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Abstract 

Heritable diseases often manifest in a highly tissue-specific manner, with different 

disease loci mediated by genes in distinct tissues or cell types. We propose Tissue-

Gene Fine-Mapping (TGFM), a fine-mapping method that infers the posterior probability 

(PIP) for each gene-tissue pair to mediate a disease locus by analyzing GWAS 

summary statistics (and in-sample LD) and leveraging eQTL data from diverse tissues 

to build cis-predicted expression models; TGFM also assigns PIPs to causal variants 

that are not mediated by gene expression in assayed genes and tissues. TGFM 

accounts for both co-regulation across genes and tissues and LD between SNPs 

(generalizing existing fine-mapping methods), and incorporates genome-wide estimates 

of each tissue’s contribution to disease as tissue-level priors. TGFM was well-calibrated 

and moderately well-powered in simulations; unlike previous methods, TGFM was able 

to attain correct calibration by modeling uncertainty in cis-predicted expression models. 

We applied TGFM to 45 UK Biobank diseases/traits (average N = 316K) using eQTL 

data from 38 GTEx tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic 

elements per disease/trait, of which 11% were gene-tissue pairs. Implicated gene-tissue 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


 2 

pairs were concentrated in known disease-critical tissues, and causal genes were 

strongly enriched in disease-relevant gene sets. Causal gene-tissue pairs identified by 

TGFM recapitulated known biology (e.g., TPO-thyroid for Hypothyroidism), but also 

included biologically plausible novel findings (e.g., SLC20A2-artery aorta for Diastolic 

blood pressure). Further application of TGFM to single-cell eQTL data from 9 cell types 

in peripheral blood mononuclear cells (PBMC), analyzed jointly with GTEx tissues, 

identified 30 additional causal gene-PBMC cell type pairs at PIP > 0.5—primarily for 

autoimmune disease and blood cell traits, including the biologically plausible example of 

CD52 in classical monocyte cells for Monocyte count. In conclusion, TGFM is a robust 

and powerful method for fine-mapping causal tissues and genes at disease-associated 

loci. 

 

Introduction 

Heritable diseases often manifest in a highly tissue-specific manner, motivating intense 

efforts to elucidate tissue-specific mechanisms of disease1. Previous studies have 

identified disease-critical tissues/cell-types based on genome-wide patterns2–11, and 

have deeply dissected a limited number of GWAS loci12–16. However, different GWAS 

loci may be mediated by different tissues, motivating genome-wide efforts to fine-map 

causal tissues and genes at individual GWAS loci.  

 

Existing approaches, including colocalization17–19 and transcriptome wide association 

studies (TWAS)20–22, have implicated disease genes via the integration of GWAS data 

with expression quantitative trait loci (eQTLs) while considering the effect of each gene-
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tissue pair on disease in isolation. However, it is likely that most of these disease-

implicated genes are not actually causal in the analyzed tissue; analogous to non-

causal tagging variants implicated by linkage disequilibrium (LD) between variants23, 

non-causal gene-tissue pairs can be implicated by correlations with causal gene-tissue 

pairs (involving a different gene and/or different tissue)11,22,24–27. In addition, false-

positive gene-tissue pairs can arise from correlations with non-mediated genetic 

variants, i.e., variants whose causal effects are not mediated by assayed expression 

levels22,27,28. Previous fine-mapping approaches such as FOCUS24 and cTWAS27 have 

proven valuable in disentangling causal effects across correlated genes in a single 

tissue, but have not considered causal gene-tissue pairs. 

 

Here, we introduce a new method, Tissue-Gene Fine-Mapping (TGFM), that infers the 

posterior inclusion probability (PIP) for each gene-tissue pair to mediate a disease 

association at a given locus; TGFM also assigns PIPs to causal genetic variants whose 

effects are not mediated by gene expression in assayed tissues and genes. TGFM 

models both gene-tissue pairs (using cis-predicted expression20,21) and non-mediated 

genetic variants as potential causal genetic elements, and accounts for both 

correlations in cis-predicted expression across genes and tissues and LD between 

genetic variants, generalizing existing fine-mapping methods23,24,27,29–31. TGFM 

incorporates genome-wide estimates of each tissue’s contribution to disease as tissue-

level priors and employs a sampling approach to account for uncertainty in cis-predicted 

gene expression. We validated TGFM using extensive simulations with real genotypes, 

including comparisons to coloc17,FOCUS24, and cTWAS27. We applied TGFM to 45 UK 
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Biobank traits32 using eQTL data from 38 GTEx tissues25 and 9 fine-grained single-cell 

PBMC cell-types33. 

 

Results 

Overview of TGFM 

TGFM estimates the posterior inclusion probability (PIP) for each genetic element 

(gene-tissue pair or genetic variant) to have a non-zero causal effect on disease, in a 

model that includes mediated causal effects of each gene-tissue pair (via the cis-genetic 

component of expression of a given gene in a given tissue) and non-mediated causal 

effects of each genetic variant: 

𝑌 =##𝑋𝛿!"𝛼!"
"

+ 𝑋𝛽
!

+ 𝜖																																																																																																																	(1) 

where 𝑌 denotes phenotypes, 𝑔 indexes genes,	𝑡 indexes tissues, 𝑋 is the matrix of 

genotypes, 𝛿!" is the vector of causal cis-eQTL effect sizes of each variant on gene 

expression in gene 𝑔 and tissue 𝑡 (thus 𝑋𝛿!" is the cis-genetic component of gene 

expression in gene 𝑔 and tissue 𝑡), 𝛼!" denotes the (scalar) effect of cis-genetic 

expression in gene 𝑔 and tissue 𝑡 on the disease or trait, 𝛽 is the vector of non-

mediated causal effects of each genetic variant on the disease or trait, and 𝜖 denotes 

environmental noise. We caution that, analogous to previous studies, inference of 

causal genetic elements relies on the assumption that all causal genetic elements have 

been assayed, which may not be true in practice (see Discussion); we use the word 

“causal” for simplicity, with this caveat in mind. 
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TGFM estimates the PIP of each genetic element by generalizing the Sum of Single 

Effects (SuSiE)30,31 fine-mapping method to include both gene-tissue pairs and genetic 

variants; gene-tissue pairs are included via cis-predicted expression20,21 (using an 

external eQTL data set such as GTEx25 to build prediction models), which is an 

approximation to true cis-genetic expression (Methods). This approach allows for fine-

mapping multiple causal genetic elements in a given locus, inferring causal effects 

underlying both marginal GWAS34 and marginal TWAS20–22 (i.e., the association 

between cis-predicted expression of a single gene-tissue pair and disease) associations 

by accounting for correlations between gene-tissue pairs due to co-regulation across 

genes/tissues11,22,24–27, correlations between genetic variants due to LD23, and/or 

correlations between gene-tissue pairs and genetic variants due to the inclusion of a 

genetic variant in a model of cis-predicted gene expression22,27,28. TGFM employs a 

sampling approach to account for uncertainty in cis-predicted expression, avoiding false 

positives that arise from noisy estimation of cis-genetic expression.  

 

In detail, TGFM consists of four steps. In step 1, we apply SuSiE to perform eQTL fine-

mapping of each gene-tissue pair in the external gene expression data set (estimating a 

posterior distribution of the causal cis-eQTL effect sizes for each gene-tissue pair). In 

step 2, we randomly sample 100 cis-predicted expression models for each gene-tissue 

pair from the posterior distributions of causal cis-eQTL effect sizes estimated in step 1 

(Methods). In step 3, we apply SuSiE to perform disease fine-mapping in the target data 

set (estimating the PIP of each genetic element) 100 times, iterating over the sampled 

cis-predicted expression models for each gene-tissue pair from step 2. In step 4, we 
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average the results of step 3 across the 100 disease fine-mapping runs. TGFM utilizes 

a custom implementation of the SuSiE algorithm that provides efficient estimation of 

PIPs across 100 parallel SuSiE runs that differ only in their cis-predicted expression 

models (Methods). TGFM inference requires only summary-level GWAS data31,35 

consisting of GWAS z-scores for each variant and in-sample LD between genetic 

variants, in addition to external eQTL data sets across tissues of interest. 

 

TGFM increases fine-mapping power by specifying tissue-specific prior probabilities for 

each genetic element in a locus that are informed by genome-wide data, analogous to 

functionally informed variant-level fine-mapping methods such as PolyFun36; TGFM 

assigns one prior causal probability 𝜋"	for each gene-tissue pair from tissue t and one 

prior causal probability 𝜋#$	for each non-mediated genetic variant. We estimate 𝜋"	and 

𝜋#$	in each disease/trait separately by iteratively running a computationally efficient 

approximation to TGFM (Methods), starting with flat priors and updating 𝜋"	 and 𝜋#$	at 

each iteration until convergence. When analyzing a given locus with TGFM, we 

normalize the prior causal probabilities to sum to 1, analogous to PolyFun36. We 

account for uncertainty in estimates of 𝜋" and 𝜋#$ by using genomic bootstrapping, 

randomly sampling 100 sets of values of 𝜋" and 𝜋#$ (one for each of the 100 disease 

fine-mapping runs in step 3) and averaging TGFM results across the random samples. 

 

We restrict cis-predicted expression models to cis-eQTLs within 500kb of each gene’s 

transcription start site (TSS). We only assign cis-predicted expression models to gene-

tissue pairs that are well-predicted by genetic variants, using the SuSiE “purity filter”30 
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(see Methods). We apply TGFM to fine-map any of the 2,682 overlapping 3Mb loci 

spanning the entire genome36 that contain at least 50 genetic variants and at least one 

genetic variant with marginal GWAS p-value less than 1e-5. Further details, including 

sampling cis-predicted expression models from SuSiE posterior distributions of causal 

cis-eQTL effect sizes, the custom implementation of the SuSiE algorithm providing 

efficient estimation of PIPs across 100 parallel SuSiE runs, and the computationally 

efficient approximation to TGFM used when estimating tissue-specific prior causal 

probabilities, are provided in the Methods section. We have released open-source 

software implementing TGFM (see Code availability), as well as posterior distributions 

of causal eQTL effect sizes across tissues and genes, and TGFM PIPs from this study 

(see Data availability). 

 

Simulations 

We performed simulations using real genotypes to assess the calibration and power of 

TGFM to identify causal tissues and genes underlying GWAS associations. We used 

real genotypes from unrelated UK Biobank (UKBB) British samples32 to simulate both 

gene expression phenotypes (for each gene-tissue pair) and quantitative trait 

phenotypes. Default simulation parameters were specified as follows: the gene 

expression sample size ranged from 300 to 1000, plus a simulation including tissues 

with unequal sample sizes (denoted as 100-300), approximately matching the upper 

and lower range of sample sizes in our analyses of GTEx tissues (see Methods); the 

quantitative trait sample size was set to 100,000 (disjoint from gene expression 

samples); we analyzed 426,593 SNPs and 1,976 genes on chromosome 1 (following 
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ref. 11); the number of tissues was set to 10, of which 2 were causal for the quantitative 

trait; the quantitative trait architecture was simulated to have average polygenicity37, 

consisting of 2,700 causal non-mediated variants and 300 causal gene-tissue pairs (150 

for each causal tissue) with the expected heritability per causal genetic element (non-

mediated variant or gene-tissue pair) set to 0.0001 (expected quantitative trait 

heritability of 0.3, 10% of which was mediated through gene expression, consistent with 

genome-wide estimates from MESC28); causal non-mediated variants were randomly 

selected with probability proportional to their expected per-variant heritability based on 

baseline-LD model annotations3,38–40 (estimated using S-LDSC3 applied to the UKBB 

trait White blood cell count) in order to make the simulations as realistic as possible; the 

genetic architecture of gene expression across tissues was specified following ref. 11: 

roughly, each heritable gene-tissue pair was randomly assigned 5 causal cis-eQTLs 

(expected per-SNP heritability: 0.015), 2 of the 5 causal eQTLs were specific to each 

tissue, and 3 of the 5 causal eQTLs were shared across tissues with effect size 

covariance set to mimic that of GTEx tissues25; and causal gene-tissue pairs were 

randomly selected from all genetically heritable genes (true cis-SNP-heritability > 0) in 

each of the causal tissues. Non-default simulation parameter values were also explored. 

We performed 100 independent simulations, and averaged results across simulations. 

Further details of the simulation framework are provided in the Methods section.  

 

We compared TGFM to three previously published methods, coloc17, FOCUS24, and 

cTWAS27. Briefly, coloc calculates the posterior probability of a shared causal variant 

between a GWAS disease/trait and a gene expression trait from a single gene-tissue 
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pair without considering correlations between genes or gene-tissue pairs. Both FOCUS 

and cTWAS assign PIPs for the expression of each gene in a given tissue to have non-

zero causal effect on disease, while modeling correlations between genes in that tissue 

but not modeling correlations between different tissues and not modeling uncertainty in 

cis-predicted expression. cTWAS additionally models correlations between genes and 

non-mediated genetic variants. Both FOCUS and cTWAS can naturally be extended to 

model correlations between all gene-tissue pairs (without modeling correlations 

between genes and non-mediated genetic variants, in the case of FOCUS); we refer to 

the resulting methods as FOCUS-TG and cTWAS-TG, respectively. (In contrast, coloc 

does not model correlations between genes, and cannot be extended in this way.) 

 

We first evaluated the calibration of TGFM, coloc, FOCUS, FOCUS-TG, cTWAS, and 

cTWAS-TG to fine-map causal gene-tissue pairs. Calibration was assessed using 

empirical false discovery rate (FDR), estimated as the proportion of false-positive gene-

tissue pairs among all gene-tissue pairs above a given PIP threshold, where a false-

positive gene-tissue pair is defined as not having a simulated causal effect on the trait. 

Following ref. 36, we assessed whether the empirical FDR is less than or equal to (1 – 

PIP threshold), a more conservative choice than (1 – average PIP) (which has been 

shown to be slightly mis-calibrated in previous fine-mapping simulations36,41; also see 

Methods and secondary analyses below). Results are reported in Figure 1a-b and 

Supplementary Table 1. TGFM produced well-calibrated PIPs at all eQTL sample sizes 

and PIP thresholds, with slightly increased false positive rates at lower eQTL sample 

sizes. In contrast, coloc, FOCUS, FOCUS-TG, cTWAS, and cTWAS-TG were poorly 
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calibrated across all PIP thresholds, even at large eQTL sample sizes. We attribute the 

superior calibration of TGFM over other approaches to its joint modeling of gene-tissue 

pairs and non-mediated variants, as well as its sampling procedure that accounts for 

uncertainty in genetically predicted gene expression (see secondary analyses below). 

Results were similar at other PIP thresholds (Supplementary Figure 1). 

 

We next evaluated the power of TGFM, coloc, FOCUS, FOCUS-TG, cTWAS, and 

cTWAS-TG to fine-map causal gene-tissue pairs. Results are reported in Figure 1c-d 

and Supplementary Table 2. TGFM was moderately well-powered to detect causal 

gene-tissue pairs at larger eQTL sample sizes, with power ranging from 0.03-0.16 

across eQTL sample sizes at a PIP threshold of 0.5. Other methods (coloc, FOCUS, 

FOCUS-TG, cTWAS, and cTWAS-TG) achieved higher power than TGFM, but this is 

largely moot due to the poor calibration of those methods (Figure 1a-b). At the same 

level of FDR, TGFM attained higher power than coloc, FOCUS, FOCUS-TG, cTWAS, 

and cTWAS-TG (Supplementary Figure 2). Results were similar at other PIP thresholds 

(Supplementary Figure 3). 

 

We compared the calibration and power of TGFM for fine-mapping causal gene-tissue 

pairs, genes, or non-mediated genetic variants. Gene PIPs were computed by 

aggregating gene-tissue PIPs across all gene-tissue pairs corresponding to the gene 

(defining a gene as causal if at least one corresponding gene-tissue pair is causal; 

Methods). A false-positive gene-tissue pair is defined as not having a simulated causal 

effect on the trait (see above), a false-positive gene is defined as not having a simulated 
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causal effect on the trait for any tissue, and a false-positive variant is defined as not 

having a simulated causal non-mediated effect on the trait and not being a causal eQTL 

variant for a causal gene-tissue pair (also see secondary analyses below); however, 

causal eQTL variants for a causal gene-tissue pair were not included as true positives in 

variant-level power computations. Calibration results for TGFM (Gene-Tissue), TGFM 

(Gene) and TGFM (Variant) are reported in Figure 2a-b and Supplementary Table 3. 

TGFM produced well-calibrated gene-level and variant-level PIPs. In contrast, gene-

level coloc, FOCUS, FOCUS-TG, cTWAS, and cTWAS-TG PIPs were poorly calibrated 

across all PIP thresholds even at large eQTL sample sizes (Supplementary Figure 4, 

analogous to Figure 1a-b). Results were generally similar at other PIP thresholds 

(Supplementary Figure 5), although TGFM (Variant) PIPs were slightly mis-calibrated at 

very high PIP thresholds (PIP=0.99), consistent with variant-level fine-mapping 

methods41. 

 

Power results for TGFM (Gene-Tissue), TGFM (Gene) and TGFM (Variant) are reported 

in Figure 2c-d and Supplementary Table 4. TGFM attained higher power to fine-map 

causal genes than causal gene-tissue pairs, which is expected as fine-mapping causal 

genes is an easier problem. Power for variant-level fine-mapping was invariant to eQTL 

sample size, such that variant-level fine-mapping was more powerful than gene-tissue 

or gene-level fine-mapping at smaller eQTL sample sizes—particularly at the stringent 

PIP>0.9 threshold, at which the latter were severely underpowered. Results were similar 

at other PIP thresholds (Supplementary Figure 6). 
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We performed 10 secondary analyses involving additional evaluations of TGFM, coloc, 

FOCUS, FOCUS-TG, cTWAS, and cTWAS-TG. First, we modified our calibration 

analyses to assess whether the empirical FDR is less than or equal to (1 – average 

PIP), a less conservative choice than (1 – PIP threshold) (ref. 36,41; see Methods). We 

determined that TGFM (Gene-Tissue) was slightly mis-calibrated only at small eQTL 

sample sizes, TGFM (Gene) was well-calibrated across all eQTL sample sizes and PIP 

thresholds analyzed, TGFM (Variant) was slightly mis-calibrated at high PIP thresholds 

regardless of eQTL sample size, and coloc, FOCUS, FOCUS-TG, cTWAS, and cTWAS-

TG were severely miscalibrated across all eQTL sample sizes and PIP thresholds 

analyzed (Supplementary Figures 1, 5). The slight miscalibration of TGFM (Gene-

Tissue) and TGFM (Variant) when using (1 – average PIP) is consistent with previous 

simulations of variant-level fine-mapping methods using polygenic trait 

architectures36,41. Second, we considered a simulation in which the number of causal 

eQTLs and the cis-heritability varied across gene-tissue pairs, so that for every gene the 

number of causal eQTLs and cis-heritability varies across tissues. Specifically, the 

number of causal eQTLs for a given gene-tissue pair was randomly selected to be 

between 3 and 7 (instead of fixed at 5 as in our primary simulations). TGFM remained 

well-calibrated, and attained comparable power relative to our primary simulation 

(Supplementary Figure 7). Third, we considered a simulation in which causal eQTLs are 

shared across nearby genes42 (and shared across tissues, as in our primary 

simulations). Specifically, in each simulation we randomly selected 250 pairs of genes 

with overlapping cis-windows (of 1,976 genes total) to have 2 shared causal eQTLs, 

with effect size covariance equal to the effect size covariance for shared causal eQTLs 
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across tissues for a single gene (as described above). TGFM remained well-calibrated, 

and attained comparable power relative to our primary simulation (Supplementary 

Figure 8). Fourth, we considered a simulation in which eQTLs for disease-causal genes 

(actually gene-tissue pairs) had lower eQTL effect sizes, thus explaining lower cis-

heritability, as may be expected due to selection26,28,43,44. Specifically, the expected per-

SNP heritability for a causal cis-eQTL of a causal gene-tissue pair was set to 0.01 (vs. 

0.015 for a causal cis-eQTL of a non-causal gene-tissue pair). TGFM became slightly 

mis-calibrated, however, TGFM’s calibration remained tolerable and notably superior to 

all other approaches (Supplementary Figure 9). As expected, TGFM attained decreased 

power, analogous to simulations with decreased eQTL sample size or decreased cis-

heritability. Fifth, we considered a simulation with a single causal tissue per trait (instead 

of 2 causal tissues). TGFM remained well-calibrated and attained slightly increased 

power, while other methods remained severely mis-calibrated (Supplementary Figures 

10, 11). Sixth, we restricted our evaluation of our primary simulations to loci containing 

at most 1 causal gene-tissue pair. TGFM remained well-calibrated, whereas coloc, 

FOCUS, and cTWAS were strongly mis-calibrated (Supplementary Figure 12); this 

demonstrates that the advantages of TGFM over other methods are not limited to 

identifying multiple causal gene-tissue pairs at a locus. Seventh, we considered a 

simulation with low eQTL sample size, equal to 100 in all tissues. TGFM became slightly 

mis-calibrated, however, TGFM’s calibration remained tolerable and notably superior to 

all other approaches (Supplementary Figures 13, 14; see Discussion for additional 

discussion of low eQTL sample size). Eighth, we ran TGFM at different simulated 

GWAS sample sizes ranging from 50,000 to 200,000 (instead of the default sample size 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


 14 

of 100,000). TGFM remained well-calibrated regardless of GWAS sample size but 

attained increased power at larger GWAS sample sizes (Supplementary Figure 15). 

TGFM fine-mapping power at PIP > 0.5 increased 2.0-fold when doubling the eQTL 

sample size vs. 1.2-fold when doubling the GWAS sample size (relative to an eQTL 

sample size of 500 and GWAS sample size of 100,000), suggesting that TGFM attains a 

greater benefit from increasing the eQTL sample size under our default parameter 

settings. Ninth, we ran TGFM at different values of heritability of gene expression, 

ranging from 0.05 to 0.1 (instead of the default value of 0.075). TGFM remained 

approximately well-calibrated regardless of gene expression heritability but attained 

increased power at larger values of gene expression heritability (Supplementary Figure 

16), analogous to the impact of varying eQTL sample size (Figure 2). Tenth, we 

performed an alternative calibration analysis of TGFM (Variant) where causal eQTL 

variants for causal gene-tissue pairs were considered false positives for variant-level 

calibration. TGFM (Variant) was mis-calibrated at small eQTL sample sizes and high 

PIP thresholds in this alternative calibration analysis (Supplementary Figure 17). The 

calibration worsened at small eQTL sample sizes, likely due to decreased power to 

detect causal gene-tissue pairs at small eQTL sample sizes, forcing the unmodeled 

gene-tissue pair effects to be captured by non-mediated variants. 

 

We performed 13 secondary analyses involving additional methods. First, we compared 

TGFM to two additional methods, JLIM45 and SMR (with or without the HEIDI filter)46; 

JLIM tests the existence of a shared causal variant between a GWAS disease/trait and 

a gene expression trait from a single gene-tissue pair, and SMR tests whether a 
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disease/trait is associated with a single gene-tissue pair because of shared causal 

variants. JLIM and SMR (with or without the HEIDI filter) were severely mis-calibrated, 

with high FDR at even the most stringent p-value thresholds (Supplementary Figure 2). 

Furthermore, TGFM attained higher power than JLIM and SMR (with or without the 

HEIDI filter) at the same level of FDR (Supplementary Figure 2). Second, we ran TGFM 

with a uniform prior (same 𝜋#$ and 𝜋"	for all tissues) instead of the default tissue-

specific priors inferred from genome-wide data. TGFM with a uniform prior remained 

well-calibrated (Supplementary Figure 18a-b) but suffered substantially reduced power 

(Supplementary Figure 18c-d), highlighting the benefit of tissue-specific priors informed 

by genome-wide data. Third, we ran TGFM with a uniform prior and a single cis-

predicted expression model (based on posterior mean causal cis-eQTL effect sizes) 

instead of averaging results across 100 sampled cis-predicted expression models. 

TGFM without sampling cis-predicted expression models suffered poor calibration, 

particularly at smaller eQTL sample sizes (Supplementary Figure 18a-b), highlighting 

the advantages of the sampling approach to account for uncertainty in cis-predicted 

expression. However, the calibration of this method was still better than the calibration 

of FOCUS-TG (Figure 1a-b), perhaps because the default version of FOCUS-TG does 

not account for non-mediated genetic variants (see below for analyses of non-default 

versions of FOCUS and FOCUS-TG that model non-mediated genetic effects via a 

single genotype intercept term shared across all variants); the calibration of this method 

was also slightly better than the calibration of cTWAS-TG (Figure1a-b), which does 

account for non-mediated genetic variants. Fourth, we ran TGFM using either 50 or 200 

posterior samples, instead of the default 100 posterior samples. TGFM performed 
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similarly at all of these values of the number of posterior samples drawn 

(Supplementary Figure 19). Fifth, we compared TGFM to a two-step fine-mapping 

approach that first infers the causal tissue and then performs traditional gene-level fine-

mapping in the inferred causal tissue. We inferred the causal tissue using the TGFM 

tissue-specific prior, and performed gene-level fine-mapping in the inferred causal tissue 

using either TGFM (applied to consider only a single tissue), coloc, FOCUS, or cTWAS; 

we refer to these two-step fine-mapping methods as two-step-TGFM, two-step-coloc, 

two-step-FOCUS, and two-step-cTWAS, respectively. TGFM attained superior 

calibration relative to two-step coloc, two-step-FOCUS, and two-step-cTWAS in both the 

primary simulation (two causal tissues) and the single causal tissue simulation (see 

above), and attained slightly improved calibration relative to two-step-TGFM at high PIP 

thresholds in the primary simulation (Supplementary Figures 20, 21). Sixth, as a special 

case of two-step fine-mapping methods, we considered a simulation with a single 

causal tissue that is known (in contrast to our single causal tissue simulation above) and 

compared TGFM (applied to consider only a single tissue) to coloc, FOCUS, and 

cTWAS. TGFM remained well-calibrated, whereas coloc, FOCUS, and cTWAS 

remained mis-calibrated (Supplementary Figure 22); coloc and FOCUS had 

substantially worse calibration than cTWAS, consistent with ref. 27; this implies that 

TGFM is an advance over previous methods even within the scope of traditional gene-

level fine-mapping. Eighth, we evaluated non-default versions of FOCUS and FOCUS-

TG that model non-mediated genetic effects via a single genotype intercept term shared 

across all variants. FOCUS and FOCUS-TG remained strongly mis-calibrated with the 

genotype intercept enabled (Supplementary Figure 23). Ninth, we investigated TGFM’s 
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ability to provide unbiased posterior estimates of the proportion of causal genetic 

elements (gene-tissue pairs or non-mediated variants) that are gene-tissue pairs, a 

parameter closely related to the proportion of disease heritability mediated by gene 

expression (estimated in ref. 28). We first calculated the proportion of fine-mapped 

genetic elements at various PIP thresholds that are gene-tissue pairs. This approach 

yielded either upward or downward biased estimates of the true proportion depending 

on the eQTL sample size and PIP threshold (Supplementary Figure 24a), reflecting 

differential discovery power of non-mediated variants and gene-tissue pairs as a 

function of both eQTL sample size and PIP threshold (Figure 2c-d). We next calculated 

the expected proportion of fine-mapped genetic elements that are gene-tissue pairs by 

summing PIPs across genetic elements. This approach yielded conservative estimates 

of the true proportion, becoming less conservative at larger eQTL sample sizes 

(Supplementary Figure 24b), suggesting that this statistic can provide a conservative 

lower bound on the true proportion of causal genetic elements that are gene-tissue 

pairs. Tenth, we assessed the unbiasedness of the prior causal probabilities inferred by 

the TGFM tissue-specific prior.  The prior causal probabilities for (gene-tissue pairs 

involving) causal tissues were approximately unbiased, but the prior causal probabilities 

for non-causal tissues and non-mediated variants were upwardly biased 

(Supplementary Figure 25). Eleventh, we examined the impact of mis-specified prior 

causal probabilities on TGFM fine-mapping calibration and power. Specifically, we 

scaled the prior causal probabilities for (gene-tissue pairs involving) non-causal tissues 

by 0.5 or 2.0, and independently scaled the prior causal probabilities for non-mediated 

variants by 0.5 or 2.0. TGFM calibration and power to fine-map gene-tissue pairs, 
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genes, and non-mediated variants was largely robust to these mis-specified prior causal 

probabilities (Supplementary Figures 26, 27). Twelfth, we investigated the calibration 

and power of inference of disease-critical tissues via the TGFM tissue-specific prior, 

using genomic bootstrap to assess significance (see Methods); although inference of 

disease-critical tissues is not a primary goal of TGFM (and there exist previous methods 

for inferring disease-critical tissues using eQTL data5,11), assessing the TGFM tissue-

specific prior is of interest. We determined that inference of disease-critical tissues via 

the TGFM tissue-specific prior was well-calibrated and well-powered (Supplementary 

Figure 28). Thirteenth, we compared TGFM (Variant) PIPs with variant-level PIPs 

inferred by SuSiE30,31. The variant-level PIPs were strongly correlated and consistent in 

magnitude, particularly after excluding from the analysis any variant that was correlated 

with a TGFM fine-mapped gene-tissue pair (Supplementary Figure 29). 

 

Tissue-gene fine-mapping of 45 diseases and complex traits  

We applied TGFM to fine-map tissues and genes for 45 diseases and complex traits 

from the UK Biobank (average N = 316K; previously analyzed with functionally informed 

variant-level fine-mapping36; Methods and Supplementary Table 5) using gene 

expression data from 47 GTEx tissues25, which were aggregated into 38 meta-tissues11 

(average N=259; Supplementary Table 6) to minimize eQTL sample size differences 

across tissues; below, we refer to these as “tissues” for simplicity. For each disease/trait 

we applied TGFM to 2,682 overlapping 3-Mb loci36 spanning 119,270 (protein-coding) 

gene-tissue pairs with cis-predicted expression models (3,139 genes per tissue on 

average, Supplementary Table 6; 13,700 unique genes) and 10,545,304 genetic 
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variants with MAF ≥ 0.005. We assigned a PIP to each gene-tissue pair, gene, and non-

mediated genetic variant using the locus in which the genetic element was most 

central36; the position of a gene was determined by its TSS. TGFM running times are 

reported in Supplementary Table 7. We have publicly released PIPs for all gene-tissue 

pairs, genes, and non-mediated variants for each disease/trait (see Data Availability). 

 

Results are summarized in Figure 3 (16 independent traits36), Supplementary Figure 30 

(all 45 traits), and Supplementary Table 8. Across all 45 traits, TGFM identified 711 

gene-tissue-trait triplets, 2,800 gene-trait pairs (aggregating gene-tissue PIPs across 

tissues; see above), and 5,893 non-mediated genetic variant-trait pairs at PIP > 0.5 (43 

gene-tissue-trait triplets, 382 gene-trait pairs, and 2,675 non-mediated genetic variant-

trait pairs at PIP > 0.9). The number of gene-tissue pairs with PIP > 0.5 ranged from 0 

(Number of children) to 56 (White blood cell count) across traits, and ranged from 0 

(coronary artery) to 197 (whole blood) across tissues. Of the 711 gene-tissue-trait 

triplets with PIP > 0.5, 180 (25%) had TWAS p-value > 0.05/119,270 = 4.2 × 10−7 (the 

Bonferroni significance threshold based on 119,270 gene-tissue pairs with cis-predicted 

expression models47) and 136 (19%) had no nearby variants in the same fine-mapping 

region with GWAS p-value ≤ 5 × 10−8. Of the 110,828 gene-tissue-trait triplets with 

TWAS p-value ≤ 	4.2	 ×	10&', only 531 (0.5%) had TGFM PIP > 0.5. The proportion of 

causal genetic elements (variants or gene-tissue pairs) that were gene-tissue pairs was 

equal to 8.1% when counting PIP > 0.5 genetic elements across 16 independent traits 

(271 gene-tissue pairs and 3,074 non-mediated genetic variants), or 10.1% when 
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summing PIPs across 16 independent traits (Methods), consistent with previous 

estimates of the proportion of trait heritability mediated by gene expression28. 

 

For each trait, we identified the most frequently implicated tissues, computing the 

proportion of fine-mapped gene-tissue pairs in each tissue by counting gene-tissue 

pairs with PIP > 0.5 (Methods). Results are reported in Figure 4a (14 representative 

traits), Supplementary Figure 31 (all 45 traits), and Supplementary Table 9. Tissue-trait 

pairs that were frequently implicated by fine-mapped gene-tissue pairs were 

concentrated in expected trait-critical tissues (see below). Results were similar at other 

PIP thresholds (Supplementary Figure 32). We caution that these results may be 

impacted by limited power at low eQTL sample sizes (see Discussion).  

 

Separately, we assessed the statistical significance of implicated tissue-trait pairs by 

applying genomic bootstrapping to the TGFM tissue-specific prior. Results are reported 

in Figure 4a (14 representative traits), Supplementary Figure 31 (all 45 traits), and 

Supplementary Table 9. This approach identified 23 tissue-trait pairs with FDR ≤ 0.05 

(64 tissue-trait pairs with FDR ≤	0.2). Despite limited power, the TGFM tissue-specific 

prior identified 6 traits with more than one significantly associated tissue (FDR ≤ 0.05; 

17 traits at FDR ≤	0.2); this result motivates the use of TGFM over a two-step approach 

of separately identifying the causal gene using a gene-level fine-mapping method24 and 

identifying the causal tissue using a method for identifying trait-critical tissues5,7,11. 

Although inference of trait-critical tissues is not a primary goal of TGFM (and there exist 
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previous methods for inferring trait-critical tissues using eQTL data5,11), these results 

validate the TGFM tissue-specific prior.  

 

We highlight 4 diseases/traits whose TGFM-implicated tissues recapitulate known 

biology or nominate biologically plausible hypotheses. First, 60% of Total cholesterol 

fine-mapped gene-tissue pairs involved liver tissue (FDR ≤ 0.05 for tissue-specific 

prior); the involvement of liver tissue in Total cholesterol is well-established48. Second, 

36% and 32% of the Diastolic blood pressure fine-mapped gene-tissue pairs involved 

artery tibial and artery aorta tissue, respectively (FDR ≤ 0.2 for tissue-specific prior in 

both tissues); a critical role for artery in Diastolic blood pressure is a biologically 

plausible hypothesis recapitulated by previous studies7,11 and consistent with Diastolic 

blood pressure measuring the pressure on the aorta49. Third, 50% and 30% of the All 

autoimmune disease fine-mapped gene-tissues pairs involved spleen tissue and 

lymphocytes respectively (FDR > 0.2 for tissue-specific prior in both tissues); spleen is a 

biologically plausible tissue50,51 (despite being non-significant via the tissue-specific 

prior), as spleen produces lymphocytes and the role of lymphocytes in autoimmune 

disease is well-established52,53. Fourth, 33%, 33% and 33% of the Eczema fine-mapped 

gene-tissue pairs involved skin (sun exposed) tissue, lymphocytes, and esophagus 

mucosa, respectively (FDR > 0.2 for tissue-specific prior in all tissues); both skin (sun 

exposed) and lymphocytes are biologically plausible tissues (despite being non-

significant via the tissue-specific prior), as Eczema is an autoimmune disease mediated 

by T cells (a lymphocyte cell type)54,55 that manifests in skin tissue55,56; we also note that 

the esophagus-eczema pair is corroborated by ref. 7, which determined that digestive 
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tissue and cell types were disease critical tissues for eczema in genome-wide 

heritability analyses of specifically expressed genes. We caution that these results may 

be impacted by limited power at low eQTL sample sizes (see Discussion). 

 

We evaluated whether the tissue-trait pairs identified as statistically significant (via the 

TGFM tissue-specific prior) were also identified as statistically significant in S-LDSC 

analyses using chromatin data from a matched cell type group3 (see Methods; 

Supplementary Table 10) . Results are reported in Figure 4b and Supplementary Table 

11. Notably 94% of the tissue-trait pairs prioritized by the TGFM tissue-specific prior (16 

tissue-trait pairs at FDR < 0.05) were nominally statistically significant (p < 0.05) in S-

LDSC analyses using chromatin data.  Results were similar at other FDR thresholds 

(Supplementary Figure 33). 

 

We observed instances where TGFM was unable to distinguish the causal tissue within 

a small set of highly correlated tissues. For example, for waist-hip-ratio adjusted for BMI 

(WHRadjBMI), TGFM fine-mapped only 1 gene-tissue pair in adipose visceral and 0 

gene-tissue pairs in adipose subcutaneous tissue at PIP > 0.5, despite strong prior 

evidence of the role of adipose tissue in WHRadjBMI7,57; however, TGFM fine-mapped 

10 gene-tissue pairs in adipose (defined as adipose subcutaneous U adipose visceral) 

at PIP > 0.5 when summing PIPs of gene-tissue pairs across the two tissues (Methods). 

Unsurprisingly, the average correlation in cis-predicted gene expression of adipose 

subcutaneous vs. adipose visceral across all genes included in TGFM was very large 

(0.92). Average correlations for all pairs of tissues are reported in Supplementary Figure 
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34 and Supplementary Table 12; the average correlation ranged from 0.48 (whole blood 

and brain cerebellum) to 0.96 (brain substantia nigra and brain spinal cord), and the 

correlation patterns reflected known relationships between tissues. 

 

Validation of fine-mapped gene-tissue pairs 

We sought to validate the gene-tissue pairs prioritized by TGFM. First, we assessed the 

overlap of genes prioritized by TGFM with genes prioritized by independent gene 

sets/scores. We assessed overlap with PoPS58, a similarity-based gene score that 

prioritizes trait-relevant genes from gene-level features such as cell-type-specific 

expression. Results are reported in Figure 4c and Supplementary Table 13. The 

average PoPS score increased as a function of TGFM (Gene) PIPs in different bins, 

from −0.0046 (s.e. 0.0031) for trait-gene pairs with PIP < 0.01 to 0.34 (s.e. 0.047) for 

trait-gene pairs with PIP ≥ 0.9; this provides an external validation of genes prioritized 

by TGFM. In addition, we assessed overlap with 10 non-disease-specific gene sets (e.g. 

High-pLI genes59) that are known to be enriched/depleted for disease heritability (from 

Figure 4 of ref. 26). Results are reported in Supplementary Figure 35a and 

Supplementary Table 14. Genes with TGFM (Gene) PIP > 0.5 were significantly (FDR < 

0.05) overrepresented in Epigenetic modifier genes60 (odds ratio: 1.78), High-pLI 

genes59 (odds ratio: 1.31) and Mouse Genome Informatics (MGI) essential genes61 

(odds ratio: 1.31) and underrepresented in genes with the most SNPs within 100kb 

(odds ratio: 0.48), consistent with previous findings26. Results were similar at other PIP 

thresholds (Supplementary Figure 35b). 
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Second, we empirically evaluated the calibration of TGFM using a silver-standard gene 

set of 69 known LDL cholesterol genes (analyzed in Figure 4 of ref. 27); following ref. 27, 

we used the 69 known LDL cholesterol genes as the positive set, and nearby genes as 

the negative set. Results are reported in Figure 4d and Supplementary Table 15. The 

empirical FDR of TGFM (Gene) with respect to the silver-standard gene set was lower 

than (1 – TGFM (Gene) PIP threshold), implying that TGFM is well-calibrated. Indeed, 

the empirical FDR tracked with (1 – average TGFM (Gene) PIP), a less conservative 

choice than (1 – TGFM (Gene) PIP threshold), indicating precise calibration 

(Supplementary Figure 36). We obtained a similar result when empirically evaluating the 

calibration of TGFM (Gene-Tissue) PIPs using the same silver-standard gene set in 

conjunction with liver tissue (Supplementary Figure 37). We also compared the 

calibration and power of TGFM and cTWAS (applied to GTEx liver tissue)27 using the 69 

LDL cholesterol genes. Results are reported in Supplementary Figure 36. Unlike TGFM 

(Gene), the empirical FDR for cTWAS was significantly larger than (1 – average PIP), 

contrary to perfect calibration. In comparisons at the same level of FDR, TGFM (Gene) 

attained higher power than cTWAS, but differences were not statistically significant. 

 

Third, we evaluated how TGFM performs in the setting of a missing causal tissue. We 

reran TGFM on 18 representative diseases/traits while removing (ablating) the most 

significant tissue for each trait (based on TGFM tissue-specific priors in the primary 

analysis; Supplementary Figure 31). We considered 115 gene-tissue pairs for which the 

ablated tissue was prioritized by TGFM (PIP > 0.5) in the primary analysis. Results are 

reported in Figure 5a and Supplementary Table 16. 98/115 loci had no gene-tissue pair 
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prioritized by TGFM (PIP > 0.5) and 8/115 had only the gene-tissue pair consisting of 

the same gene and the best proxy tissue (see Methods) prioritized by TGFM. This 

suggests that when the causal tissue is missing, TGFM will tend to prioritize nothing, or 

prioritize the best proxy tissue, instead of prioritizing an unrelated tissue. Results were 

similar at other PIP thresholds (Supplementary Figures 38, 39). 

 

Fourth, we assessed the robustness of TGFM results using independent eQTL data. 

Specifically, we reran TGFM on 18 representative diseases/traits using pseudobulk 

peripheral blood mononuclear cell (PBMC) eQTL data33 (N=113; see Methods) in place 

of GTEx whole blood (N=320) (while retaining other GTEx tissues). We considered 62 

gene-trait pairs that TGFM fine-mapped for GTEx whole blood (PIP > 0.5) in the primary 

analysis. Results are reported in Figure 5b and Supplementary Table 17. PBMC had an 

average PIP of 0.29 across all genes containing a gene model in PBMC, much larger 

than any other tissue (average PIP of 0.00-0.15). This indicates that when replacing an 

implicated gene-tissue pair with a different eQTL data set, TGFM tends to prioritize the 

same gene-tissue pair. In addition, we performed a similar analysis using GTEx whole 

blood down-sampled to the PBMC sample size of N=113 (down-sampled from N=320) 

instead of PBMC. Remarkably, replacing GTEx whole blood with PBMC in a different 

eQTL data set (N=113) performed as well as down-sampling GTEx whole blood to 

N=113 in the same eQTL data set (average PIP of 0.28 vs. 0.00-0.15 for other tissues; 

Supplementary Figure 40). This indicates that TGFM results are robust across different 

eQTL data sets.  
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TGFM pinpoints disease genes and tissues of action 

We highlight 6 examples of fine-mapped (PIP > 0.5) gene-tissue-trait triplets that 

recapitulate known biology or nominate biologically plausible mechanisms. First, TGFM 

fine-mapped TPO (Thyroid Peroxidase) in thyroid for Hypothyroidism (Figure 6a; gene-

tissue PIP: 0.88; gene PIP: 0.88). TPO is an enzyme involved in thyroid hormone 

biosynthesis and its involvement in Hypothyroidism has been well-studied62,63, and TPO 

has been linked to Hypothyroidism in genetic association studies64. Thyroid was also 

identified as a Hypothyroidism-critical tissue genome-wide (proportion of fine-mapped 

gene-tissue pairs = 0.21, bootstrap p = 0.04 for tissue-specific prior; Supplementary 

Figure 31).  

 

Second, TGFM fine-mapped OVOL1 in lymphocytes for Eczema (Figure 6b, gene-tissue 

PIP: 0.75, gene PIP: 0.76).  Recent work demonstrated that loss of OVOL1 results in 

skin inflammation and Eczema via an immune-mediated mechanism in T cells (a 

lymphocyte cell type)65–67, and OVOL1 has previously been linked to Eczema in genetic 

association studies68. Lymphocyte was suggestively implicated as an Eczema-critical 

tissue genome-wide (proportion of fine-mapped gene-tissue pairs = 0.36, bootstrap p = 

0.08 for tissue-specific prior; Supplementary Figure 31). There exist 28 other gene-

tissue pairs within 1 Mb of the TSS of OVOL1 (4 of which correspond to OVOL1 in a 

tissue other than lymphocytes) that had significant TWAS p-values (p ≤ 0.05 / 119,270 

= 4.2 × 10−7) but were not fine-mapped by TGFM (all with PIP ≤ 0.01), underscoring the 

benefit of joint fine-mapping of gene-tissue pairs. TGFM also fine-mapped one non-

mediated variant (rs56225074; PIP: 0.55) within 1 Mb of the TSS of OVOL1, perhaps 
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due to finite eQTL sample size and/or absence of the causal cell-type or context in 

GTEx expression data28,69 (see Discussion). 

 

Third, TGFM fine-mapped PADI1 in skin (sun exposed) for Vitamin D level (Figure 6c; 

gene-tissue PIP: 0.64, gene PIP: 0.65). TGFM assigned PADI1 a PIP of 0.64 in skin 

(sun exposed) tissue (TWAS p = 1.7 × 10−20) and a PIP of 0.01 in skin (not sun 

exposed) tissue (TWAS p = 3.8 × 10−19), demonstrating TGFM’s ability to distinguish 

trait-critical tissues from closely related tissues. PADI1 is known to interact with keratins 

during epidermal differentation70,71, and has previously been linked to Vitamin D level in 

genetic association studies72,73. Skin (sun exposed) was also identified as a Vitamin D 

level-critical tissue genome-wide (proportion of fine-mapped gene-tissue pairs = 0.72, 

bootstrap p = 0.008 for tissue-specific prior; Supplementary Figure 31).  

 

Fourth, TGFM fine-mapped both IDH2 in artery aorta and FES in artery aorta at the 

same locus for Systolic blood pressure (Figure 6d, IDH2 gene-tissue PIP: 0.60, IDH2 

gene PIP: 0.94, FES gene-tissue PIP: 0.56, FES gene PIP: 0.96); we note that IDH2 in 

artery aorta and FES in artery aorta are independent genetic elements, with r2 < 0.001 

in their cis-predicted expression. Previous work has experimentally demonstrated that 

IDH2 deficiency aggravates hypertension and cardiac hypertrophy via IDH2 knockout 

experiments in mice74,75, and that FES inhibits atherosclerosis via CRISPR experiments 

in cell lines76; both genes have been linked to hypertension in genetic association 

studies77,78. Artery aorta was also identified as a Systolic blood pressure-critical tissue 

genome-wide (proportion of fine-mapped gene-tissue pairs = 0.36, bootstrap p = 0.0008 
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for tissue-specific prior; Supplementary Figure 31). The result of TGFM fine-mapping 

two experimentally validated genes at this locus underscores the advantage of TGFM 

over simply selecting the gene-tissue pair with the most significant TWAS association at 

a locus. TGFM also fine-mapped two non-mediated variants (rs145778816 and 

rs138682554; PIP: 0.70 and PIP: 1.0, respectively) within 1 Mb of the TSS of IDH2 and 

FES, perhaps due to finite eQTL sample size and/or absence of the causal cell-type or 

context in GTEx expression data28,69 (see Discussion). 

 

Fifth, TGFM fine-mapped SLC20A2 in artery aorta for Systolic blood pressure (Figure 

6e, gene-tissue PIP: 0.91, gene PIP: 0.91). Previous work has shown that loss of 

SLC20A2 results in Human idiopathic basal ganglia calcification79,80 and well as 

arteriolar calcification81, but SLC20A2 has not previously been linked to Systolic blood 

pressure to our knowledge. Artery aorta was also identified as a Systolic blood 

pressure-critical tissue genome-wide (proportion of fine-mapped gene-tissue pairs = 

0.36, bootstrap p = 0.0008 for tissue-specific prior; Supplementary Figure 31).  

 

Sixth, TGFM fine-mapped NMT1 in brain cerebellum for Menarche age (Figure 6f, gene-

tissue PIP: 0.53, gene PIP: 0.86); TGFM also assigned NMT1 in brain limbic a PIP of 

0.10.  Recent work demonstrated that NMT1 cis-predicted expression in brain tissues 

was marginally associated with image-derived brain phenotypes82,83, but NMT1 has not 

previously been linked to Menarche age to our knowledge. Brain cerebellum was also 

identified as a Menarche age-critical tissue genome-wide (proportion of fine-mapped 

gene-tissue pairs = 0.25, bootstrap p = 0.05 for tissue-specific prior; Supplementary 
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Figure 31), consistent with previous studies3,84. There exist 20 other gene-tissue pairs 

within 1 Mb of the TSS of NMT1 (11 of which correspond to NMT1 in a tissue other than 

brain cerebellum) that had significant TWAS p-values (p ≤ 0.05 / 119,270 = 4.2 × 10−7) 

but were not fine-mapped by TGFM (all with PIP ≤ 0.01), underscoring the benefit of 

joint fine-mapping of gene-tissue pairs.  

 

Additional examples are discussed in the Supplementary Note and Supplementary 

Figure 41. These examples include additional implicated tissues for Vitamin D level 

(liver, in addition to skin (sun exposed))72,85 and Systolic blood pressure (brain 

cerebellum, in addition to artery aorta)86,87 that are consistent with known biology, 

highlighting the advantages of TGFM over a two-step fine-mapping approach that first 

infers the causal tissue5,7,11 and then performs traditional gene-level fine-mapping24,27 in 

the inferred causal tissue. 

 

TGFM pinpoints disease genes and fine-grained cell-types in single-cell eQTL data 

It is widely hypothesized that eQTL in fine-grained cell types/contexts may help resolve 

the limited proportion of disease heritability explained by eQTL in bulk tissues28,69. 

Accordingly, we applied TGFM to fine-map disease genes and fine-grained cell types in 

45 disease and complex traits from the UK Biobank (same diseases/traits as above) 

using a recently generated single-cell eQTL data set spanning 9 fine-grained peripheral 

blood mononuclear cell (PBMC) cell types33 (average N=112; Methods and 

Supplementary Table 19). We converted single-cell expression measurements in each 

cell type to pseudobulk expression (see Methods), and also included the 38 GTEx 
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tissues analyzed above. For each disease/trait, we applied TGFM to 2,682 overlapping 

3-Mb loci spanning 1,851 (protein-coding) gene-PBMC cell type pairs with cis-predicted 

expression models (206 genes per cell type on average, Supplementary Table 19; 1,066 

unique genes), 119,270 (protein-coding) gene-tissue pairs with cis-predicted expression 

models (GTEx tissues; 3,139 genes per tissue on average, Supplementary Table 6; 

13,700 unique genes) and 10,545,304 genetic variants with MAF ≥ 0.005. We assigned 

a PIP to each gene-PBMC cell type pair, gene-tissue pair, gene, and non-mediated 

genetic variant, analogous to above. We have publicly released PIPs for all gene-PBMC 

cell type pairs, gene-tissue pairs, genes, and non-mediated variants for each 

disease/trait (see Data Availability). 

 

Results are reported in Figure 7a-b (18 representative traits), Supplementary Figure 42 

(all 45 traits), and Supplementary Table 20. Across all 45 traits, TGFM identified 30 

gene-PBMC cell type-trait triplets at PIP > 0.5; TGFM was not sufficiently powered to 

detect any gene-PBMC cell type-trait triplets at PIP > 0.9, likely due to the limited single-

cell eQTL sample size. Of the 30 gene-PBMC cell type-trait triplets with PIP > 0.5, 25 

involved a trait locus that had no confidently fine-mapped gene-tissue pair (no TGFM 

PIP > 0.5 in GTEx-only analysis corresponding to Figures 3-6). For the 18 

representative traits, TGFM identified 12 gene-PBMC cell type pairs at PIP > 0.5 for 

autoimmune diseases and blood cell traits (Figure 7a) vs. 5 gene-PBMC cell type pairs 

at PIP > 0.5 for non-blood-related traits (Figure 7b; includes 2 gene-PBMC cell type 

pairs for Menarche age, which we conservatively labeled as non-blood-related even 

though it has been reported to be partially immune-mediated88,89), increasing to 23 vs. 7 
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for all 45 traits; this validates the importance of gene expression in blood cell types for 

blood-related traits.  

 

For each trait, we identified the most frequently implicated PBMC cell types, computing 

the proportion of fine-mapped gene-PBMC cell type pairs in each PBMC cell type by 

counting gene-PBMC cell type pairs with PIP > 0.5. Results are reported in Figure 7c-e 

(3 representative blood-related traits), Supplementary Figure 43 (all 45 traits), and 

Supplementary Table 20. Despite low power, the fine-mapped gene-PBMC cell type 

pairs at PIP > 0.5 were concentrated in expected trait-critical PBMC cell types, e.g. 

62.5% in non-classical monocyte (ncM) cells and 37.5% in classical monocyte (cM) 

cells for Monocyte count, 100% in CD4+ T cells for Lymphocyte count, and 100% in 

CD8+ T  cells for All autoimmune disease7,90,91. Results were similar at other PIP 

thresholds (Supplementary Figure 43). Despite published evidence of the biological role 

of both CD4+ T cells92,93 and CD8+ T94–96 cells in autoimmune disease, TGFM 

exclusively fine-mapped gene-PBMC cell type pairs involving CD8+ T cells for All 

autoimmune disease; we attribute this incomplete finding to the limited power of TGFM 

at low eQTL sample sizes (see Discussion). 

 

Separately, we assessed the statistical significance of implicated PBMC cell type-trait 

pairs. Results are reported in Figure 7c-e (3 representative blood-related traits), 

Supplementary Figure 43 (all 45 traits), and Supplementary Table 21. Non-classical 

monocyte (ncM) cells-Monocyte count was the only PBMC cell type-trait pair significant 

at FDR ≤ 0.05, a finding that is both expected and corroborated by previous work10. 
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We highlight 4 examples of fine-mapped (PIP > 0.5) gene-PBMC cell type-trait triplets 

that recapitulate known biology or nominate biologically plausible mechanisms. First, 

TGFM fine-mapped CD52 in classical monocyte (cM) cells for Monocyte count (Figure 

8a; gene-PBMC cell type PIP: 0.55; gene PIP: 0.88; gene-tissue PIP ≤	0.05 in all GTEx 

tissues); TGFM also assigned non-negligible PIPs to CD52 in multiple correlated PBMC 

cell types and GTEx tissues including 0.29 in non-classical monocyte (ncM) cells and 

0.05 in GTEx whole blood. Previous work demonstrated that CD52 regulates immune 

homeostasis in monocytes and T cells by inhibiting NF-𝜅B signalling97–99, but CD52 has 

not previously been linked to Monocyte count to our knowledge. cM cells were also 

identified as a Monocyte count-critical cell type genome-wide (bootstrap p = 0.04 for 

tissue-specific prior; Supplementary Table 21). There exist 56 other gene-tissue pairs 

and 3 other gene-PBMC cell type pairs within 1 Mb of the TSS of CD52 (14 and 2 of 

which correspond to CD52 in a cell type or tissue other than cM, respectively) with 

significant TWAS p-values (p ≤ 0.05 / 121,121 = 4.1 × 10−7, where 121,121 = 119,270 + 

1,851) but not fine-mapped by TGFM (all with PIP ≤ 0.01), underscoring the benefit of 

joint fine-mapping of gene-tissue and gene-PBMC cell type pairs. CD52 was not 

prioritized in any tissue in the GTEx-only analysis of Figure 3 (highest gene-tissue PIP = 

0.07 (whole blood)), underscoring the advantages of modeling gene expression in fine-

grained PBMC cell types. 

 

Second, TGFM fine-mapped KLF13 in CD4+ T (CD4) cells for Lymphocyte count (Figure 

8b; gene PBMC cell type PIP: 0.75; gene PIP: 0.75; gene-tissue PIP ≤	0.01 in all GTEx 
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tissues) despite a non-significant TWAS p-value (p = 3.5 × 10−6 > 0.05 / 121,121 = 4.1 × 

10−7). KLF13 has been shown to regulate lymphocyte development and survival100,101, 

but KLF13 has not previously been linked to Lymphocyte count in genetic association 

studies to our knowledge. CD4 cells were suggestively implicated as a Lymphocyte 

count-critical cell type genome-wide (bootstrap p = 0.13 for tissue-specific prior; 

Supplementary Table 21). KLF13 was not prioritized in any tissue in the GTEx-only 

analysis of Figure 3 (highest gene-tissue PIP = 0.002 (brain cerebellum)), again 

underscoring the advantages of modeling gene expression in fine-grained PBMC cell 

types. 

 

Third, TGFM fine-mapped CTLA4 (Cytotoxic T-lymphocyte associated protein 4) in 

CD8+ T cells for All autoimmune disease (Figure 8c; gene-PBMC cell type PIP: 0.84; 

gene PIP: 0.85), also assigning a non-negligible PIP to CTLA4 in CD4+ T cells (gene-

PBMC cell type PIP: 0.02). CTLA4 is a well-studied regulator of immune responses in 

CD4+ T cells102–105 (with some evidence for a role for CTLA4 in CD8+ T cells in 

autoimmune disease94,105–107), and has previously been linked to autoimmune diseases 

(rheumatoid arthritis, systemic lupus erythematosus, and type 1 diabetes) in genetic 

association studies108,109. CD8+ T cells were also identified as an All autoimmune 

disease-critical cell type genome-wide (bootstrap p = 0.05 for tissue-specific prior; 

Supplementary Table 21). CTLA4 did not meet the criteria for having a cis-predicted 

expression model in any GTEx tissue, underscoring the advantages of modeling gene 

expression in fine-grained PBMC cell types. 
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Fourth, TGFM fine-mapped HMGB1 in B cells for Mean corpuscular hemoglobin (Figure 

8d; gene-tissue PIP: 0.75; gene PIP: 0.75). HMGB1 has previously been shown to 

mediate anemia of inflammation (i.e. anemia resulting from a prolonged immune 

response) in mice110,111, but HMGB1 has not previously been linked to Mean 

corpuscular hemoglobin to our knowledge. B cells were also identified as a Mean 

corpuscular hemoglobin-critical cell type genome-wide (bootstrap p = 0.05 for tissue-

specific prior; Supplementary Table 21). HMGB1 did not meet the criteria for having a 

cis-predicted expression model in any GTEx tissue, again underscoring the advantages 

of modeling gene expression in fine-grained PBMC cell types. TGFM also fine-mapped 

one non-mediated variant (rs149180914; PIP: 0.59) within 1 Mb of the TSS of HMGB1 

(see Discussion). 

 

Discussion 

We developed a new method, TGFM, that jointly fine-maps causal gene-tissue pairs 

and non-mediated genetic variants at disease-associated loci. We applied TGFM to 45 

UK Biobank diseases and traits using 38 GTEx tissues and identified many causal 

gene-tissue pairs (PIP > 0.5), which were concentrated in known disease-critical 

tissues2–11 and strongly enriched in known disease-relevant genes58,59. Causal gene-

tissue pairs identified by TGFM recapitulated known biology, but also included 

biologically plausible novel findings. We further applied TGFM to single-cell eQTL data 

from 9 cell types in PBMC (analyzed jointly with GTEx tissues) and identified additional 

causal gene-PBMC cell type pairs (PIP > 0.5), primarily for autoimmune disease and 

blood cell traits. 
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TGFM has three advantages over previous methods for fine-mapping causal genes.  

First, TGFM identifies causal gene-tissue pairs, not just causal genes. Second, TGFM 

jointly models the disease contribution of each gene-tissue pair and non-mediated 

variant, disentangling causal gene-tissue pairs from both tagging gene-tissue pairs and 

tagging non-mediated genetic variants. Third, TGFM employs a sampling procedure that 

accounts for uncertainty in cis-predicted expression models. Our simulations show that 

TGFM attains accurate calibration of fine-mapped gene-tissue pairs, in contrast to 

previous methods such as coloc17, FOCUS24, cTWAS27, JLIM45, and SMR46 (Figure 1 

and Supplementary Figure 2), all of which lack some of these advantages (Table 1). The 

calibration of TGFM strongly outperforms previous methods even in the case of a locus 

with a single causal gene-tissue pair (Supplementary Figure 12), or in genome-wide 

data with a single causal tissue (Supplementary Figure 10) or a single causal tissue that 

is known (Supplementary Figure 22), or when applied to traditional gene-level fine-

mapping (Figure 2 and Supplementary Figure 4). We note that a recent study 

developed a method, GIFT112, to jointly associate genes (from a single tissue) with 

disease while accounting for co-regulation between genes and uncertainty in genetically 

predicted gene expression; however GIFT only considers genes, not gene-tissue pairs, 

does not account for the confounding effects of non-mediated genetic variants, and is 

not computationally scalable to modeling hundreds of gene-tissue pairs in a region, as 

in our analysis. Another method, CAFEH19, was recently developed to identify causal 

variants underlying GWAS and eQTL in multiple tissues; however, CAFEH does not 

model co-regulation between gene-tissue pairs and is thus unable to distinguish causal 
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from tagging gene-tissue pairs. Other recent studies have made valuable contributions 

in nominating causal gene-tissue pairs for disease by linking fine-mapped causal 

variants to causal genes using tissue-specific SNP-to-gene linking strategies such as 

Activity-By-Contact or EpiMap enhancer-gene linking12–14. However, this approach, 

unlike TGFM, is based on heuristic prioritization and does not provide direct evidence 

that the regulatory variant’s effect is mediated by the nominated gene-tissue pair. 

 

We note several limitations of our work. First, TGFM leverages in-sample LD from the 

GWAS sample35,113 (analogous to other fine-mapping methods36), but in-sample LD may 

be unavailable in some applications (e.g. disease consortium meta-analyses). Following 

ref. 36, our recommendation when in-sample LD is unavailable is as follows: if there 

exists a LD reference panel from a population closely matching the GWAS sample 

population spanning at least 10% of the GWAS sample size, run the default version of 

TGFM with the LD reference panel; otherwise, run TGFM assuming a single causal 

genetic element per locus (in the latter case, no LD reference panel is needed). Second, 

TGFM may be susceptible to false positives in the case of unassayed causal genetic 

elements (analogous to other fine-mapping methods23,30,36,41), including the specific 

case of unassayed tissues (analogous to previous studies that have analyzed GTEx 

data to identify disease-causal tissues based on a genome-wide approach5,7,8,11). If the 

causal gene-tissue pair is not assayed, TGFM may prioritize a correlated assayed gene-

tissue pair or a correlated non-mediated genetic variant. In practice, we determined that 

when the causal tissue is missing, TGFM will tend to prioritize nothing, or prioritize 

genes from the best proxy tissue, instead of prioritizing genes from an unrelated tissue 
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(Figure 5a). We anticipate that this limitation will be mitigated over time as emerging 

eQTL data sets increasingly capture diverse tissues, cell types, and cellular contexts114. 

Third, TGFM is only moderately well-powered to detect causal gene-tissue pairs, 

particularly at lower eQTL sample sizes (Figure 1). In particular, a disease-causal 

tissue/cell type can have zero or a low number of confidently fine-mapped gene-tissue 

pairs simply due to limited power of TGFM at low eQTL sample sizes. We anticipate this 

limitation will be mitigated over time as eQTL data sets increase in size115. Fourth, 

TGFM becomes slightly mis-calibrated at low eQTL sample sizes (e.g. eQTL sample 

size of 100). In addition, at low eQTL sample sizes, undiscovered causal gene-tissue 

pairs may be falsely prioritized as non-mediated genetic variants (Supplementary Figure 

17). We therefore suggest that some caution is warranted in the interpretation of TGFM 

PIPs when analyzing eQTL data with sample size of 100 or lower, while also noting that 

TGFM calibration is far superior to other approaches (Supplementary Figure 13). Again, 

we anticipate this limitation will be mitigated over time as eQTL data sets increase in 

size115. Fifth, a recent study showed that GWAS and eQTLs studies are well-powered to 

detect different types of genetic variants, limiting the number of GWAS associations that 

can be explained by eQTL data at current sample sizes44. Nevertheless, TGFM 

identified causal gene-tissue pairs at hundreds of GWAS loci using current eQTL data, 

and we anticipate that TGFM will identify a larger number of causal gene-tissue pairs 

over time as eQTL data sets increase in size115 and capture increasingly diverse 

tissues, cell types, and cellular contexts114. Sixth, a related concern is that there is 

strong evidence that disease-causal genes have lower cis-heritability due to 

selection26,28,43, such that more powerful eQTL discovery in genes with higher cis-
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heritability may cause TGFM output to be biased towards genes that are not disease-

causal, and hence mis-calibrated. Indeed, we observed that TGFM was slightly mis-

calibrated in simulations in which causal gene-tissue pairs has lower cis-heritability; 

however, TGFM’s calibration remained tolerable and notably superior to all other 

approaches (Supplementary Figure 9). Encouragingly, TGFM was well-calibrated in 

distinguishing 69 known LDL cholesterol genes from nearby genes (analyzed in Figure 

4 of ref. 27) (Figure 4d and Supplementary Figures 36, 37), suggesting that our 

simulation results may overstate this limitation. Seventh, TGFM does not provide 

unbiased estimates of prior causal probabilities for non-causal tissues and non-

mediated variants (Supplementary Figure 25). However, TGFM fine-mapping calibration 

and power are largely robust to mis-specification of prior causal probabilities 

(Supplementary Figures 26, 27). Eighth, TGFM (Variant) was slightly mis-calibrated at 

very high PIP thresholds (PIP=0.99; Supplementary Figure 5f), consistent with 

increased mis-calibration at high PIP thresholds in variant-level GWAS fine-mapping41.  

Ninth, it is theoretically possible that TGFM could prioritize gene-tissue pairs due to 

reverse causality, whereby the disease/trait causally impacts the gene-tissue pair. 

However, we believe that this is very unlikely in practice, as cis-eQTL variants with a 

detectable effect on gene expression at current eQTL sample sizes explain a substantial 

proportion of gene expression variation25,116,117 whereas diseases/traits are highly 

polygenic with each causal variant (outside the HLA locus, which we exclude from our 

analyses) explaining a small proportion of disease/trait variation37,118–120. Tenth, we have 

focused here on single-ancestry fine-mapping, but an important future direction is to 

extend this work to multi-ancestry fine-mapping (incorporating multi-ancestry eQTL 
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analysis121,122), which is likely to further increase fine-mapping power123–125. Eleventh, 

an important future direction is to extend TGFM to incorporate variant-level functional 

annotations that are enriched for disease heritability3,38–40, which is likely to further 

increase fine-mapping power36,126. Twelfth, another important future direction is to 

extend TGFM to incorporate gene sets that are enriched for disease heritability 

explained by cis-predicted expression26, which may also further increase fine-mapping 

power. Finally, we have focused here on cis-genetic components of gene expression, 

but TGFM could be extended to genetic components of other molecular traits127–132. 

Despite these limitations, TGFM is a robust and powerful method for fine-mapping 

causal tissues and genes at disease-associated loci. 

 

Methods 

TGFM model overview 
 

TGFM estimates the posterior inclusion probability (PIP) for each genetic element 

(gene-tissue pair or genetic variant) to have a non-zero causal effect on disease using a 

model that includes mediated causal effects of each gene-tissue pair (via the cis-genetic 

component of expression of a given gene in a given tissue) and non-mediated causal 

effects of each genetic variant: 

𝑌 =##𝑊!"𝛼!"
"

+ 𝑋𝛽
!

+ 𝜖																																																																																																																	(2) 

where 𝑌 denotes the phenotype vector across GWAS individuals,	𝑔 indexes genes, 𝑡 

indexes tissues, 𝑋 is the matrix of genotypes, 𝑊!" is the vector of the cis-genetic 

component of gene expression across GWAS individuals in gene 𝑔 and tissue t, 𝛼!" 
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denotes the (scalar) effect of cis-genetic expression in gene 𝑔 and tissue 𝑡 on the 

disease or trait, 𝛽 denotes the vector of non-mediated causal effects of each genetic 

variant on the disease or trait, and 𝜖 denotes environmental noise. We assume that the 

trait 𝑌, the cis-genetic component of gene expression 𝑊!" in each gene 𝑔 and tissue 𝑡, 

and the genotype vector of each variant (each column of 𝑋) are standardized to have 

mean 0 and variance 1. We model the cis-genetic component of gene expression as a 

linear combination of variant-level effects: 

𝑊!" = 𝑋𝛿!"																																																																																																																																																			(3) 

where 𝛿!" denotes the vector of causal cis-eQTL effect sizes of each variant on gene 

expression in gene 𝑔 and tissue 𝑡. We emphasize that we model the phenotype Y as a 

linear combination of the unobserved true cis-genetic component of gene expression 

𝑊!" (a deterministic function of the unobserved true causal eQTL effect sizes 𝛿!") in 

each gene and tissue. The predicted cis-genetic component of gene expression 𝑊!"; =

𝑋𝛿!";  can be estimated (according to predicted causal eQTL effect sizes  𝛿!"; ), with 

uncertainty, from finite sample-size eQTL data sets in the specified tissue 𝑡, and provide 

noisy estimates of the true unobserved cis-genetic component of gene expression 𝑊!". 

Later (see below), we explain how TGFM models uncertainty in predicted cis-genetic 

expression. 

 

TGFM places the Sum of Single Effects (SuSiE)30,31 fine-mapping prior distribution on 

the vector of causal disease (mediated and non-mediated) effect sizes: 

[𝛼, 𝛽] =#𝛾(𝑑( 																																																																																																																																											(4)
(
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𝛾( ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋)																																																																																																																																		(5) 

𝑑( ∼ 𝑁(0, 𝜎())																																																																																																																																																(6) 

where 𝛼 denotes the vector of expression-mediated causal effects of genetic gene 

expression of each gene-tissue pair on the disease or trait, 𝛽 denotes the vector of non-

mediated causal effects of each genetic variant on the disease or trait, [𝛼, 𝛽] denotes 

the concatenated vector of mediated and non-mediated genetic effects, 𝑙 indexes fine-

mapping components where a single component represents the disease signal from a 

single genetic element, 𝛾( denotes a Categorical random variable indicating which one 

of the genetic elements disease component 𝑙 comes from, 𝜋 denotes the simplex vector 

of prior probabilities on each genetic element being causal, 𝑑( denotes a Gaussian 

random variable specifying the causal effect size of component 𝑙, and 𝜎() denotes the 

prior variance on 𝑑(. This approach assumes the true causal disease effect sizes 

originate in a small number (𝑙) of genetic elements with non-zero effects. 

 

TGFM will automatically infer posterior distributions on the random variables defining 

equations 5 and 6 (𝛾(, 𝑑(, 𝜎(); inference details provided below). Posterior inclusion 

probabilities (PIPs), or the probability that a genetic element has a non-zero effect on 

disease, can be calculated for each genetic element from these inferred posterior 

distributions as follows: 

𝑃𝐼𝑃* = 1 −Q(1 − 𝛾(+R
(

)																																																																																																																												(7) 
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where 𝑗 indexes genetic elements, 𝑙	indexes components, 𝑃𝐼𝑃* denotes the PIP for 

genetic element 𝑗, and  𝛾(+R  denotes the expected value of the posterior distribution on 𝛾( 

for genetic element 𝑗. 

 

Sum of Single Effects (SuSiE) fine-mapping prior distribution and inference 

The SuSiE prior distribution was developed in refs. 30,31 for the purpose of fine-mapping 

trait-causal variants. We briefly summarize the SuSiE fine-mapping prior distribution 

here: 

𝛽 =#𝛾(𝑑(

,

(-.

																																																																																																																																																		(8) 

𝛾( ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋)																																																																																																																																		(9) 

𝑑( ∼ 𝑁(0, 𝜎())																																																																																																																																														(10) 

where 𝛽 denotes the vector of causal effects of each genetic variant on the disease or 

trait, 𝑙 indexes fine-mapping components where a single component represents the 

disease signal from a single genetic variant, 𝛾( denotes a Categorical random variable 

indicating which one of the genetic variants disease component 𝑙 comes from, 𝜋 

denotes the simplex vector of prior probabilities on each genetic variant being causal, 𝑑( 

denotes a Gaussian random variable specifying the causal effect size of component 𝑙, 

and 𝜎() denotes the prior variance on 𝑑(.  

 

Briefly, the SuSiE prior distribution assumes that only a subset of variants (𝐿 total) have 

non-zero effect (i.e., are causal) on the trait, the effect sizes of each causal variant are 

independent, and the trait causal effect sizes can be calculated by summing the causal 
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effect size of each of the 𝐿 causal variants. A “single effect” refers to the effect of one of 

the 𝐿 causal variants; hence why the model is called Sum of Single Effects. 

 

Ref. 30 proposed a simple model-fitting approach (to infer posterior distributions on 

random variables in equations 9 and 10), which the authors referred to as Iterative 

Bayesian Stepwise Selection (IBSS). Briefly, IBSS iteratively updates each of the 𝐿 

single effects while keeping all other single effects fixed. It is computationally simple to 

update a single effect given fixed values of all other single effects (details of updating a 

single effect provided in the supplement of Ref. 30). 

 

Overview of TGFM inference 

TGFM inference consists of four steps. In step 1, we apply SuSiE to perform eQTL fine-

mapping of each gene-tissue pair in the external gene expression data set (estimating a 

posterior distribution of the causal cis-eQTL effect sizes for each gene-tissue pair). In 

step 2, we randomly sample 100 cis-predicted expression models for each gene-tissue 

pair from the posterior distributions of causal cis-eQTL effect sizes estimated in step 1 

(Methods). In step 3, we apply SuSiE to perform disease fine-mapping in the target data 

set (estimating the PIP of each genetic element) 100 times, iterating over the sampled 

cis-predicted expression models for each gene-tissue pair from step 2. In step 4, we 

average the results of step 3 across the 100 disease fine-mapping runs. TGFM utilizes 

a custom implementation of the SuSiE algorithm that provides efficient estimation of 

PIPs across 100 parallel SuSiE runs that differ only in their cis-predicted expression 

models. 
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TGFM inference Step 1: Estimating causal eQTL effect size distributions from external 

eQTL data 

TGFM inference relies on probability distributions defining the causal eQTL effects for 

each gene-tissue pair. These causal eQTL effect size distributions are estimated by 

applying SuSiE30 to eQTL data; SuSiE infers the following posterior distribution on the 

causal eQTL effect sizes for a given gene-tissue pair from eQTL data: 

𝛿!" =#𝜆(𝑑( 																																																																																																																																													(11)
(

 

𝜆( ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙Y𝜙(;[																																																																																																																													(12) 

𝑑(/|𝜆(/ = 1 ∼ 𝑁Y𝜇(/R,𝜎(/);[																																																																																																																								(13) 

where 𝛿!" denotes the vector of causal eQTL effect sizes corresponding to the effects of 

standardized cis-variants on gene 𝑔 in tissue 𝑡, 𝑙 indexes fine-mapping components 

where a single component represents the eQTL signal from a single cis-genetic variant, 

𝜆( denotes a Categorical random variable indicating which one of the genetic variants 

component 𝑙 comes from,  𝜙(; denotes the simplex vector of inferred posterior 

probabilities on each genetic variant being causal for component 𝑙, 𝑑(/|𝜆(/ = 1 denotes 

a Gaussian random variable specifying the causal effect size of component 𝑙 for variant 

𝑘 conditioned on variant 𝑘	being causal for component 𝑙, and  𝜇(/R  and  𝜎(/);  define the 

inferred posterior mean and variance on 𝑑(/|𝜆(/. The posterior mean causal eQTL effect 

sizes of this distribution are ∑ 𝜙(;( 𝜇(̀.  
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We restrict TGFM to gene-tissue pairs that are well-predicted by genetic variants, using 

the SuSiE “purity filter”30. Specifically, this filter removes any gene-tissue pair such that 

all components defining the gene-tissue pair have a minimum absolute correlation 

between all variants in the component’s 95% credible set less than 0.5. The 95% 

credible set for a given component is calculated by selecting the minimum set of 

variants that contain the causal variant with 95% confidence (according to the inferred 

posterior distribution 𝜙(;). 

 

Although in the present study we utilized SuSiE for generating distributions of causal 

eQTL effect sizes due to its computational efficiency, the TGFM inference procedure is 

generalizable to a variety of methods that generate probabilistic cis-predicted 

expression models potentially including probabilistic/Bayesian multivariable regression 

methods (for example, BSLMM133, SBayesR134, or LDpred2135) or bootstrapping136.  

 

TGFM inference Step 2: Randomly sample 100 cis-predicted expression models for 

each gene-tissue pair 

Instantiations of the causal eQTL effect sizes (which determine instantiations of cis-

predicted expression models) for each gene-tissue pair can be randomly sampled from 

that gene-tissue pair’s SuSiE-inferred posterior distribution (equations 11-13). To draw a 

single random sample of the causal eQTL effects for a given gene-tissue pair: (1) 

randomly sample the causal variant for each of the 𝑙 components from 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙Y𝜙(;[ 

(2) randomly sample the causal eQTL effect size of the sampled causal variant 𝑘 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


 46 

(identified in Step 1) for each of the 𝑙 components from 𝑁Y𝜇(/R ,𝜎(/);[ (3) sum the sampled 

causal eQTL effects across the 𝑙 components. 

 

TGFM inference step 3: Fine-mapping inference conditioned on a sampled cis-predicted 

expression models 

We describe here tissue-gene fine-mapping inference conditioned on setting the cis 

genetic component of gene expression for each gene-tissue pair equal to a sampled 

cis-predicted expression model (see TGFM inference step 2) for that gene-tissue pair.  

In this setting: 

𝑌 =##𝑊!"; 𝛼!"
"

+ 𝑋𝛽
!

+ 𝜖																																																																																																																	(14) 

where	𝑔 indexes genes, 𝑡 indexes tissues, 𝑊!";  denotes the predicted cis-genetic 

component of gene expression in gene 𝑔 and tissue 𝑡 (as determined by sampled cis-

predicted expression model’s causal eQTL effect sizes 𝛿!"; ; 𝑊!" = 𝑋𝛿!"; ),	𝑌 denotes the 

phenotype vector across GWAS individuals, 𝑋 is the matrix of genotypes, 𝛼!" denotes 

the (scalar) effect of cis-genetic expression in gene 𝑔 and tissue 𝑡 on the disease or 

trait, 𝛽 denotes the vector of non-mediated causal effects of each genetic variant on the 

disease or trait, and 𝜖 denotes environmental noise. The trait 𝑌, the predicted cis-

genetic component of gene expression 𝑊"!;  in each gene 𝑔 and tissue 𝑡, and the 

genotype vector of each variant (each column of 𝑋) are standardized to have mean 0 

and variance 1. We place SuSiE fine-mapping prior distributions on the disease/trait 

causal effect sizes (equations 4-6).  
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In this setting, we use the existing SuSiE software for inference of posterior distributions 

on the fine-mapping random variables (𝛾(, 𝑑(, and 𝜎() in equations 5-6) and generation 

of corresponding PIPs for each genetic element (equation 7). We refer to these PIPs as 

conditional PIPs as they are conditional upon the predicted causal eQTL effect sizes. 

SuSiE inference applied to this task requires the following input: GWAS summary 

statistic z-scores for each non-mediated variant, transcriptome-wide association study 

(TWAS) summary statistic z-scores for each gene-tissue pair corresponding to the 

marginal association between predicted genetic gene expression and the trait, in-

sample correlations between all pairs of genetic elements (variants and predicted 

genetic gene-tissue pairs) and specified prior probabilities 𝜋. We assume the user 

provides GWAS summary statistic z-scores for each variant, in-sample LD (ie. 

correlations between all pairs of genetic variants based on the GWAS samples), 

predicted causal eQTL effect sizes for each gene-tissue pair, and the prior causal 

probabilities 𝜋 (we discuss below how 𝜋 can be inferred). TWAS summary statistic z-

scores and in-sample correlations between all genetic elements can be computed from 

the user-provided input as follows: 

TWAS summary statistic z-scores for a particular gene-tissue pair can be easily 

calculated from GWAS summary statistic z-scores, in-sample variant LD, and predicted 

causal cis-eQTL effect sizes defining the genetic component of gene expression for the 

gene-tissue pair following ref. 21: 

𝑧!" =
𝑍!0123 	𝛿!"; 			

c𝛿!"3 		; Σ		𝛿!"; 				
																																																																																																																																		(15) 
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where 𝑧!" denotes the TWAS summary statistic z-score for gene 𝑔 in tissue 𝑡, 𝑍!012 

denotes the vector GWAS summary statistic z-scores across variants, 𝛿!";  denotes the 

vector of predicted causal eQTL effect sizes for gene 𝑔 in tissue 𝑡, and Σ denotes the in-

sample variant LD. We note that ref. 21 only requires LD from a reference panel (instead 

of in-sample LD) for TWAS; TGFM instead requires in-sample LD (see Discussion). 

 

The correlation between the predicted genetic gene expression of two genes can be 

computed from in-sample variant LD and the predicted causal eQTL effect sizes of both 

genes: 

𝐶𝑜𝑟𝑟Y𝑊!"; ,𝑊!4"4e[=	
𝛿!"3;Σ	𝛿!4"4;

c𝛿!"3 		; Σ		𝛿!"; 	c𝛿!4"43 		eΣ		𝛿!4"4e
																																																																															(16) 

where 𝑔𝑡 indexes one gene-tissue pair and 𝑔′𝑡′ indexes the other gene-tissue pair, 𝑊!";  

denotes the predicted genetic component of gene expression in gene 𝑔 in tissue 𝑡 

across in-sample GWAS individuals, 𝛿!";  denotes the vector of predicted causal eQTL 

effect sizes for gene 𝑔 in tissue 𝑡, and Σ denotes the in-sample variant LD. Similarly, the 

in-sample correlation between a non-mediated variant and the predicted genetic 

component of gene-tissue pair is: 

𝐶𝑜𝑟𝑟Y𝑋/ ,𝑊!"; [ =
Σ/𝛿!";

c𝛿!"3 		; Σ		𝛿!";
																																																																																																																(17) 

where 𝑘 indexes the non-mediated variant, 𝑔𝑡 indexes the gene tissue pair, 𝑋/ is the 

genotype of variant 𝑘 across in-sample GWAS individuals, 𝑊!";  denotes the cis-

predicted genetic component of gene expression in gene 𝑔 and tissue 𝑡 across in-
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sample GWAS individuals, Σ/ denotes row 𝑘 of the in-sample variant LD matrix, and 𝛿!";  

denotes the vector of causal eQTL effect sizes for gene 𝑔 in tissue 𝑡. 

 

TGFM inference step 4: Marginalize uncertainty in cis-predicted expression on fine-

mapping PIPs by averaging fine-mapping results across 100 runs 

TGFM PIPs for a given locus are calculated by marginalizing out the uncertainty in the 

cis-predicted causal eQTL effect sizes on the conditional PIPs: 

𝑃𝐼𝑃*3567 =# Y𝑃𝐼𝑃*g𝛿 = 𝛿h[
89

𝑝(𝛿 = 𝛿h)																																																																																														(18) 

where 𝑃𝐼𝑃*3567 is the TGFM PIP for genetic element 𝑗, 𝛿 is the set of causal eQTL effect 

sizes for all gene-tissue pairs in the fine-mapping region, 𝛿h is a specific instantiation of 

the set of causal eQTL effect sizes for all gene-tissue pairs in the fine-mapping region, 

𝑃𝐼𝑃*|𝛿 = 𝛿h is the conditional PIP of genetic element 𝑗 conditioned on genetic gene 

expression determined by 𝛿h, and 𝑝Y𝛿 = 𝛿h[ is the probability of estimating causal eQTL 

effect sizes 𝛿h given the eQTL data. The conditional PIPs, (𝑃𝐼𝑃*|𝛿 = 𝛿h,), can be inferred 

using SuSiE fine-mapping of both non-mediated variants and gene-tissue pairs where 

cis-predicted genetic gene expression is determined by 𝛿h (described in previous 

Methods subsection, TGFM inference step 3). The causal eQTL effect size distribution, 

𝑝(𝛿), is approximated by the posterior distribution on causal eQTL effect sizes for each 

gene-tissue pair estimated by applying SuSiE to eQTL data (described in previous 

Methods subsection, TGFM inference step 1). In practice, we approximate 𝑃𝐼𝑃*3567 in 

equation 18 by drawing 100 random samples of causal eQTL effect sizes across gene-

tissue pairs from 𝑝(𝛿)	(described in previous Methods subsection, TGFM inference step 
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2), calculating the conditional PIP (𝑃𝐼𝑃*|𝛿 = 𝛿h)	for each of the 100 random samples, and 

taking the average across 100 conditional PIPs. In the next methods subsection, we 

discuss how this approach can be extended to integrate the inferred tissue-specific 

prior. 

 

In practice, we do not run the existing SuSiE package30,31 100 times in series for each 

fine-mapping region. TGFM utilizes a custom implementation of the SuSiE algorithm 

that provides efficient estimation of PIPs across 100 parallel runs where each of 100 

parallel SuSiE runs differ only in their cis-predicted expression models. The rate-limiting 

step of each iteration of the SuSiE algorithm involves multiplying the LD matrix with that 

iteration’s estimate of the trait-causal effect sizes. The custom TGFM implementation 

exploits the fact that the variant LD matrix (which constitutes the majority of the full 

correlation matrix of all pairs of genetic elements) is identical across all 100 runs; TGFM 

uses matrix multiplication to multiply the variant LD matrix with the current causal non-

mediated variant effects for each of the 100 runs (corresponding to a single 

(𝐾X𝐾)X(𝐾X100) matrix multiplication instead of 100 (𝐾X𝐾)X(𝐾X1) multiplications in 

series where 𝐾 is the number of variants in the region). In addition, the custom TGFM 

implementation of SuSiE does not compute the ELBO at each iteration for each of the 

100 runs; computing the ELBO is computationally intensive and primarily utilized to 

assess convergence. Instead, we run each of the 100 runs for a pre-specified number of 

iterations; we use a default of 5 iterations which performed well in simulations (Figure 

2). We set the default number of components 𝑙 underlying each of the 100 runs to 10.  
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The iterative algorithm underlying SuSiE is not guaranteed to reach a global optimum 

and can get stuck in local optima30. We found TGFM was prone to reaching local optima 

in which a non-causal gene-tissue pair was confidently fine-mapped (i.e., a false 

positive) when the gene-tissue pair was moderately correlated with multiple 

independent causal non-mediated variants. This is likely due to the greedy nature of the 

SuSiE iterative algorithm. We use the following initialization strategy to mitigate 

convergence on local optima: (1) Run TGFM where the causal effects are initialized to 

be zero (this is the default initialization used by SuSiE) (2) If the TGFM PIP for any 

gene-tissue pair in the fine-mapping region is greater than 0.2: (2a) Run SuSiE fine-

mapping on only the non-mediated variants (2b) Run TGFM where the non-mediated 

variant effects are initialized to the converged values from step 2a and the gene-tissue 

pair effects are initialized to zero (2c) For each of the 100 TGFM runs, select the fitted 

TGFM model (either (1) or (2b)) with the larger ELBO. 

 

Inference of tissue-specific TGFM prior causal probabilities 

TGFM increases fine-mapping power by specifying tissue-specific prior probabilities for 

each genetic element in a locus that are informed by genome-wide data, similar to 

PolyFun36. For each trait separately, TGFM assigns one prior causal probability 𝜋"	for 

each gene-tissue pair from tissue t and one prior causal probability 𝜋#$	for each non-

mediated genetic variant where 𝜋" reflects the prior probability that an arbitrary gene 

from tissue 𝑡 at a disease-associated locus has a non-zero causal effect on the 

disease/trait and 𝜋#$	reflects the prior probability that an arbitrary non-mediated variant 

at a disease-associated locus has a non-zero causal effect on the disease/trait. We note 
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that  𝜋" is a genome-wide parameter reflecting the probability that an arbitrary gene 

from tissue t has non-zero effect on disease, which is related but distinct from genome-

wide expression-mediated disease heritability parameters previously estimated in refs. 

11,26,28. We infer 𝜋" and 𝜋#$ separately for each disease/trait using an iterative 

algorithm, starting with flat priors, and at each iteration: (1) updating the PIP of each 

genetic element using a computationally efficient approximation of TGFM (see next 

paragraph for details) given the current prior causal probabilities, which are normalized 

to sum to one across genetic elements at each locus, analogous to PolyFun36. (2) 

updating the prior causal probabilities according to: 

𝜋: =	
∑ 𝑃𝐼𝑃//∈:

|𝑐| 																																																																																																																																									(19) 

where 𝑐 is the genetic element class (for example a specific tissue or non-mediated 

variant), 𝜋: is the prior causal probability corresponding to genetic element class 𝑐, 𝑘 

indexes genetic elements from genetic element class 𝑐, 𝑃𝐼𝑃/ is the current PIP of 

genetic element 𝑘, and |𝑐| is the number of genetic elements belonging to genetic 

element class 𝑐. 

 

It is computationally prohibitive to run TGFM genome-wide tens to hundreds of times for 

each trait while updating the prior probabilities at each iteration. We make two 

approximations to TGFM to allow for efficient computation of genome-wide PIPs at each 

iteration (and we emphasize that these approximations are only used for inference of 

the prior). First, we run TGFM with a single cis-predicted expression model for each 

gene-tissue pair (based on SuSiE posterior mean causal cis-eQTL effect sizes) instead 

of averaging results across 100 sampled cis-predicted expression models. We refer to 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


 53 

this approach as TGFM (no sampling). Thus, PIPs at each iteration can be inferred by 

applying SuSiE to fine-map both non-mediated variants and gene-tissue pairs where 

genetic gene expression of each gene-tissue pair is determined by the posterior mean 

causal eQTL effect sizes. While we show TGFM (no sampling) generates poorly 

calibrated PIPs (Supplementary Figure 18), using TGFM (no sampling) to infer causal 

tissues results in well-calibrated p-values in simulations (Supplementary Figure 28a), 

perhaps because the causal prior probabilities integrate information across the genome 

(equation 19) and fine-mapping errors resulting from uncertainty in the genetic 

component of gene expression will be averaged out across all genes in the genome. 

Second, we only run TGFM (no sampling) inference once, during the first iteration. After 

running TGFM (no sampling) in the first iteration, we save the resulting Bayes Factors30 

for each component-genetic element pair; a Bayes Factor reflects the relative support 

for including that genetic element in that component of the model, irrespective of the 

prior probabilities.  PIPs can be easily calculated based on the Bayes Factors and the 

current prior: 

𝛾(+R =
𝐵𝐹(*𝜃*

∑ 𝐵𝐹(/𝜃//
																																																																																																																																								(20) 

𝑃𝐼𝑃* = 1 −Q(1 − 𝛾(+R
(

)																																																																																																																										(21) 

 

where 𝑙 indexes fine-mapping components, 𝑗 and 𝑘 index genetic elements in the fine-

mapping region,  𝛾(+R denotes the expected value of the posterior distribution on 𝛾( for 

genetic element 𝑗, 𝐵𝐹(* denotes the Bayes Factor for genetic element 𝑗 on component 𝑙, 

𝜃* denotes the normalized prior causal probability of genetic element 𝑗, and 𝑃𝐼𝑃* is the 
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TGFM (no sampling) PIP for genetic element 𝑗. We do not recalculate the Bayes 

Factors after the first iteration, and simply used the saved Bayes Factors from the first 

iteration in all subsequent iterations. This approximation is reasonable as while we 

expect PIPs to change with the evolving prior, we do not expect posterior mean causal 

effect sizes of each fine-mapping component to drastically change with the evolving 

prior, ultimately leaving the Bayes Factors stable.  

 

During inference of the causal prior probabilities, TGFM (no sampling) is run genome-

wide on overlapping 3Mb windows36. The prior probability updates at each iteration 

(equation 16) are calculated from PIPs corresponding to genetic elements located in the 

middle Mb of these 3 Mb windows. To limit to windows with at least one disease causal 

signal, we remove 3Mb windows from the prior probability inference procedure that do 

not pass the SuSiE “purity filter” (see above) after running TGFM (no sampling) with a 

uniform prior.   

 

In addition, TGFM inference can also rely on probability distributions defining the 

uncertainty in our estimated prior causal probabilities (see below). Empirical 

distributions, as well as significance testing, on the causal prior probabilities can be 

calculated using 100 iterations of bootstrapping136 across the genome (we refer to this 

as “genomic bootstrapping”). Specifically, for each of the 100 bootstraps, we randomly 

sample 𝑇 fine-mapping 3Mb windows with replacement (assuming 𝑇 total 3Mb fine-

mapping windows for the disease/trait) and run the iterative algorithm on the 

bootstrapped regions. This procedure results in 100 empirical samples of the causal 
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prior probabilities which reflect their estimation uncertainty. These 100 empirical 

samples are input directly into the sampling procedure underlying TGFM inference (see 

below). Significance testing of whether the prior causal probability is greater than zero 

for a particular genetic element class can be generated using a z-score computed from 

the mean and standard error of the bootstrapped distribution. Any bootstrapped prior 

causal probability < 1x10-15 was set to 0 when calculating z-scores. If all bootstrapped 

prior causal probabilities corresponding to a given trait-tissue pair were equal to 0, the 

z-score was undefined but subsequently set to 0. For a single analyzed trait, we assess 

significance using Benjamini-Hochberg137 FDR correction across all tissues and/or cell 

types included in the analysis.  

 

Inference of TGFM (no sampling) is performed using the function ‘susie_rss’ from the 

SuSiE package30,31 with default parameters. We used the same initialization strategy 

that was used by TGFM (described above). The iterative algorithm for inference of prior 

causal probabilities was run for 400 iterations. 

 

TGFM inference including uncertainty in tissue-specific prior causal probabilities 

The previous subsection described inference of probability distributions defining the 

tissue-specific prior causal probabilities. Here we described an extension of TGFM 

inference step 4 that integrates out uncertainty in both cis-predicted causal eQL effect 

sizes and the prior causal probabilities on the conditional PIPs: 

𝑃𝐼𝑃*3567 =# # Y𝑃𝐼𝑃*g𝛿 = 𝛿h, 𝜋 = 𝜋o[𝑝Y𝛿 = 𝛿h[
<=89

𝑝(𝜋 = 𝜋o)																																																					(22) 
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where 𝑃𝐼𝑃*3567 is the TGFM PIP for genetic element 𝑗, 𝛿 is the set of causal eQTL effect 

sizes for all gene-tissue pairs in the fine-mapping region, 𝛿h is a specific instantiation of 

the set of causal eQTL effect sizes for all gene-tissue pairs in the fine-mapping region, 𝜋 

are the causal prior probabilities,  𝜋o are a specific instantiation of the causal prior 

probabilities, 𝑃𝐼𝑃*|𝛿 = 𝛿h, 𝜋 = 𝜋o is the conditional PIP of genetic element 𝑗 conditioned 

on genetic gene expression determined by 𝛿h and causal prior probabilities equal to 𝜋o,  

𝑝Y𝛿 = 𝛿h[ is the probability of estimating causal eQTL effect sizes 𝛿h given the eQTL data, 

and 𝑝(𝜋 = 𝜋o) is the probability of estimating prior causal probabilities 𝜋o. In practice, we 

approximate 𝑃𝐼𝑃*3567 by drawing 100 random samples of causal eQTL effect sizes 

across gene-tissue pairs from 𝑝(𝛿) and prior causal probabilities from 𝑝(𝜋), calculating 

the conditional PIP (𝑃𝐼𝑃*|𝛿 = 𝛿h, 𝜋 = 𝜋o)	for each of the 100 random samples, and taking 

the average across 100 conditional PIPs. 

 

Calculating gene-level PIPs with TGFM 

We define a gene as causal for a disease/trait if there exists at least one tissue where 

the gene-tissue pair is causal for the trait. Gene-level PIPs can be computed by 

aggregating gene-tissue pair fine-mapping results across all gene-tissue pairs 

corresponding to the gene of interest: 

𝜏(!R =#𝛾(/R
/∈!

																																																																																																																																															(23) 

𝑃𝐼𝑃!
!>#> = 1 −Q(1 − 𝜏(!R

(

)																																																																																																																		(24) 
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where 𝑙 indexes fine-mapping components, 𝑔 indexes genes, 𝑘 ∈ 𝑔 indexes all gene-

tissue pairs corresponding to gene 𝑔, 𝜏(!R  denotes the expected value of the posterior 

distribution on 𝛾( for gene 𝑔,  𝛾(/R  denotes the expected value of the posterior distribution 

on 𝛾( for gene-tissue pair 𝑘, and 𝑃𝐼𝑃!
!>#> is the gene-level PIP corresponding to gene 𝑔. 

Similar to TGFM PIPs for variants and gene-tissue pairs, we are describing here the 

calculation of conditional gene PIPs (conditional upon a given instantiation of predicted 

causal cis-eQTL effect sizes and prior causal probabilities). These conditional gene 

PIPs will be averaged across 100 samples of cis-predicted genetic gene expression and 

predicted causal prior probabilities (equation 22).  

 

This approach can also be used to calculate PIPs for causal genes in a specified subset 

of tissues, or gene-tissue subset PIPs. For example, identifying gene-tissue subset 

pairs for the subset of adipose tissues (defined as adipose subcutaneous U adipose 

visceral). Gene-tissue subset PIPs can be computed by aggregating (as done in 

equations 23-24) gene-tissue pair fine-mapping results across all gene-tissue pairs 

corresponding to the gene of interest from tissues in the tissue subset of interest. 

 

Simulation framework 

We used real genotypes from unrelated UK Biobank British (UKBB) samples32 to 

simulate both gene expression phenotypes (for each gene-tissue pair) and quantitative 

trait phenotypes. Default simulation parameters were specified as follows: the gene 

expression sample size ranged from 300 to 1000, plus a simulation including tissues 

with unequal sample sizes (denoted as 100-300); the tissue sample sizes of the ten 
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simulated tissues in the 100-300 simulation were randomly set (without replacement) to 

320, 320, 320, 320, 320, 122, 116, 115, 108, and 101 in order to approximately match 

the upper and lower range of sample sizes in our analyses of GTEx tissues 

(Supplementary Table 6); the quantitative trait sample size was set to 100,000 (disjoint 

from gene expression samples); we analyzed 426,593 SNPs and 1,976 genes on 

chromosome 1; the number of tissues was set to 10, of which 2 were causal for the 

quantitative trait; the quantitative trait architecture was simulated to have average 

polygenicity37, consisting of 2,700 causal non-mediated variants and 300 causal gene-

tissue pairs (150 for each causal tissue allowing for the option of two causal gene-tissue 

pairs from the same gene) with the expected heritability per causal genetic element 

(non-mediated variant or gene-tissue pair) set to 0.0001 (expected quantitative trait 

heritability of 0.3, 10% of which was mediated through gene expression, consistent with 

genome-wide estimates from MESC28); causal non-mediated variants were randomly 

selected with probability proportional to their expected per-variant heritability based on 

baseline-LD model annotations3,38,39 (estimated using S-LDSC3 applied to the UKBB 

trait White blood cell count) in order to make the simulations as realistic as possible. We 

simulated the genetic architecture of gene expression across related tissues using an 

approach similar to the approach implemented in ref. 11: we simulated all 1,976 protein-

coding genes on chromosome 1 to be expressed in all tissues, with 50% of these gene-

tissue pairs being cis-genetically heritable (only cis-genetically heritable gene-tissue 

pairs could have a simulated causal effect on the trait, though we considered all 

expressed gene-tissue pairs for fine-mapping, not just those that were heritable); each 

heritable gene-tissue pair was randomly assigned 5 causal cis-eQTLs within 100Kb of 
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the gene’s TSS, 3 of the 5 causal cis-eQTLs were shared across tissues and 2 of the 5 

causal cis-eQTLs were specific to each tissue; each causal cis-eQTL explains 1.5% of 

the variance of each gene-tissue pair (resulting in an average gene heritability of .075); 

effect sizes of shared causal cis-eQTLs covaried across tissues as follows (based on 

ref. 11): the tissues were split into 3 categories to mimic biological tissue modules in 

GTEx25 (tissues 1-3, tissues 4-6, and tissues 7-10) and the correlation of shared cis-

eQTL effect sizes across tissues was set to 0.8 and 0.74 for tissues in the same tissue 

category and across tissues in different tissue categories, respectively. 

 

Our simulation indicates that PIPs reported by TGFM are slightly anti-conservative with 

respect to (1 – average PIP) (Supplementary Figures 1, 5), consistent with previous 

simulations of variant-level fine-mapping methods using polygenic trait 

architectures36,41. Following ref. 36, we circumvent this problem by using an alternative 

FDR estimator given by (1 – PIP threshold); setting all PIPs greater than the specified 

PIP threshold equal to the PIP threshold. For example, at a PIP threshold of 0.9, we 

treat all genetic elements with PIP ≥	0.9 as if they had PIP = 0.9. 

 

We compared TGFM to several published methods: coloc, FOCUS, cTWAS, JLIM, and 

SMR. coloc was run, using default settings, independently for each gene-tissue pair; the 

summary statistics used in the coloc analysis were restricted to variants within 100kb of 

the gene’s TSS. FOCUS was run using default settings; the genotype data used by 

FOCUS corresponded to the in-sample genotype of the simulated GWAS individuals, 

and the gene models used by FOCUS were SuSiE fine-mapping30 posterior mean 
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causal eQTL effect sizes restricted to variants within 100Kb of the gene’s TSS, in order 

to make FOCUS maximally comparable to TGFM. cTWAS was run using default 

settings; variant LD used by cTWAS was calculated from the in-sample genotype of the 

simulated GWAS individuals while utilizing European ancestry genomic regions (build 

b37) built into the cTWAS package, and the gene models used by cTWAS were lasso 

gene models, restricted to variants within 100Kb of the gene’s TSS, produced by 

FUSION21, as the cTWAS software recommends using a sparse gene model. JLIM was 

run using default settings, independently for each gene-tissue pair; the summary 

statistics used in the JLIM analysis were restricted to variants within 100kb of the gene’s 

TSS, and the genotype data used by JLIM was the Non-Finish European, build 37, 

reference genotype available for download on the JLIM GitHub page 

(https://github.com/cotsapaslab/jlim), in concordance with JLIM recommendations. SMR 

was run, using default settings, independently for each gene-tissue pair; the summary 

statistics used in the SMR analysis were restricted to variants within 2Mb of the gene’s 

TSS, in concordance with SMR recommendations, though we exclude trans summary 

statistics from SMR analysis (despite their recommended inclusion) as our simulation 

was limited to only chromosome 1; the genotype data used by SMR corresponded to 

the in-sample genotype of the simulated GWAS individuals. 

 

UK Biobank GWAS summary statistics and in-sample LD 

We applied to TGFM to 45 of the 49 UK Biobank traits analyzed via functionally 

informed fine-mapping in ref. 36 (average N=316K; Supplementary Table 5); the four 

excluded traits were Dermatology, Diabetes (any), Endocrine Diabetes, and Childless; 
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these four diseases and traits were excluded due to redundancy and low heritability. We 

considered the set of  10,545,304 UK Biobank imputed variants with MAF ≥ 0.5% and 

INFO score ≥ 0.6, similar to previous work36,138. We used GWAS summary statistics 

that were generated and described in ref. 36. Briefly, the summary statistics were 

computed in ref. 36 from n=337,426 unrelated British-ancestry individuals in UK Biobank 

using BOLT-LMM139 adjusting for sex, age and age squared, assessment center, 

genotyping platform, the top 20 genotyping principal components, and dilution factor for 

biochemical traits (see ref. 36 for complete details). We used Liftover140 to convert 

variant positions from hg19 to hg38. Z-scores used by TGFM were computed from the 

Bolt-LMM output as follows: as the noninfinitesimal version of BOLT-LMM does not 

calculate effect sizes, we calculated z-scores by taking the square root of the BOLT-

LMM chi-squared statistics and multiplying them by the sign of the effect size estimate 

from the infinitesimal version of BOLT-LMM. 

 

We computed in-sample variant LD matrices using 337,426 unrelated British-ancestry 

individuals in UK Biobank (same individuals as summary statistics); missing values 

were imputed by the mean of a variant across individuals. 

 

Overlapping 3Mb loci used for fine-mapping 

We applied TGFM to fine-map each of the 2,682 overlapping 3Mb loci spanning the 

entire genome. Analogous to ref. 36, the overlapping 3Mb loci had 1 Mb spacing 

between the start points of consecutive loci, were limited to autosomal chromosomes, 

and did not include 3 long-range LD regions including the MHC region (chromosome 6 
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positions 25499772-33532223, chromosome 8 positions 8142478-12142491, and 

chromosome 11 positions 45978449-57232526 in hg38; lifted over from long-range LD 

regions ignored in ref. 36). Distinct from the windows generated in ref. 36,  for each 

disease/trait, we limited TGFM fine-mapping to loci with at least 50 genetic variants and 

at least one genetic variant with marginal GWAS p-value less than 1e-5.  

 

GTEx cis-predicted expression models 

We analyzed GTEx25 data from 47 GTEx tissues, which were aggregated into 38 meta 

tissues of similar sample size consisting of European-ancestry individuals (average 

N=259, range: N=101-320 individuals, 23 meta-tissues with N=320; Supplementary 

Table 6) to reduce heterogeneity in eQTL sample sizes across tissues. Testis tissue was 

removed from analysis as it has outlier (cis- and trans-) eQTL discovery power after 

controlling for sample size (see ref. 25 Figure 2C). Meta-tissues were constructed using 

the same individuals and tissue aggregation strategy as described in ref. 11. Normalized 

expression matrices and covariates used in GTEx consortium’s single-tissue cis-eQTL 

analysis25 were downloaded from the GTEx portal (https://gtexportal.org/home/datasets) 

for each of the 47 analyzed tissues. In each tissue, we subset individuals to those 

composing the corresponding meta-tissue, and then re-standardize gene expression of 

each gene to have mean zero and variance one in each subsetted tissue. Cis-eQTLs 

were called in each tissue independently while controlling for covariates and limiting to 

variant-gene pairs such that the variant is within 500Kb of the gene’s TSS. For each 

meta-tissue, we removed variants with MAF < .05 across samples in the meta-tissue, 

were strand-ambiguous, or did not overlap the 10,545,304 analyzed UK Biobank 
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variants. Cis-predicted expression models  were generated using SuSiE30,31 applied to 

eQTL summary statistics and eQTL in-sample LD matrices (using the function 

‘susie_rss’ from the SuSiE package30,31 with default parameters) for each (gene, meta-

tissue) pair, independently. If a meta-tissue is composed of more than 1 constituent 

tissues, meta-analyzed eQTL summary statistics were generated using a fixed-effect 

meta-analysis across constituent tissues and meta-analyzed in-sample LD was 

generated by computing variant-variant correlations across all samples composing the 

meta-analyzed tissue. After removing gene-tissue pairs that did not pass the SuSiE 

“purity filter” (see above), we identified 119,270 gene-tissue pairs with a cis-predicted 

expression model; all 119,270 cis-predicted expression models are publicly available 

(see Data availability). 

 

Pseudobulk PBMC cis-predicted expression models 

Pseudobulk PBMC cis-predicted expression models were used as input to TGFM in the 

analysis where GTEx whole blood (N=320) was replaced with pseudobulk PBMC 

(Figure 5b). 

 

PBMC single-cell eQTL (described and generated in ref. 33) expression data was 

downloaded from the Human Cell Atlas Data Coordination Platform and genotype data 

downloaded from dbGaP (accession number phs002812.v1.p1). We removed 

individuals that were not European ancestry or had fewer than 2,500 detected cells. We 

generated pseudobulk expression across all cells (regardless of cell-type assignment) 

for all individuals with greater than 5 cells. We removed genes that were expressed in 
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less than 80% of the pseudobulk samples. Pseudobulk expression was transformed 

using EdgeR’s logCPM function141 followed by normalizing each gene to have mean 0 

and variance 1. The top 10 expression PCs were calculated based on the normalized 

expression matrix.  

 

Cis-eQTLs were called while controlling for covariates (the top 10 expression PCs) and 

limiting to variant-gene pairs such that the variant is within 500Kb of the gene’s TSS. 

We removed variants with MAF < 0.05 across samples, that were strand-ambiguous, or 

did not overlap the 10,545,304 analyzed UK Biobank variants. Cis-predicted expression 

models were generated using SuSiE30,31 applied to eQTL summary statistics and eQTL 

in-sample LD matrices (using the function ‘susie_rss’ from the SuSiE package30,31 with 

default parameters) for each gene, independently. After removing genes that did not 

pass the SuSiE “purity filter” (see above), we identified 923 genes with a cis-predicted 

expression model; all 923 cis-predicted expression models are publicly available (see 

Data availability). 

 

PBMC cis-predicted expression models in 9 fine-grained cell types 

PBMC single-cell eQTL (described and generated in ref. 33) expression data was 

downloaded from the Human Cell Atlas Data Coordination Platform and genotype data 

downloaded from dbGaP (accession number phs002812.v1.p1). We removed 

individuals that were not European ancestry or had fewer than 2,500 detected cells. We 

generated pseudobulk expression in the 9 most abundant cell types (cell type 

assignment determined by ref. 33) for all individuals in each cell type with greater than 5 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


 65 

cells. In each of the 9 cell types separately, we removed genes that were expressed in 

less than 80% of that cell type’s pseudobulk samples. Pseudobulk expression in each 

cell type was transformed using EdgeR’s logCPM function141 followed by normalizing 

each gene to have mean 0 and variance 1. The top 10 expression PCs for each cell 

type were calculated based on the normalized expression matrix. The number of 

pseudobulk samples per cell type is described in Supplementary Table 19 (average 

N=112).  

 

Cis-eQTLs were called in each cell type independently while controlling for covariates 

(the top 10 expression PCs) and limiting to variant-gene pairs such that the variant is 

within 500Kb of the gene’s TSS. For each cell type, we removed variants with MAF < 

0.05 across samples in the cell type, that were strand-ambiguous, or did not overlap the 

10,545,304 analyzed UK Biobank variants. Cis-predicted expression models were 

generated using SuSiE30,31 applied to eQTL summary statistics and eQTL in-sample LD 

matrices (using the function ‘susie_rss’ from the SuSiE package30,31 with default 

parameters) for each (gene, cell type) pair, independently. After removing gene-PBMC 

cell type pairs that did not pass the SuSiE “purity filter” (see above), we identified 1,851 

gene-PBMC cell type pairs with a cis-predicted expression model; all 1,851 cis-

predicted expression models are publicly available (see Data availability). 

 

Tissue-trait significance using S-LDSC with chromatin data 

We sought to evaluate whether the tissue-trait pairs identified as statistically significant 

via the TGFM tissue-specific prior were also identified as statistically significant in S-
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LDSC analyses using chromatin data in ref. 3. This analysis is summarized in Figure 4b. 

The chromatin data in ref. 3 consisted of data from 10 cell-type groups: adrenal & 

pancreas, CNS, cardiovascular, connective & bone, gastrointestinal, immune & 

hematopoietic, kidney, liver, skeletal muscle, and other. Following ref. 3, we ran S-LDSC 

on each of the 45 analyzed traits and 10 cell-type groups using the baselineLD 

annotations and one of the cell-type group chromatin annotations at a time (i.e., one run 

of S-LDSC for each trait-cell-type group pair). Significance of a trait-cell-type group pair 

was assessed using the S-LDSC p-value of the S-LDSC coefficient corresponding the 

cell-type group annotation. Following the approach taken in ref. 7, we assigned one of 

the 10 cell-type groups to each of the 38 analyzed GTEx tissues (Supplementary Table 

10), and used the S-LDSC p-value from the matched cell-type group for each GTEx 

tissue. Any tissue assigned to the cell-type group “other” was excluded from analysis 

because the cell-type group “other” represents a heterogenous mix of tissues and cell-

types. 

 

Proxy tissues in tissue ablation analysis 

We assigned a tissue a “proxy tissue” if there existed a single tissue that had highly 

correlated cis-eQTL effect sizes in ref. 25 (see Figure 6a of ref. 25). We selected 6 pairs 

of proxy tissues: artery aorta and artery tibial, skin (sun exposed) and skin (not sun 

exposed), heart left ventricle and heart atrial appendage, adipose subcutaneous and 

adipose visceral, liver and pancreas, and whole blood and spleen. Many tissues will 

therefore have no assigned proxy tissue; this was a conservative decision to ensure 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


 67 

proxy tissues exclusively captured highly correlated tissues. Proxy tissues were used an 

analyzing results from tissue ablation analysis (Figure 5a). 

 

Data availability 

We have made TGFM PIPs for gene-tissue pairs, gene-PBMC cell type pairs, genes, 

and non-mediated variants across 45 diseases/traits (for both analyses of 38 GTEx 

tissues + analyses of 38 GTEx tissues and 9 PBMC cell types) publicly available at 

https://doi.org/10.7910/DVN/S26PFI, GTEx cis-predicted expression models for all 

gene-tissue pairs publicly available at https://doi.org/10.7910/DVN/8IPOPK, pseudobulk 

PBMC cis-predicted expression for all gene-PBMC pairs publicly available at 

https://doi.org/10.7910/DVN/8UL8XB, PBMC cis-predicted expression models for all 

gene-PBMC cell type pairs publicly available at https://doi.org/10.7910/DVN/A6K9QW, 

GWAS summary statistics for all 45 diseases/traits publicly available at 

https://doi.org/10.7910/DVN/GTEGPE. To limit the use of computational resources, we 

refer the reader to UK Biobank in-sample LD (337K unrelated British-ancestry samples) 

from ref. 36, which is publicly available at https://registry.opendata.aws/ukbb-ld/. The UK 

Biobank resource is publicly available via application (http://www.ukbiobank.ac.uk/). 

 

Code availability 

Software implementing TGFM and code generating all results of the paper are available 

at https://github.com/BennyStrobes/TGFM_workflow. 
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Figure 1: Calibration and power of tissue-gene fine-mapping methods in 
simulations. (a,b) Average gene-tissue pair fine-mapping FDR across 100 simulations 
for various fine-mapping methods (see legend) across eQTL sample sizes (x-axis) at 
PIP=0.5 (a) and PIP=0.9 (b). Dashed horizontal line denotes 1 – PIP threshold (see 
main text). Numerical results are reported in Supplementary Table 1. (c,d) Average 
gene-tissue pair fine-mapping power across 100 simulations for various fine-mapping 
methods (see legend) across eQTL sample sizes (x-axis) at PIP=0.5 (c) and PIP=0.9 
(d). Error bars denote 95% confidence intervals. Numerical results are reported in 
Supplementary Table 2. 
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Figure 2: Calibration and power of fine-mapping different classes of genetic 
elements with TGFM in simulations. (a,b) Average fine-mapping FDR across 100 
simulations using TGFM for different classes of genetic elements (see legend) across 
eQTL sample sizes (x-axis) at PIP=0.5 (a) and PIP=0.9 (b). Dashed horizontal line 
denotes 1 – PIP threshold (see main text). Numerical results are reported in 
Supplementary Table 3. (c,d) Average fine-mapping power across 100 simulations using 
TGFM for different classes of genetic elements (see legend) across eQTL sample sizes 
(x-axis) at PIP=0.5 (c) and PIP=0.9 (d). Error bars denote 95% confidence intervals. 
Numerical results are reported in Supplementary Table 4. 
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Figure 3: Summary results of fine-mapping genetic elements with TGFM for 16 
independent UK Biobank diseases and traits. We report the number of (a) Gene-
tissue pairs, (b) Genes, and (c) (non-mediated) Variants fine-mapped using TGFM (y-
axis; square root scale) across 16 independent UK Biobank traits (x-axis) at various PIP 
thresholds ranging from 0.2 to 1.0 (color-bars). Horizontal black lines denote the 
number of genetic elements fine-mapped at PIP=0.5. FEV1:FVC, ratio of forced 
expiratory volume in 1 second to forced vital capacity; Platelet volume, Mean platelet 
volume; Diastolic BP, Diastolic blood pressure; Reticulocyte count, High-light scatter 
reticulocyte count; Corp. hemoglobin, Mean corpuscular hemoglobin; FVC, Forced vital 
capacity. Results for all 45 UK Biobank diseases and traits are reported in 
Supplementary Figure 30, and numerical results are reported in Supplementary Table 8. 
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Figure 4: Properties of fine-mapped tissues and genes. (a) Proportion of fine-
mapped gene-tissue pairs in each tissue (x-axis) for 14 representative traits (y-axis). 
Proportions for each trait were calculated by counting the number of gene-tissue pairs 
with TGFM PIP > 0.5 in each tissue and normalizing the counts across tissues. Tissues 
are only displayed if their proportion is > 0.2 for at least one of the 14 representative 
traits. Asterisks denote statistical significance (FDR ≤	0.05 via the TGFM tissue-specific 
prior) of each tissue-trait pair. Results for all remaining traits and tissues are reported in 
Supplementary Figure 31, and numerical results are reported in Supplementary Table 9. 
The 14 representative traits were selected by including 12 of the 16 independent traits 
(Figure 3) with many high PIP gene-tissue pairs and two additional, interesting traits (All 
autoimmune and Vitamin D level). (b) Proportion of stratified tissue-trait pairs reported 
as statistically significant in S-LDSC analyses using chromatin data (y-axis) as a 
function of S-LDSC significance thresholds (x-axis), across all 45 traits analyzed; tissue-
trait pairs are stratified according to significance (FDR ≤ 0.05 or FDR > 0.05) via the 
TGFM tissue-specific prior. Results at alternative TGFM tissue-specific prior significance 
thresholds are reported in Supplementary Figure 33, and numerical results are reported 
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in Supplementary Table 11. (c) Average PoPS score (y-axis) of genes stratified by 
TGFM (Gene) PIP (x-axis). Averages were computed across genes for the 16 
independent traits listed in Figure 3, as both PoPS score and TGFM gene PIPs are trait-
specific. Error bars denote 95% confidence intervals. Numerical results are reported in 
Supplementary Table 13. (d) Empirical FDR when distinguishing a silver-standard gene 
set of 69 known LDL cholesterol genes analyzed in Figure 4 of ref. 27 from nearby genes 
(y-axis), for TGFM (Gene) PIP for LDL cholesterol greater than or equal to a range of 
PIP thresholds (x-axis). Light green shading denotes 95% confidence intervals. 
Numerical results are reported in Supplementary Table 15. 
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Figure 5: Robustness of TGFM results in analyses of alternative eQTL data sets. 
(a) Results of tissue-ablation analysis of 115 gene-tissue pairs for 18 representative 
traits that were prioritized by TGFM (PIP > 0.5) in the primary analysis.  We report the 
number of loci in the tissue-ablation analysis with no gene-tissue pair prioritized by 
TGFM (PIP > 0.5); a gene-tissue pair prioritized by TGFM (PIP > 0.5) corresponding to 
the same gene and the best proxy tissue (see Methods); a gene-tissue pair prioritized 
by TGFM (PIP > 0.5) corresponding to the same gene and a non-proxy tissue; or a 
gene-tissue pair prioritized by TGFM  (PIP > 0.5) corresponding to a different gene. 
Results at alternative PIP thresholds are reported in Supplementary Figure 38, and 
numerical results are reported in Supplementary Table 16. (b) Results of replacing 
GTEx whole blood (N=320) with pseudobulk PBMC (N=113) for 62 gene-trait pairs for 
18 representative traits that TGFM fine-mapped for GTEx whole blood (PIP > 0.5) in the 
primary analysis. The vertical red line denotes the average PIP in PBMC, and the 
histogram summarizes the average PIP of each GTEx tissue (excluding whole blood). 
Numerical results are reported in Supplementary Table 17. The 18 representative traits 
consist of the 16 independent traits (Figure 3) and two additional, interesting traits (All 
autoimmune and Vitamin D levels). 
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Figure 6: Examples of fine-mapped gene-tissue-disease triplets identified by 
TGFM. We report 6 example loci for which TGFM fine-mapped a gene-tissue pair (PIP > 
0.5). In each example we report the marginal GWAS and TWAS association -log10 p-
values (y-axis) of non-mediated variants (blue circles) and gene-tissue pairs (red 
triangles). Marginal TWAS association -log10 p-values were calculated by taking the 
median -log10 TWAS p-value across the 100 sets of sampled cis-predicted expression 
models for each gene-tissue pair. The genomic position of each gene-tissue pair (x-
axis) was based on the gene’s TSS. The color shading of each variant and gene-tissue 
pair was determined by its TGFM PIP. Any genetic element with TGFM PIP > 0.5 was 
made larger in size. Dashed horizontal blue and red lines represent GWAS significance 
(5 × 10−8) and TWAS significance (4.2 × 10−7) thresholds, respectively. Numerical 
results are reported in Supplementary Table 18. 

 

●●●●
●●
●●●
●
●●●
●
●
●●●●
●
●
●●●● ●●
●
●

●

●●●
●●●●●●
●●●●●
●●● ●●
●
●
●●●●●●●●●●●●●●●●● ●●

●

●●●●
●

●●●●●
●

●●

●

●●●●●●●● ●
●
●●●●●

●

●●●●●●●
●●
●●●●●●●●●●●●●●●●
●
●

●

●● ●
●
●●

●
●●●●
●
●
●●
●
●● ●

●●

●

●

●
●
●
●●

●●
●●
●
●●●
●
●●●
●

●
●

●●

●
●
●
●
●●●

●

●
●●
●
●
●●
●

●●

●
●
●●
●●●●
●
●●●

●●

●
●●

●
●
●
●●
●●

●

●●●●●●

●

●●●
●●
●
●●
●
●
●●●
●●●●
●●●●●●
●

● ●●●
●

●
●
●

●●●●
●●
●●
●●●●●
●
●●
●

●
●●
●●● ●●●●●●● ●●●
●
●
●●

●●
●
●
●●
●●●●
●●
●●●●●●●●● ●●●●● ●●●●●●●

●

●●●
●●●

●● ●
●●●
●
●
●●

●

● ●

●

●

●

●

●●

●

●

●

●●●●

●
●

●●●

●●●

●

●

●

●
●

●●

●●

●

●●

●

●

●

●
●●

●●

●●●
●●

●●

●●●
●
●

●

●●

●

●

●●●●
●
●

●

●

●●●

●

●

●

●●

●●

●●

●

●

●

●

●

●
●● ●

●●●●

●●● ●

●

●
●

●●

● ●

●●

●●

●●

●●

●

●●●●

●

●
●

●●

●

●
●●

●

●

●

●●

●
●
●●

●●●

●

●

● ●

●●
●
●●
●
●●●
●

●●

●
●●

●

●

●

●
●
●●

●

●
●
●
●●

●

●●●

●●
●●●

●

●●

●●

●

●

●●●

●
●
●

●
●

●●●

●
●
●●
●
●●

●●●

●●
●
●
●
●
●●●
●●●
●●●●●
●
●
●●●
●
●
●
●●
●
●
●
●●●●

●
●●

● ●
●
●●
●
●

●●
●●●
●
●●●●
●●
●
●●●●
●

●
●●
●
●●●

●
●●●●●●●
●
●

●
●●●
●●●
●● ●
●●●
●
●●●●●
●●●●
●●●
●●
●

●●
●
●●●
●●
●●

●●●●●●
●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●
●
●●●●●●●● ●●● ●●●●●●●●
●
●●
●●●●●●●●●●
●

●
●●●
●●●●●●●●●●●●●
●●●●●●●
●
●●●
●
●●
●
●●
●●●
●●●●●
●●●●●●
●
●
●●●● ●●●●●●●●●
●
●
●
●
●●●●●●●● ●●●●●●●●● ●● ●●
●
●●

●●●●●●●●●●●
●●
●●●●●●●●● ●●
●
●● ●●●●●●●●●●
●●●●●●●
●●●
●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●
●●●
●
●●●●●●●
●
●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●
●
●●●●●●●●
●●
●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●
●●●●●●
●●

●

●

●
●

●●● ●

●

●
●●
●●● ●●
●●●●●
●
●●
●
●

●
●●●

● ●●
●●●●
●
●●●●
●●●
●●
●
●●●●●●●●●●●●●●●●

● ●
●●●

●●
●●●
●
●
●●●
●●●●●●●●
●
●
●●
●
●●
●●
●
●
●●●●●

● ●
●
●●
●●
●●●
●●

●

●●●
●●
●●
●

● ●

●
●
●
●
●●
●●●●
●
●●●●●●
●●

●
●●

●●

●

●
●●

●
●●

●
●
●
●●
●
●

● ●●
●
●●●
●
●●●●
●●●●●●

●
●
●
●●●
●
●
●
●
●●●
●
●●●●●●●●●●
●●
●
●●●
●

● ●●● ●●●
●●●●●
●
●

●
●●●
●●
●
●●●●
●
●
●●●●
●●●
●
●
●●
●●
●●
●
●●●●
●●●
●
●
●●
●
●
●
●
●●
●●
●●
●
●●●●●●●●
●●
●●●●●●●●
●
●●●●●●
●●●
●
●●●●●

● ●●●● ●●●●
●
●●●●●●●●●●●●●● ●●
●
●●
●●● ●● ●● ●●●●●●●
●
●●●●

● ●●●
●●●●
●●●●●●●●●

●

●● ●
●●

● ●
●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●

●

●●●●●●
●
●●● ●
●

● ●●●●●●●●
●
●●●●
●
●●●●●

●

●●
●
●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●
●
●●●●●●●●●●●● ●●●

●
● ●●●●●● ●●●●

●● ●●●●●●●●●●●●●●●●● ●●●●

●

● ●●●
●
●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●
●
●●●●
●●●●●●●●●●
●
●●
●●●●●●●●●●●
●
●●
●
●
●●
●
●●●●●●
●
●●●●
●● ●●●● ●●●●●
●
●●●●●●●●●●●● ●●●
●
●●●●●●
●●

● ●●●●● ●●● ●●●●●

●
●●●●●● ●● ●●

●
●●●●●●● ●●●●●●●●●
●●●●● ●
●●●●●●●●●
●
●●●●
●●●●
●
●● ●●●●●●●●●●
●
●●● ●●●●●● ●●●● ●●● ●
●
●●
●
●●● ●●●
●
●
●●●
●
●
●●
●●●●
●●
●

●

●

●

●
● ●●●●

●●●
●●
●●●

●

●
●
●
●●●●●●●●
●●●●
●

●●
●● ●●●●●
●●●●●●
●
●●●
●●●●●
●●●
●

● ●●
●

●
●●●●●●
●
●
●●
●

●
●●●●●●●
●
●
●● ●●●●●●

●
●●●●●●
●●●●
●
●●
●●
●●●● ●● ●● ●
●●
●
●
●
●
●
●●

● ●●●
●●●
●
●●●●● ●
●
●
●●●●●●●
●● ●
●●
●●

●
●●

● ●●●●●
●
●

● ●●●
●
●
●
●●●●● ●

● ●●●●
●

●
●●

● ●● ●●●
●●
●●●●
●●●●●●

●
●
●
●●
●
●●●
●●●●●● ●● ●●●●●●●● ●●●● ●
●●●●●●●●●●●
●
●●●●●●●

●

●●●
●●
●

●●●●
●
●●●●●●●●●●●●●●●●●● ●●
●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●

●
●●●●●●
●●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●● ●●●●●●●●●● ●●●

●

●●
●●
●●
●●●● ●●
●
●
●●●
●

●

●●●

●

●

●

●

●

●

●●

●●●●●●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●●

●

●

●

●● ●●

●

●● ●

●

● ●●

●●

●

●

●●●●

●

●
●
●

● ●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●●

●

●

●● ●

●●●●●●

●
●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

● ●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●
●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●●●

●

●

●●●●●●

●

●

●●
●
●●●
●
●
●
●

●
●●● ●●

●

●

●

●●

●
●●●
●

●●●●

● ●●

●●

●●●

●

●●

●●

●
●
●

●●

●●●●

●

●●●

●
●
●●

●
●
●
●●

●

●

●

●●●●
●
●●
●
●
●●
●
●●
●
●●●●●●
●
●●
●●●
●
●
●●
●●

●
●
●
●●
●
●
●●●●

●

●●●●●

●

●
●
●
●●●●●●●●●●
●●
●
●●●●●●●●
●

● ●●●●
●

●

●

●
●
●

●

●●
●●
●
●
●
●
●
●●
●●●

●●

●
●●●●●●
●●●●
●●●
●
●
●●●●●●
●●●●

●

● ●●●

●
●
●●●●●
●●●●
●
●

●
●
●●●●●
●●
●●
●●
●
●
●●●●●●
●
●
●
●
●
●●●●●●●●
●●●●●●●●●
●●●●●●●
●●
●

● ●●●●●
●●
●

●● ●

●

●●
●

● ●●●●● ●●
●
●● ●
●● ●●●●●●●
●●
●

●

●●

●
●●
●
●
●
●
●
●●● ●●
●
●● ●

●

●●●

●

●●●●●
●
●●
●
●
●●●● ●●●●●●●
●●●●●
●●●●●
●●●

●

●●
●
●●●● ●●●
●

● ●●

●●
●
●●●●
●●●●
●
●●●●●
●
●●●●● ●
●●
●●●
●
●● ●●
●
●●
●●●
●●●● ●●
●

●
●●
●
●
●●
●
●

● ●
●

●
●

●●
●●●●

●

●
●●●●

●

●

●

●●●●●●

●

●●●

●●
●●●●●●●
●●●●

●●

●

●

●●●●●●●●●

●

●●●

●

●

●

●
●●

●

●●

●

●

●

●
●●
●●●●●● ●

●
●●● ●●
●●●●●

●

● ●
●
●●●
●
●
●
●●
●

●●
●●
●
●●●●
●

●

●●●●
●
●●●
●
●●●
●

●

●●●
●

●

●●
●●●

●●

●
●

●

●

●

●●●
●

●●

●

●

●●
●
●●●
●●●

●●●

●●● ●●●●●
●●●●● ●● ●●
●
●●●●

●

●●●
●

●● ●

●

●●
●●●

●
●

●●

●

●●●●● ●●●●●●●●●●●●●●●●● ●●●

●

●

●

●

●●
●

●
●●●

●

●

●

●
●●●●●●●●●●●

●
●
●●●●

●

●

●

●●●

●

●

●●

● ●●●●

●

●●
●●●

●

●●

●

●

●

●
●●

●

●●●

●

●●

●
●
●
●●

●●● ●●
●●● ●●● ●

●●●●

●●●●
●
●
●●

●

●

●●

●

●

●●●

●
●
●●
●●

●●

●●●●●●● ●●●
●● ●●

●

●●●
●
●●●●●●
●●●●●● ●●●●●●●●●●●● ●●
●

●
●
●●●●●●

●
● ●●●●● ●●

●
●
●●●●

●

●

●●
●
●●● ●●● ●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●
●
●
●●●●●●● ●●●●●●●●●●●●
●●
●●●●
●
●●●●●●●●●●●●
●●●● ●●●●
●
●●●●●●●● ●●●
●
●●●
●●
●●
●●●● ●●●
●
●●● ●●●●●● ●●●●●●●●●●
●●
●●

●
●

●
●
●●●●●●●●●●●●●●
●

●

●
●
●
●●
●●●●
●●
●
●
●●●●●●
●●
●●

● ●
●●
●
●●●
●

●

●●●●●●●●
●
●
●●

● ●●
●●●●●●●
●●●●●●
●●●

●

●●●●●●●●
●●●
●●
●
●
●
●●
●

●

●●

●
●

●
●
●●
●●
●●●

●

●
● ●

●●●●●●
●
●●

●
●

●
●

●
●
●
●

●
●●●●
●●●
●●

●

●
●
●●
●
●●

●

●
● ●●●

●
●●●●●●●●

●

●●● ●

●

●●
●
●

●●

●

●

●
●●
●

●
●

●●●●

●

●●●●●
●●
●●

●

●●
● ●●
● ●●●

●
●●●●●●
●
●●●●
●●● ●●
●
●●● ●●

●
●

●● ●●● ●

●

●●
●

●●●
●

●

●
●●●●●●
●●
●
●●●●●●
●
●
●●●●●

●

●●

●
●

●●●●●●●●●●
●
●●●●●●●●

●

●

●

●●●●●●●
●

●●

●
●
●

●●●●●

●●

●●●

●

●●●●●●
●
●●
●●●
●
●●●●
●
●●●●●●●
●
●●
●
●●●
●
●●●●
●●
●
●

●●●●
●
●
●●
●●
●
●●●
●

●
●●
●
●
●
●

●

●
● ●●

●
●
●●
●● ●●●
●
●●
●
●●●●
●
●●
●●● ●●●●

●
●●
●
●●●
●●
●
●
●●●
●
●●●●● ●
●
●●●●● ●●●● ●●●
●●●●●●●●●
●●●●● ●●●●●●
●●●●●●
●

●

●
●
●●
●
●●●●
●●● ●●●●●●
●●●●●

●

●

●●

●●●●
●●●
●●●
●

●
●●
●●
●
●●●●●●●●●

●
●●●● ●●●●●●●
●
●
●●
●

●●
●

●●
●
●

●
●

●
●

●

●

●
●●●●
●●
●●

●●

●

●

●

●

●●
●
●
●
●●

● ●
●
●
●
●●
●

●

●

●●
●●●
●
●●

●
●
●●●
●
●●●●

●●

●
●
●●●●

●

●
●
●●●

●

●●
●

●●
●
●
●●●● ●●●

●

●

●

●●●●●
●● ●●●
●

●
●●
●

●

●

●
●
●●

●

●● ●

●
●●●●
●
●

● ●
●

●●

●●

●
●

●
●● ●
●

●●
●●●●

●

●●
●

●●●●●●

●●
●
●

●
●

●
●●●●●●●●
●●●●●●
●

●

●

●●●●●

●

●
●● ●

●

●● ●●●●●●
●●

●●●●●●●●●●●●
●

● ●● ●●●●
●
●●●
●●●●●●●●●●●●●● ●●●● ●●●●●
●●●●●● ●

●
●
●●●●●

●

●●●●●●●●
●
●●
●
●
●
●●●●●●●●● ● ●●●
●● ●●●●●
●●
●

●●●●●●● ●●●●●●●●●●●
●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●

●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●

●

●●● ●●●●●●●●●●●●●
●●
●●● ●●● ●●●●●●●●●●● ●●
●
●● ●●●
●●●●●●●
●
●●●●●●●●

● ●●●●●
●
●●●

●

●●●●●●●
●

●●
●●●●●●●
●
●●
●●●
●●●●●●● ●●●●●●●●

●

●
●●●●●
●
●●
●●
●
●●
●
●

●● ●

●

● ●●●
●●●●
●
●●●●●●● ●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●
●
●
●●
●●●
●

● ●●●●●●● ●●●●● ●●
●●●

●

●

●

●
●●●●●
●●●●●●●●●●
●●●●●●
●
●
●●
●●●●
●
●●●●●●●●
●●●●
●●● ●●●
●●●
●●●● ●●
●
●
●●●●●●●● ●●

●

●●
●
●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●

●
●●●●●●●●●

● ●●●●
●●●●●●
●
●●●●●
●●
●●

●●

●●●●●●●●●●●
●
●
●
●
●
●●●
●●●●
●●●●●●●●
●●●●

●
●●●●
●
●
●●
●●
●● ●●●
●●●

● ●●●
●●●
●
●●●●● ●
●●●
●
●●●●●●●●
●●●●● ●
●
●●●●●●●●●●●●●●● ●
●●●●● ●●
●
●
●●●●
●●●●●●●●●
●●●●
●●●●●
●
●
●●●●
●●●●
●●●

● ●●
●

●● ●● ●●● ●● ●●●●●●
●●●●●●●●●●
●●●
●●●●●●

●
●
●
●●
●
●
●●
●
●
●●● ●●●● ●●
●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●
●●●●●●
●
●●●
●●
●●●
●●●● ●●●●●●●●●
●●●●●
●●

● ●
●●●
●●
●
●
●●●●●●●●●●●
●●●●● ●●●●●●●●
●●●
●●●● ●●
●
●
●●●●
●●●● ●
●●●
●●●●●
●
●
●●●●●●
●

●
●
●●
●●●
●
●●
●●●
●
●
●●●
●● ●
●●●●
●●●●●●●●

●
●●●●●
●
●●●
●
●

●
●
●●●●●●●●●●●●●

●
●●●●
●
●● ●●●● ●●●●●●●●●●●●●●●
●
●
●
●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●
●●
●●●●●●●

●

●

●●
●● ●●
●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●
●
●●
●
●●
●●●●

●

●●●
●●
●●
●

● ●●●●● ●●●
●
●●
●●●●●●●●
●● ●●●●●
●●●●●●● ●●●●
●
●●
●● ●●●●●●
●
●●●●●●●●
●●●●
●●
●●●
●●●
●
●● ●
●●●
●
●●●●●●●
●
●●●
●
●●●●●●●●●●
●

●

●●●●●
●●
●●
●●●
●
●●
●

●
●●●● ●●●●●
●●

● ●
●
●
●
●●●●●
●
●●●●●●
●
●
●
●●●●●●●●
●●

●●●
●
●●

●
●●

●

●●●● ●
●

●
●●●●●●
●●●● ●
●
●●

●
●●●●
●●●●
●
●
●●●●

●
●
●●
●
●
●●●●●●●●●●● ●●
●
●
●●●●●●●
●
●
●
●●
●
●●
●
●●
●●

●● ●●●●●●●
●

●
●●
●●
●●●●
●
●●
●●●
●
●
●
●●
●

●
●
●●●
●
●●●
●

● ●
●
●
●●
●
●
●●●●●●●
●
●●
●
●●●●●
●
●●●●
●●●
●
●

● ●●
●●●●● ●●
●
●
●●●●●●
●
●
●●
●●
●
●
●

● ●●●●
●●●●●●●
●
●●●●

● ●
●●●●

●●
●

●●●
●●
●
●●
●
●●●●
●

● ●●
●
●●●
●●●●●●●●●
●●
●
●
●●●●●●
●
●●●
●●●
●
●
●●
●● ●
●●●
●
●
●●

●
●
●●●●●●●●●

●
●●
●●● ●●
●●●●
●
●
●●●●●●●●●●
●
●
●
●●
●●
●●
●●●●
●●●●
●
●
●
●●●●●
●●●
●●●●●●●●
●●●●●●●
●

● ●●●●●●
●
●●● ●● ●●●●
●
●●
●●●●●●●
●●●●●●●●●●●
●●
●●●
●●●●
●●●●●
●●
●●
●
●●●
●●
●
●
●●●●
●●●●
●●●●
●
●
●●
●●●●●●
●
●●●●●●●
●●●●
●●
●
●
●●●●●●●

●

●●
●
●●●
●●
●
●
●●
●●●●●
●
●

●●● ●●●
●

● ●● ●
●●●
●
●●●●
●
●●
●●
●●●
●●
●
●
●
●●●●
●●
●
●●●
●●●●
●●
●●
●
●●●●
●●● ●
●●
●
●
●
●●●●●●●●●
●
●●●●●●●●●
●
●
●●●●●●

●
●●
●
●●●●

● ●●●
●●
●
●●●● ●
●

● ●●● ●●●● ●●●
●●
●
●●
●●●
●

●●●●●
●●●●●●●●●●●
●●
●●●●●●
●
●●●●●●●●●●
●●●●●
●●●●●
●
●●●●●●●●●
●●●●●●●●●
●●●
●
●●●●●●
●
●
●
●●
●●●●
●● ●●●●●
●
●●
●●●●●●●●●
●●●●●
●

●

●●●●●●●
●

●● ●●●
●
●●●
●
●●●● ●●●●●
●●●● ●
●
●●
●●
●
●
●● ●
●

● ●
● ●●●

●●●●● ●●●
●

● ●●
●
●●●●
●
●●●●●●●●●●●
●
●●●●
●
●●●● ●● ●● ●●●●
●
●●●●
●
●
●●
●
●●

●

●●●●●●● ●●● ●●●
●
●

●
●●
●
●●
●
●● ●● ●
●●

● ●●

●
●●●
●
●●
●

●●
●
●●

●

●●● ●●●● ●● ●●●●●
●

●●●●● ●● ●●●●●●●●●●● ●●
●
●

●●●

●

●

●

●●
●
●●●●●●●●●● ●●●●●
●
●

●●

●

● ●
●
●●●
●● ●

●
●●●●●
●●●●●
●●● ●●●●●●

●

●● ●●●●

●

●● ●●●●●●●●

●

●●●●●

●

●●
●
●

●●● ●
●
●●●●●●●

●

● ●●●●
●●●●●
●
●●●
●
●● ●●●
●

● ●●●
●
●●●● ●●●●●●●
●
●●
●●●
●
●●●●
●●
●

●

●●●

●

●●●
●
●●
●●
●
●●
●
●
●
●

● ●●●
●●●
●●● ●●
●
●
●●●●
●●
●
●●
●●
●●●●
●
●●
●

● ●
●●
●●●
●
●●●●●● ●●●
●●●
●
●
●
●
●
●●

● ●●●
●
●●
●
●●●
●●
●●●
●
●●●●
●●
●
●●●●
●●●
●●● ●●
●●
●●
●●
●●
●●
●●
●
●●●●●
●●●●●●●●●●●●
●●
●
●●●●●●● ●●●●
●●●●●●●●

●
●
●
●
●●●●●●●●●●
●
●●●●●●●●●
●
●●●●
●
●●●
●● ●● ●●●●●●
●
●
●●●
●

●●●●●●

●●
● ●●●●●

●●●

●●
●●●●●●

●
●●●
●

●●●●●●

●

●●
●●
●●

●

●●●

●

●●●
●●
●
●● ●

●●●

●
●● ●
●

●●●
●●
●
●
●●●●

●
●●

●
●●●

●●

●●●●

●●●●● ●●●●●●●●●●

●
●●●●●
●
●●●●●●●●●●●
●●●●●●
●
●●●●●●●●● ●●●●
●●● ●●●
●●● ●●
●
●●●●
●
●●●●●●●●●●●●
●●●●●●●

● ●●● ●●
●●●●
●●●

● ●●●
●● ●●●●●●●●●●
●

● ●●●●●● ●
●●●●●
●
●●●
●●● ●●●●● ●

●
●
●● ●● ●● ●●●●● ●
●

●● ●●●●●●●●

●

●

●
●

●●●●●●●●
●●●●
●●

● ●●●●●●●
●●●●●●●●
●
●
●● ●●
●●

●
●●●●
●
●
●
●
●
●●●
●
●●●●●
●

●
●
●

●

●●
●●

●
●
●●
●
●
●●●● ●●
●●●
●
●●
●
●●
●
●●●●
●
●
●●●●●●●●●
●
●
●●
●●
●●●
●●● ●
●●● ●●●●●●
●
●●●●●
●

●●
●
●●●● ●●● ●●●●●

●
●●●●●●●●●●●●●●
●
●●●

● ●
●
●
●● ●●●
●●
●●
●●
●
●● ●●●
●●●●
●
●
●●
●
●
●
●●●●● ●●●●●
●●●●
●●●●● ●●●●●●●●●
●
●●●●●
●
●●●●●●●
●●●●
●
●●●●●●●●●
●
●●●●
●
●●●
●●
●
●
●●●
●●

● ●
●●

●

●●● ●
●
●●●

●

●●
●

●
●●
●

●
●●●
●●

●

●●

●
●●

●

●

●

●
●●●●
●

●

●

●

●
●

●

●

● ●●●●●●●●
●
●●
●●●
●●●●

●
●

●

●
●●
●●

●
●
●

● ●●

●

●

●●
●●

●●
●
●

●
●
●
●
●●●
●

●
●

● ●●●
●
●●●
●●
●

●
●●●● ●●

●
●●●●●●

● ●●
● ●●

●●●● ●

●

●●●●
●
●● ●●●●

●

●
●

●

●●●

●

●

●

●● ●

●

●●●●● ●●●●

●

●●
●

●
●●

●

●●●

●

●●

●●●●

●●●
●
●●●●●●●

●●

●
●● ●●
●

●●

●●●●●

●●

●●●

●

●●
●

●

●●

●

●
●

●

●

●

●●

●
●

●
●

●

●
●●●●●

●

●●

●●●
●

●

●
●

●●●

●

●●●

●●

●

●

●
●●●●●

●

●

●

●●

●●●●

●

●●●●●
●

●
●
●●●●●●●●

●●

● ●●●●● ●●●●●

●

●●

●

●●

●●

●

●

●

●●

●●

●

●●●●●●

●

●

●●

●●●●●
●

●●● ●●●

●

●

●

●
● ●●

●

●●

●

●●●
●
●
●
●

●
●
●●

●
●
●

● ●
●
●
●
●

●

●

●

●

●●

●
●●●●●●
●
●●●●
●
●●
●
●●●●●●●

●
●●●●●●
●
●
●
●
●
●●
●
●
●●●
●●
●●●
●
●●
●
●●

●

●●●
●●●
●●●●●●●
●●

●
●●

●

●

●●●
●
●●●●
●

●●●●●

●●●

●●
●●
●

●●●

●●
●

●

●

●
●●●

●●●

●●
●●
●

●●
●
●

●●
●●
●

●

●

●●●●
●●●
●

●

●

●

●

●

●●
●●●
●

●●●●

●
●
●
●
●
●●●●●

●
●●●
●
●

●
●
●

●●●

●●●●
●
●
●●
●
●
●●●
●

●

●●●

●
●●

●●

●●

●●

●

●●
●●●

●
●●
●●●●
●

●

●
●
●

●
●●●
●●●●●
●●●●●●●
●●●●●●● ●
●

●●●●
●●●●●●●
●●●
●
●●●
●
●●●●●●
●
●●●●●●●
●
●●
●●●●
●●
●
●●●
●●
●●●
●●●●
●●●
●●●●●●●●
●●●●●
●●●●
●

●
●●
●
●●●●●●●●●
●
●●●●●
●●●
●
●●
●● ●●
●●
●
●●●●
●●
●●
●

●
●
●●●●●●
●
●
●●
●
●●●●●

●
●
●●

●

●
●
●●●
●
●●
●●●●●●
●●●●●●●●
●
●
●●● ●●●● ●●
●
●
●●●● ●●●●●●●●●
●
●●●●●●●●●

●
●●
●
●●
●
●
●
●●●●●●●
●●●●●
●
●
●
●●
●
●●●●●
●●
●●●
●
●●
●●●
●
●
●
●●
●
●

● ●
●

●
● ●●

●●
●●●
●●●
●●
●●

●
●●●
●●
●●
●●● ●
●
●●●●

●

●●●●●●
●
●●●●●●
●●●●● ●●●●●●●●

●

●● ●●●●●●●

●
●●●

●

●●●●●●●●●●●●●●
●
●●●●●

● ●●●●●●●●●
●● ●
●●●●● ●●●●
●●
●●●●●●●●●●●●●●●
●
●●
●
●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●
●

● ●●●
●
●●

●●●
●●●●

●

●

●

●●●

●●●●

●

●
●
●● ●●

●●

●●

●
●
●
●
●

●●
●●
●●●●●●●●●●●●●●●●●●●

●●
●●●

●●
●●●●●●
●
●●●●●●●●●
●
●
●
●●
●
●●●
●
●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●●●●●
●●
●●●●●
●
●●●
●

●●
●●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●
●

●

●●

●

●

●

●●
●

●● ●●●●●●●●●●●●●●●●●
●

●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●● ●
●
●●●●
●
●●
●●
●●●●●●●
●●●●●●●●

●

●●●●●●
●●●●●

● ●
●
●●
●●●●

● ●

●
●●●
●●
●●● ●
●●
●●●●

● ●●●
●
●●●●●●●
●●
●
●●
●●●●●●●●●●●●●
●●●● ●●
●
●●●●●
●●●●●●
●●●●●● ●●●●
●●●●●●●● ●●●● ●
●●●
●●●●●●●●●●
●●
●
●
●●●●●
●●
●●●●
●●●●●●●●●●●●●●●●●●
●●●
●

●● ●
●●●●●●●●●●
●●●●●●
●●
●
●●

●
●●●●●●
●
●●●●●

●
●
●
●

●

●

●
●
●
●
●●
●●● ●●
●●
●●●

● ●
●●●
●●●
●●●●●●
●
●●●●●●●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●
●
●●●●

● ●●●●●
●
●
●
●

● ●●●●●●●
●
●
●●●●●●●●
●●
●●●
●●●
●

●
●●
●●●●●
●●●●●●●●●●●● ●●●●●
●
●●●
●
●●●●●●●●
●●●●●●●●

●

●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●

●
●●●●●●●●●●

●
●●●●●●●●●

● ●●●●●
●
●●

● ●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●

●●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●
●
●●
●
●●●●

●

●●●
●
●●● ●
●
●●●●
●
●●●●●●●
●
●●●
●
●●●●●●●●●
●●●●● ●●●

●

●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●
●●●●●●●●●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●●

●

●●
●
●●●●●●●●●●●●
●
●●●●●●●●●
●●●● ●
●
●●●●●●●●●●●
●
●●
●●●●●●
●●●●●
●●
●
●●● ●● ●
●● ●
●●●● ●
●●●●●●● ●
●●●●
●
●
●●
●●● ●●●

●

●●●●●●
●●●●●●●

●

●●●
●

●●●
●
●●
●
●●●●
●
●●
●
●●●●●
●●●

●●
●
●
●
●●●●●●●●

●
●
●●●●●●●●●● ●
●
●●
●●●●●●●●●●●●●
●●●●●●●●
●●●
●●● ●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●● ●●
●
●●●
●
●●

●

●●●●●
●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●
●●●

● ●●●●●
●●●●●
●●● ●●●●●●●
●●
●●● ●●
●
●●●●●●
●
●
●●●●●
●●●●●●●●●
●

● ●●●
●●●●●●●
●
●●

● ●●●●●● ●●●●●●●●●●
●●
●●
●●● ●●●●
●
●●●● ●●●●●●●●●●●●●●● ●●●
●●●●●● ●● ●●●●●●●●●

●

●●●
●●●●●●●●●
●● ●●

●

●●●●●●
●●●●●●●●
●●
●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●●
● ●●
●

●●●●●●●
●
●●●●●●●●●●●●●●●
●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●●●●
●
●●●

● ●
● ●●●●●●●

●●●
●
●
●●●●●●●●●●● ●●●●
●
●●●●●●●
●
●
●● ●●●●●●●●● ●●●●●
●● ●● ●●●●●●●●●

●

●●●●●●●●
●●● ●●●●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●
●
●●●●
●●
●
●
●●●●●●●●●●
●●●
●●●●●●●
●
●
●●
●
●●●●●
●
●
●●●●
●●●

●
●●●

●
●●●●

●
●
●
●●●
●

● ●●●
●●
●

●

●●● ●●●●●
●●●
●●●
●
●●●● ●●● ●●●● ●
●
●●●
●●●●
●●
●

●●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●
●●
●●●
●●●●●
●
●●
●
●●●●●●●●●
●
●●
●
●●
●
●
●
●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●
●

●●
●●●●●●●
●
●●●●
●● ●●●●●●
●

● ●●●●●●●●
●
●●●
●●●●● ●
●●●●
●●●

● ●
●●●●●●
●
●
●
●
●●
●●
●
●

● ●●
●
●
●●
●● ●●●
●●
●
●●●●●
●
●

● ●
●
●●
●●
●
●●
●
●●

●

●●

●
●
●●●●

● ●

●

●●
●
●

●
●
●●●●●●●

●●●
●

●●●
●
●
●●
●

●●

●
●●
●●

●●
●●●
●
●● ●
●
●

●

●
●
●●●●●●
●●
●●●

● ●●●●●
●●
●
●
●
●●●
●
●
●●

●

●● ●●●●●
●●●
●●●●●
●●
●●● ●●
●●●●
●
●●
●
●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●●
●●
●
●●●●
●
●●●
●●● ●
●●
●● ●●
●
●●
●

●●●●
●
●●
●
●

●
●●●●
●
●●●●●●●

● ●●●●●●●●●●●●
● ●●●●●●●●

●
●●●●●●●

●●●
●●
●●
●●●
●
●
●
●
●
●

●

●●
●
●
●●● ●●●

●●● ●●● ●
●

●●●
●

●●
●●●
●

● ●●
●● ●●●

●●●
●●
●●
●●●●●
●
●●●
●●
●●●●
●
●●●●
●
●●
●●
●
●●

● ●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●● ●●●●●●●
●●●●●●●●
●●
●●
●●
●●●● ●●
●●
●
●
●●

●

●
●●●

●
●

●●
●

●
●
●

●
●

● ●●
●
●

●●

●●●

●

●
●●
●●●●
●
●● ●●●
●
●●●●●
●
●●●
●
●●●●●●●●
●
●
●
●●
●
●●●●●●●●●●●●●●●●●●
●●●● ●●●●●●
●
●● ●●
●
●
●
●●●
●●
●●●
●
●●
●●
●
●
●●●●

● ●●●● ●●● ●●●●● ●●
●
●●●
●
●

●
●
●● ●
●
●●●●
●

●
●●
●● ●●●
●●●
●
●●●●●

●●
●●
●
●●●
●●● ●●●●●
●●●●●●●●●

●
●
●●●
●● ●●●●
●
●●●
●
●●●
●
●
●
●
●

●
●●●●

●

●●
●●●●●●
●●●● ●
●
●●

●

●

●●●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●●●

●
●●●
●

●

●
●●●

●

●
●

● ●●●●

●

● ●

●

●

●
●

●●

●●

● ●

●

●●

●

● ●

●

●
●

●

●

●●●

●
●

●

●

●

●●
●●

●

●●

●

●

●

●
●

●
●●
●●
●●

●●

●●

●

●

●

●
●
●●●

●

●
●

●

●

●
●

●●
●
●●●●
●●●●●●
●●
●
●●●●
●
●●
●
●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●●●●●●●●
●●●●●
●●
●

●

●●
●
●●●●●●●●●
●●●
●

●●
●
●
●

●●●●
●

●●●●
●●●●

●

●
●
●
●●●●
●
●●●●●●
●
●●●
●
●●

● ●●●●●●

●

●●●●● ●●●●
●
●●●●●●●

●
●

●

●
●
●●
●●● ●

● ●
●●●●●●
●

●
●●
●
●●
●●●●●●
●

● ●●
●
●
●
●●●●●●●
●

●
●●●●● ●●●●
●●
●●
●●●●●●●●●●
●●●●●●
●
●
●
●●●
●
●●●
●●
●●●●

●
●●●●
●●
●●●●●● ●●●●●●
●
●●●
●
●
●
●●●●●●●●
●●
●●● ●●●●●●● ●●

●

●●●
●
●

●●●●
●●●
●●
●
●
●●●●●
●●● ●●●

●
●●●●●●
●
●● ●●●●●●●●●●●●
●
●
●●●●●

● ●●●●
● ●

●
●
●●
●●●●● ●●●●●● ●
●
●
●
●●●
●
●●●●●●●●
●●●●●
●
●●●●●●

● ●●
●
●● ●
●
●●
●

●
●●●●●●●●●●●●●●
●●
●●●
●
●●●●●●
●●●●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●● ●●●
●
●●●●●●●
●●●●●●●●●●●●●●●

●
●●●●●●●● ●
●●●●●●●
●
●●
●●
●●

● ●●
●
●● ●●●●●
●
●●
●
●●●●
●
●●●● ●
●●
●●●●●●●
●●●●●●
●● ●●
●●
●
●
●

●●●
●●●

●

●●●
●●
●

●

●

●●●●●●●●●●
●●● ●●●●●●●
●
●●●●●●●
●●●●

●

●●●●●
●

●●●● ●●
●●●●
●
●●●
●●
●●●●●

●●● ●●●●●●●● ●●
●●

●

●●●
●
●●
●●●●● ●

● ●
●
●●●
●
●
●●●●●●
●
●●●●
●
●
●
●●●
●●●●●●
●
●
●●●●●●●

● ●●●
●
●
●
●
●●
●

●●
●
●
●
●
●●
●
●
●
●●
●●●●●●
●●●●●●

●

●●●●●●●●
●●●●●●●●●●

● ●●●●●●●●●●●●●●
● ●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●
●●
●●●●
●
●●●●
●●●●●●
●●●●●
●●
●
●●● ●
●●●●●

● ●
●●●
●●
●
●
●
●
●●●●●●●●●
●●
●●●
●
●●●

●

●●
●●
●●●
●
●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●

●
●

● ●
●
●●
●
●
●●●●●●●
●●●
●●●●●●●
●
●●●●●●●●●●●
●
●●
●
●●●●●●●

●
●●●●
●

●
●●●●●●●●●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●
●●●●●
●
●●●

●
●●
●
●
●
●●
●●●
●●●●●●●

●
●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●
●
●
●●●●●●●
●●●●●●● ●● ●●●●●
●
●●●●●●●●●●●●●●●●● ●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●

● ●
●●
●●●
●
●●●
●
●● ●●

● ●●
●●●●
●
●●●●●●●●●●●●●●● ●

●
● ●● ●● ●●● ●● ●

●●●●●● ●
●
●●●●●●●●●
●
●●●●
●
●●●●●●●● ●●
●●●●●● ●●●●●●
●

●●
●●●●●

●
●
●●●●
●
●
●●
●
●●●
●
●● ●●●● ●●●● ●●●
●
●
●●●●●●
●●●●
●●
●

●

●

●
●●

●
●●●
●

●
● ●●●

●
●●
●
●
●
●●●
●●
●
●
●●●●●●●

●

●●●

●
●
●●●
●
●●●●● ●● ●●●●

●

●●●●●●●●● ●●●●●●
●

●●●●●●●●●●●●
●●●●●
●●
●●●
●
●●●●●●●●●
●●●●●
●
●●●●●●●●●●
●
●
●●
●●●
●
●●●●●
●
●●●●●●●●●●●●
●
●●●●●●
●●●●

●

●●
●●
●●●●●●●●
●●
●●●●●●●
●
●
●●●●●

●
●
●
●●●●
●●
●●●●
●●
●
●●●●●
●
●●
●●
●
●●
●●●
●
●
●
●●
●
●●●●
●
●
●
●●
●
●●●●

●
●
●
●●●●●●
●●
●
●
●
●●●
●●●●●●●●
●●●●
●
●●●

● ●
●●●●●●
●
●●
●
●●
●
●●●●●●●●
●●
●
●
●●●●●●●●●
●●●
●
●

●
●●
●
●●●●●● ●
●

● ●

●

●●
●●●●
●●
●● ●●●●●●●●●●●
●●●●
●●
●●●
●
●●●●●●●●● ●
●
●
●● ●
●
●
●
●
●●●●●
●●●
●
●
●

●
●
●●
●
●●●
●

●
●●●
●
●●●●●●
●
●●●
●●●●●
●
●●●● ●●●●●●●●●●●●●●●●●●
●
●●

●
●●●●●●●●

●

●●●●●●●
●
●●●● ●●●●●
●
●

●●●●●●●●●●

●

●
●●●●
●
●●
●●●●●
●●
●●●●●●●●
●●
●●
●●
●●● ●
●
●
●●
●
●
●●●●●●
●
●
●
●
●
●●●●
●●
●●
●
●●
●
●
●●
●●
●●●●

●

●●●●●●●●
●●●●●

●
●
●●
●●
●●
●
●

●●●
●●
●
●●
●
●●
●●
●●●●● ●

●
●

●
●●●●
●
●
●●
●
●

●●
●
●
●●●●●●
●●●●●●●

●●

●●●●●●●●●
●
●●

●
●●●●
●
●●●●
●
●●● ●●
●

● ●●●●●●●
●
●●●●●●●●●●
●
●●
●
●●●●●●●
●
●●●●●
●
●
●●●
●●●
●●
●
●●●●
●●●
●
●●
●● ●●●●
●
●●●
●
●●●●
●
●

●
●●●●●●●
●●●●●●
●●
●●●●●●
●
●●●●●●●●●●
●
●●
●
●●●●●
●
●●
●
●

●●
●●●●●
●●
●●●●●●●
●
●●●●●
●
●●●
●
●●●●●
●●●
●
●
●●●●●●●●●
●●●●●●
●
●
●
●●●●●●●●
●
●
●●●●
●●●●
●●●●
●●●●
●
●●●●●
●
●●●●
●
●●
●
●
●●●●
●●●●●
●
●
●
●
●●●●
●
●●
●●●●
●
●
●●●
●●
●●●●●●
●
●●●

●●●●●
●
●●●●
●●
●●
●
●●●●●
●
●●●●
●
●●●●●
●●
●●●●●●●●
●
●●●●●●●●
●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●
●●
●
●●●●●●●●●●●●●
●●
●●●●●
●●●●●●●●●●● ●●●●●●●●●●●●●

●

●●●●●●●●
●●●
●●●
●●●●●
●●●●●
●●
●●● ●
●●●●●●●
●●●●●●●●
●●●●●●
●
●
●● ●
●● ●●●●●●●●●
●●
●●●●
●●●
●●
●
●
●●
●●
●● ●
●

●●
●●●
●●
●●●

● ●●●●●●●●●●●●
●●●● ●●●●
●●●●●●●●●●●
●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●
●
●●●●● ●●●●●●●●●
●●●● ●●●●●●
●
●●●●●●●●●●
●●

●
●● ●●●● ●● ●●●●●

●

●●●●
●●●●●●●●
●●●●
●●
●
●●●
●
●
●

●
●
●●

●●
●

● ●

●
●
●● ●
●

●
●●
●
●
●
●
●●
●●
●

● ●
●
●
●●●●●

● ●●●●●●●
●●●●●●
●
●

●
●●
●

●
●
●
●●●
●

●
●●
●●●
●●
●●●● ●●

●
●
●●

●

●●●

●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●● ●●
●
●●●●●●●●●●
●●●
●●
●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●●● ●●●●●●●●
●

●

●

●●●
●
●●
●
●●
●
●●
●
●
●
●●
●●●
●
●●●●●●●
●●
●
●●
●
●●●● ●
●
●●
●●
●●●●●
●

● ●
●●
●●
●
●

●
●●●● ●
●●
●●●

TPO:thyroid
(PIP: 0.88)

0
5

10
15
20

0 1 2 3
Position [MB] Chromosome 2

−
lo

g 1
0(

pv
al

ue
)

Hypothyroidisma

●

●●
●
●

●●

●
●
●

●●●●
●
●
●
●●●●●●●●●●●●●●●

●
●
●●
●●

●
●
●
●●●
●
●●●
●

●●●●●●

●

●●●●●●●●●●●●●●●
●●
●●●●●
●
●●
●
●
●
●●
●●●

●

●
●
●●
●●●
●
●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●

●

●

●●●●●●●
●●●●

●

●●●
●
●
●●●
●●●●●●●●
●

●

●
●
●●
●●●●●●●
●
●

●●

●●

●

●
●
●●●●

●

●●●●

●

●●
●
●●●●
●

●

●●●

●

●●●●
●
●

●●●●●●●●

●

●●
●
●

●

●
●

●

●

●

●●●●●●●
●●

●
●●

●

●●●

●

●●●
●

●

●●●●●●●

●

●●●●●●●●●●
●

●

●●

●
●
●●●●●

●

●
●
●

●

●

●●●●●

●
●●●
●
●●

●

●
●

●●
●
●●

●

●
●●●●●●●●●●●

●

●●

●

●●●●●●●
●
●●●●●

●
●
●●●●●●●●●

●

●●●

●

●●
●
●●
●
●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●●

●

●●
●
●●●

●●

●●●●●●●●

●

●

●●●●●
●

●

●●●●●●●●
●●●●

●

●

●
●

●

●
●

●

●
●●

●

●●●●●
●
●●●●●●●●

●

●●●
●●●●

●

●●●●●●

●

●

●

●

●●●

●

●●●●●
●●●●●●●●●●●
●●

●

●●●●

●

●
●
●●
●
●●●●
●
●
●
●●●●●
●●
●●●●●●●●●●●

●

●

●

●●

●

●●●●
●
●●●

●
●
●

●●

●

●●

●

●●●●●●
●
●

●

●●●●
●●
●

●
●●●

●●●
●
●
●●
●

●

●
●

●●

●●

●

●●
●

●

●●●
●
●●●●●●
●
●●●
●

●

●●
●●●
●
●●
●●●

●●
●
●●●●●●●●

●

●

●

●

●●●●●●
●

●

●●
●
●
●
●●

●●

●
●●●

●

●

●●
●●●●●●●

●

●
●

●●●●

●

●●

●

●

●●●●

●

●

●●

●
●●
●●●●
●●
●●

●

●●●
●

●

●●●

●

●
●
●

●

●

●

●

●

●●●

●

●

●
●

●●

●●

●

●●

●

●

●

●

●

●●

●●

●●

●●

●
●
●
●●

●●

●
●
●●

●

●●

●

●

●●●●

●●●

●

●●●

●●●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●
●
●●●

●

●

●●●

●●

●●●

●

●●

●

●●

●
●

●●●●●●●●

●

●

●●●●●●

●

●●●●
●

●

●●●●●●

●

●

●

●●

●

●●●●●
●●

●●●●●●●

●●●●

●●

●

●●●●

●●●●●●
●

●●

●●●●●
●
●●

●

●

●●

●
●
●
●

●

●●
●
●

●●●●●●●●
●
●

●

●

●

●

●●●●●

●

●

●●●

●●●
●

●

●

●
●●●●

●

●

●●
●●●
●●●●●

●
●

●

●●
●●

●

●
●●

●●●●
●
●
●●
●●

●●
●
●
●●
●●
●
●

●

●
●
●

●
●●
●●

●

●

●

●

●
●●●●

●●

●
●●●

●

●

●●
●●●
●

●●

●●

●

●●

●●●
●
●
●●
●
●●●

●
●

●●

●
●●●●
●●●
●
●

●

●●●●●●●

●

●
●●
●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●
●

●

●●●●●●●●●
●
●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●
●
●

●

●●●●
●●
●●●●
●
●●●
●
●

●

●●●●●●●●
●
●●●
●
●●●●
●
●●
●
●●●●
●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●
●●●●
●●
●●●●

●

●●●●●●●●●●●●●
●●●●

●
●
●

●

●●●●●●●●●
●●

●●●

●

●●

●●
●●

●●●

●●●

●

●

●●●●

●

●●●

●

●●●●●●

●

●

●●●●●●●

●●

●●

●

●●

●●●

●
●
●●
●●
●●●●●

●

●

●●
●

●●●

●●

●●
●
●●
●●
●

●●

●●

●

●
●
●

●●

●●

●

●●●
●●●●●

●

●
●●

●

●●

●
●
●●

●●●

●●●●●

●

●
●●

●

●
●
●●

●
●●●●
●●

●

●●●●

●●

●

●
●

●●
●●

●●●●

●

●

●●●●●●

●●●●
●●

●●
●●
●
●●

●●
●●●
●●

●

●

●●

●●
●

●
●●
●

●

●

●●

●

●●

●●●●

●

●●●●

●●●

●●●
●●
●●●●

●●
●●

●
●
●

●

●

●
●
●

●●
●
●●

●
●●

●
●
●
●●
●
●●●
●●●●

●●
●●●●
●●
●
●●●

●●

●●●

●

●

●
●●

●

●

●●●●●

●

●
●

●

●

●

●

●●●●●●●●●●●●●
●
●
●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●
●●●
●
●

●●●●●
●●
●●

●●●
●●●●●●●
●
●●●●●●

●

●●●

●
●●
●●●●●●●●

●

●●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●
●
●
●●●
●
●●
●
●●●●
●●●●●●●●●●

●

●
●
●

●●
●●●●●●●●●

●

●

●

●●●●

●
●●
●
●●●●●●●●
●●●●●
●
●●●
●●●●●
●
●
●●●
●●●●●●●●
●
●●
●●●●●●
●●
●●●●●
●●
●
●●●
●
●●

●

●

●
●●●●
●●●●
●●●
●●●●

●●

●●●
●
●
●
●
●
●●●●●●●●
●
●●
●●

●

●

●

●●●
●●●

●

●
●

●

●
●
●

●

●

●
●●
●●

●
●
●●●●●●
●
●

●

●●●●
●●
●●●

●

●●
●
●●

●●

●

●
●●
●

●

●●
●●●

●

●

●
●

●
●
●

●●●
●
●

●
●
●●
●●●●
●
●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●
●●●●●●●●●
●
●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●
●

●

●●
●
●●●●●●●●●●●●●●●●
●●●●●●●
●
●

●●●●●●

●

●●●●●

●
●

●

●●
●●●●●
●

●●●
●
●●●
●●●●●
●●●●
●●
●

●
●●●●

●

●●
●●

●
●
●
●●●●●●●●●

●
●●●●●●●

●

●●

●
●●●
●

●
●
●●●●

●

●●●●●●
●●
●
●
●●

●●●●●
●
●●●●●●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●
●
●

●●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●
●
●●●●
●●●●●●●●●●●●●●

●

●●●●

●

●
●
●●
●
●

●

●●
●
●●●
●
●●●●●●●●●●●●●●
●
●●●
●●

●
●
●●
●
●●●●●●●
●●●●●●●●●●●●
●
●●
●
●●
●●●
●
●●●●●●●
●●●●●●●●

●

●●●●
●
●

●

●
●
●
●
●●
●●●●●●
●●
●●
●●●●●●●
●
●●●●
●●●●●●●●●●●
●●●●●●
●
●
●●●
●
●
●●
●
●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●●
●
●●
●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●
●●●
●
●
●
●
●●●
●●●●
●●
●●●●
●
●
●●
●
●●●●
●●●●
●
●●●●●●
●●
●●
●
●●●
●●
●●●●
●●●
●
●
●●●
●●●
●●
●
●●●●●●●
●
●●●
●●●●
●●
●●●
●●●●●●
●●●●
●
●
●●●●●
●
●
●
●●●
●●●●
●
●●●●●
●●●●●
●
●
●●
●
●●
●●●●●●●●●●●●●
●
●●
●●●●
●●
●●●
●●●●

●

●●
●
●
●●●●
●

●●
●
●●●
●●●
●
●
●●
●●●●●●
●●●
●●●
●●●●●●●
●
●
●●
●
●●
●●●●●●
●
●
●●●●●●●●●●●●●●●●
●●●
●
●●●
●
●●●●●●

●
●

●●●●

●

●●

●

●●●●●●●●●●
●
●●
●●●●
●●●
●
●
●
●●
●●

●●

●
●●●●●●●●
●●●
●
●●●●
●
●
●●
●
●●●●●●
●
●●●●
●●●

●
●

●

●●

●
●
●
●●

●

●●
●
●

●●
●
●

●●●●●●
●
●
●
●
●
●
●●●

●

●●
●
●

●

●●
●
●
●
●

●●●
●●●●
●
●●●●●●
●
●●
●
●
●●
●
●●

●●
●
●
●
●

●●
●
●●
●●●●●
●●
●●
●●●●●●●●●
●
●●●
●
●
●
●●●
●
●
●
●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●
●
●●

●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●

●

●
●●●●●●

●

●
●●
●●●●●

●

●●●

●

●●●●●

●

●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●

●

●
●
●
●●●●●●●●
●●
●●●

●
●

●●●●●●●
●
●●●
●●●●●●●

●
●

●
●
●
●
●
●●●●
●●●●
●
●●
●●●
●
●
●
●●●

●
●●●●●●●●●●●●●●
●
●

●

●
●●●●●
●

●

●●●●●
●●
●

●●●●●●
●●
●
●
●●●●

●
●●●●●●

●

●

●●
●
●

●●●●●●●

●

●●
●●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●
●●●
●●●
●●

●
●●●●●

●
●

●●●

●

●●

●

●●
●
●

●

●●●

●

●●●●●●●●●
●●
●
●●●●●
●

●

●

●
●

●

●

●

●
●
●

●
●
●●●

●
●●

●

●
●●●
●●●
●●
●

●●
●●

●

●

●

●●

●

●●●
●
●
●●●
●
●

●

●
●

●●

●●

●●●
●

●

●

●

●

●●●●●●●
●
●
●
●●
●
●

●
●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●
●●●

●●

●

●

●
●●

●

●
●

●

●

●●
●

●
●●
●

●

●
●
●●●
●
●

●

●●

●

●

●

●

●

●●●●
●●●
●

●

●

●
●

●

●●●

●
●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●●●

●

●

●

●

●●●

●

●●

●

●●

●●●●●

●●

●
●
●●●
●
●●

●

●

●

●

●

●
●
●
●●●
●
●

●●●
●●
●●●●

●

●
●

●

●
●

●
●●

●

●

●●●●●●

●●

●

●

●

●

●●
●●
●

●●

●

●

●

●●●

●
●

●

●
●

●●●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●●●

●

●

●

●

●
●●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●

●●

●●●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●●●

●

●

●●

●

●

●●●
●

●●

●●●
●

●

●
●

●

●

●

●

●
●
●

●

●
●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●●

●●●●

●●●●●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●
●
●
●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●●

●

●●●●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●●●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●
●
●
●●●

●

●

●●
●
●●

●●

●

●●●●

●

●

●●

●
●●●

●

●
●
●

●
●

●

●

●●●●

●

●●

●

●
●

●●●●

●
●●

●
●

●

●
●

●●

●

●

●

●

●●●

●

●

●
●

●
●

●

●●●●●
●
●●

●

●
●

●

●

●

●●
●

●

●●

●

●
●
●●
●

●

●●●●●●●
●
●

●
●

●
●●●
●
●
●

●

●●
●
●●●

●

●

●
●

●

●

●
●

●●●

●

●●

●

●

●

●●●●●

●

●●●●●●●●
●

●
●

●●

●

●

●

●●●●

●●
●
●●●●

●

●●●
●

●

●●●●●●●●
●●
●●●●
●
●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●●●

●
●

●
●●●

●

●

●

●

●●

●

●
●●●

●

●
●

●

●
●

●

●
●●●●●●

●

●●●
●
●

●

●●

●

●
●●

●●●
●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●

●
●

●●●

●

●●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●

●●●

●

●
●

●

●

●●

●

●●

●

●

●●
●●●●●

●
●

●●●

●●

●
●●

●

●●●
●

●

●●●

●
●

●
●
●

●

●●

●

●

●●●●●
●
●●●●
●●

●

●●●●●●●●

●
●

●

●

●

●

●●

●
●

●●

●

●●
●
●●●●●
●
●
●
●

●

●●●

●

●

●

●●●●

●

●●●●

●

●
●●●●●●●●●●

●

●
●
●●●
●
●

●

●

●

●●●●●●
●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●
●●

●●●

●
●

●●●
●
●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●
●●
●
●
●●

●

●
●
●●
●●●●●●
●●
●
●●●●●

●
●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●

●

●
●
●●
●●

●

●●●●
●
●
●
●●●●●●
●
●
●●●●

●
●●●●

●

●

●

●

●
●●
●
●●●
●●●

●
●

●●●●

●

●
●

●●
●●
●

●

●●●

●

●●
●

●
●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●●●●●●●●
●
●

●●

●●●●
●

●

●
●●●●

●

●●●●
●●

●
●
●
●
●●●
●
●●
●

●

●

●

●●●●●
●
●●
●
●●
●●
●●●
●

●

●●●
●
●

●●

●

●●●
●●
●●
●
●●●●
●
●●

●

●●
●
●

●

●●
●
●

●●
●

●

●●

●
●
●
●

●

●

●

●
●
●●

●
●●●
●
●●●●

●●●

●

●

●

●●

●

●

●

●●
●
●●
●
●

●

●

●

●
●●●●
●
●

●

●
●
●

●

●

●

●●●●
●

●

●
●●●

●

●●●●●

●

●●

●

●●
●
●●●●

●

●●
●
●●

●

●

●
●

●●●●●

●
●

●●●●
●
●
●

●●●●●

●
●●
●

●●

●

●●●●

●

●●●●●●●●

●

●
●
●●●

●

●
●

●

●●●

●●
●
●

●●

●

●

●
●
●●
●●
●●
●

●

●
●●●

●

●

●
●●

●
●
●
●●●●
●●●

●

●●●●●●

●

●
●

●●●●●●

●
●●●●
●
●●●
●
●

●●●
●●
●
●●
●
●

●

●

●●
●

●

●●●●
●
●●●●
●●●●

●●

●

●

●

●

●
●
●●
●●

●

●

●

●
●

●●
●
●●●
●
●

●

●

●

●
●

●

●

●

●
●
●●●●

●

●

●
●
●
●●

●

●●●●●

●

●●●

●

●

●

●●●
●●

●

●

●

●
●

●●●●●●●
●●
●●
●
●●●
●
●●

●●

●

●

●●●●

●

●

●
●●

●●

●●●●●

●
●●●

●●

●
●●●

●●●
●●
●

●
●
●

●●●
●●●●

●

●●●●●●●
●
●
●
●●●●●
●
●●●●
●

●

●

●●
●●

●

●
●●
●
●●
●●●

●

●

●●●●

●

●

●

●

●
●

●

●●
●●

●●●●●●●
●
●

●●

●

●●●
●
●●●●●

●●

●●
●
●●

●
●
●●

●●●

●

●●

●●●●●●

●

●

●

●

●●●●●
●
●

●●

●●●●●●●
●
●

●

●●

●

●●

●●
●
●
●
●●
●
●

●
●
●

●

●
●

●
●●●●●

●
●
●●

●●

●

●●
●●●●●●

●
●
●●
●
●
●
●
●
●

●

●
●●
●
●
●●

●

●
●

●
●●

●

●●●●
●●

●

●

●●●
●
●●●
●
●●●
●●

●

●
●
●●●
●
●
●

●●
●
●
●
●

●●

●●
●
●

●

●●

●●
●●●
●

●

●
●●●●
●●●
●●
●

●

●
●●●
●●
●
●●●●●●
●
●●●●
●
●

●

●●●●●●●

●

●●
●
●
●●●
●
●
●
●●●
●
●

●

●
●
●
●●
●
●●

●

●●●●●●
●●●
●
●
●●

●

●●●●●●●
●●●

●

●●

●

●
●●

●

●●
●
●●●●
●
●●

●●
●
●●●
●●

●

●●●●
●
●●●●●
●●
●●●●●●
●

●

●●
●
●●●●●
●

●●●
●●●●●●●●
●

●
●●●

●

●●
●
●

●
●●●
●
●●●●●●●
●

●●
●●●●●●●
●
●
●●●●●●●
●
●
●
●●●●●●●●●
●●
●
●●●●
●●●●●
●
●
●
●●●●
●
●●

●
●●●●●
●
●●●●
●●●●
●

●

●
●●●●●●●●
●●●●●●

●
●●
●

●●●
●●●
●●●●

●

●●●
●●

●●●●
●●●●●●●●●●●●●●●
●●●●●●

●

●
●●

●

●
●
●

●●

●●●
●

●●
●●●●●
●●
●
●●

●

●●

●

●
●●

●

●
●

●

●●●●
●
●●
●
●
●
●●●
●

●
●●
●
●●●
●●●
●●
●
●●
●
●●
●●
●●
●●
●●
●●
●
●

●

●●
●

●
●●●
●
●●●●●●●●
●
●●
●●●●●
●
●●●●●
●

●●●
●●
●●●●
●●
●●●●●●
●
●●●
●
●
●●●
●
●●
●●

●

●
●
●
●●●●●●●●
●●●
●
●●●●
●
●●●●
●
●
●
●
●●
●●●●●
●●●●
●●
●
●●●
●
●
●
●●
●●
●●●●●●
●
●
●●●●●
●●●●●●
●
●

●
●
●
●●
●●●●
●●
●●●●●
●
●
●●
●
●●
●
●●
●
●
●
●
●●●●

●

●●●●
●●●●●●●●

●

●●●●
●
●
●●
●●●
●
●●
●
●
●●
●
●

●

●●
●
●
●●●●●●
●
●
●●●●●
●
●
●
●●

●
●●
●●

●
●
●

●
●
●●
●●●
●
●
●●●●●●●
●
●●
●●
●

●

●

●
●
●
●
●

●

●●
●
●●
●

●

●●●●●●●
●●●
●●●●
●

●●●

●

●

●

●

●●●●

●

●
●
●●

●

●

●

●
●
●●●
●●●●●●
●
●
●●

●

●
●●
●
●
●●

●

●

●●
●
●●

●●●
●

●●

●
●●●●●

●

●●
●
●

●
●●
●●

●●
●
●

●●

●●
●●

●
●
●
●

●

●●

●●

●●

●

●●

●
●
●●

●
●
●●●

●

●
●
●●
●●
●

●
●
●●
●●

●

●
●

●

●

●

●●
●
●

●
●
●

●●●●
●

●●
●
●

●

●●●
●
●●
●
●

●

●●●

●

●●

●
●●

●
●●●●

●
●

●

●

●

●●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●

●

●
●
●●●●●●●●●

●●

●

●

●●

●

●

●

●

●●

●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●
●
●
●●

●
●
●

●

●●●
●●

●

●●●
●●●●●●●●●●

●

●●●●
●
●●●
●●
●

●

●●●●
●●
●
●●
●
●●●
●
●
●●●
●
●●●●●
●
●●
●●●●●●●●●●●●
●●
●●●

●●
●●●
●
●●
●

●
●●
●●●

●

●
●
●●●●●●

●

●

●
●
●●

●●●●
●●
●●●
●●●
●●
●●
●

●●
●
●●●
●

●●●●●●●●
●●
●●●

●●
●●●●
●
●

●

●●●●●
●●●
●●●●●●●●●●●●
●

●

●●●●
●
●●
●
●●

●

●
●

●●
●●●●●●●
●
●
●●●
●●●

●

●●●
●
●●●●●
●
●●

●●
●
●

●
●●●●
●●●

●

●●●●

●
●
●●

●

●
●●●
●●
●●

●●●
●●
●●
●
●●●●●

●
●●
●●●
●
●●●
●
●●
●
●
●

●

●
●●●●●●●●●●●
●●●●
●●●●
●

●●●
●
●

●●●
●●
●●

●●●

●
●●●
●
●

●

●

●

●●
●

●
●●●●

●

●●

●

rs562250704
(PIP: 0.54)

OVOL1:lymphocytes
(PIP: 0.75)

0

5

10

15

20

64 65 66 67
Position [MB] Chromosome 11

−
lo

g 1
0(

pv
al

ue
)

Eczemab

●●
●
●●●

●

●
●●●●
●●●

●

●
●●

●●●●●●
●●●●●
●

●
●
●

●●●●

●

●●
●
●

●
●●●●

●
●

●

●

●●

●

●●

●●
●
●●
●

●

●

●

●
●
●●
●●●
●
●
●

●
●
●●●●●●
●

●

●

●
●
●
●●●●●
●
●
●●
●
●
●
●

●
●
●
●
●●●●●
●●●

●
●

●

●

●
●●●
●
●
●●
●
●●●
●
●●●

●

●
●
●●●●
●●
●●●
●
●
●
●

●
●
●
●
●●●●●●●●●●●●●
●
●●●
●●●●
●
●
●●●●

●

●●●

●

●●●●

●
●
●●●
●
●●

●●

●

●
●
●●●●

●●

●●●●
●●●

●

●●

●

●●●

●

●●●●●

●●

●●●●●●●

●

●●●●

●●●
●●●●●●

●●
●●●●●
●●●●
●●●●
●
●●●
●
●●

●●●●●●
●●●
●
●●●●

●

●●

●●●●●

●●
●●
●
●

●

●●●

●

●
●●●●●
●
●

●●
●●

●●
●●
●●●●●●
●●●●●●
●
●
●
●●●●●●●●●●●●●
●●●●

●●
●●
●●

●●

●
●

●

●

●●●●

●

●●●●

●
●

●

●

●

●

●●●●●●●

●●
●●
●
●
●
●
●●
●●●

●●●

●

●●

●●●
●●

●●

●

●

●

●●

●●

●
●

●●●●●

●

●

●●
●●
●●
●

●

●
●●
●●●

●

●●●●●●
●●●●●●●
●●●●●●
●●●●

●●
●

●●●●●●●●●●
●
●

●

●●●●

●●

●

●●●
●●●●●●
●
●
●●●

●

●

●●
●●●
●●
●●●●●●

●

●

●
●●●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●
●●
●●●

●

●●●

●

●

●

●

●

●

●●
●

●

●●
●

●●●
●

●●●
●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●●●

●

●●●●
●
●●

●

●●

●

●●●●

●●

●

●●●

●

●●●

●

●●●●●●

●●

●
●

●
●

●

●

●●●●●●

●

●●●

●●

●●

●
●

●●●●

●●

●●●●●●●

●

●●●●●

●

●

●●

●

●●

●●

●

●

●●

●●

●

●
●

●
●
●

●

●●

●

●
●●●●●●

●

●

●

●●●
●

●

●
●

●
●
●

●

●

●●

●●●

●
●●
●
●

●
●
●
●
●

●
●

●
●
●●
●●

●
●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●
●●●
●
●●●
●●
●
●
●●●
●●
●●●●●
●●●
●●●●
●
●
●
●
●
●●●
●●
●●●●●●
●
●
●
●●
●
●●●●
●
●●●●●
●
●●
●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●
●
●
●●●
●
●●●●●
●●●●●●
●●●●●●●●●●●
●
●●●●●●●●
●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●
●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●

●

●
●
●
●
●●●●●●●●
●
●●●●●●●●●●●
●
●●●
●●
●●●●●●●
●●●●
●●●●●●●●●●●●
●●
●
●●●●●●●●●●●●
●
●●●●●●
●
●
●●
●
●●●●●●●●●●●●●●
●
●●●●●
●
●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●
●

●●●●●●●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●
●
●●●
●
●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●
●
●●●●●●●
●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●

●
●●●●●●●
●
●●●●●●●●●●●
●

●●●●
●
●●●
●
●●
●
●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●
●●●●●●●●●
●
●●
●
●●●●
●
●●
●
●●●
●
●●●●●●●
●●
●●●
●●●●
●●
●●
●●
●
●●●●
●
●●●●●●●●●●●
●
●●●●●●
●●●
●

●
●●●
●●●
●●●●●
●●
●
●●●●
●●●●●●
●
●

●
●
●●
●
●●●
●
●
●

●

●●
●
●

●

●
●
●

●

●
●
●●

●●
●●

●●

●
●
●
●
●

●●●
●
●
●●

●
●●
●
●
●
●●●●●●●
●
●

●

●●●●●●●
●●

●●●
●

●●●

●
●●●●●●●●●
●●●●●●

●●
●●●

●●●

●

●
●●
●

●

●●●●●
●

●

●●

●
●
●
●●●●

●

●●●
●

●●●●●●

●

●

●●●●
●●●
●
●●●
●

●●

●
●●●●
●
●●●
●●
●●
●●●

●●

●●●●●●

●

●
●●
●●●
●●●●
●
●●●●
●
●●●●●
●●●●●●
●
●●●●●●
●●●●●●
●●
●●●●●●
●●●●●●●●
●
●●
●●
●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●
●
●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●
●●●
●●●●●●
●●●●●●●●
●●●
●
●●●●●
●
●●●●●●●●●●●●●●●●

●●●

●●●●
●●
●●●●

●

●●
●●●
●
●●●●●●●●●●
●
●
●
●
●
●●●●●●●
●●●●●
●●●●●●●●
●
●●●●●●●●●
●●●●
●
●●
●●●●
●●●●
●●●●●●●
●
●●
●●●●
●
●●
●
●●●●●●●●●
●
●●●●●●●●
●●●●
●
●

●●
●
●●●●●
●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●
●
●●
●
●●
●
●●

●
●●●●●●●●
●
●●●●●

●

●

●

●●●●●●●●●
●●
●
●
●●
●●

●

●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●

●●●●●

●

●●

●●●
●●

●●●●●
●
●●●●

●

●●●●●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●
●
●●

●

●

●●

●

●

●●●●●

●
●
●●●●●
●
●●●●
●●●

●
●

●

●●●

●

●

●

●●

●

●●●

●●

●

●
●

●
●

●●●●

●
●

●

●●
●
●●

●

●

●

●●●
●●●●
●●

●

●

●

●●

●●

●●
●●●●

●

●

●●

●●●●●●

●
●

●

●

●

●
●
●●●●●●

●

●
●

●

●●●●●●●

●

●
●●

●

●●●

●●

●●

●●

●●
●
●●●●

●●●●●●●●●●●●●●●●

●●●●

●

●●
●

●
●●

●
●

●

●●

●●●

●

●●●

●●

●

●
●●●●●

●

●
●●●
●
●

●
●●
●
●●

●
●

●●

●
●●
●
●●
●

●

●

●

●
●●

●●●●●
●
●

●
●●

●
●
●●●●●●

●
●●●
●
●●●●●●
●
●●●
●
●●●
●
●
●●●
●
●
●
●

●●
●
●
●●●●
●
●
●
●●●
●●
●
●●
●●
●
●●
●
●●
●
●●
●
●●●●
●
●●●●●

●

●●●●
●
●
●●●●

●
●
●●

●●●●●
●
●

●

●●

●

●●

●●

●●●

●
●
●●●●●●●●●●●●●
●●●●●●●●
●●●●
●
●
●●●●●●●
●
●●●●●●●●●
●
●●●
●
●●●●●●●
●●
●●●

●
●●
●●

●
●●

●

●
●●●
●●●●
●●
●
●●●●●
●
●●●●●●●●●
●
●●
●
●
●●●
●
●●
●●●
●
●●●●●
●●●●
●●●●
●●●
●●●●●●●●●●●●●●●
●●●

●

●●●●
●
●●●
●●●●●
●
●●●●●
●

●

●●●●●●●●●●
●
●
●
●●●
●
●
●●
●

●●
●
●●●
●●●
●●●●●●●●
●
●●●●●
●
●●●
●●●●●●
●
●
●
●●●●●

●
●●
●●●
●
●
●●
●●●
●●
●●●●●
●●●●●●
●
●
●
●●●●●●●
●
●●●
●●●
●
●●●●
●
●●
●●
●●
●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●●
●
●
●
●●●●●●●
●●●●●●●●
●●●
●
●●
●
●
●
●
●
●●●●
●
●●●
●●●●●●
●●●
●●●●●●
●●
●●
●
●
●
●
●
●●●●●●●●
●
●

●
●
●●
●
●●●
●●
●●●●
●●●●
●●
●

●
●●●●●●
●●●●●
●●●
●
●
●●
●●●●●
●
●●●
●
●
●
●●●
●
●●●
●
●●●●●
●●
●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●
●
●

●

●
●●

●●

●

●●●●

●●●
●●
●
●
●●●●●●●●●●●●●
●
●

●

●●●●●●●

●

●●●●●
●●●●
●

●●

●
●
●●
●
●

●●
●
●●

●

●
●
●
●●●
●

●

●●

●●●●●●●●●●●●●
●
●●●●●●
●●
●●●
●
●
●●●●●●●●
●
●●●
●●●●●●
●
●●●●●●●●●●
●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●
●
●●

●

●
●●●●●●

●

●
●
●
●
●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●●
●●
●●●●
●
●
●
●●●●●●●●
●
●●
●
●

●
●●●●
●
●
●●●●●
●●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●
●

●
●
●●●●●●●●●●●●●
●●
●●●
●●
●
●●●●●●

●●

●

●●●

●

●

●
●

●
●●

●●
●
●●

●

●

●

●●

●
●
●
●
●●
●
●●●●●●●●●●●
●
●●●●
●
●
●
●●●●●●●
●
●●
●
●●●
●●●●●●●●

●

●●●●●
●
●●●●●
●
●
●

●

●●●

●●

●
●

●

●●

●●

●
●
●●

●
●●
●
●
●

●●

●

●
●●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●
●●

●

●
●
●
●
●
●

●

●

●

●

●

●

●●
●

●

●●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●●●

●

●●

●

●

●

●

●

●

●●●

●
●●

●●●●
●

●

●
●
●●●●●●
●●●●

●

●

●●
●
●

●

●

●

●●

●●

●

●●

●

●●●●
●

●●●●●●

●

●

●

●

●●
●

●●
●●
●

●

●

●

●●●●●●

●

●

●●
●●
●
●

●

●

●

●

●

●
●

●●●

●

●
●

●●

●

●
●

●●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●●●
●

●●●

●

●

●

●
●
●

●

●●
●
●●
●●●

●

●
●
●●

●

●

●

●
●
●

●

●●
●●●
●

●●●
●
●●

●

●●●
●
●●●●
●●●
●●

●●

●●●

●

●

●●
●
●
●●

●

●●
●●

●
●●
●
●●●●

●●●●●●

●●
●

●

●

●

●

●

●

●●

●●●●●●●●
●●

●●
●

●●

●

●

●

●

●
●

●●●

●

●

●

●●

●
●
●●
●
●
●●●●

●●

●●
●
●

●

●●
●
●●
●

●
●

●

●
●
●

●

●
●●
●
●●
●
●

●

●●

●

●
●
●
●
●●●●
●
●●
●
●●

●

●●●●●●●

●

●

●●

●

●●●●
●
●●●●●●●●●●●
●
●

●

●
●●●●

●

●
●●

●

●
●●
●●
●●

●
●●
●

●

●

●

●●

●

●

●

●

●●●
●●
●●●●
●

●

●
●
●
●

●

●

●

●
●
●●
●
●●●●●
●●
●●●●●●
●●
●●●●
●●
●
●
●●●
●●●
●
●●
●

●

●●
●●●●
●
●●
●●●●●●●
●
●
●
●
●●●●●●●●●●●●
●
●
●●●
●
●●●●
●●●●●●●●●●●

●

●
●●
●●●●

●

●●●●●●●●●●●
●●●●●
●●●●
●

●

●
●
●●●●●●●
●
●
●●
●
●
●●●●
●
●●●●●
●
●
●●●●●●
●●●

●

●●●
●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●
●●
●●
●●●●●●●

●
●
●●
●
●
●
●

●

●●●●

●

●
●
●●
●●●●●●●●●●

●

●
●
●
●●
●

●
●●
●
●
●

●
●
●
●●●
●●●

●

●●●
●
●
●
●
●

●●●
●
●●●

●

●●●●●

●●
●●●●●●●●

●

●●●●●●●●●
●
●●●●●

●

●
●●●●
●●

●
●●●●●●●●●●
●●
●●●●●●●●●●●●
●
●●
●●●
●

●●●●
●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●
●
●●
●●●●●●
●●●●●
●
●●●●●●●●●
●
●
●●●●●●●●●●●●●

●

●●●

●

●●●

●
●
●
●●
●●

●●●
●
●
●
●
●●●
●●
●●●●●●●●●
●
●●
●
●●●
●
●●●●
●
●
●
●
●●
●●●●●●
●
●●●●
●
●
●
●●
●
●
●
●
●●●●●●●●●●●●●●●
●
●●●
●
●

●

●●●●●●
●●
●

●
●●●
●

●
●
●●●
●●●●
●
●●

●
●●●
●
●●●
●
●●
●●

●

●●●●●
●●
●

●
●
●●
●
●

●●●●●
●
●●
●●●●●●
●
●●●●

●

●●
●
●●●●

●
●●●●●●●
●●

●●●●●●●
●

●
●
●
●
●

●●
●●
●
●●
●
●
●
●●
●●●●●●●●
●
●
●
●●
●
●●●●
●
●
●
●
●
●●●●
●●●
●
●●●●
●●
●●
●●●
●●●●●
●●
●

●●
●
●●
●
●

●
●●
●●●●●●●●

●●●
●●

●

●
●
●
●
●●
●●

●●●●●●●●
●
●
●
●●●
●●●
●●●●
●●●●●
●●●

●
●●
●●
●●●●
●●●●●●●●●●●●●●●●●
●●
●

●●●●●●●●
●
●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●
●
●
●
●
●
●
●
●
●

●
●
●
●●●
●
●●●
●
●●●
●
●
●
●●
●
●●●
●

●●●●●●●
●
●●
●●
●●
●
●
●
●●
●●●
●
●
●●●
●●
●
●
●●
●
●●●●
●●
●●
●
●●●●●●●●●●
●●
●●
●
●
●
●
●●
●
●
●
●●
●
●
●
●
●●●

●●
●●●
●
●
●
●●●
●●
●●●●
●●●
●●
●
●
●●●●●
●
●
●●
●●●●
●●●●●
●
●●
●●
●●●●
●
●
●
●
●
●
●
●
●●●●
●
●●●
●●●●
●●
●
●
●●●
●●●
●●●
●●
●●●
●●●●●●●●●
●
●●●●

●
●
●●●
●●●

●●●
●●
●
●●
●●
●●●●●●
●
●●
●
●
●●
●●●●
●●●
●●●

●●●●●●●●●●●●
●
●●●●●●
●

●●
●
●●
●●
●●●●●

●

●

●●

●●●
●
●●
●
●●
●●●●●●●●●●●
●
●●●●
●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●
●●
●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●
●●●●●
●
●●●●●●
●●●●●
●
●

●●

●
●

●
●
●●

●

●
●
●

●
●●

●●●●●
●●●●●●
●
●●●●●
●
●●●●●●●●●●
●●●●●●●●●
●
●●●

●
●●●●●●●●
●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●
●●●●
●
●●●●
●●●●
●
●●●●●
●
●●
●
●
●
●
●●●●
●
●
●●
●●
●

●
●
●●●●●●●
●
●●●●

●

●●●●●

●

●●●●●●●●
●

●●●●
●●
●●●
●

●●
●
●●●●●●●●
●
●●●●●●●●●
●

●●●●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●
●●
●●
●
●●●●●●●
●●
●
●●●●●
●●
●●●●●●●
●
●●

●

●●●●●●
●
●
●
●●●●
●
●●
●●
●●●●●●●●●●●●●●

●

●●●●●●●●●
●●
●●●
●●●●●●●●●●●●
●●
●
●
●●●
●
●
●
●
●
●●
●
●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●
●

●●
●
●
●
●
●●●
●
●●
●
●●
●●●●●●●●
●●●●●●●●●●●
●
●●●●
●
●●●
●
●
●

●●●●●●●●●
●

●

●

●

●

●

●

●●●

●

●

●●●

●●●●●
●●●●
●

●●

●
●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●
●●●●
●●
●●●●●●
●●●
●●
●
●
●●
●●●
●
●●
●
●
●
●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●
●
●●
●
●●
●●●
●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●
●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●
●
●●
●
●●●●●●●●●●
●
●●●
●
●●●●
●●●
●●●●
●
●●●●●●●
●
●●
●
●●●●●
●
●
●
●●●●
●●
●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●

●

●●●●
●●●
●●
●●●●●●●
●●●●●
●●●●
●
●
●
●
●
●●●●●●
●●
●
●
●
●
●
●●●●
●●
●●●
●
●●
●●●●●●●●●●●●●
●●●
●
●●●●●●
●
●●●●●●
●●●●●●●
●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●
●●●●●
●
●●●●
●
●●
●●●
●●●●●
●●●●●
●●●●●●●●●●●
●●●
●●
●

●
●
●
●
●●●●●●
●●
●
●
●
●
●●
●●●●●●
●
●●●
●
●●
●●●●
●
●●●●●●
●
●
●
●●●●●
●●●
●
●
●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●
●●
●●●●●●●●
●●●●●●●●●●●●●

●

●●●
●●●
●●●●●
●
●
●●●●●●
●●
●
●
●
●
●
●●

●

●
●
●

●●●●

●
●
●

●●●●

●●
●
●●●
●

●

●

●●●
●●
●●

●
●●●●
●
●●
●●●

●

●

●
●
●
●
●●●

●

●
●
●

●●
●
●

●
●
●●

●●

●

●

●

●●
●
●●●

●
●●
●
●
●
●
●●

●●●
●

●●●●
●●●●
●●

●●

●
●●
●
●

●

●●
●
●
●
●

●

●
●
●●●●

●●●●

●●

●●●
●●
●
●
●
●●
●

●
●
●●

●●
●●
●
●
●

●

●●

●
●●

●

●●

●

●●
●●

●●

●
●
●

●
●

●

●
●●

●

●●●●●●
●●●●

●
●
●
●●●
●●
●●

●●●
●
●●
●
●●●
●
●
●●●
●
●
●
●●●

●

●●●

●

●●●●●
●●●●
●
●●●●
●
●●
●
●●●
●●●●●

●●
●●
●●

●
●
●
●●
●
●
●
●●●●
●●●●●●●●
●
●●●●●●
●●●
●●●
●●●●●●●●
●●●●●●●
●●
●
●●●●●●●●
●●●
●●●●●●
●●
●●●●●●●●●
●

●
●
●●
●
●●●●
●●●●●
●
●●
●●●
●
●
●
●
●
●

●●●●●●●
●●●●●●●●
●
●

●●
●
●●●
●●●●
●●

●

●●●
●●●
●●
●●●●●
●
●●
●
●●●●●●●
●
●●●●●
●

●●
●●●●●●●

●
●●
●●●●
●
●●●
●
●
●●●●●●
●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●

●

●●●●●●

●

●●●●●●
●
●●●●
●
●
●●
●●
●

●
●●
●
●

●

●

●
●
●

●
●●●
●●●
●●
●●
●
●
●●●
●
●●●●●
●●●
●
●●●●●
●
●●●●
●
●●●●
●●●●●●
●
●●●●
●
●
●●

●
●●●
●
●●●
●
●●●●●●
●●
●
●●●●●●●
●
●●
●
●●●●●●●●●●●
●

●
●●●●●●

●

●●●●●●
●
●●●
●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●
●
●●●●●

●

●●
●
●●●●
●●●●
●●
●●●●●●●●
●

●●
●
●

●●

●

●
●
●

●
●

●●

●●●●
●●
●●
●
●
●
●
●
●●●●

●
●●
●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●

●

●●●●●●●●●●●

●

●●
●●●
●●●

●
●●●
●
●●●●●

●
●●
●●●●●●●
●
●
●
●●●
●
●

●
●●●
●

●
●●●
●
●

●
●
●

●

●
●

●

●●●●●●●
●
●●●●●●
●
●●
●
●●●●●●●●●
●●●●●●●
●
●●
●●●●●●●●
●
●●
●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●

●●
●
●●
●

●

●

●●●●
●
●●

●

●
●
●●

●
●
●●●●
●
●●●

●

●
●
●●●
●
●
●
●●

●

●

●●
●
●
●●

●

●●
●
●●

●

●

●●
●●
●

●
●●
●
●●●
●
●●●
●

●

●
●●●
●
●
●
●●●
●●
●
●●●●●●●●●●
●

●
●
●
●●●●
●●
●

●●●●●●

●

●

●

●●

●●●

●

●●●

●●
●●●

●●●

●●●

●

●●
●
●

●●●●

●●●●●●
●

●

●●●●

●●●
●●
●
●●●●●●●●●●●●●●

●
●
●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●

●

●●●●●●●●●●●●●●
●
●
●●●●●
●●●
●●●●
●●●●●●
●●●

●
●●●●●●●●
●●
●●●●
●●

●●●●●

●

●
●

●
●●●
●
●●●
●
●●●●●●●
●●
●
●
●●●●●
●
●●●●
●
●●●
●
●●●●●●●●●
●●
●
●
●
●

●●

●
●●
●●

●

●●●●●●●
●
●●●●
●●●●●●●●
●
●
●●●
●
●●●●
●
●●●●
●
●●●●●
●
●
●
●●●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●
●●●●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●
●●●●●
●●●
●
●●●●●
●●●●●
●
●●
●●●●●●●●●
●
●●●
●●
●
●
●●●●●●●
●
●
●
●●●

●

●●●●●
●●●●●●●●●●●●●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●
●●●●●●●●
●
●●●●●
●

●●●●●●●●●
●

●●●●●●●●
●
●●●
●●●●●●●●
●
●
●●●
●
●●●●●
●
●

●

●

●

●●●
●●●●●●●●●●●

●●●
●●●●●●●
●
●●●
●●●●
●
●●
●
●
●●
●
●
●
●●
●
●
●●
●●
●●
●●●
●
●
●●
●●●●●
●
●●●●●
●●
●●
●●
●
●
●●
●●●●●●●●●
●
●●●●●●●●●
●
●●●
●●●●●●●●
●●●●●
●
●●●●●●
●●●●●●●●●●
●
●●●●●
●●
●●●
●
●●●●●●●
●●●●●●
●
●
●●●●●●●
●
●●●●●
●●●●
●●●
●
●●●●●●●●●●
●
●●●
●
●●●●●●●●
●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●
●
●
●●●●●●●
●●●●●●●●●●●
●●●●
●●
●●●
●
●●●●
●
●●●●
●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●
●
●
●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●
●●
●
●●
●●●
●●●
●
●●●●
●
●●
●
●●
●
●●●●●●●●●●●●●●●
●
●
●●●●●●●●
●
●●
●●
●
●●
●●
●

●●●
●
●
●

●
●●●●●●
●●●
●
●●●
●
●●●
●●●●●

●●●
●
●●●●●
●●●
●
●
●●●●

●●●●●●
●
●●●
●
●●
●
●●●●●●●●●●●●
●
●
●●●●●●●●●
●●●●●●●●●
●●
●●●●
●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●
●●●●●●
●
●●●●●●●
●
●●●
●
●●
●●
●●●
●●●●●●●
●
●●●●
●●
●●●●●●●●
●●●●●●
●
●
●●●●●●
●
●
●
●●●●●●●●●●●●●●●●
●
●●●

●

●●●●●●●●●●●
●●●
●●
●●●●●●●●●●●●●●●●●
●●
●●
●
●●●●
●●
●●
●
●
●●
●●●●●●●●●●●●●●●

●●●
●●●
●●
●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●
●
●●
●
●●●●●●●●
●
●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●
●●●

●

●●
●●●●●●

●

●●
●
●
●●●●●●●
●
●●●●

●

●●●●●●●●●●

●

●●●
●
●●●●●●
●●●●
●
●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●
●
●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●
●
●●●●●●●●
●
●
●
●●●●
●
●
●
●
●
●●●
●
●●
●
●●●●●
●
●●●●●
●
●●
●
●
●●●●●
●●●●●●●
●
●
●

●●●●
●
●●●●●●●●●●●●
●
●●●●●●
●●
●●
●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●
●
●
●
●●
●●
●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●
●●●●●●
●
●●
●●●●●●●●
●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●
●
●

●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●
●●
●

●
●
●●●●●
●
●●●
●
●●●●●●●●●●
●
●
●
●●●●●●●
●
●●●
●
●
●
●
●●●●
●
●
●
●
●●
●●
●●●●●●●●
●
●●●
●
●
●
●●●●
●
●●
●●●●●●●●●
●
●●●●●
●
●●

●

●
●●●●●
●
●●
●
●
●
●●●
●
●●●●●●●●
●●●●●●●●●
●●●
●●●●●●
●
●●●●●●●●●●
●
●●●
●
●
●
●●●●●
●

●

●
●
●●●●●
●
●
●
●
●
●
●●
●
●●
●●

●
●
●●●●
●●●●●●●●●●
●●
●
●●●●●
●●●●
●●
●
●●●●●●
●●
●●
●●
●
●●
●●●
●
●
●
●
●●●
●
●●●●●●●●●●●●●●●●●
●
●

●

●●●

●

●

●
●
●●●
●
●
●●●●●
●

●
●
●
●

●

●●●

●

●
●●
●
●
●

●
●
●
●●●
●●
●

●●●

●●

●
●
●●
●●
●●●●●●
●●
●●●
●
●●●
●●

●

●
●●
●●●
●●
●
●●
●●
●
●●
●
●
●
●●●●●●●●●●●●●
●
●●●●

●

●●
●●●●●
●●
●
●●●●●●
●
●●●
●●●●●●
●
●●●
●●●●
●●●

●
●
●●●●
●
●●
●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●
●●
●
●
●
●
●
●●
●
●●

●●
●
●
●●●●●●
●
●●●●●
●
●
●●●
●
●
●
●
●●
●
●●●●●
●●●●●
●

●●●
●
●●
●●
●●●
●
●●●

●
●●
●
●●●●●●
●
●
●●●●
●●●●●
●
●●●●●●●●●●●
●●●●●●
●●●
●
●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●
●●●●●●●
●●
●●

●

●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●
●
●●●
●●●●
●
●
●●●
●●
●
●●●●●●●●
●●
●●●●●
●●●●●●
●
●
●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●
●●
●●●

●

●●●●
●
●●
●●
●●●●●●
●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●
●
●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●
●●●●●●●●●
●●●●
●●
●
●●●●●●●●●●
●●
●
●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●
●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●
●
●
●●●
●●●

●

●●●●●●
●●
●●●●
●

●

●

●

●●●●●

●
●●●●●
●●
●●●

●
●
●

●
●
●●
●●●●●
●●
●
●
●
●
●●●●●●●●
●●
●●●●
●
●

●●●●●●

●
●●●●●●●●●●●●●
●
●

●
●
●●●●●●

●●
●●
●●

●

●

●●
●●
●
●●●●
●
●●

●

●
●●●●●●●
●
●●●
●
●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●●●●●●●●●●●●
●
●●
●
●
●
●●●●
●●●●●●●●●
●●●●●●●●●●●●
●
●●
●
●●●●●●
●
●
●
●●●
●●●●●●●
●●
●●●●●●●●●●
●●
●●●
●●●●
●
●●●
●●●●
●●●●●●●●●●
●●●●
●
●●●●●
●
●
●●●●●●●●
●●
●●
●●●●
●●●
●●
●
●●
●●●●●
●
●●●

●●
●●●●
●●●●
●●●
●●●
●●●●●●●●●●●●●●
●
●●●●

●
●●●
●
●
●●●

●

●●●●●●●●●●●
●
●●

●●
●
●
●
●

●●
●
●●●
●
●●
●●
●
●●
●
●
●
●●●●●●●●●●●●
●
●●●●●●●●●●
●

●●●●
●

●●●

●
●●●●●
●
●●●●

●●
●
●
●●
●
●●●
●
●●●●
●
●

●●●●●●●●●●●●
●●●
●
●●●●●●●
●
●●●●
●
●●
●●●
●

●

●

PADI1:skin (sun exposed)
(PIP: 0.64)

0
5

10
15
20

16 17 18 19
Position [MB] Chromosome 1

−
lo

g 1
0(

pv
al

ue
)

Vitamin Dc

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●
●●
●
●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●
●
●●●
●●
●●●●●●●
●●
●
●●
●
●●●●●●●
●
●●
●●●●●●●
●●
●●
●●●●●●●●●
●●
●●●
●
●●●
●
●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●
●
●●●●●●
●●
●●●●●
●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●
●
●
●
●●●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●●●●●●
●●
●
●●
●●
●●
●●
●
●●
●
●●●
●
●
●●●●●●
●●
●●●●●●●●
●●●●●●●●●●●
●●●
●●●●●●
●
●
●●●●
●
●●
●●●●●
●
●●
●
●●
●
●●
●●●●●●
●
●●●
●●●●●●●●●
●●●●
●
●
●
●
●●●
●●
●●
●●
●●
●●●●●●●
●
●●●●●●●●●●●●

●
●●
●●●
●●●
●
●
●
●
●●
●●●●●●
●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●
●
●●
●
●●●●
●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●
●●●●●●
●●●●●●●●
●
●●●●●●●
●
●●●●●●●●
●
●●●
●●●●
●●●●
●
●●
●
●●
●●●●●●●●●●●●
●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●
●
●●
●
●

●
●●

●

●
●●●●●

●

●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●●●
●●●●●●

●●

●●●●●●●●●

●
●

●

●

●

●

●●
●
●●●
●●●●
●●●
●
●●●●
●
●●●●
●
●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●
●●●
●●●●
●
●
●●
●
●●●●●●
●●●

●
●
●
●●●
●
●
●●
●
●
●
●●
●
●●
●
●●●
●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●●●●
●●
●●●
●●
●●
●●
●●●●●
●
●●●

●
●
●●

●●●
●
●
●●
●●
●
●●
●
●
●
●
●
●
●

●
●
●
●●●●●
●

●●

●

●
●

●●

●
●●

●

●

●
●●
●
●

●
●●

●●●
●●●●●●●

●

●●

●

●●●●●

●

●●●

●
●
●●
●●
●
●

●●●●
●●

●

●●
●
●●●●●●●●●●
●
●

●

●●●
●●●

●

●

●

●●

●

●●
●
●
●●
●●

●

●

●
●
●

●

●●●
●
●●●●

●●
●

●

●
●
●●

●●

●

●●

●

●●

●

●●
●
●
●
●●●

●●●

●

●
●

●
●
●
●

●

●

●●

●
●

●●●

●●●●
●
●

●●

●

●

●●

●
●●

●

●
●●
●

●●●●●
●
●

●

●

●

●●
●
●

●●●●

●

●

●●

●

●●●

●●●●●●
●●
●●●
●●
●●●●●●

●

●●●●
●
●●●
●●
●●●
●
●
●

●

●●
●
●
●
●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●
●
●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●
●
●●●●●●
●●
●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●
●
●
●
●●●
●
●●●
●●●●
●

●●
●
●●
●
●●●
●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●
●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●
●
●●
●
●
●
●●●
●
●
●●●
●●
●●
●●
●●●●●●
●●●●●
●●●●
●●
●●●
●●
●●
●●●

●

●●●
●
●●
●●
●

●

●●●●
●
●
●
●●●
●●●●
●
●

●
●
●●●
●●●●●●●●
●
●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●

●

●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●
●●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●
●●●●
●
●
●●●●●●●●●●●
●●
●●
●●●
●●●●●●●●●●●●●
●
●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●
●●●●
●
●●●
●●
●
●
●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●
●●
●●
●●●●
●
●●●●●●●●●●●
●
●
●●
●●●●
●●●●
●
●
●●●
●●●●●
●●●●
●●●●
●●●●●●
●●●●
●●●●●
●●
●●
●
●●
●
●●●
●
●
●●
●
●●●●
●●●
●●●
●●●●
●●●
●
●●
●●
●●●
●●
●●●
●●●
●●●●●
●●
●●●
●●●●●●
●
●●●●●
●●
●
●●●●●
●
●●●
●
●●●●●●
●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●
●
●●●●●●
●●●●●●
●●
●●
●
●●
●
●●●●●●
●
●●●●
●
●●
●
●●
●●
●●
●
●●
●●●●●●●●
●
●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●
●●●
●●
●
●●
●
●●●●●●●●●●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●
●
●●●●●●●●●●●
●●●●
●●
●
●●●●●●●●●●●●●●●
●
●●
●●●
●●●●●●
●●●
●
●●
●●
●●
●
●●●●●
●●
●
●
●●●●
●●
●
●
●
●●●
●●●
●●●
●
●●●●●●●●●
●●
●
●●●●●●
●●●●●●●●●●●●●
●
●
●●
●
●
●
●●●●●
●●●●
●●●
●●●●●●●●●●●●●●●
●●●
●
●

●
●●
●●
●
●

●

●
●●●
●●

●●●●
●●
●●
●

●
●●●
●●●
●●

●●

●●●

●
●●

●
●
●
●●
●●●●
●
●
●
●
●

●●●●
●
●●
●●
●
●

●●●●●●●●●
●
●
●
●●●●●●●
●●
●●●
●
●●
●
●●●●
●
●
●
●
●●
●●●●●●●●●●●
●
●●
●
●●●●●●●
●
●
●
●●●
●
●
●●●●
●
●

●

●●●

●

●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●
●●

●

●●●
●●
●●●●

●

●

●

●

●

●
●●
●
●●●●
●●●●
●
●●●●●
●
●●●●●
●●●
●●●●
●●
●●
●●
●
●
●
●
●
●
●●
●
●●●
●
●
●
●
●●●●●●●●●●●●●
●
●●
●●
●●●●●
●●
●●
●
●
●●
●
●●●●
●
●●
●●
●

●●

●●
●
●●●●●●
●
●
●
●●●●●●●●
●
●●●●●
●●●
●

●●
●
●●●
●●●●
●●●
●●
●●●
●●●●●●
●
●
●●●●●●
●●
●●●●
●●
●●
●
●
●●

●
●●
●●●●
●●●●●
●●
●●●●●
●●●●
●●
●
●
●
●
●●●
●
●●●
●●●
●●

●

●

●

●●●
●
●●●
●●●
●●
●
●
●●●●●●●
●●●●●
●
●●●●●●●●
●●
●●●
●
●

●

●
●●
●●●●●●●●
●●
●
●●
●

●●●●
●●
●●●
●●●
●●●●
●●
●●
●●
●●●●●●●●
●
●●●●●
●
●

●●●

●

●●●●
●●●
●●●
●
●
●
●
●
●
●●

●●
●
●
●
●
●
●●●●●●●
●
●●●●●●●
●
●●
●
●●●
●
●●
●
●
●
●
●
●●
●●
●
●
●●
●●
●●●●●
●
●
●●
●●
●●

●

●●
●●
●
●
●●●
●●●●

●
●
●
●●

●
●
●
●●
●

●
●
●●●●●
●

●●●●

●

●●
●
●

●
●
●●●
●
●●●●●
●
●●●●●●
●●●
●
●●

●

●●
●●
●
●
●
●
●●●
●
●●

●
●●
●●●●
●
●●
●
●
●
●
●●
●

●●●
●
●●
●
●●●●
●●
●●●●●

●●●

●●●●

●

●●●●
●
●
●●
●●●●●

●

●

●
●
●

●

●●

●
●
●
●●
●

●

●

●
●
●

●●●
●
●●

●●

●

●●
●●
●
●●●●
●●●●●●●●●●
●
●●●
●
●●●
●
●●●
●
●
●
●
●●●
●
●
●●●●
●
●
●●
●
●
●●
●
●●●●●
●●●●●
●●●●
●●●●●

●
●●●
●●
●
●●
●●
●●●
●●●●●●●
●
●
●●
●●
●
●●
●
●
●●
●●
●●●
●
●●
●●
●
●●
●
●
●
●●
●
●
●●
●●●●●●
●●
●
●●●●
●●
●
●●
●
●●
●●●
●●
●
●●●●●●
●
●●
●
●●●●●●●●●●
●●●●
●
●
●●●
●●
●
●
●
●
●
●●●●●
●
●●●●●
●●
●●●
●
●●
●●
●●
●●●●●
●●●●●●
●●
●
●●●
●
●●●
●
●
●●●●●●
●●●●●●●
●●●●
●
●●●●●●
●
●●●●
●●
●●●
●
●●●
●
●●●●●●●●
●
●
●●
●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●
●●●
●
●
●●
●
●●●●
●●●●
●
●●●
●
●●
●
●●
●●●●
●●●●
●
●●●●
●
●
●●
●●●
●
●
●●●●●
●●●●●●●●●
●●
●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●
●
●●●●●
●
●
●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●
●●●●
●
●●●●●●●●●●●
●
●●●●●●●●

●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●
●●●●●●●

●

●

●●●●
●●●
●

●

●

●

●●●●

●●
●●
●

●
●
●

●

●

●●
●

●●

●

●●
●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●

●●●●
●●●

●●

●●●

●

●

●

●

●●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●●●●

●

●●

●

●●
●
●●●●●●

●

●

●●
●
●

●

●●

●

●

●

●
●

●●●

●●

●

●

●●●●●
●

●●

●

●

●●

●

●
●

●●●●●
●

●

●

●

●

●
●
●●

●
●●
●
●●●●●
●

●

●

●
●
●

●
●
●●●
●●●
●●

●●
●

●

●
●
●●●●●
●

●
●
●●
●
●

●

●●
●
●

●
●●
●
●
●
●
●●

●●
●●
●●
●
●

●
●●

●

●●

●●●

●
●
●
●
●

●

●●●
●

●
●●
●●●●●

●
●
●●●

●
●
●●●
●
●●●●●

●
●
●
●
●
●
●●●●

●

●

●

●

●

●

●
●●

●●●●

●●

●●

●

●

●●

●
●
●

●

●●

●

●
●
●
●●●
●
●
●

●●●●
●
●

●
●
●●●

●●
●●
●●
●
●●
●

●
●●
●●
●●

●

●●●

●
●
●●●
●

●●
●
●
●
●
●
●

●

●●●
●●●●
●●●
●
●
●
●
●
●
●●●

●

●

●
●
●●●●
●
●●●
●
●●
●
●●●●
●

●

●
●●●●●●●●●●●
●
●●●●
●
●●
●
●●
●
●●●●●●
●●
●●
●
●●●●●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●●●●
●
●

●
●●
●
●●●●●
●
●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●
●
●
●
●
●
●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●●
●
●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●
●
●
●●●●●
●
●
●●●
●●●●●●
●●●
●●●
●●●●
●
●
●●●●●●
●●●●●
●
●●●●●
●
●●●●
●
●●●●
●●●●
●
●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●
●
●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●●●
●
●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●
●
●●●●
●
●●●
●
●●●
●
●●●
●●●●
●
●●●●●
●
●
●
●●●●
●●
●
●●●●●●●●●●●
●●
●●
●●
●
●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●
●●●●
●●
●●●
●
●
●
●●●●●●
●
●●
●●●●●●
●●
●
●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●
●
●●●
●
●●●●●●
●
●●●
●
●●●●●
●
●●●●●●●●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●
●●●
●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●●
●
●●●●●●●●●
●
●
●●
●
●
●
●
●●●●●●●●●●●●●●●●
●
●
●
●●●●●
●●●●●●
●●●●●●
●●●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●
●
●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●
●
●●●
●●●
●
●●●●
●
●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●
●
●●●●●
●●●●
●●●●●●●●●●●
●●●●
●●
●●●●●●●●
●●
●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●
●
●●
●●●
●
●●●●●●●●●●●●
●●
●
●●●●●
●●●●●
●●●
●●
●
●
●●
●
●
●●●
●
●●
●●
●
●●●●●●●●
●●
●●
●●●
●
●●
●
●
●
●●●●
●
●●●●
●
●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●
●●
●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●
rs145778816
(PIP: 0.77)

rs138682554
(PIP: 1)

IDH2:artery aorta
(PIP: 0.6)

FES:artery aorta
(PIP: 0.56)

0
10
20
30
40
50

89 90 91
Position [MB] Chromosome 15

−
lo

g 1
0(

pv
al

ue
)

Systolic blood pressured

●●

●●

●●●●

●

●●

●

●
●
●●

●

●

●

●●●
●●●●●●
●

●

●●●●●

●

●●●●●
●●
●●●●●●●●

●

●●●●

●

●

●

●●●●●●

●●

●●●●

●

●●●●●●

●
●
●●
●●

●

●●●●●
●●●●●●●●

●
●●

●
●●
●
●
●●●
●●●

●
●

●●●●
●●●

●●
●

●

●●●
●

●

●
●●●●●●●
●

●

●●

●

●

●●

●●●●●●

●

●

●

●

●

●●
●

●

●●

●

●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●
●

●
●●●●
●

●
●●●●●●●●
●
●
●
●●●
●●●
●●●

●

●
●●
●●
●

●●

●●

●●●●●●
●●
●
●

●

●
●●●
●

●

●
●●
●●
●
●
●●●●
●●
●●

●

●
●
●
●●
●●●●
●●
●●
●●●●

●

●●●●
●
●
●●●●
●●
●●●
●
●

●

●

●●
●●●
●●

●
●
●
●
●●●●
●
●●●
●
●
●
●●

●●

●

●●
●

●

●
●
●
●
●●

●
●
●

●
●●●

●●
●●●●
●

●

●●

●●

●
●●
●●●
●
●●●●●●●●
●
●●●
●
●●●●

●

●●
●●

●

●●●●●●●●

●

●●●●●

●

●●●●●●●●●

●●

●

●

●
●
●

●●●

●

●●●●

●

●●

●

●●
●

●●●●●●●●●●●●●●●
●
●●

●
●
●●●

●

●●●

●

●●●●
●●

●

●●●●

●

●

●●

●

●●●●●●●

●

●

●●

●●

●●●●●
●
●●●●
●
●●●

●

●●●●●
●
●●●●●

●●

●
●●●

●●

●●
●
●
●●●●●
●
●

●

●
●
●●

●●●●●●●●●

●

●●●

●●
●
●

●

●●●●●●●●●●
●
●●●●●●●●

●

●●●●

●

●●●
●●
●
●●

●

●●

●

●●●

●

●●●●
●
●●●●●●●
●●
●●
●●●●●
●●●

●
●

●

●

●
●
●

●●●
●
●●●●●●

●

●

●

●
●
●

●●●●●●●

●
●
●●●

●

●●●●●●●

●

●●

●

●●●●

●●
●●●
●
●
●●●●●●●●●
●●●
●●
●
●●

●

●

●●

●

●●

●

●●●
●●●

●

●

●
●
●●

●●

●

●●
●

●●
●

●

●

●●

●●●
●
●●

●●

●

●

●

●●●●

●
●●
●●
●
●
●
●
●
●●●●●●
●
●
●
●●●●●●●●
●●

●●●
●●
●●●
●●
●●

●●
●●
●

●●

●
●

●

●
●
●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●

●

●●
●
●
●

●

●

●●
●●
●
●
●

●●●●

●
●
●

●

●●●●
●
●●
●
●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●
●
●●●●●●●●
●
●
●●●●●●

●

●●●●●●●●●●

●

●●●●●●
●●
●
●●●●●●●●●
●
●●●●●●●●
●
●
●

●

●●●●●●●●●●●●●●
●
●●●●●
●●
●●

●●
●●
●●●●
●●●●●●●
●●●
●
●
●
●●

●
●●
●●
●●

●●
●●●

●
●
●
●
●
●
●
●

●

●●
●●●●●●●
●●●●
●●●●●
●
●●

●
●●●●●●●
●
●
●●●●
●●

●
●
●●
●●●
●●●●●
●●
●●
●●●●
●
●
●●●●●●●
●
●

●

●●●
●
●●
●

●
●

●
●
●

●●
●●●●
●
●
●
●
●
●
●
●●●●●
●

●
●●●●●●
●●
●
●
●

●
●●●●●
●

●●

●●●●●●●●●●
●●
●
●
●

●

●

●●●
●
●

●●

●
●●

●●
●
●●●
●●●
●
●
●
●
●●
●●

●

●●●
●
●●
●●
●●
●
●
●
●

●

●●●

●●
●●●●
●●
●
●
●

●
●

●

●
●
●●
●●●●●

●
●
●
●●●

●

●●
●●●●●●●●●
●●
●
●●●
●
●
●
●
●●●●●●●
●
●●●●●●
●●
●●

●
●
●●
●
●●●●●●●
●
●●●●●
●
●●●●
●●●
●●
●
●
●
●

●●

●

●●●
●●●●●●●●●
●
●●●●●

●

●
●●●●●●
●
●●●●
●
●●●●●
●
●●●
●
●●●●●●●●●●●●
●
●
●
●
●●●●●●●●●
●
●●●●●●●●
●
●●●●●●
●

●
●
●●
●
●
●●
●
●
●

●

●●●●●●●●
●
●

●●

●

●
●●●●
●
●
●●
●

●●
●●●
●●
●
●●●
●
●●
●
●●●
●
●●
●
●
●●●●
●
●●●●●
●
●

●

●●●
●

●●
●
●
●●●
●
●●●
●
●●●●
●●
●
●

●

●●●

●
●
●●●
●
●●●●●
●
●●
●●
●●
●
●●●
●●
●●●●
●
●●●●●●●●●●

●

●●●●●●
●●
●●

●●●

●

●●

●

●●●●●●●●●●
●●
●
●●●●●●●●●●
●
●●
●●●●
●
●●
●
●
●
●●
●●
●●●
●●
●
●
●

●
●●
●●
●●●●●
●
●
●

●●
●●●●●
●●●
●
●●●●
●●●
●
●
●

●●
●●

●
●●●

●●
●●●●●●●●●●

●

●
●●●
●

●●
●
●●
●
●●●
●●●●●

●
●
●●●●
●
●
●●
●●●●●●●●
●
●●●●●●
●
●
●
●
●
●●●●●●

●
●●

●
●●●●●●●●●
●
●
●●●●
●●●●●
●

●●
●●●●●●●
●
●●●●●
●
●
●●●●●●
●

●
●●
●●
●●●●●●●●●
●
●

●

●●●
●●●●●●

●

●●●●
●

●

●●●●●●
●●●●●

●
●●●●●
●●
●●●
●
●
●●
●●
●●
●●●
●
●●
●
●
●●●●●●●

●●
●

●●●●

●
●

●
●●●●●
●
●●
●
●●
●●●

●

●
●●●●
●●
●●
●●

●
●●
●●●●●●
●
●●
●●
●
●

●

●●

●

●
●
●
●●
●●
●●

●

●●●
●
●●●

●

●●●
●

●
●
●
●
●

●●

●●
●●
●
●●

●●

●
●
●

●
●
●
●

●
●

●●●●

●●●
●●
●●
●●●●●

●●●

●
●

●

●
●

●
●

●

●●
●
●●●
●
●●●●●●●●●
●●●
●

●

●●●●●

●

●●●●●●●●
●
●●
●
●●●●●●●●●●
●●
●
●
●●
●●●●
●

●
●●●●●●
●
●
●
●●●●
●
●
●
●●●
●
●
●
●●
●
●●●●●

●

●●●●
●
●●●●●●●●●●
●
●●●●●●●●

●

●●●●●●●●●●●●●
●
●●●●●●

●●

●

●

●●●

●

●
●
●●●
●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●
●
●●●●●●●
●
●●●

●

●●
●
●●●●●●
●●
●●
●
●●●●●

●

●●●●●●●●●●
●

●●●●●●●●●
●
●●

●

●●
●
●●●●●●●●●●
●
●●●
●●●
●

●

●
●

●

●●
●●●●●●
●●
●

●●●
●●●●●

●
●

●
●●●
●
●

●

●●●
●●
●
●
●
●

●

●●●●
●
●

●
●

●●
●●●●●●●●●
●

●

●
●
●
●●●●●
●
●
●●●●●●
●
●●●●

●

●

●

●●●●
●●●●●●●●
●●
●

●
●●●●
●
●●●●●
●●
●●●
●●
●●●●

●

●●
●●
●●
●
●●
●
●●
●●●●●●●●●●●●●●

●

●●●●●
●
●●●
●
●●●●●●●●
●

●

●
●●
●●●●●●●
●●●

●

●
●●●●●●●●
●●●
●●
●●
●●●●●
●
●●
●
●●●●
●
●●●
●
●●●
●

●
●●●●●●●●
●●
●
●
●●

●

●
●

●
●
●●●
●
●

●

●●●●
●●●●●●●

●

●

●
●
●
●

●●●
●
●
●●

●

●

●●●●●●●●

●

●
●●
●

●
●
●

●
●
●
●●●
●●●

●
●

●

●
●
●●●

●

●●●●●

●

●

●

●

●●

●

●

●
●
●●●●●●●

●●

●●

●

●●

●

●●●●●

●●

●●●●

●

●●●●

●

●
●

●

●

●●

●

●

●

●●●
●

●

●

●

●●●

●

●

●
●

●●
●●●
●
●
●
●

●
●
●●●●

●

●●●

●

●

●
●
●

●

●

●
●●
●
●
●●●●●●●●●
●●●●
●●
●●

●

●

●●●

●●

●●

●

●
●
●

●

●

●
●
●

●
●●●

●
●
●●

●●
●
●
●●●
●

●

●●●●●●

●●

●●●●

●

●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●
●●●●●●●

●

●
●
●
●
●●●●●

●●

●●

●

●
●
●
●●●●●●●●●●●●
●●●
●
●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●
●●●●●
●
●

●●●●●●●●
●
●
●●●●●●●●●●●●
●●●
●

●●

●●●●
●
●
●●
●
●●
●●
●●●●
●●
●●●
●

●●●

●

●●●
●
●
●●●●●
●●●●●
●
●●

●
●●●●●●
●
●●●●
●●●
●
●●●
●●
●
●

●●●●

●

●●●●●

●

●
●
●

●●●
●●●
●●●
●

●●●
●●●●
●

●●●
●●
●●
●●●●●●●●●
●
●
●●
●●
●●●●
●●
●●●●
●
●●
●●●
●●●●●●
●●●

●

●●●●
●●●●●

●●●
●●●●●
●●●●●●●●

●

●●
●●
●●
●
●
●●●
●
●●●

●

●●
●
●●●
●●●●●
●●●●
●

●

●
●●
●
●●●●●
●
●
●
●

●
●●●
●
●●
●
●
●●
●●
●●●●
●●
●
●●
●
●
●●
●●●
●●●
●
●●●
●
●
●
●●
●
●●●●●
●
●●●

●

●
●
●●●●●●●●●

●

●●●
●
●●●●●●●
●

●

●●
●●

●

●●●

●
●
●●
●●●●●●●●●●●
●
●
●●●●●●●

●
●

●●●●

●
●●●●●
●●●●●●●●●
●
●●●●●●●●●●

●

●●

●

●

●

●
●
●

●
●●
●●●●●●●●●●●●●●

●

●
●●●
●

●

●●●●●●●●●●●●

●

●●

●

●
●
●●●●●●

●

●
●
●

●

●●●●●●
●
●●●●●●●

●

●

●

●●●

●
●
●●

●●●●●

●

●

●
●
●
●●
●
●●●

●

●

●

●●●●●●●●

●

●●

●

●●
●
●
●●●●●●●●
●
●

●

●●●
●
●●●●●
●
●●●●●●
●
●●●●
●●●●●●●
●
●
●●
●
●
●
●
●●●●

●

●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

●

●
●●●

●●
●
●

●●●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●
●●
●●●

●

●●

●●

●

●

●

●
●
●●●

●

●
●

●●

●
●

●●

●●●●●

●
●●●●●

●

●●●
●
●●

●

●●●
●●●●●●●
●●●
●●●
●●
●●●

●

●
●

●

●
●●●
●
●
●
●●●●●

●●●
●

●

●
●●●●●
●●●●●
●●●●●●●●
●●
●●
●●●
●●
●●
●
●●●

●●●●●●●
●
●●
●●●●

●

●
●
●●●
●

●●

●●
●●●●

●

●
●●
●
●●●
●

●●
●
●●●●
●
●●●●●

●●

●

●

●●●●●●
●●●

●●

●

●

●●●●●

●
●

●

●

●

●
●
●

●●●

●●●

●●

●

●

●

●

●●
●●
●
●
●

●

●●●●
●●●●

●
●

●●
●
●●
●
●●
●
●

●

●

●

●●●

●
●
●●●●●●●
●
●
●

●
●●

●

●

●

●●
●●●●

●

●

●

●●●

●●●●

●●●●

●●

●
●●

●

●●

●

●●●

●

●●●●

●●

●

●

●

●

●●
●

●

●

●●
●

●

●
●●
●●

●

●

●●●

●
●

●●

●

●●

●●●

●

●●●

●●

●

●

●

●

●●
●●

●

●●

●

●●●●

●●

●●

●●

●●

●
●

●●●●●●●●

●

●●●
●
●●

●

●

●

●●

●

●●
●
●●

●●

●●

●

●

●

●
●
●

●●
●
●●●

●●●●●
●
●●●●

●
●
●

●●●

●

●

●
●
●●●●●

●●

●●●●●

●●

●

●

●●
●
●●●●

●●

●

●

●
●●
●●

●●
●
●

●
●
●●

●

●●

●

●●●

●
●
●●

●

●●

●●

●

●●●●●
●●●●●

●

●●

●

●

●

●

●●●●●

●●●●●●●●●
●
●

●●

●

●●●
●●●●●●●●●●

●
●

●●

●●
●●

●●

●●●●●
●
●

●
●●●

●

●●●
●
●●
●●●●●●●●
●
●●●

●

●
●●

●●●●●●●●●
●
●●●●●
●
●●●●●●

●

●●●●
●●●
●●●●●●

●
●●●●●●

●

●●●●●●●
●

●●●●●●●●

●

●●●●●●

●

●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●
●
●●●
●

●

●
●
●●

●

●●●
●●●●

●

●●
●
●

●

●●●
●

●
●●●●
●●
●

●
●
●
●●●
●
●
●
●

●
●

●

●●

●●●
●

●

●
●
●
●
●●●●
●
●

●●

●
●

●

●
●

●●

●
●●
●
●●●
●
●
●
●
●●●
●
●
●●
●
●●●

●

●●●
●
●

●
●
●

●

●●

●

●
●●
●

●

●

●
●●
●●●

●

●

●

●

●
●
●●●

●

●●●

●
●●
●●
●
●
●●●
●

●●

●

●

●
●
●●
●
●●
●
●

●
●●
●●

●

●●

●
●

●●

●

●
●●

●
●
●

●
●●●●●●

●

●
●●
●

●●

●●
●●
●

●

●●
●●●

●

●●
●●●●●●●●
●

●

●●
●●

●

●
●

●

●●

●

●●

●

●●

●

●
●

●

●●

●

●

●●
●●●●

●

●●

●

●●●●
●

●
●
●

●

●●

●●●●
●

●

●●●
●●●

●

●●
●●
●
●
●●

●

●●●
●

●●

●
●●

●●

●
●
●
●

●

●●

●

●●

●

●
●●

●●

●

●

●
●●

●

●●

●

●●●
●

●

●

●

●
●

●

●●●●●

●●

●

●

●●

●

●●●

●

●●
●
●●

●

●●●

●

●
●●●●

●

●●●
●●●
●
●●

●●
●

●
●●

●●

●●
●

●

●
●

●

●●●
●

●

●
●●●

●

●
●●●
●●
●

●
●●

●●●●
●
●
●

●

●●●●

●

●

●

●●●●

●

●
●●

●

●
●

●●
●

●

●
●

●

●●●●●

●●●

●

●●●
●
●
●●

●●
●●●●
●●●
●
●●
●●●●
●●●●●
●●
●

●
●●●
●●●●

●●

●●●
●●
●
●●

●●
●

●●●
●●●
●
●

●

●●
●

●●
●●
●●

●

●
●
●
●

●

●
●●
●
●
●

●

●

●
●
●●●
●
●●●

●

●●

●

●●●●
●
●
●●
●

●
●
●

●
●

●●●●●

●

●
●●

●

●

●●
●●
●

●●
●

●

●
●

●

●
●
●
●●●●●●●●●●●●●●●●●●
●●
●●●

●●
●●
●●●●●
●●
●
●●
●

●●

●●●

●
●●●

●●●

●

●●
●

●
●
●●

●

●●

●●

●●
●

●●
●
●●

●

●●●
●

●

●
●
●●●●

●

●●●

●

●

●●●
●●

●●
●●●

●

●
●●

●
●
●●
●●●

●
●
●●

●

●

●

●
●
●
●
●●●●

●

●●●●

●

●●●●

●

●●●●●
●
●
●
●●

●
●●●●●●●
●

●

●●●
●
●
●●
●

●

●●●●●
●
●
●●●
●

●

●
●
●●
●
●●
●
●●●

●●

●
●

●

●●●●
●
●

●

●●

●

●●
●
●

●●
●
●

●

●●●
●●
●

●

●

●

●
●

●

●●●●●
●

●

●

●

●

●

●

●
●
●

●
●
●

●●●●●

●
●

●
●
●

●●

●

●●

●

●●

●●
●
●
●

●

●

●
●●

●

●

●

●
●●●
●

●●

●

●

●
●
●●

●
●
●
●
●

●

●

●
●
●
●●●●●●●

●
●

●●●
●

●●
●
●
●●

●●●●

●
●
●●

●

●
●
●●●●●●●

●

●●●●●

●
●

●

●●●

●

●

●

●●
●●

●

●●●
●●●

●

●●●

●

●

●

●

●●

●●●

●

●
●
●

●
●●

●

●

●●

●●●
●

●

●
●●●●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●
●
●

●

●

●

●

●●●

●

●

●

●●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●
●

●●●

●

●●

●●

●●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●●●

●
●●

●

●●
●

●●

●●
●●

●●●●

●●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●●
●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●●

●

●
●

●

●

●●●

●

●●

●
●

●

●●●

●

●

●●

●
●●

●

●
●●●

●

●
●●
●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●●
●
●

●●

●
●●
●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●●

●

●
●
●

●

●

●●

●

●

●
●
●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●●●

●●

●

●

●
●●

●

●
●●
●
●

●
●●●
●

●

●●

●
●●●●●

●●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●●
●
●

●

●●●
●

●●●●●●●
●●●

●

●●
●●
●●

●

●●●●
●
●●●●
●●

●

●●●
●
●●●
●●

●●●●●●●●●●●
●●●●●●
●●●●
●
●
●
●

●
●●
●
●
●●●●●
●●●●
●
●
●●●●●

●●

●●●

●

●●●
●

●

●●
●
●●

●

●●●●●
●●●●●●●●●

●

●●
●●●●
●●●
●●●
●
●
●

●

●
●
●●●●●
●
●●●
●
●
●●●●●

●

●●
●●●●
●
●●
●●
●
●
●
●●●●
●

●●
●
●
●●●●
●

●●
●●
●
●

●

●

●●●●
●
●●●●●●●
●
●●●●

●

●●●●●
●●●●●●●●●●●
●
●
●
●●
●
●
●●●
●●
●
●
●●
●
●●
●●
●
●
●
●
●

●●

●
●●
●●●
●●●
●
●●●●
●●●
●●●●●
●
●●●●
●
●●
●
●●
●
●●
●
●
●●●
●
●
●●

●
●●●●

●●
●●●
●●●

●●
●
●●
●
●●●●●●

●
●
●

●●
●
●●
●
●
●
●
●●●
●
●
●

●
●
●●
●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●
●
●●●●
●
●●
●●●●●●
●
●●
●
●●●
●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●
●●●●●●
●
●●●
●
●●●●●

●

●●●●●●●●
●
●●
●
●●●●

●●

●●
●●
●●
●
●
●●
●●
●
●●
●
●

●

●
●●●●●●
●●●●●●●●●●
●●
●●●●●

●●

●

●

●●

●

●●●●●●●●

●

●
●
●
●
●
●●●

●

●●●
●
●

●

●●●●●●●

●

●●●●●

●

●●●●●●●●●●
●
●
●
●●●●●●●
●
●
●●●●●●
●●
●●●
●●●
●
●
●
●
●
●●●●

●

●●
●

●
●●●●●●●●
●
●●
●●
●●●●

●
●
●
●
●●●
●●●
●
●
●●
●●●●●●●●●●

●

●

●

●●●●●

●
●●●

●
●

●●●●●●●

●

●●●
●

●

●

●

●

●
●

●●

●
●●
●●
●●
●
●
●●●●●●
●
●
●
●

●
●

●●

●

●
●●●●●
●●●
●
●
●

●

●
●
●●●●

●

●●
●
●

●

●

●

●
●

●

●●
●●
●●
●●
●

●
●

●
●

●

●

●

●
●●
●

●

●●
●
●

●●
●●

●●●●

●●
●●
●●●●
●●
●
●●●
●
●
●
●
●
●●
●
●●●●●●●

●

●●●●●●
●●●●●●
●●●●●●●●●●●●●
●●●
●●●●

●
●
●●●●
●
●●
●●
●●
●●●
●
●●●●●●●●
●
●●●●●
●●
●●●●●
●●●
●●●
●●

●

●●●●●●●●

●

●

●

●●●●
●
●●●●
●●●●●●●●●●

●

●

●●
●●

●

●●

●
●●●●●

●

●●●
●●●
●

●

●●●●●●
●
●●●

●

●
●●●●●●●●●●

●

●
●
●
●●
●●●
●
●●●●●
●
●

●●●●●●
●
●
●●●●●●●
●
●●●
●●
●●●●

●

●●

●

●●●●●●●

●

●●●●●●●
●
●●●
●●
●
●●
●
●
●
●●●●●●
●●●●●●●●●●●●
●●

●●

●●

●

●●●
●●
●
●
●●●
●●●●●●●●●●

●

●●●●●

●

●●●

●
●
●●
●●
●
●
●●●●●●
●
●●●●●●●●●●

●
●
●●●●●●●●●●●
●●●
●●
●
●●●●
●●
●●
●●
●●●●●●●
●
●●●
●
●●●●●●●●

●

●●●

●

●
●

●●●●●●●●
●
●●●●●●
●●●
●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●
●
●

●
●●●●
●●
●

●●●●●●●
●●●●●●●●●●
●
●●
●
●●●●

●

●●
●●●●●
●●●
●●
●

●
●

●

●●
●
●
●●
●●●●●●
●●
●

●●

●

●●
●
●●●●●●●●●●●●●●
●
●●
●
●
●●
●●●●
●
●●
●
●●●●
●●
●●●●
●
●●
●
●
●
●●
●
●●●●
●●
●●
●

●

●
●●
●
●
●●
●
●
●
●●●
●
●
●
●●
●
●●
●●●●
●
●●
●
●●●●●
●
●
●
●●●

●

●●●●●●●
●
●●●
●●
●
●
●
●●
●●●
●
●
●
●
●●●●●
●●
●
●

●

●

●●●●●●
●
●

●

●

●

●●
●
●●●●
●
●
●
●
●

●
●
●●●
●

●

●
●●●●●

●
●●●
●

●●
●●
●●
●
●●●
●
●
●
●●●●
●
●●●●●●
●
●
●
●●●
●
●●●●●●
●

●

●
●●●●

●

●●●●●●
●

●
●●●●●●●●●
●
●
●
●●
●
●●●●●●●●●

●

●●
●
●●●
●●●

●

●●●
●
●
●
●
●
●
●●●
●
●●
●●●
●●●
●
●
●●
●●
●●
●
●
●
●
●
●●●●
●

●

●●

●

●
●
●●●●●●●●
●●●●●
●
●

●

●
●
●
●●●●●●
●
●
●
●●
●
●●

●

●
●
●
●
●●
●●●
●
●●●
●●
●●●●●●
●
●●●
●
●
●
●

●

●●
●
●
●●
●●
●
●
●

●

●
●●
●
●●
●●●●●●

●
●
●
●●●●
●●
●
●
●●●●●●●
●●●

●
●
●●
●
●●●
●●
●●●
●●●●●●
●●●
●
●●
●
●●●●●●
●
●●●
●
●●●
●
●●●●
●
●●
●
●
●●

●
●●●
●●●
●
●●●●●
●●
●●●
●●
●●●●●
●
●●
●
●●
●●●

●

●

●●

●
●
●

●

●●●●●●
●●
●
●●●
●●●●
●●
●●●●●

●
●●
●

●

●
●●
●
●
●●●●●●●●
●●●●●●●
●
●
●●
●●
●●●
●
●●●●
●●
●●
●●●●
●
●●●●●
●
●●●●●●●●●●●
●
●●
●●●●●●●●●
●●●●●●●●
●●●●●

●

●

●

●●●●●●●●●●

●

●●
●●●●
●
●●●●

●

●●●●●
●
●●
●
●●●●●●
●●
●
●●●●●●●●●
●●
●●●●
●●●●●●●●●
●
●
●●●
●
●●●●
●

●

●●●●●●●
●●●●●
●●
●
●●●●●●●●●
●●
●●●●●●●

●●

●●●●●●●●●●●
●●●●
●
●
●●●●●

●

●●
●●●●●●●
●●●●●●●●
●●

●●

●●●●●
●●●●●●●●
●●●●●●
●●●●●
●
●●●●
●

●●●●●
●●●●●●●●●
●

●

●●●●●

●●

●●
●

●
●●●●●●●●●●
●●●
●
●
●
●
●
●
●●●
●
●●●
●
●●●
●●●
●
●
●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●
●●●
●
●
●
●
●
●●●●
●
●

●
●

●●●●●●●●●●●●
●●●●
●●●
●
●●●●●
●●
●●
●●●●
●
●
●
●●●●●●

●

●●●●●
●
●●●●●●
●●
●

●
●●●●●●●●●●
●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●
●●●●●
●●
●
●●●●●●●●●●

●

●●
●
●●

●
●

●
●●
●●
●●●
●●●
●●●

●

●●●●●●
●
●●●●
●
●●●●●●●●●●●●
●
●●●●●●●●
●
●●●●●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●
●●●
●
●
●●
●●
●●●●●●●●
●
●●●
●●●●●●●
●
●

●●●
●
●●●●●
●
●●
●
●
●
●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●
●●
●●
●
●
●●●●●●
●
●●
●●
●●●
●
●●●
●●●●●

●
●

●●
●
●●
●●●●●●●●

●
●●●

●

●●
●●●
●
●●●●●●●

●
●●
●

●

●●●
●
●
●
●
●
●
●
●

●●

●

●
●●
●
●●
●●●●
●
●
●

●
●●●

●

●●●

●

●
●
●
●
●●
●
●
●
●●
●
●
●
●
●
●●●●
●
●●●
●
●●●
●
●
●

●
●
●
●●●●●●
●
●
●●●
●
●●
●
●
●

●
●●●●●●
●
●●
●

●●

●●
●●

●

●
●●
●
●●●●●●
●
●●
●
●
●
●●●●●●
●
●
●
●●●●●●
●
●

●

●●●
●
●
●
●●
●●●●
●
●●●
●●●●
●

●●
●●

●●

●
●
●●●●●●●●

●

●●
●●
●●●●
●
●
●
●●●
●
●

●
●●●●

●

●●
●●
●●●
●●
●●●●
●
●
●

●
●
●●●
●●●●●●

●
●●●
●

●●●

●

●●
●
●●
●●
●
●●●●●
●●●●

●
●●
●
●
●
●
●
●●●●●●●●●●●●
●
●●
●●
●
●●

●
●●●●●
●●●
●
●
●
●●
●
●●●●
●●●
●
●●●●
●●
●●●●●●

●

●●
●
●●●
●
●●

●

●

●

●●●
●●●●●
●●●●●
●●●
●
●●

●

●
●

●

●●●
●
●

●
●

●

●●●●●
●
●
●●
●
●

●

●●●

●

●

●

●
●●●●●
●
●●
●●●●
●
●●●

●

●●●●
●
●●
●

●

●●●
●

●●●●
●●●
●

●
●

●
●
●●●
●
●●●
●●●●●●●●●●
●

●●

●

●●
●
●●●
●
●
●●●●
●

●
●
●
●●●●●
●
●●
●
●●

●●

●

●

●
●●

●
●●●●
●●●
●
●
●●●

●

●
●
●
●
●●●●●
●

●
●●
●
●●

●

●

●

●

●
●
●

●

●
●
●
●
●●●
●●●●
●

●

●
●
●
●●
●●●●

●

●●
●●●●
●
●●●●●
●●●
●
●●
●●●●●●●
●
●
●●
●●
●●●
●
●
●
●
●
●●
●
●
●●

●

●
●

●●

●
●
●●●
●●
●
●●
●
●
●
●
●
●
●●●●

●
●●●●●●

●

●
●●●
●●●●●

●

●
●
●●●
●●●●
●

●
●
●●●
●
●

●●
●●
●
●●

●

●

●
●●

●
●●●●

●

●●
●
●
●●●
●
●●●
●●
●

●
●
●●
●

●

●
●
●
●
●
●●●●●
●

●

●
●●●●

●
●
●
●
●

●

●
●●
●
●●
●●●
●●

●

●●●

●

●●●
●

●

●
●

●

●
●
●
●
●
●
●
●
●
●
●
●●●
●●●
●

●
●●●
●
●●●●
●
●●●●●●●●●●
●●●●●●
●

●
●
●
●●
●

●
●●●
●●●●●●
●●●●●●

●

●
●●●
●
●●
●●●
●

●
●●●
●
●

●
●
●

●
●
●

●●
●●●
●●●●●●●●●●

●

●

●
●●●
●●
●
●
●
●●●●●●
●●●
●
●●
●●●
●●
●●
●●
●●
●
●
●
●
●●

●

●
●●●●
●
●
●
●

●
●●●
●●●●●
●●
●
●●
●●
●
●
●●
●

●
●●●
●
●
●●●●●

●

●
●
●●
●●●

●

●●●●
●
●●●
●
●
●
●

●●
●●
●●●●
●
●●●●
●
●●●

●

●
●●●
●

●
●●
●

●
●
●

●
●
●●
●

●

●●●
●

●●
●
●●
●●●●
●●●●

●

●●
●

●
●●●●●●●●
●

●●

●

●●
●

●

●●
●

●

●●
●
●
●
●
●●
●●
●
●

●
●●●●
●●●●●●●
●●
●●●●●●●
●●
●●
●●●●●
●
●
●●●●●
●●
●
●
●
●●
●●●●●●●
●●●●
●
●●
●●●
●●
●●
●●

●●

●
●●●
●
●
●

●

●●●●●●
●●●●●
●●●●●
●●●

●
●●
●
●●
●
●●●
●
●
●●●●●●
●
●
●

●

●●
●●●
●
●

●●●

●
●●●●●
●●
●●●●●●●

●

●●

●

●●●●
●●●●●●●●●●●●●

●
●
●
●●●●
●

●

●
●●
●
●●●
●
●
●
●

●●●
●
●●
●●
●●
●●●
●
●
●
●●

●
●●

●

●●

●

●
●
●

●

●
●
●●●●●
●●●●●
●●
●●●
●

●●●●●●●
●
●
●
●●●●●
●●●●●●●●●
●
●
●

●
●
●
●●●●
●●●●●●

●

●
●
●
●
●●
●●

●

●●

●

●●●
●
●
●
●●●

●
●
●
●
●
●
●
●
●
●
●●

●
●

●

●●

●

●●●
●

●●

●

●●●●
●
●

●

●●
●

●

●
●
●
●
●
●●

●

●
●

●

●●
●●
●
●
●
●●
●
●●
●●●●●

●
●●
●●●●●
●
●
●

●

●●
●●
●
●●●
●
●

●●●●
●●
●●●●

●

●

●
●●●●

●

●●
●
●
●
●
●●
●

●

●
●●
●●●●●●●

●●●
●
●
●●●
●●
●●

●

●●●●●●

●

●●●●●
●●●
●
●●
●
●
●
●●●●
●
●

●●

●
●●
●
●

●
●
●●
●
●
●●●●
●●●●
●

●●●●●●●●●
●
●

●

●●●
●●
●●●
●●●●●
●
●
●
●
●
●
●●●
●●
●●●
●
●
●●●
●
●●●●●●
●●●
●
●

●●●
●
●

●
●

●●●●●●●

●●
●●●

●
●

●
●

●

●

●

●

●
●
●●●●
●●

●

●
●●●●●●
●
●

●●
●●●
●●●●

●

●
●●
●

●●●●●
●●●●
●
●
●
●
●●●
●
●
●

●

●●●
●

●

●●
●
●
●
●

●
●●●
●
●●

●

●

●

●●●●
●
●●
●
●
●●

●
●
●●
●
●
●
●●●●
●●●●●●
●●●

●●●
●
●
●●
●
●

●

●
●

●●

●●●

●●
●●●●
●
●●●
●

●

●●●
●
●
●
●
●

●
●

●

●
●
●

●

●●
●●●●

●

●
●●
●
●
●●
●
●●
●

●
●
●
●
●

●
●●●●●●●

●
●

●
●
●
●
●●●●●●●●
●●
●
●
●

●●

●●●●●●
●
●

●●●
●
●
●
●
●●●●
●
●●
●●●●●
●
●
●●
●●●●

●

●●
●
●
●
●●
●
●
●●
●●
●●●
●●●
●
●

●

●●●

●
●●●●
●
●●●●
●●
●●
●●●●●●
●●●●●●
●
●●
●●●
●
●
●●●●
●●●●●

●
●●●●●●●●●●●●
●
●

●

●●
●
●
●
●
●●
●

●
●●
●
●●●●
●●●●
●●●●●●●●●●
●

●

●
●
●●●
●●●●●●●●●●
●
●
●
●●
●
●
●●
●●
●

●
●

●

●●●●●●
●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●
●●●●●●●●

●
●●●
●
●
●●
●●●
●●
●●●●
●
●●●

●
●●●●●●●●●
●
●

●●●●
●●●●●●
●

●

●
●●●●●
●
●●●
●●

●
●
●
●
●●●
●●●●
●
●
●●

●

●●●●●●●●●●●
●●●
●
●
●●●●●●●●●●
●●●●●●●●●
●
●●

●

●
●
●●●
●●●●●●
●
●

●

●●●
●
●●

●

●

SLC20A2:artery aorta
(PIP: 0.91)

0

5

10

41 42 43 44
Position [MB] Chromosome 8

−
lo

g 1
0(

pv
al

ue
)

Systolic blood pressuree

●●●●
●
●●●●●●●●●●●●●●●
●●
●●●●●●●●

●

●●●

●

●●

●

●●●●●●●
●
●
●
●
●
●●●
●●●●●●●●●
●
●●●●●
●
●●●●●●
●
●
●
●
●●●●●●●●●●●●●●●●●●●

●
●●
●
●●●●●

●

●●●●●
●
●●

●

●
●
●●●●

●

●●●●●●
●
●●
●
●
●
●●●●●●
●●
●

●

●●●●●●●●●●●●●●●●●
●●●●●
●
●

●
●
●
●
●●●
●
●●●●●●

●●

●●
●●
●●●●
●
●

●

●●
●
●●●●● ●●●

●
●●●●●●
●
●●●

●

●●●
●●
●
●●●●
●
●●●●
●

●

●

●●●
●●●●●●●●
●
●●●
●
●●●●

●●

●●

●
●●●

●
●●●●
●
●●
●●●●
●
●●●●●●●●●●●●●●●
●●●

●
●
●
●●
●
●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●
●●
●
●

●

●
●●

●

●●●●●●●●●

●

●●●●●●●
●●●●●●●●●●●

●

●

●●

●●●●
●
●

●

●

●

●●●

●

●●●●
●
●●●●
●
●●●
●
●

●●●

●●●●●

●

●●●
●●●●
●
●●●●●●●
●
●●●●

●
●●

●●
●●

●

●
●
●●
●●●

●

●●

●

●

●●

●●

●●●●●

●●●

●●

●●●

●
●
●

●

●●●

●

●

●●●●
●
●●●

●

●
●
●

●

●

●

●

●

●●

●●●
●
●

●
●

●

●●●

●

●●●
●●

●

●●●●●
●

●
●

●●●

●●●

●

●●●

●
●
●●●

●●

●●

●

●●●●
●

●

●●●●
●
●●
●

●
●●●
●●
●
●●●
●
●●●●●●●●●●●●●
●

●

●

●●●
●

●●

●
●
●
●
●●●●
●●
●●●●

●

●
●

●
●
●●

●
●
●●●●●
●
●

●

●

●

●●

●●
●●●

●

●

●
●
●

●

●●

●●

●

●●●●●●
●
●

●

●
●

●

●

●
●

●
●
●●
●●

●●

●
●
●●

●

●
●

●

●
●●●●●
●
●●●

●

●
●
●

●

●●

●

●

●

●●
●●
●●●●●●●●

●●●

●●●●
●
●●

●
●
●
●●●
●●
●

●
●

●
●●●●
●

●
●●●●●
●
●

●
●

●●

●●●

●●

●●

●
●
●●

●

●●●●
●
●

●

●●
●
●●

●
●
●

●
●

●

●

●●●●●

●

●●●

●

●

●

●

●

●●
●●
●●●●●●●●●
●●

●

●

●
●

●

●●

●

●

●

●●●●

●

●

●

●●●●●

●
●●

●

●●

●●●

●

●●●

●

●●●●

●

●●

●

●●

●●●

●

●

●

●●

●●
●

●

●

●

●

●
●

●●●●●
●

●

●●●

●

●●●●

●
●●●

●

●
●

●●

●

●●

●

●

●
●●

●●●●●

●

●●

●●

●

●
●
●
●●●●●●
●●●●
●
●●●
●
●●

●
●●●●●●●●

●

●●

●

●
●
●
●
●●●●
●
●●
●●
●
●●
●
●●
●●
●

●
●●●
●
●●●●●●●●●●●
●●
●
●

●●
●
●
●
●●●●●●●●●●
●●●●●●
●●●●
●●
●●●●●●●●
●
●●●●●
●●●●●●●●●●●●

●

●

●
●●
●
●●●●●
●●●●
●●
●
●●
●
●

●
●
●●
●
●
●●●●●●●●●●●●●●●●●
●●●●●
●
●
●●●●●
●●●●

●

●
●●
●●●
●●●●●●
●●●●
●●●
●●
●●●●●
●●
●

●

●
●●●

●●
●●
●
●
●●●

●●●●●
●
●●●●●

●●
●●●●●●●
●●●
●
●●
●

●●●
●
●
●
●
●●●
●●

●
●●
●
●●
●●
●●
●●
●●●●●●
●●●●
●●
●
●
●
●●●
●●●●●●●
●
●●●
●
●
●

●
●
●
●●
●
●●●●●
●
●
●
●
●
●●●
●●

●

●

●

●
●●
●

●
●●●

●

●

●
●●
●

●●
●●
●
●●●●
●●
●

●
●●
●
●●
●
●●
●
●
●
●●●●●
●●
●●●
●
●●●
●
●
●●

●
●●
●
●●
●
●
●
●●●
●
●

●

●

●

●
●
●●
●
●
●
●

●●●●●●
●
●
●
●●
●●●●●
●●
●●●●
●
●
●
●
●
●●●
●●
●
●
●
●

●●
●
●●●
●●●

●
●
●●●●●●●●●
●
●

●●●●●●
●
●●
●●●●●●●●●●●●●●●●●
●●
●●●●

●
●

●●
●
●
●
●●●●●●●●●●●
●
●●
●
●
●●●
●
●●●

●

●●●
●●
●●
●●●●
●●
●●●
●
●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●
●
●
●

●

●

●

●●●●●
●
●●●●●●●●●●
●●●●●●●●
●
●●●●●
●●●
●●
●
●●●●
●●
●
●
●●

●

●●
●●
●●

●

●
●
●
●●●●●●
●●●●
●
●●●

●

●●
●
●●●●●●●●●●
●
●●●●●●●
●
●
●
●
●●●●●
●
●●●●●●
●●
●
●
●
●●
●●
●●
●
●
●●●
●●●●
●
●●●
●●●●
●●
●●●●●●
●
●
●
●●●
●

●●●
●
●●●●●●●●

●
●●●●●●●●
●●●●
●●
●
●●●●●●
●
●●●●
●
●
●●
●●●
●●●●●●●
●
●●●●
●●
●●
●
●
●

●
●
●
●
●
●
●●
●
●●

●
●●
●●●●●●
●●
●●
●
●
●
●
●
●●
●●
●●●
●●
●●●●●●●
●

●
●●●●●

●

●●
●●●●●

●

●
●
●●●●●
●

●
●
●●●●●
●●●●●

●
●
●
●●
●●●●●

●
●
●●●
●
●●●●●
●
●●
●

●●

●●●
●●

●●●

●

●●●●●●

●

●●●●

●

●
●
●
●
●

●
●
●
●
●●●●●●
●
●

●

●
●

●

●●
●
●●●●●
●●●●●
●●

●
●
●
●

●

●
●●

●

●●●
●
●

●
●
●●●●
●
●●
●●●●●●●
●
●
●●

●

●

●

●
●●●●
●
●●
●
●●

●

●●●●
●●
●●●●
●
●
●●
●●●●●●●●●●●●
●
●

●●●

●

●

●●
●●●●●

●

●●

●

●●

●

●●●●●●

●

●●

●

●●

●●

●

●

●

●

●●
●
●●

●

●

●

●●●●

●

●●

●

●●

●

●●●
●

●●

●●

●●●●
●
●●
●●
●

●

●●●●

●

●●●●●●●●●
●●
●
●●

●

●●
●
●
●●●

●

●●

●

●

●●

●●●●●

●
●

●

●

●

●
●

●●
●

●●●
●●
●

●

●●
●●
●●●

●●●

●●●
●
●●●●●

●
●●●
●

●

●●●
●
●●
●
●●●●
●●●●●●●

●
●
●
●●

●
●●●●

●

●●●●

●
●●
●
●
●●●●●

●●●●●
●

●●
●●●●
●●●●●●●●
●●●●●
●●
●●●●●
●
●
●
●

●

●●

●

●●●●●●

●●

●

●●
●

●●●●
●●
●
●
●●
●
●
●

●

●●●●
●
●

●

●

●●
●
●●●
●
●

●
●●
●

●

●
●●●●

●●
●●●●
●●●

●

●

●

●

●●
●
●●●

●

●

●●

●

●

●
●●●●●●
●

●

●●●

●

●

●

●●

●
●

●●●

●●

●

●●●

●

●

●
●●

●●
●●●●

●●

●

●

●●●●●●●

●

●●●
●
●●●

●
●

●

●

●
●
●●
●●●

●

●●

●
●

●●

●
●
●

●

●

●●

●

●●●●

●
●
●●

●
●

●

●

●

●●●

●

●●

●●

●
●

●

●●

●

●

●

●●

●●●

●

●●

●

●●

●●●

●●
●●

●

●●

●●●
●
●
●

●

●●●
●
●●

●

●●

●

●●●●
●

●

●

●

●●

●
●
●

●

●●●

●●●●

●
●●

●

●

●

●

●
●
●
●●●
●

●●
●●●●

●●

●●●
●

●●●

●

●●

●

●
●●

●
●

●

●

●
●●●●

●

●

●

●●

●

●●

●

●●●
●●●●

●●

●

●●●

●●●●

●
●

●

●

●●

●

●

●

●
●
●
●

●

●

●
●
●

●
●
●

●

●

●

●●●●●●
●●●

●

●

●

●

●●

●●●●●●

●

●

●

●

●

●●

●

●
●

●●●

●●●●●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●●
●
●

●
●

●

●●

●●

●

●●●

●

●
●
●

●

●●
●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●
●●
●
●
●
●
●

●

●
●

●
●

●

●●●

●

●

●●●

●

●

●

●
●
●●●●
●
●
●

●
●

●

●

●
●

●

●

●
●

●●
●

●

●
●

●

●

●
●

●
●
●●●

●●●●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●●●●●

●●●

●●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●●●

●

●

●●

●

●●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●
●●●

●●

●

●

●

●

●

●●

●●

●
●

●

●

●

●●
●
●
●

●
●●●
●
●

●●

●

●
●●
●●●●●

●

●

●

●

●

●

●
●●

●

●
●●●

●
●
●

●

●
●

●
●

●

●
●
●●●
●

●●●●●

●

●
●●●●
●
●●●
●●

●

●

●

●●●

●

●●
●
●●●●●
●

●

●●●
●●
●
●
●
●
●●

●
●
●

●●●●
●
●●●
●
●

●
●
●
●
●

●
●●
●
●
●

●
●●

●
●●

●

●●●●
●

●
●
●

●

●●●

●●
●●●
●
●

●

●

●

●●●●

●
●●
●●
●●
●●●●●●●●

●

●
●●●
●
●

●

●
●
●
●●●●

●
●●
●

●
●

●●●
●
●●●●
●
●

●●
●

●●●

●
●
●
●
●
●

●
●●●

●

●
●
●●
●●●●
●
●

●

●

●●
●●
●

●●
●
●
●●●●●●●●●
●
●●●
●
●
●
●●
●●●●●●●
●
●
●
●●●
●●●●
●
●
●

●
●
●●
●●
●●●
●
●

●

●●●●●●●●
●●●●●●●●
●

●
●
●●●●

●

●●●
●
●●●●●●
●●●●●●●
●●●●●●●●
●
●●●
●
●●●

●

●
●

●

●●
●●●●●●●●

●

●●●●●●●●●
●
●●●●●
●●●●
●
●
●●●●●●
●
●●●
●
●●●●●●●
●

●

●●

●

●●●●
●

●●●
●
●●●●●●●●●●●
●●●●●
●●●●
●●
●●
●●●
●●●●●

●●
●

●
●

●
●
●
●●●
●
●
●●●
●●
●●●
●

●

●

●●●●
●●

●

●●●●
●

●
●●
●
●
●●
●
●
●●●
●
●
●
●●●
●●
●

●●

●

●●

●

●●●●
●
●●●●●●
●●●●●●

●

●
●
●●●●
●●●●
●
●●●●●●●●●

●

●
●
●●
●

●
●●●
●●●

●●●●
●●●●

●●●

●

●●
●●
●●●●
●●●●●
●

●

●●●
●●●

●

●●●●●
●●
●
●●●●●●●

●●

●●●●
●●●●●
●●●●●●●●●
●
●●●●

●

●●
●
●
●●●●
●
●●●●
●●
●●
●●●
●●
●
●●

●

●●●●●
●●
●
●●
●●●●●●●●●●
●●●
●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●

●

●

●

●

●
●

●
●●●●●●
●
●
●●●●●
●

●

●●

●
●●●
●●●
●

●

●●

●

●●
●

●
●●●●●●●●●●●
●●
●
●

●

●
●
●
●●
●
●●●●●●●
●●●●●●

●

●

●

●●
●
●

●●●●●

●

●●●●
●
●●●●
●●●●

●

●
●
●●●●●●
●●●●●●●●●●●●

●

●●●
●
●
●●●●●
●
●
●
●
●●

●

●●●●

●

●●●
●●
●●●

●

●●●●●●
●●●●●●●
●●●●
●
●●●●
●●●
●●

●

●●●
●
●●

●

●

●●

●

●

●●
●●●

●●

●●●
●

●

●●
●

●
●

●

●

●

●●

●

●

●●●●
●
●●

●●

●

●
●
●

●●●●●

●●●

●

●●●●

●
●

●●●●●

●

●●●●

●

●

●
●●

●

●●

●

●

●

●

●
●
●
●●

●

●●●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●●●

●

●●●

●●

●●

●

●

●

●

●

●

●

●●●●●●●
●
●●●●●

●
●●●●●●●●●●●

●●

●
●

●

●●

●●

●

●●

●

●●

●●

●

●
●

●

●

●

●●

●●

●

●

●
●

●●
●
●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●
●●
●
●●●●

●●●

●●

●

●●

●
●

●

●●●

●

●●●●

●

●●

●

●●
●
●
●
●●●

●

●

●●●

●

●●●●●●●●●●●
●●

●●

●●●

●●

●

●●●●●

●

●

●

●
●

●

●●

●

●
●
●●

●

●●

●

●

●
●

●

●●
●
●●

●

●●

●

●

●●
●
●●●
●

●●

●●

●
●

●

●

●●●●

●

●●●●●●

●
●
●

●
●●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●
●●●

●

●

●

●

●

●

●●

●
●
●

●●
●●
●●●
●
●●●

●
●●●

●●

●

●●

●
●

●

●

●●

●●

●
●
●●●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●●

●
●
●
●

●

●
●●

●
●●

●
●●

●

●

●
●
●

●●

●●●●

●

●

●

●

●

●

●
●●
●

●

●●

●
●
●
●

●

●●●●
●●

●

●
●
●
●●●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●
●●
●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●
●
●
●
●●●●●●
●●

●

●

●

●

●

●●

●

●

●
●

●
●●
●
●●

●

●●

●

●

●

●●●
●

●
●

●

●

●
●
●
●
●

●

●

●
●

●

●●●●

●

●●

●

●
●

●

●

●
●●●

●
●●

●

●

●

●
●●●
●●

●

●●
●

●

●

●

●
●

●●

●●

●

●●●
●

●

●●●●
●

●●

●
●

●

●●●●
●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●
●
●●

●

●

●

●●
●
●
●
●●●
●

●●

●

●

●

●

●●

●

●

●●
●
●

●
●●
●●

●
●

●●●

●

●

●
●●

●

●

●●

●●

●

●

●●

●●●●

●

●

●

●●●

●

●●●

●●●

●●

●

●

●

●●

●

●
●
●●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●
●

●
●●●●

●

●
●
●
●
●●
●
●
●
●●●

●
●

●

●●●

●●●
●
●●
●
●●●●

●

●
●
●

●

●
●●
●
●

●●

●●
●

●

●
●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●●

●

●
●

●

●

●
●
●●
●

●

●●

●

●
●

●●

●

●
●

●
●

●

●●
●
●

●

●

●
●●●
●
●

●●●
●

●

●

●

●

●

●

●●
●

●

●

●●

●●●●●●●●

●

●

●
●
●●
●
●●●●

●

●

●
●●●●

●

●
●●●
●
●●●●

●

●

●

●
●

●●

●●●
●●●
●
●

●

●●

●

●
●

●

●

●

●●●●●

●

●●

●

●

●
●
●

●●

●●
●●●
●●
●

●

●●
●

●

●

●

●
●
●
●●

●

●●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●●

●

●●●

●●

●

●●

●
●

●

●●●●●
●
●

●●

●●●●

●

●

●

●●●

●●

●

●

●●

●

●●

●●●

●●

●

●

●●
●●●
●

●●

●

●

●●

●

●

●●

●

●●

●●●

●●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●●

●

●●

●

●

●

●

●
●
●

●●

●

●
●

●

●●

●

●

●

●

●●

●
●
●

●

●

●

●●●●

●

●

●

●●

●●

●●●

●●

●●

●

●

●

●

●

●
●●●●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●
●●●
●
●●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●

●

●
●

●●

●
●

●

●

●
●●●

●●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●●●

●●
●

●

●

●

●
●
●

●

●
●●

●

●●●●

●

●

●

●

●

●●

●●
●●

●
●

●●

●●
●
●
●●●

●

●

●
●●
●

●

●
●

●●
●

●

●

●●●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●
●
●

●●

●●●●●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●●

●●●
●

●
●

●

●●●

●

●

●●●
●

●
●
●
●

●●●

●

●

●

●

●

●

●
●
●●

●

●●

●

●
●●●
●
●●

●

●●

●

●

●

●

●●●●

●●●●

●●

●

●

●●●●

●

●
●●

●
●
●●
●

●●

●

●●

●●●●
●
●

●

●

●

●●
●
●
●
●●●●

●
●
●
●●●●●
●

●●●●●●

●

●●●

●

●
●
●
●●
●

●

●●●●●●●●●●●
●

●

●

●

●●
●
●●●●●
●
●●●●●●●

●

●
●
●

●

●●●

●●

●●

●

●●●

●

●

●●●

●

●●

●

●

●

●

●

●●

●●

●
●●●

●

●●●

●
●

●●●●

●●●

●

●
●

●

●●●●

●

●

●●

●

●
●●●●●●●

●●●

●●

●●

●●●●

●●

●

●

●

●

●●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●●●●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●●●

●
●
●

●●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●●

●

●

●

●

●
●
●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●●
●
●●

●

●
●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●
●

●

●●
●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●●

●

●

●

●●
●

●

●
●

●
●

●
●
●

●●
●
●●

●

●

●●

●
●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●●

●●

●

●
●●●

●

●

●
●
●
●●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●●
●●

●

●

●●

●

●

●●
●
●
●
●
●●
●
●●

●●●
●

●

●

●

●

●

●
●●●●●●●

●

●
●
●

●

●

●
●●●●
●
●

●

●

●

●●●●●

●●

●

●●●

●

●

●

●●

●

●

●●●
●
●
●
●

●
●
●
●●

●

●
●
●

●

●
●

●
●●

●

●
●●

●

●
●

●

●

●

●

●●●
●
●

●

●

●●

●
●●●

●●
●

●●●

●
●

●

●

●

●

●

●
●●

●●

●
●
●
●●

●

●

●●●
●

●

●●

●●●

●

●

●
●●

●
●

●

●

●
●●●
●
●

●

●

●
●

●

●
●

●

●

●

●●
●●

●●●

●
●●●●●
●

●●
●

●

●
●
●●
●●
●●

●

●

●
●
●

●

●
●●●●
●

●

●

●

●●
●
●
●

●

●●●●●
●●●

●

●●●●●●●
●
●
●●
●●

●
●●
●
●●
●
●

●

●
●
●
●●

●

●

●

●

●

●
●
●
●●●
●

●

●
●●●

●

●
●
●●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●●●

●

●

●
●
●

●
●

●
●
●●●●
●

●
●

●

●
●●

●●●●●●
●
●
●
●
●

●●

●

●●●

●
●

●

●

●
●●●

●

●

●
●●●●●●●●
●●●●●●

●

●●●
●
●●
●
●●●●●●●●●●●●
●●
●

●

●

●

●
●
●
●●
●
●
●●

●
●●●
●
●

●

●
●

●

●●

●

●
●
●●

●●

●

●
●●

●

●●●
●
●●●●

●

●●
●●

●●●

●●

●
●

●
●
●●

●

●

●

●
●
●●
●

●

●
●
●●●●●

●●●
●

●

●

●
●

●

●●

●

●●

●

●
●
●
●
●●●
●

●

●
●

●
●
●

●

●●●

●

●
●

●
●

●

●●●
●●●

●

●

●

●

●

●

●
●●
●

●

●●●

●
●

●

●
●●●
●
●●

●●

●●

●●

●●
●
●●
●
●●
●
●●

●●

●

●●

●

●●
●

●
●●●
●●●
●
●
●
●
●

●

●●
●
●
●
●
●●●
●
●
●●●●

●

●

●●●
●
●●
●
●
●
●

●●●●
●

●

●●
●
●

●

●
●●●

●

●
●
●●

●
●●

●

●
●●
●●
●

●
●
●
●

●

●●●

●

●●

●

●

●●

●●

●

●

●

●

●

●●●
●
●●●●●●

●

●

●●

●

●

●●
●●●
●
●
●●●
●
●
●●●

●
●●
●

●●
●

●●●
●●
●●

●●●●
●
●
●●
●
●●

●●

●
●●

●

●

●

●●

●

●

●
●
●●
●

●

●

●

●

●●

●
●

●

●
●●
●
●

●

●

●

●
●●●

●

●●

●

●
●
●●
●●●

●

●

●●

●

●
●●

●
●●

●

●●
●

●

●●●●●●●●●●

●

●

●

●●

●●●●●●●●●

●

●

●

●

●

●
●
●
●

●

●

●●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●●●●
●

●

●

●

●●

●●●

●

●●

●

●

●

●

●●

●

●●

●●

●●

●●

●

●

●

●●●●

●

●

●

●

●●

●●

●

●

●●●

●
●
●

●●

●

●

●

●

●

●
●●

●●●

●

●

●●

●

●●●●

●

●

●

●●

●
●
●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●
●

●

●●●●●●

●●

●

●

●●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●●●●

●

●●●●

●

●●

●●

●●

●

●

●
●
●

●●

●

●●●●

●

●

●

●

●●

●●
●

●●●

●

●

●●●●

●●

●●●

●●

●●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●
●

●●
●

●●●●

●●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●●●

●
●

●

●

●●●●
●
●

●

●

●●●

●

●

●●●●●

●

●

●●

●●

●

●●●●●

●

●

●

●

●●
●●
●●
●
●●●●●●
●
●
●●●●●●●●●●●●●●

●

●●

●

●

●

●

●●

●

●
●
●●
●●●

●

●●●●●

●

●

●●●●
●

●
●
●

●

●
●

●●●

●

●

●

●
●●

●

●

●

●●●●
●

●

●

●●●●
●●●●●●●

●

●●●●●●●
●●

●

●

●●

●●

●

●

●●●●●●

●

●●
●

●

●

●

●●
●
●●●
●

●

●●●●

●
●

●

●

●
●

●

●
●
●

●
●
●●
●
●●●

●

●
●

●

●●●●●

●

●●

●
●●●●●●●●●●

●

●
●
●●●●
●●●

●●

●
●●●

●

●

●

●

●

●●●●●

●

●●

●

●●

●

●●●●

●

●

●●

●

●

●

●

●●●●

●

●●●●

●

●

●

●●
●●
●●
●●●●●●●●●

●

●●

●

●●

●

●

●

●

●●●●●●●●●●●
●

●

●●●●●●●●

●

●●●

●

●●●●●●●●●●●●
●
●●

●

●
●

●

●●

●

●●

●

●

●●

●
●
●

●

●●

●

●●●●●

●

●●●

●

●●●

●

●●●

●

●
●
●●

●
●●●●●●

●

●

●

●

●

●

●

●

●
●

●●●●●●●
●
●●●

●

●●

●
●●●
●

●●

●

●●

●

●
●

●●

●●●
●
●●
●
●

●●●●●●
●●
●●

●

●●●●●●●●●●●
●

●

●●
●●●●●●●●
●

●

●

●●

●

●●

●●

●

●●●●●●●●●●●
●

●

●●●●

●

●●●

●

●
●●●●●●

●●

●●
●●

●

●●●●●●●●●●●●●●

●
●

●●●

●

●●●●●●●●●
●
●
●●
●●●●●

●

●●●
●

●

●●

●

●●

●

●●●

●

●●●●●

●

●●

●

●●

●

●

●

●●●
●
●●●●●

●

●

●

●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●●●●●●●
●
●●

●

●

●

●●
●●●●

●●

●

●

●

●

●●●●●●

●

●●●●●●●

●●

●

●●

●●

●

●

●

●

●
●

●

●

●
●

●●●●●
●
●

●

●●●●

●

●

●

●●●●

●

●

●

●

●●●●●●

●
●

●

●

●
●
●

●

●●●

●

●●●●●●●

●
●

●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●

●●

●●●

●

●●

●

●

●

●●●

●

●

●●●

●●●●●

●●●

●●

●

●
●●●●●●

●

●●●●●●●●●●

●●

●●●●●

●

●●

●

●●●

●

●
●

●●

●

●●●●

●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●

●

●●

●

●

●

●●

●

●●●●●●●
●●

●

●●●●●●●●●●●●

●

●

●
●

●●●●●●

●●

●

●

●

●

●

●●

●

●

●●●●●●●●

●

●

●

●●●●

●

●

●

●●●●●●●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●●●●

●

●●●

●

●●●●

●

●●●

●

●●●●●●●●●●

●

●

●●●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●●

●

●●●

●●

●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●●●

●
●

●

●

●●●●●●●●

●●

●●

●

●●

●

●

●

●

●●
●
●●●

●●

●●

●

●●●●●●●

●

●●●●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●●●●●●●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●●●●

●

●●●●

●

●●

●●

●

●

●●●●●●●

●

●●

●

●●

●

●

●●●●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●●●●●

●

●
●
●
●

●●

●

●●●●●

●

●

●

●

●●●

●

●

●●

●●

●●

●●

●●
●
●

●

●

●

●●

●●●

●

●

●

●
●
●●●●●●●●●●●●●●
●

●

●

●

●

●

●
●
●
●

●

●
●●

●●●●

●
●

●

●

●

●

●●●

●

●●

●
●
●

●

●●

●

●

●

●●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●

●●●●●

●

●●●●●

●

●

●

●●●●●●
●
●

●

●●●●●●

●

●

●

●

●●●●

●

●●

●

●●●●●●●●●●●●●

●

●

●

●

●●

●
●

●●●

●

●●●●●

●

●●●●●●

●

●●●●●

●

●●●●

●

●●●●

●

●●

●

●

●

●●●●●●●●●●●●

●

●●●

●

●

●

●

●●●

●

●●

●

●●●●●

●

●

●●●●●●

●

●

●

●●

●

●●

●●●

●●●●●

●

●●●●●●

●
●

●●●

●

●●

●

●

●●●●●●

●

●●●●●●●●
●

●

●●●●●

●
●

●●●●

●
●

●

●

●

●

●

●●●

●

●●●●●●●

●

●●●

●

●●●●●●

●

●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●

●

●●●

●

●●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●●●●●

●

●

●

●

●●

●●●●●●●

●●

●●●

●

●

●●●●●●●●●●●●●

●

●●●●

●

●

●

●

●●●●●

●

●

●●●

●

●
●●●
●

●

●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●●●●●●

●

●

●●

●

●●●●●●●●●●●

●

●
●
●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●●●●
●
●●●●●●

●

●

●
●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●

●

●●●●●●●●●
●●●

●

●●●●●●●●●●●

●

●
●●
●
●●●●●●●●●●

●

●●●
●
●●●

●

●

●

●

●

●●●●●●●

●

●

●

●

●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●

●

●●●

●

●●●●●
●●●●●●●●●●

●

●●

●

●●●●●

●

●

●

●●●

●

●
●
●
●●●●

●●●●●●

●

●●●●●

●
●

●●●●●●●●

●

●

●●

●

●●●●●●●

●●

●●

●

●

●●●●●●●●

●

●●●●●●●●●●●

●

●
●

●

●

●

●●●●●●●●

●

●

●

●
●

●●

●●●●●●●

●

●●●

●

●

●●

●
●●

●

●●●●

●
●

●●

●

●●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●

●

●

●●●

●
●

●●●●●●●●●●

●

●

●

●●●

●

●●●●

●

●●

●

●●●●●●

●

●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●

●

●●●
●●●●●●

●

●●●●●●

●

●

●

●●●
●●●●

●

●

●

●●●

●●

●●●●●●

●

●●●

●

●●●
●●●●●●●●●●●●●●●●●●
●●●
●
●
●●
●
●●●

●

●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●●●

●

●

●●

●●●

●

●●●

●

●●●

●

●

●

●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●
●●●●●

●
●

●

●

●

●

●

●●

●

●●●●●●●●●

●

●

●

●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●●

●●

●

●●●●

●

●●●●●●●

●

●

●

●●●

●

●

●●●

●●

●●●●●●

●

●●●●●

●

●

●●●●

●

●

●●

●

●●●●●

●

●●●●

●

●

●

●

●

●●●●

●

●

●●●

●
●●

●●●●●

●

●●●●

●●●

●●

●

●●●●●●●

●

●●

●

●●●

●
●

●

●

●●●●

●

●●●

●

●●

●
●

●

●

●

●

●●●●
●●●
●●●●
●●

●●

●●

●

●

●

●

●●●

●●●

●

●●●

●

●

●

●

●
●●

●●●●

●

●●●●●●●

●

●●

●

●

●

●●●●●

●●

●●●●●

●

●

●

●

●
●

●

●●●●●●●●●●●●●
●

●

●●●●●●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●●
●
●

●●●●●●●●●●●●●

●

●●●

●

●●●●●

●

●

●

●●
●

●

●●

●

●●
●

●
●

●

●

●●●

●

●

●●
●●
●

●

●
●

●●●●●●

●

●

●

●

●

●
●●
●
●●●●●●

●

●●
●
●
●
●
●

●

●●●

●

●

●

●

●

●●●●●●

●

●●
●
●●

●

●●●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●●●
●

●●●

●●

●●●●

●

●

●

●

●●●
●●

●

●●●●
●

●

●

●

●

●

●
●

●

●●●●●●●
●●●
●●●

●

●●●●●●●●●●●

●

●

●
●●

●

●●●

●●

●●

●●●●●●

●

●

●

●●

●

●

●●●●●●●●●●●
●
●●●

●

●

●

●●●●

●

●

●

●●●●●●●●●

●

●●

●●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●

●

●●

●●

●

●

●●●●●●●●●●●●

●●

●

●●●●●●●●

●

●

●●●●●●●●●
●
●●●●●

●

●
●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●●●●●●

●

●

●

●

●

●●●●

●

●●

●

●●●●●●

●

●●
●
●●●

●

●
●●

●

●

●

●●●●

●

●

●

●

●

●

●●●

●

●●●

●

●●●
●
●●●●●●●●●●

●

●

●

●

●

●●●●
●

●●
●

●●●●●●●●

●

●●●●●

●

●●

●
●

●●●●●

●

●●

●

●●●

●

●●●

●●

●●●●

●

●●

●

●

●

●●●

●

●●●

●

●●

●

●●

●

●●●●●

●

●●

●

●

●

●●

●

●●●●●

●

●

●
●

●

●

●●
●●●

●

●
●●●●

●

●●

●

●

●

●●

●

●

●

●

●●

●
●

●
●
●

●

●

●

●●

●

●
●●●●●●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●●●●
●●●●●

●●

●●●●

●

●●●●●●

●

●

●

●
●●

●

●●●●●

●

●●●●●●

●

●●●

●

●●

●

●●

●

●

●●●●●●●●●

●
●

●●

●

●

●

●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●

●

●
●
●●

●

●

●●

●●●

●

●●●●●

●

●

●

●●●●●●●●●●●
●●
●●
●●

●

●
●●

●

●

●

●

●

●

●

●●
●●
●●●●

●

●

●●

●

●●

●

●●●●

●

●

●
●

●

●

●

●

●

●
●●

●

●●●

●

●●

●●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●●

●

●●●●

●

●●●●●

NMT1:brain cerebellum
(PIP: 0.53)

0

5

10

44 45 46
Position [MB] Chromosome 17

−
lo

g 1
0(

pv
al

ue
)

Menarche agef

0.0 .25 .5 .75 1.0
Gene−Tissue PIP

0.0 .25 .5 .75 1.0
Variant PIP

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 17, 2024. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


 76 

 

Figure 7: Summary results of fine-mapping gene-PBMC cell type pairs with TGFM 
for 18 representative UK Biobank diseases and traits. (a-b) Number of gene-PBMC 
cell type pairs fine-mapped using TGFM (y-axis; square root scale) across 18 
representative UK Biobank traits (x-axis) at various PIP thresholds ranging from 0.2 to 
1.0 (color-bar), distinguishing between (a) autoimmune diseases and blood cell traits 
and (b) non-blood-related traits. Horizontal black lines denote the number of gene-
PBMC cell type pairs fine-mapped at PIP=0.5. The 18 representative traits (same as 
Figure 5) consist of the 16 independent traits (Figure 3) and two additional, interesting 
traits (All autoimmune and Vitamin D levels). Results for all 45 UK Biobank diseases 
and traits are reported in Supplementary Figure 42. (c-e) Number of gene-PBMC cell 
type pairs fine-mapped using TGFM (y-axis; square root scale) in each of the 9 PBMC 
cell types (x-axis) at various PIP thresholds ranging from 0.2 to 1.0 (color-bar) for (c) 
Monocyte count, (d) Lymphocyte count, and (e) All autoimmune disease. Horizontal 
black lines denote the number of gene-PBMC cell type pairs fine-mapped at PIP=0.5. 
Asterisks denote statistical significance (FDR ≤	0.05 via the TGFM tissue-specific prior) 
of each PBMC cell type-trait pair.  Results for all 45 UK Biobank diseases and traits are 
reported in Supplementary Figure 43. Numerical results are reported in Supplementary 
Table 20. 
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Figure 8: Examples of fine-mapped gene-PBMC cell type-disease triplets 
identified by TGFM. We report 4 example loci for which TGFM fine-maps a gene-
PBMC cell type pair (PIP > 0.5). In each example we report the marginal GWAS and 
TWAS association -log10 p-values (y-axis) of non-mediated variants (blue circles) and 
gene-tissue (or gene-PBMC cell type) pairs (red triangles). Marginal TWAS association -
log10 p-values were calculated by taking the median -log10 TWAS p-value across the 
100 sets of sampled cis-predicted expression models for each gene-tissue (or gene-
PBMC cell type) pair. The genomic position of each gene-tissue (or gene-PBMC cell 
type) pair (x-axis) was based on the gene’s TSS. The color shading of each variant and 
gene-tissue (or gene-PBMC cell type) pair was determined by its TGFM PIP. Any 
genetic element with TGFM PIP > 0.5 was made larger in size. Dashed horizontal blue 
and red lines represent GWAS significance (5 × 10−8) and TWAS significance (4.1 × 
10−7) thresholds, respectively. Numerical results are reported in Supplementary Table 
22. 
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(PIP: 0.84)
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Method Models tissues 
and genes 

Models non-
mediated variants 

Models uncertainty in cis-
predicted gene expression 

TGFM ✔ ✔ ✔ 
cTWAS27  ✔  
FOCUS24  *  
coloc17   ✔ 
JLIM45   ✔ 

SMR46   ✔ 

GIFT112   ✔ 

 

Table 1: Properties of disease gene fine-mapping methods. For each disease gene 
fine-mapping method, we report whether or not the method jointly models tissues and 
genes; models non-mediated variants; and models uncertainty in cis-predicted gene 
expression. *: FOCUS allows for modeling of non-mediated genetic effects via a single 
genotype intercept term shared across all variants, but this functionality is not enabled 
in the default version of FOCUS (and does not ameliorate mis-calibration; 
Supplementary Figure 23). 
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