212Cys, P=2x10
-14

), LRG5 and 288 

carcinoid syndrome (rs200138614, p.Cys712Phe, P=4x10
-9

), and GREB1 and female infertility 289 

(rs755857714, p.Arg1339His, P=4x10
-9

).  290 

Colocalizing molQTL link genes to diseases and pathogenic tissues 291 

Prioritized candidate causal genes showed enrichment in disease colocalizing molQTLs related to their 292 

known function. For instance, colocalizing molQTL for prioritized genes supported associations with 293 

disease categories such as EDNRA, LPA and FGF5 with cardiovascular diseases (P<2x10
-16

), TSLP, IL33 and 294 

CHRNA3 and respiratory system diseases (P<7x10
-21

), and Il23R, TYK2, IL10 and immune system disease 295 

(P<5x10
-11

) (Figure 1C-D; Additional file 2: Table S4). In addition, we found an enrichment of disease 296 

colocalizing eQTLs in kidney cortex for FGF5, a gene expressed during kidney development and 297 

associated with kidney function (P=4x10
-15

)[90] (Figure 1E; Additional file 2: Table S5). Other examples 298 

include artery eQTLs for the cardiovascular diseases associated gene PHACTR1[91] (P=1x10
-9

); the 299 
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lysosomal acid lipase (LIPA) gene and microglia eQTLs (P=1x10
-10

); and the ABO with plasma pQTL 300 

(P=1x10
-20

). Finally, we confirmed that enriched colocalizing eQTLs matched the expected pathogenic 301 

tissues and cell-types of different disease categories (Figure 1F; Additional file 2: Table S6). For instance, 302 

after grouping eQTL of similar tissues and cell types together, we found a strong enrichment of genes 303 

with artery and heart eQTL colocalizing with cardiovascular disease GWAS (P< 9<x10
-17

). We found 304 

similar enrichment for T cell and thyroid eQTLs in endocrine system diseases (P<3x10
-8

); blood, 305 

lymphoblastoid cell line, monocytes, neutrophil, and T cells with immune system diseases (P<4x10
-6

); 306 

and fibroblasts and musculoskeletal diseases (P<4x10
-6

). Treating each eQTL data separately revealed 307 

additional associations with tissues or cell subsets including brain cortex and diseases of the visual 308 

system (P<6x10
-6

); cerebellum and nervous system diseases (P<4x10
-6

); regulatory T cells and endocrine 309 

system diseases (P<9x10
-9

); and T helper 17 cells and digestive system diseases (P<5x10
-7

) (Additional 310 

file 1: Figure S4; Additional file 2: Table S7). Overall, the analyses illustrate that in contrast to the 311 

nearest gene approach, inclusion of eQTL can help identify potential pathogenic cell types and tissues. 312 

Prioritized genes increase clinical trial probability of success 313 

Building on these results, we tested whether we could use molQTL information of putative causal gene 314 

to drive drug repurposing opportunities or identify potential safety concerns. First, we evaluated 315 

whether the prioritized genes enriched for therapeutic targets with clinical trial success. Clinical trial 316 

information was retrieved from the Citeline Pharma Intelligence project.  Consistent with previous 317 

observations, we found that targets with clinical trial success were enriched for features such as 318 

presence of coding variation (Figure 2A, Additional file 2: Table S8). For example, gain or loss of 319 

function lead variants demonstrated some of the best predictive performances, in particular using 320 

genetic evidence from the UKB EUR ICD10 (Phase I: Risk ratio (RR)=1.23, P=0.104; Phase II: RR=1.33, 321 

P=0.0688; Phase III: RR=2.08, P=0.0023; Approved: RR=2.67, P=0.00378). Similar results were observed 322 

across all studies. Use of epigenetic evidence also improved predictions, for example, lead SNPs linked 323 
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by the ABC model in UKB EUR ICD10 (Phase I: RR=1.33, P=0.00484; Phase II: RR=1.4, P=0.0162; Phase III: 324 

RR=2.15, P=0.000304; Approved: RR=2.82, P=0.000622). However, molQTL information alone did not 325 

enrich as much for clinical trial success, for example, colocalizing molQTL with posterior probability > 326 

80% in UKB EUR ICD10 (Phase I: RR=1.22, P=0.013; Phase II: RR=1.18, P=0.154; Phase III: RR=1.43, 327 

P=0.0581; Approved: RR=1.71, P=0.044). While the overall prioritized genes did not show the strongest 328 

enrichment (UKB ICD10 Phase I: RR=1.24, P=0.0006; Phase II: RR=1.17, P=0.0.08; Phase III: RR=1.51, 329 

P=0.003; Approved: RR=1.60, P=0.03), this was likely due to the inclusion of genes with no supportive 330 

evidence other than distance (Figure 2A). Indeed, we found that “High” and “Very High” prioritization 331 

ranks were more predictive of successful clinical trial progression (higher risk ratios) than lower-ranking 332 

genes, especially at later clinical trial phases or approval (High + Very high ranks in UKB ICD10 Phase I: 333 

RR=1.16, P=0.103; Phase II: RR=1.18, P=0.174; Phase III: RR=1.78, P=0.00149; Approved: RR=2.06, 334 

P=0.00637) (Figure 2B; Additional file 2: Table S9).  In our analysis, distance itself was seldom predictive 335 

or clinical trial success (UKB ICD10 Phase I: RR=1.18, P=0.03; Phase II: RR=1.06, P=0.0.61; Phase III: 336 

RR=1.24, P=0.61; Approved: RR=1.38, P=0.19) especially after excluding loci potentially driven by coding 337 

variants (Figure 2B).   338 

Inferred directionality from GWAS recapitulate drug mechanisms of action 339 

To understand whether inferred directionality could inform on clinical trial success, we first investigated 340 

the consistency between the direction of effect of coding variants and drug mechanism of action (MoA) 341 

(methods). When considering prioritized genes with lead low-frequency coding variants (minor allele 342 

frequency < 0.05) and clinical trials phase II and above, between 83% and 96% of showed consistent 343 

effect between the minor allele and drug MoA (Fisher P=0.08-6x10
-8

, Figure 2C). We then asked whether 344 

molQTL could similarly inform on directionality. Using prioritized gene-disease pairs supported by MR (q-345 

value < 0.05) and colocalization (PP > 80%), we inferred the direction of effect when the predicted MR 346 

effect was consistent across >75% of molQTL datasets for a given gene. This was the case for most gene-347 
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disease pairs (Additional file 1: Figure S5). Again, direction of effect was generally in agreement with 348 

drug MoA (64-81% agreement, Fisher P=4x10
-8

-5x10
-41

, Figure 2D). Consistency increased when 349 

considering only approved drugs (78-93% agreement, Fisher P=3x10
-5

-1x10
-23

, Additional file 1: Figure 350 

S6). Overall, these data suggest that molQTL can be used to inform on drug MoA.  351 

Causal gene predication from GWAS identifies a link between IL6ST and polymyalgia rheumatica 352 

Finally, we applied our causal gene prioritization approach to a specific use case, that is identifying 353 

potential new indications for drugs targeting the IL6 receptor such as Sarilumab and Tocilizumab, both 354 

drugs approved for rheumatoid arthritis. We extracted diseases prioritized by our approach for genes 355 

related to the receptor, namely IL6, IL6ST, and IL6R.  We identified putative causal links between 356 

increased IL6 expression in CD16 monocytes and increased risk of varicose veins, ischemic heart disease, 357 

coronary atherosclerosis, and atrial fibrillation (MR beta > 0), but decreased risk of asthma and allergy 358 

(MR beta < 0) (Additional file 1: Figure S7; Additional file 2: Table S10). eQTL of IL6 in whole blood also 359 

supported these disease associations, albeit with an opposite predicted direction of effect. Similarly, 360 

IL6R expression in multiple tissues including artery, colon, and esophagus was associated with increased 361 

risk of coronary revascularization, coronary atherosclerosis, and abdominal aortic aneurysm (AAA), but 362 

lower risk of lower respiratory diseases and atopic dermatitis. Again, we observed opposite direction of 363 

effect predicted by MR using monocyte or macrophage eQTL as exposure. The associations with 364 

coronary atherosclerosis and AAA were further driven by a lead coding variant in IL6R, rs2228145 365 

(Asp358Ala, Additional file 2: Table S10). Finally, we found that increased IL6ST expression in T cells and 366 

whole blood is predicted to increase the risk of rheumatoid arthritis, systemic connective tissue 367 

disorders, polyarthropathies, other arthritis, autoimmune diseases, and polymyalgia rheumatica (Figure 368 

3A). The later association has not been reported previously to our knowledge. These associations were 369 

driven by rs7731626 (SuSIE fine-mapping probability >0.99). This variant is located within an intron of 370 

ANKRD55 and colocalizes with eQTLs for both ANKRD55 and IL6ST (PP > 80%). However, this variant also 371 
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overlaps an enhancer that shows highest ABC score for IL6ST for genes in the region, suggesting the 372 

latter is the causal gene, in line with previous studies[92, 93] (Figure 3B). Overall, our approach was able 373 

to capture known associations with IL6-R related genes and identified a new association between IL6ST 374 

and polymyalgia rheumatica. 375 

 376 

DISCUSSION 377 

We prioritized disease-associated genes across 4,611 GWAS and meta-analyses from biobank studies 378 

using a combination of MR with molQTL, colocalization analysis, variant effect prediction, and epigenetic 379 

annotations (ABC model). This approach allows the use of molQTL to infer directionality of gene 380 

expression on disease risk, while improving the causal gene prediction compared to using molQTL alone.  381 

Based on combination of these features, we used a ranking approach to prioritize genes within loci and 382 

showed that this approach enriched for gold standard genes. We recover known coding variant 383 

associations, including rare variants in genes linked to monogenic disorders such as PSEN1 and APP1 and 384 

Alzheimer’s disease, and SQSTIM1 and Paget’s disease (Figure 1B). Genes prioritized by molQTL also 385 

show enrichment in disease categories related to their function with pathogenic tissue contexts (Figure 386 

1C-F). Of note, when multiple genes show evidence of colocalization within the same locus, the addition 387 

of epigenetic (ABCmax) information can help prioritize one gene over the others. We note as an 388 

example the association of variants with polymyalgia rheumatica at the ANRKD55 locus where this gene 389 

would be prioritized using the nearest gene approach. Whereas colocalization alone did not identify a 390 

single causal gene, combination of colocalization and ABCmax identified IL6ST as the putative causal 391 

gene. To our knowledge, this is the first report of a GWAS association between IL6ST and polymyalgia 392 

rheumatica. IL6ST encodes a protein involved in signal transduction for the IL6 receptor pathway. 393 
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Inhibitors of the IL6 receptor have recently shown success in clinical trials for this indication leading to a 394 

recent approval by the FDA.[94]  395 

In line with previous studies[11, 12], we show that therapeutic targets with genetic evidence are 396 

enriched at later clinical trial phases and as targets of approved drugs. In our analysis, using the nearest 397 

gene information alone was not strongly predictive of clinical trial success. The most predictive features 398 

were coding variant annotations and ABC maps. While the later performs well to link causal genes to 399 

diseases, it does not provide information about directionality. We used coding variants and MR with 400 

molQTL to infer directionality of a target on disease risk. Both approaches were generally consistent 401 

with drug MoA matched for the target and disease. These data support that molQTL can be used to 402 

predict drug MoA. However, while we found that in general eQTL were consistent across cell type and 403 

tissues for a given gene and disease (Additional file 1: Figure S5), we note that this isn’t always the case. 404 

This is exemplified by the IL6-R case study, where all three queried gene displayed inconsistent direction 405 

of effect predicted by MR depending on the molQTL dataset. Future improvement of this approach 406 

should consider prior knowledge on pathogenic cell types or tissues to infer directionality in relevant 407 

contexts. Overall, our analysis suggests that using features such as ABCmax in combination to molQTL 408 

can increase the performance of causal gene inference approaches while informing on directionality 409 

which is crucial for translating GWAS hits to therapies. 410 

We note that this study has some limitations. First, we did not perform fine-mapping analyses nor 411 

colocalization approaches that use linkage disequilibrium references. Indeed, we opted to avoid 412 

methods that do not rely on LD references as we used GWAS from various sources, including meta-413 

analyses where these methods may not be well calibrated.[95] Nevertheless, using fine-mapping 414 

information likely would improve performance, especially in cases where there are multiple causal 415 

variants underlying molQTL or GWAS signals, and would reduce LD contamination[30, 96]. In addition, 416 

we performed MR and colocalization analyses as separate steps. Tools that use a combination of these 417 
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approaches have been recently developed, which are likely to perform better in case of allelic 418 

heterogeneity[97].  This is evident in the case of IL6ST, where MR using eQTL from whole blood from 419 

different sources (GTEx, eQTLGen) lead to inversed estimate of directionality (Figure 3A). This difference 420 

was due to different instrument used as only one genetic instrument was included in GTEx whereas 5 421 

independent instruments were included for eQTLGen. We also assume that there is one causal gene per 422 

locus, although it is possible that multiple genes contribute to disease risk. Finally, integrating other 423 

sources of molQTL such as metabolite or splice QTL could help identify putative causal genes as coding 424 

variants and eQTL only cover a fraction of loci (18-45% in this study).[98] While these approaches can be 425 

useful to nominate candidate causal genes and their relationship to diseases, proper functional 426 

validation remains of high importance.  427 

 428 

CONCLUSIONS 429 

We nominated putative causal genes across 4,611 GWAS from biobank studies and public resources by 430 

integrating variant annotations as well as molecular QTL. We show that these prioritized genes recover 431 

known biological relationships in terms of disease and tissue enrichment and are enriched for 432 

therapeutic targets that succeeded in clinical trials. We show that directionality predicted by molQTL 433 

and coding variants generally recapitulate drug mechanism of actions. Finally, we applied this approach 434 

to genes related to the IL6 receptor and identified a novel association between IL6ST and polymyalgia 435 

rheumatica supporting the recent approval of Sarilumab for this indication.  436 

 437 

ABBREVIATIONS 438 
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AAA: abdominal aortic aneurysm; ABC: Activity-by-contact; CI: Confidence interval; EFO: Experimental 439 

factor ontology; eQTL: Expression quantitative trait loci; EstBB: Estonian Biobank; GWAS: Genome-wide 440 

association study; GoF: Gain of function; GoLoF: Gain or loss of function; HLA: Human leukocyte antigen; 441 

iPSC: Induced Pluripotent Stem Cells; LCL: Lymphoblastoid cell lines; LD: Linkage disequilibrium; LoF: 442 

Loss of function; MAF: Minor allele frequency; MoA: Mechanism of action; MR: Mendelian 443 

randomization; molQTL: Molecular quantitative trait loci; OR: Odds ratio; pQTL: Protein quantitative 444 

trait loci; PP: posterior probability; QTL: Quantitative trait loci; RR: Risk ratio; UKB: UK Biobank; VEP: 445 

Variant effect predictor. 446 
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FIGURE LEGENDS447 

448 

3 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 1, 2023. ; https://doi.org/10.1101/2023.11.01.23297926doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297926
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 

 

Internal

Figure 1. Characteristics of prioritized genes via gain or loss of function variants and molQTLs. A) 449 

Features used to prioritize genes in GWAS loci. Genes are ranked based on a combination of features 450 

including molQTLs, activity-by-contact (ABC) maps, and variant annotations, including variant effect 451 

predictions (VEP) and loss-of-function (LoF) and gain-of-function (GoF) predictions.  B) Disease-452 

associated predicted GoF and LoF variants captures disease associations with high effect sizes. Lead GoF 453 

and LoF variant with GWAS P-value < 5x10
-8

 are reported in the figure. Effect of the risk allele (odds 454 

ratio) is reported on the y-axis. The x-axis corresponds to the frequency of the risk allele. C) Disease 455 

category overrepresentation for single genes predicted to be causal.  Each dot represents a different 456 

associated disease category. Top 30 enrichments are shown. D) Same as B, but filtered for genes 457 

predicted to be causal and enriched in “Immune system diseases”.  Each dot represents a different 458 

associated disease category. Top 30 genes are shown. E) Overrepresentation of eQTL colocalization for 459 

single genes predicted to be causal. Gene-tissue pairs are included only if the gene has the highest rank 460 

in a locus for a given associated disease. Top 30 colocalized eQTLs are shown. Each dot represents a 461 

different enriched tissue or cell-type.  F) Enriched colocalizing cell types and tissues by disease 462 

categories. Only disease categories and tissues or cell types with at least one significant enrichment are 463 

reported in the heatmap. Enrichment P-values are calculated using Fisher exact test, testing for the 464 

enrichment of genes with eQTL colocalizing with GWAS belonging to specific disease categories as in 465 

[79]. Tissues and cell-types were collapsed into broader categories before testing for enrichment. For 466 

example, tibial, coronary, and aorta arteries were grouped into “artery”.  467 

molQTL: Molecular QTL; ABC: Activity-By-Contact; LCL: Lymphoblastoid cell lines; iPSC: induced 468 

Pluripotent Stem Cells 469 

.: Adjusted P<0.1; *: Adjusted P<0.05; **: Adjusted P<0.01; ***: Adjusted P<0.001 470 

  471 
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472 

Figure 2. Prioritized genes predict clinical trial success. Enrichment of targets of approved drugs or 473 

drugs in clinical trials (phase I-III) using genetic evidence from FinnGen, UK Biobank, and biobank meta-474 

analyses prioritizing genes using colocalization (posterior probability of colocalization [H4] > 80% or > 475 

95%), predicted gain of function (GoF) or loss of function (LoF) variants[47], genes with highest 476 

prioritization rank, ABC score for lead variant, or nearest gene excluding loci with associated coding 477 

variants. B) Enrichment of targets of approved drugs or drugs in clinical trials (phase I-III) using causal 478 

gene prioritization ranks in FinnGen, UK Biobank, and biobank meta-analyses. C) Concordance between 479 

direction of effect of lead low-frequency coding variants on disease risk, and drug mechanism of action 480 

5 
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(MoA) for targets in phase II clinical trials or above. We retrieved information about targets, clinical 481 

trials, and drug MoA from the Citeline Pharmacogenomics dataset. We connected this dataset to GWAS 482 

phenotypes using EFO codes and a semantic similarity score > 0.7. We assume that low-frequency 483 

coding variants (minor allele frequency < 5%) are disruptive (LoF). Therefore a negative (protective) 484 

direction of effect would translate into inhibition or antagonism being beneficial (and vice-versa).  D) 485 

Concordance between the predicted impact of gene expression on disease risk predicted by mendelian 486 

randomization (MR), and drug MoA for targets in phase II clinical trials or above. Information about 487 

targets, clinical trials, and drug MoA were collected from the Citeline Pharmacogenomics dataset and 488 

connected to GWAS phenotypes using EFO codes and a semantic similarity score > 0.7. The direction of 489 

effect of gene expression on disease risk was assessed by MR using molQTL as exposure (q-value < 0.05). 490 

Only molQTL colocalizing with local GWAS signal (H4 posterior probability > 80%) were included. A 491 

consensus direction was inferred if the MR direction of effect was consistent across > 75% of molQTL for 492 

a given gene and disease GWAS. A negative consensus MR direction suggests that increased gene 493 

expression leads to decreased disease risk. Therefore, an activator or agonist drug targeting this gene 494 

would be beneficial. Conversely, a positive consensus MR direction suggests that increased gene 495 

expression increases disease risk, and an inhibitor or antagonist drug would be beneficial. Reported P-496 

values were calculated by Fisher exact test. 497 

.: P<0.1; *: P<0.05; **: P<0.01; ***: P<0.001 498 

  499 
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500 

Figure 3. IL6ST is predicted to be causal for rheumatoid arthritis and polymyalgia rheumatica. A) 501 

Diseases associations supported by MR, colocalization and ABC. thows tissues and cell-types with 502 

significant MR (q-value < 0.05) using IL6ST eQTL as exposure and diseases as outcome (red: positive 503 

effect size estimate [MR beta]; blue: negative effect size estimate). The size of the dots represents 504 

absolute effect size. Disease-eQTL pairs with a colocalization posterior probability > 80% are highlighted 505 

with a dark border. B) LocusZoom[83] plot showing the top association for polymyalgia rheumatica at 506 

the ANKRD55-IL6ST locus.  Both IL6ST and ANKRD55 eQTL colocalize with the polymyalgia rheumatica 507 

signal, but IL6ST has the highest ABC score. 508 

509 

7 
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TABLES 510 

Table 1. GWAS included in this study. The table reports the maximum GWAS sample size for each study, 511 

the total number of GWAS with at least one associated gene. The number of loci with at least one 512 

variant with GWAS P<1x10
-6

. To calculate the number of loci, we defined 250kb regions each side of the 513 

lead variant. Overlapping regions were then merged. The table reports the total number of non-514 

overlapping regions. The mean number of prioritized genes corresponds to the average number of 515 

genes prioritized across each GWAS. The mean number of prioritized gene per locus correspond to the 516 

average number of genes with the highest scores in a locus. For the analyses reported throughout this 517 

manuscript, ties are broken using the shortest distance to the lead variant. Finally, the last column 518 

reports the average number of prioritized gene supported by coding variants or molQTL colocalization. 519 

Study ID Max 

sample 

size 

Numbe

r of 

GWAS 

Mean N 

loci 

(P<1x10
-

6
) 

Mean 

N 

priorit

ized 

genes 

Mean N 

prioritized 

genes per 

locus 

Mean N prioritized 

genes supported by 

molQTL or coding 

variants  

FinnGen R10 412,181 2,297 16.36 22.86 1.18 0.22 

FinnGen, UK 

biobank, Estonian 

biobank meta-

analysis (R10) 

1,073,9

98 95 123.44 183.59 1.38 0.45 

UKBB pan ICD-10 

(European) 420,531 898 9.01 10.83 1.14 0.17 

UKBB pan 42,0531 1,321 10.52 13.11 1.15 0.19 
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phecodes 

(European) 

molQTL: molecular QTL; N: Number520 
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