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Abstract 

Heritable diseases often manifest in a highly tissue-specific manner, with different 

disease loci mediated by genes in distinct tissues or cell types. We propose Tissue-

Gene Fine-Mapping (TGFM), a fine-mapping method that infers the posterior probability 

(PIP) for each gene-tissue pair to mediate a disease locus by analyzing GWAS 

summary statistics (and in-sample LD) and leveraging eQTL data from diverse tissues 

to build cis-predicted expression models; TGFM also assigns PIPs to causal variants 

that are not mediated by gene expression in assayed genes and tissues. TGFM 

accounts for both co-regulation across genes and tissues and LD between SNPs 

(generalizing existing fine-mapping methods), and incorporates genome-wide estimates 

of each tissue’s contribution to disease as tissue-level priors. TGFM was well-calibrated 

and moderately well-powered in simulations; unlike previous methods, TGFM was able 

to attain correct calibration by modeling uncertainty in cis-predicted expression models. 

We applied TGFM to 45 UK Biobank diseases/traits (average N = 316K) using eQTL 

data from 38 GTEx tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic 

elements per disease/trait, of which 11% were gene-tissue pairs. Implicated gene-tissue 
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pairs were concentrated in known disease-critical tissues, and causal genes were 

strongly enriched in disease-relevant gene sets. Causal gene-tissue pairs identified by 

TGFM recapitulated known biology (e.g., TPO-thyroid for Hypothyroidism), but also 

included biologically plausible novel findings (e.g., SLC20A2-artery aorta for Diastolic 

blood pressure). Further application of TGFM to single-cell eQTL data from 9 cell types 

in peripheral blood mononuclear cells (PBMC), analyzed jointly with GTEx tissues, 

identified 30 additional causal gene-PBMC cell type pairs at PIP > 0.5—primarily for 

autoimmune disease and blood cell traits, including the well-established role of CTLA4 

in CD8+ T cells for All autoimmune disease. In conclusion, TGFM is a robust and 

powerful method for fine-mapping causal tissues and genes at disease-associated loci. 

 

Introduction 

Heritable diseases often manifest in a highly tissue-specific manner, motivating intense 

efforts to elucidate tissue-specific mechanisms of disease1. Previous studies have 

identified disease-critical tissues/cell-types based on genome-wide patterns2–11, and 

have deeply dissected a limited number of GWAS loci12–16. However, different GWAS 

loci may be mediated by different tissues, motivating genome-wide efforts to fine-map 

causal tissues and genes at individual GWAS loci.  

 

Existing approaches, including colocalization17–19 and transcriptome wide association 

studies (TWAS)20–22, have implicated disease genes via the integration of GWAS data 

with expression quantitative trait loci (eQTLs) while considering the effect of each gene-

tissue pair on disease in isolation. However, it is likely that most of these disease-
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implicated genes are not actually causal in the analyzed tissue; analogous to non-

causal tagging variants implicated by linkage disequilibrium (LD) between variants23, 

non-causal gene-tissue pairs can be implicated by correlations with causal gene-tissue 

pairs (involving a different gene and/or different tissue)11,22,24–27. In addition, false-

positive gene-tissue pairs can arise from correlations with non-mediated genetic 

variants, i.e., variants whose causal effects are not mediated by assayed expression 

levels22,27,28. Previous fine-mapping approaches such as FOCUS24 have proven 

valuable in disentangling causal effects across correlated genes in a single tissue (also 

see ref. 27), but have not considered causal gene-tissue pairs. 

 

Here, we introduce a new method, Tissue-Gene Fine-Mapping (TGFM), that infers the 

posterior inclusion probability (PIP) for each gene-tissue pair to mediate a disease 

association at a given locus; TGFM also assigns PIPs to causal genetic variants whose 

effects are not mediated by gene expression in assayed tissues and genes. TGFM 

models both gene-tissue pairs (using cis-predicted expression20,21) and non-mediated 

genetic variants as potential causal genetic elements, and accounts for both 

correlations in cis-predicted expression across genes and tissues and LD between 

genetic variants, generalizing existing fine-mapping methods23,24,27,29–31. TGFM 

incorporates genome-wide estimates of each tissue’s contribution to disease as tissue-

level priors and employs a sampling approach to account for uncertainty in cis-predicted 

gene expression. We validated TGFM using extensive simulations with real genotypes, 

including comparisons to coloc17 and FOCUS24. We applied TGFM to 45 UK Biobank 
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traits32 using eQTL data from 38 GTEx tissues25 and 9 fine-grained single-cell PBMC 

cell-types33. 

 

Results 

Overview of TGFM 

TGFM estimates the posterior inclusion probability (PIP) for each genetic element 

(gene-tissue pair or genetic variant) to have a non-zero causal effect on disease, in a 

model that includes mediated causal effects of each gene-tissue pair (via the cis-genetic 

component of expression of a given gene in a given tissue) and non-mediated causal 

effects of each genetic variant: 

𝑌 =##𝑋𝛿!"𝛼!"
"

+ 𝑋𝛽
!

+ 𝜖																																																																																																																	(1) 

where 𝑌 denotes phenotypes, 𝑔 indexes genes,	𝑡 indexes tissues, 𝑋 is the matrix of 

genotypes, 𝛿!" is the vector of causal cis-eQTL effect sizes of each variant on gene 

expression in gene 𝑔 and tissue 𝑡 (thus 𝑋𝛿!" is the cis-genetic component of gene 

expression in gene 𝑔 and tissue 𝑡), 𝛼!" denotes the (scalar) effect of cis-genetic 

expression in gene 𝑔 and tissue 𝑡 on the disease or trait, 𝛽 is the vector of non-

mediated causal effects of each genetic variant on the disease or trait, and 𝜖 denotes 

environmental noise. We caution that, analogous to previous studies, inference of 

causal genetic elements relies on the assumption that all causal genetic elements have 

been assayed, which may not be true in practice (see Discussion); we use the word 

“causal” for simplicity, with this caveat in mind. 
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TGFM estimates the PIP of each genetic element by generalizing the Sum of Single 

Effects (SuSiE)30,31 fine-mapping method to include both gene-tissue pairs and genetic 

variants; gene-tissue pairs are included via cis-predicted expression20,21 (using an 

external eQTL data set such as GTEx25 to build prediction models), which is an 

approximation to true cis-genetic expression (Methods). This approach allows for fine-

mapping multiple causal genetic elements in a given locus, inferring causal effects 

underlying both marginal GWAS34 and marginal TWAS20–22 (i.e., the association 

between cis-predicted expression of a single gene-tissue pair and disease) associations 

by accounting for correlations between gene-tissue pairs due to co-regulation across 

genes/tissues11,22,24–27, correlations between genetic variants due to LD23, and/or 

correlations between gene-tissue pairs and genetic variants due to the inclusion of a 

genetic variant in a model of cis-predicted gene expression22,27,28. TGFM employs a 

sampling approach to account for uncertainty in cis-predicted expression, avoiding false 

positives that arise from noisy estimation of cis-genetic expression.  

 

In detail, TGFM consists of four steps. In step 1, we apply SuSiE to perform eQTL fine-

mapping of each gene-tissue pair in the external gene expression data set (estimating a 

posterior distribution of the causal cis-eQTL effect sizes for each gene-tissue pair). In 

step 2, we randomly sample 100 cis-predicted expression models for each gene-tissue 

pair from the posterior distributions of causal cis-eQTL effect sizes estimated in step 1 

(Methods). In step 3, we apply SuSiE to perform disease fine-mapping in the target data 

set (estimating the PIP of each genetic element) 100 times, iterating over the sampled 

cis-predicted expression models for each gene-tissue pair from step 2. In step 4, we 
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average the results of step 3 across the 100 disease fine-mapping runs. TGFM utilizes 

a custom implementation of the SuSiE algorithm that provides efficient estimation of 

PIPs across 100 parallel SuSiE runs that differ only in their cis-predicted expression 

models (Methods). TGFM inference requires only summary-level GWAS data31,35 

consisting of GWAS z-scores for each variant and in-sample LD between genetic 

variants, in addition to external eQTL data sets across tissues of interest. 

 

TGFM increases fine-mapping power by specifying tissue-specific prior probabilities for 

each genetic element in a locus that are informed by genome-wide data, analogous to 

functionally informed variant-level fine-mapping methods such as PolyFun36; TGFM 

assigns one prior causal probability 𝜋"	for each gene-tissue pair from tissue t and one 

prior causal probability 𝜋#$	for each non-mediated genetic variant. We estimate 𝜋"	and 

𝜋#$	in each disease/trait separately by iteratively running a computationally efficient 

approximation to TGFM (Methods), starting with flat priors and updating 𝜋"	 and 𝜋#$	at 

each iteration until convergence. When analyzing a given locus with TGFM, we 

normalize the prior causal probabilities to sum to 1, analogous to PolyFun36. We 

account for uncertainty in estimates of 𝜋" and 𝜋#$ by using genomic bootstrapping, 

randomly sampling 100 sets of values of 𝜋" and 𝜋#$ (one for each of the 100 disease 

fine-mapping runs in step 3) and averaging TGFM results across the random samples. 

 

We restrict cis-predicted expression models to cis-eQTLs within 500kb of each gene’s 

transcription start site (TSS). We only assign cis-predicted expression models to gene-

tissue pairs that are well-predicted by genetic variants, using the SuSiE “purity filter”30 
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(see Methods). We apply TGFM to fine-map any of the 2,682 overlapping 3Mb loci 

spanning the entire genome36 that contain at least 50 genetic variants and at least one 

genetic variant with marginal GWAS p-value less than 1e-5. Further details, including 

sampling cis-predicted expression models from SuSiE posterior distributions of causal 

cis-eQTL effect sizes, the custom implementation of the SuSiE algorithm providing 

efficient estimation of PIPs across 100 parallel SuSiE runs, and the computationally 

efficient approximation to TGFM used when estimating tissue-specific prior causal 

probabilities, are provided in the Methods section. We have released open-source 

software implementing TGFM (see Code availability), as well as posterior distributions 

of causal eQTL effect sizes across tissues and genes, and TGFM PIPs from this study 

(see Data availability). 

 

Simulations 

We performed simulations using real genotypes to assess the calibration and power of 

TGFM to identify causal tissues and genes underlying GWAS associations. We used 

real genotypes from unrelated UK Biobank (UKBB) British samples32 to simulate both 

gene expression phenotypes (for each gene-tissue pair) and quantitative trait 

phenotypes. Default simulation parameters were specified as follows: the gene 

expression sample size ranged from 300 to 1000; the quantitative trait sample size was 

set to 100,000 (disjoint from gene expression samples); we analyzed 426,593 SNPs 

and 1,976 genes on chromosome 1 (following ref. 11); the number of tissues was set to 

10, of which 2 were causal for the quantitative trait; the quantitative trait architecture 

was simulated to have average polygenicity37, consisting of 2,700 causal non-mediated 
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variants and 300 causal gene-tissue pairs (150 for each causal tissue) with the 

expected heritability per causal genetic element (non-mediated variant or gene-tissue 

pair) set to 0.0001 (expected quantitative trait heritability of 0.3, 10% of which was 

mediated through gene expression, consistent with genome-wide estimates from 

MESC28); causal non-mediated variants were randomly selected with probability 

proportional to their expected per-variant heritability based on baseline-LD model 

annotations3,38–40 (estimated using S-LDSC3 applied to the UKBB trait White blood cell 

count) in order to make the simulations as realistic as possible; the genetic architecture 

of gene expression across tissues was specified following ref. 11: roughly, each heritable 

gene-tissue pair was randomly assigned 5 causal cis-eQTLs (expected per-SNP 

heritability: 0.015), 2 of the 5 causal eQTLs were specific to each tissue, and 3 of the 5 

causal eQTLs were shared across tissues with effect size covariance set to mimic that 

of GTEx tissues25; and causal gene-tissue pairs were randomly selected from all 

genetically heritable genes (true cis-SNP-heritability > 0) in each of the causal tissues. 

Non-default simulation parameter values were also explored. We performed 100 

independent simulations, and averaged results across simulations. Further details of the 

simulation framework are provided in the Methods section.  

 

We compared TGFM to two previously published methods, coloc17 and FOCUS24. 

Briefly, coloc calculates the posterior probability of a shared causal variant between a 

GWAS disease/trait and a gene expression trait from a single gene-tissue pair without 

considering correlations between genes or gene-tissue pairs. FOCUS assigns PIPs for 

the expression of each gene in a given tissue to have non-zero causal effect on 
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disease, while modeling correlations between genes in that tissue but not modeling 

correlations between different tissues or correlations between genes and non-mediated 

genetic variants. FOCUS can naturally be extended to model correlations between all 

gene-tissue pairs (without modeling correlations between genes and non-mediated 

genetic variants); we refer to the resulting method as FOCUS-TG. (In contrast, coloc 

does not model correlations between genes, and cannot be extended in this way.) 

 

We first evaluated the calibration of TGFM, coloc, FOCUS and FOCUS-TG to fine-map 

causal gene-tissue pairs. Calibration was assessed using empirical false discovery rate 

(FDR), estimated as the proportion of false-positive gene-tissue pairs among all gene-

tissue pairs above a given PIP threshold. Following ref. 36, we assessed whether the 

empirical FDR is less than or equal to (1 – PIP threshold), a more conservative choice 

than (1 – average PIP) (which has been shown to be slightly mis-calibrated in previous 

fine-mapping simulations36,41; also see Methods and secondary analyses below). 

Results are reported in Figure 1a-b and Supplementary Table 1. TGFM produced well-

calibrated PIPs at all eQTL sample sizes and PIP thresholds. In contrast, coloc, 

FOCUS, and FOCUS-TG were poorly calibrated across all PIP thresholds, even at large 

eQTL sample sizes. We attribute the superior calibration of TGFM over other 

approaches to its joint modeling of gene-tissue pairs and non-mediated variants, as well 

as its sampling procedure that accounts for uncertainty in genetically predicted gene 

expression (see secondary analyses below). Results were similar at other PIP 

thresholds (Supplementary Figure 1). 
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We next evaluated the power of TGFM, coloc, FOCUS and FOCUS-TG to fine-map 

causal gene-tissue pairs. Results are reported in Figure 1c-d and Supplementary Table 

2. TGFM was moderately well-powered to detect causal gene-tissue pairs at larger 

eQTL sample sizes, with power ranging from 0.02-0.17 across eQTL sample sizes at a 

PIP threshold of 0.5. Other methods (coloc, FOCUS, FOCUS-TG) achieved higher 

power than TGFM, but this is largely moot due to the poor calibration of those methods 

(Figure 1a-b). Results were similar at other PIP thresholds (Supplementary Figure 2). 

 

We compared the calibration and power of TGFM for fine-mapping causal gene-tissue 

pairs, genes, or non-mediated genetic variants. Gene PIPs were computed by 

aggregating gene-tissue PIPs across all gene-tissue pairs corresponding to the gene 

(defining a gene as causal if at least one corresponding gene-tissue pair is causal; 

Methods). Causal eQTL variants for causal gene-tissue pairs were not considered to be 

false positives for variant-level calibration but were not included as true positives in 

variant-level power computations (also see secondary analyses below). Calibration 

results for TGFM (Gene-Tissue), TGFM (Gene) and TGFM (Variant) are reported in 

Figure 2a-b and Supplementary Table 3. TGFM produced well-calibrated gene-level and 

variant-level PIPs. In contrast, gene-level coloc, FOCUS, and FOCUS-TG PIPs were 

poorly calibrated across all PIP thresholds even at large eQTL sample sizes 

(Supplementary Figure 3, analogous to Figure 1a-b). Results were similar at other PIP 

thresholds (Supplementary Figure 4). 
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Power results for TGFM (Gene-Tissue), TGFM (Gene) and TGFM (Variant) are reported 

in Figure 2c-d and Supplementary Table 4. TGFM attained higher power to fine-map 

causal genes than causal gene-tissue pairs, which is expected as fine-mapping causal 

genes is an easier problem. Power for variant-level fine-mapping was invariant to eQTL 

sample size, such that variant-level fine-mapping was more powerful than gene-tissue 

or gene-level fine-mapping at smaller eQTL sample sizes—particularly at the stringent 

PIP>0.9 threshold, at which the latter were severely underpowered. Results were similar 

at other PIP thresholds (Supplementary Figure 5). 

 

We performed 9 secondary analyses. First, we ran TGFM with a uniform prior (same 

𝜋#$ and 𝜋"	for all tissues) instead of the default tissue-specific priors inferred from 

genome-wide data. TGFM with a uniform prior remained well-calibrated (Supplementary 

Figure 6a-b) but suffered substantially reduced power (Supplementary Figure 6c-d), 

highlighting the benefit of tissue-specific priors informed by genome-wide data. Second, 

we ran TGFM with a uniform prior and a single cis-predicted expression model (based 

on posterior mean causal cis-eQTL effect sizes) instead of averaging results across 100 

sampled cis-predicted expression models. TGFM without sampling cis-predicted 

expression models suffered poor calibration, particularly at smaller eQTL sample sizes 

(Supplementary Figure 6a-b), highlighting the advantages of the sampling approach to 

account for uncertainty in cis-predicted expression. However, the calibration of this 

method was still better than the calibration of FOCUS-TG (Figure 1a-b), perhaps 

because FOCUS-TG does not account for non-mediated genetic variants. Third, we 

performed an alternative calibration analysis of TGFM (Variant) where causal eQTL 
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variants for causal gene-tissue pairs were considered false positives for variant-level 

calibration. TGFM (Variant) was miscalibrated at small eQTL sample sizes and high PIP 

thresholds in this alternative calibration analysis (Supplementary Figure 7). The 

calibration worsened at small eQTL sample sizes, likely due to decreased power to 

detect causal gene-tissue pairs at small eQTL sample sizes, forcing the unmodeled 

gene-tissue pair effects to be captured by non-mediated variants. Fourth, we modified 

our calibration analyses to assess whether the empirical FDR is less than or equal to (1 

– average PIP), a less conservative choice than (1 – PIP threshold) (ref. 36,41; see 

Methods). We determined that TGFM (Gene-Tissue) was slightly miscalibrated only at 

small eQTL sample sizes and low PIP thresholds, TGFM (Gene) was well-calibrated 

across all eQTL sample sizes and PIP thresholds analyzed, TGFM (Variant) was slightly 

mis-calibrated at high PIP thresholds regardless of eQTL sample size, and coloc, 

FOCUS, and FOCUS-TG were severely miscalibrated across all eQTL sample sizes 

and PIP thresholds analyzed (Supplementary Figures 1, 4). The slight miscalibration of 

TGFM (Gene-Tissue) and TGFM (Variant) when using (1 – average PIP) is consistent 

with previous simulations of variant-level fine-mapping methods using polygenic trait 

architectures36,41. Fifth, we ran TGFM at different simulated GWAS sample sizes 

ranging from 50,000 to 200,000 (instead of the default sample size of 100,000). TGFM 

remained well-calibrated regardless of GWAS sample size but attained increased power 

at larger GWAS sample sizes (Supplementary Figure 8). TGFM fine-mapping power at 

PIP > 0.5 increased 2.0-fold when doubling the eQTL sample size vs. 1.2-fold when 

doubling the GWAS sample size (relative to an eQTL sample size of 500 and GWAS 

sample size of 100,000), suggesting that TGFM attains a greater benefit from increasing 
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the eQTL sample size under our default parameter settings. Sixth, we ran TGFM at 

different values of heritability of gene expression, ranging from 0.05 to 0.1 (instead of 

the default value of 0.075). TGFM remained approximately well-calibrated regardless of 

gene expression heritability but attained increased power at larger values of gene 

expression heritability (Supplementary Figure 9), analogous to the impact of varying 

eQTL sample size (Figure 2). Seventh, we investigated TGFM’s ability to provide 

unbiased estimates of the proportion of causal genetic elements (gene-tissue pairs or 

non-mediated variants) that are gene-tissue pairs, a parameter closely related to the 

proportion of disease heritability mediated by gene expression (estimated in ref. 28). We 

first calculated the proportion of fine-mapped genetic elements at various PIP 

thresholds that are gene-tissue pairs. This approach yielded either upward or downward 

biased estimates of the true proportion depending on the eQTL sample size and PIP 

threshold (Supplementary Figure 10a), reflecting differential discovery power of non-

mediated variants and gene-tissue pairs as a function of both eQTL sample size and 

PIP threshold (Figure 2c-d). We next calculated the expected proportion of fine-mapped 

genetic elements that are gene-tissue pairs by summing PIPs across genetic elements. 

This approach yielded conservative estimates of the true proportion, becoming less 

conservative at larger eQTL sample sizes (Supplementary Figure 10b), suggesting that 

this statistic can provide a conservative lower bound on the true proportion of causal 

genetic elements that are gene-tissue pairs. Eighth, we investigated the calibration and 

power of inference of disease-critical tissues via the TGFM tissue-specific prior, using 

genomic bootstrap to assess significance (see Methods); although inference of disease-

critical tissues is not a primary goal of TGFM (and there exist previous methods for 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


inferring disease-critical tissues using eQTL data5,11), assessing the TGFM tissue-

specific prior is of interest. We determined that inference of disease-critical tissues via 

the TGFM tissue-specific prior was well-calibrated and well-powered (Supplementary 

Figure 11). Ninth, we compared TGFM (Variant) PIPs with variant-level PIPs inferred by 

SuSiE. The variant-level PIPs were strongly correlated and consistent in magnitude, 

particularly after excluding from the analysis any variant that was correlated with a 

TGFM fine-mapped gene-tissue pair (Supplementary Figure 12). 

 

Tissue-gene fine-mapping of 45 diseases and complex traits  

We applied TGFM to fine-map tissues and genes for 45 diseases and complex traits 

from the UK Biobank (average N = 316K; previously analyzed with functionally informed 

variant-level fine-mapping36; Methods and Supplementary Table 5) using gene 

expression data from 47 GTEx tissues25, which were aggregated into 38 meta-tissues11 

(average N=259; Supplementary Table 6) to minimize eQTL sample size differences 

across tissues; below, we refer to these as “tissues” for simplicity. For each disease/trait 

we applied TGFM to 2,682 overlapping 3-Mb loci36 spanning 119,270 (protein-coding) 

gene-tissue pairs with cis-predicted expression models (3,139 genes per tissue on 

average, Supplementary Table 6; 13,700 unique genes) and 10,545,304 genetic 

variants with MAF ≥ 0.005. We assigned a PIP to each gene-tissue pair, gene, and non-

mediated genetic variant using the locus in which the genetic element was most 

central36; the position of a gene was determined by its TSS. TGFM running times are 

reported in Supplementary Table 7. We have publicly released PIPs for all gene-tissue 

pairs, genes, and non-mediated variants for each disease/trait (see Data Availability). 
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Results are summarized in Figure 3 (16 independent traits36), Supplementary Figure 13 

(all 45 traits), and Supplementary Table 8. Across all 45 traits, TGFM identified 711 

gene-tissue-trait triplets, 2,800 gene-trait pairs (aggregating gene-tissue PIPs across 

tissues; see above), and 5,893 non-mediated genetic variant-trait pairs at PIP > 0.5 (43 

gene-tissue-trait triplets, 382 gene-trait pairs, and 2,675 non-mediated genetic variant-

trait pairs at PIP > 0.9). The number of gene-tissue pairs with PIP > 0.5 ranged from 0 

(Number of children) to 56 (White blood cell count) across traits, and ranged from 0 

(coronary artery) to 197 (whole blood) across tissues. Of the 711 gene-tissue-trait 

triplets with PIP > 0.5, 180 (25%) had TWAS p-value > 0.05/119,270 = 4.2 × 10−7 (the 

Bonferroni significance threshold based on 119,270 gene-tissue pairs with cis-predicted 

expression models42) and 136 (19%) had no nearby variants in the same fine-mapping 

region with GWAS p-value ≤ 5 × 10−8. Of the 110,828 gene-tissue-trait triplets with 

TWAS p-value ≤ 	4.2	 ×	10&', only 531 (0.5%) had TGFM PIP > 0.5. The proportion of 

causal genetic elements (variants or gene-tissue pairs) that were gene-tissue pairs was 

equal to 8.1% when counting PIP > 0.5 genetic elements across 16 independent traits 

(271 gene-tissue pairs and 3,074 non-mediated genetic variants), or 10.1% when 

summing PIPs across 16 independent traits (Methods), consistent with previous 

estimates of the proportion of trait heritability mediated by gene expression28. 

 

For each trait, we identified the most frequently implicated tissues, computing the 

proportion of fine-mapped gene-tissue pairs in each tissue by counting gene-tissue 

pairs with PIP > 0.5 (Methods). Results are reported in Figure 4a (14 representative 
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traits), Supplementary Figure 14 (all 45 traits), and Supplementary Table 9. Implicated 

tissue-trait pairs were consistently concentrated in expected trait-critical tissues, e.g., 

50% in spleen and 30% in lymphocytes for All autoimmune disease, 71% in skin (sun-

exposed) for Vitamin D level, 60% in liver and 25% in whole blood for Total cholesterol, 

and 36% in artery tibial and 32% in artery aorta for Diastolic blood pressure. Results 

were similar at other PIP thresholds (Supplementary Figure 15). Separately, we 

assessed the statistical significance of implicated tissue-trait pairs by applying genomic 

bootstrapping to the TGFM tissue-specific prior (Methods). Results are reported in 

Supplementary Figure 14 and Supplementary Table 9. This approach identified 23 

tissue-trait pairs with FDR ≤ 0.05 (64 tissue-trait pairs with FDR ≤	0.2). Despite limited 

power, the TGFM tissue-specific prior identified 6 traits with more than one significantly 

associated tissue (FDR ≤ 0.05; 17 traits at FDR ≤	0.2); this result motivates the use of 

TGFM over a two-step approach of separately identifying the causal gene using a gene-

level fine-mapping method24 and identifying the causal tissue using a method for 

identifying trait-critical tissues5,7,11. Significant tissue-trait pairs were consistently 

concentrated in expected trait-critical tissues, analogous to Figure 4a. Although 

inference of trait-critical tissues is not a primary goal of TGFM (and there exist previous 

methods for inferring trait-critical tissues using eQTL data5,11), these results validate the 

TGFM tissue-specific prior. 

 

We observed instances where TGFM was unable to distinguish the causal tissue within 

a small set of highly correlated tissues. For example, for waist-hip-ratio adjusted for BMI 

(WHRadjBMI), TGFM fine-mapped only 1 gene-tissue pair in adipose visceral and 0 
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gene-tissue pairs in adipose subcutaneous tissue at PIP > 0.5, despite strong prior 

evidence of the role of adipose tissue in WHRadjBMI7,43; however, TGFM fine-mapped 

10 gene-tissue pairs in adipose (defined as adipose subcutaneous U adipose visceral) 

at PIP > 0.5 when summing PIPs of gene-tissue pairs across the two tissues (Methods). 

Unsurprisingly, the average correlation in cis-predicted gene expression of adipose 

subcutaneous vs. adipose visceral across all genes included in TGFM was very large 

(0.92). Average correlations for all pairs of tissues are reported in Supplementary Figure 

16 and Supplementary Table 10; the average correlation ranged from 0.48 (whole blood 

and brain cerebellum) to 0.96 (brain substantia nigra and brain spinal cord), and the 

correlation patterns reflected known relationships between tissues. 

 

We sought to validate genes prioritized by TGFM by assessing their overlap with genes 

prioritized by independent gene sets/scores. First, we assessed overlap with PoPS44, a 

similarity-based gene score that prioritizes trait-relevant genes from gene-level features 

such as cell-type-specific expression. Results are reported in Figure 4b and 

Supplementary Table 11. The average PoPS score increased as a function of TGFM 

(Gene) PIPs in different bins, from −0.0046 (s.e. 0.0031) for trait-gene pairs with PIP < 

0.01 to 0.34 (s.e. 0.047) for trait-gene pairs with PIP ≥ 0.9; this provides an external 

validation of genes prioritized by TGFM. Second, we assessed overlap with 10 non-

disease-specific gene sets (e.g. High-pLI genes45) that are known to be 

enriched/depleted for disease heritability (from Figure 4 of ref. 26). Results are reported 

in Supplementary Figure 17a and Supplementary Table 12. Genes with TGFM (Gene) 

PIP > 0.5 were significantly (FDR < 0.05) overrepresented in Epigenetic modifier 
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genes46 (odds ratio: 1.78), High-pLI genes45 (odds ratio: 1.31) and Mouse Genome 

Informatics (MGI) essential genes47 (odds ratio: 1.31) and underrepresented in genes 

with the most SNPs within 100kb (odds ratio: 0.48), consistent with previous findings26. 

Results were similar at other PIP thresholds (Supplementary Figure 17b). 

 

TGFM pinpoints disease genes and tissues of action 

We highlight 6 examples of fine-mapped (PIP > 0.5) gene-tissue-trait triplets that 

recapitulate known biology or nominate biologically plausible mechanisms. First, TGFM 

fine-mapped TPO (Thyroid Peroxidase) in thyroid for Hypothyroidism (Figure 5a; gene-

tissue PIP: 0.88; gene PIP: 0.88). TPO is an enzyme involved in thyroid hormone 

biosynthesis and its involvement in Hypothyroidism has been well-studied48,49, and TPO 

has been linked to Hypothyroidism in genetic association studies50. Thyroid was also 

identified as a Hypothyroidism-critical tissue genome-wide (proportion of fine-mapped 

gene-tissue pairs = 0.21, bootstrap p = 0.04 for tissue-specific prior; Supplementary 

Figure 14).  

 

Second, TGFM fine-mapped OVOL1 in lymphocytes for Eczema (Figure 5b, gene-tissue 

PIP: 0.75, gene PIP: 0.76).  Recent work demonstrated that loss of OVOL1 results in 

skin inflammation and Eczema via an immune-mediated mechanism in T cells (a 

lymphocyte cell type)51–53, and OVOL1 has previously been linked to Eczema in genetic 

association studies54. Lymphocyte was suggestively implicated as an Eczema-critical 

tissue genome-wide (proportion of fine-mapped gene-tissue pairs = 0.36, bootstrap p = 

0.08 for tissue-specific prior; Supplementary Figure 14). There exist 28 other gene-
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tissue pairs within 1 Mb of the TSS of OVOL1 (4 of which correspond to OVOL1 in a 

tissue other than lymphocytes) that had significant TWAS p-values (p ≤ 0.05 / 119,270 

= 4.2 × 10−7) but were not fine-mapped by TGFM (all with PIP ≤ 0.01), underscoring the 

benefit of joint fine-mapping of gene-tissue pairs. TGFM also fine-mapped one non-

mediated variant (rs56225074; PIP: 0.55) within 1 Mb of the TSS of OVOL1, perhaps 

due to finite eQTL sample size and/or absence of the causal cell-type or context in 

GTEx expression data28,55 (see Discussion). 

 

Third, TGFM fine-mapped PADI1 in skin (sun exposed) for Vitamin D level (Figure 5c; 

gene-tissue PIP: 0.64, gene PIP: 0.65). TGFM assigned PADI1 a PIP of 0.64 in skin 

(sun exposed) tissue (TWAS p = 1.7 × 10−20) and a PIP of 0.01 in skin (not sun 

exposed) tissue (TWAS p = 3.8 × 10−19), demonstrating TGFM’s ability to distinguish 

trait-critical tissues from closely related tissues. PADI1 is known to interact with keratins 

during epidermal differentation56,57, and has previously been linked to Vitamin D level in 

genetic association studies58,59. Skin (sun exposed) was also identified as a Vitamin D 

level-critical tissue genome-wide (proportion of fine-mapped gene-tissue pairs = 0.72, 

bootstrap p = 0.008 for tissue-specific prior; Supplementary Figure 14). 

 

Fourth, TGFM fine-mapped MC4R in brain cerebellum for Systolic blood pressure 

(Figure 5d, gene-tissue PIP: 0.66, gene PIP: 0.66), despite a non-significant TWAS p-

value (p = 3.3 × 10−5 > 0.05/119,270 = 4.2 × 10−7). Previous work has shown that 

activation of MC4R in the central nervous system increases sympathetic nervous 

system activity and blood pressure60–62, and MC4R has previously been linked to 
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hypertension in genetic association studies63. Brain cerebellum was identified as a 

Systolic blood pressure-critical tissue genome-wide (proportion of fine-mapped gene-

tissue pairs = 0.16, bootstrap p = 0.002 for tissue-specific prior; Supplementary Figure 

14), consistent with previous studies61,64,65. Strong support of brain cerebellum genes 

from the tissue-specific prior enabled TGFM to prioritize MC4R-brain cerebellum instead 

of more significant nearby GWAS associations of non-mediated genetic variants. 

 

Fifth, TGFM fine-mapped SLC20A2 in artery aorta for Systolic blood pressure (Figure 

5e, gene-tissue PIP: 0.91, gene PIP: 0.91). Previous work has shown that loss of 

SLC20A2 results in Human idiopathic basal ganglia calcification66,67 and well as 

arteriolar calcification68, but SLC20A2 has not previously been linked to Systolic blood 

pressure to our knowledge. Artery aorta was also identified as a Systolic blood 

pressure-critical tissue genome-wide (proportion of fine-mapped gene-tissue pairs = 

0.36, bootstrap p = 0.0008 for tissue-specific prior; Supplementary Figure 14). We note 

that we have highlighted two fine-mapped gene-tissue pairs for Systolic blood pressure 

involving two different tissues (artery aorta and brain cerebellum); this demonstrates the 

advantages of TGFM over a two-step approach of separately identifying the causal 

gene using a gene-level fine-mapping method24 and identifying the causal tissue using a 

method for identifying trait-critical tissues5,7,11.  

 

Sixth, TGFM fine-mapped NMT1 in brain cerebellum for Menarche age (Figure 5f, gene-

tissue PIP: 0.53, gene PIP: 0.86); TGFM also assigned NMT1 in brain limbic a PIP of 

0.10.  Recent work demonstrated that NMT1 cis-predicted expression in brain tissues 
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was marginally associated with image-derived brain phenotypes69,70, but NMT1 has not 

previously been linked to Menarche age to our knowledge. Brain cerebellum was also 

identified as a Menarche age-critical tissue genome-wide (proportion of fine-mapped 

gene-tissue pairs = 0.25, bootstrap p = 0.05 for tissue-specific prior; Supplementary 

Figure 14), consistent with previous studies3,71. There exist 20 other gene-tissue pairs 

within 1 Mb of the TSS of NMT1 (11 of which correspond to NMT1 in a tissue other than 

brain cerebellum) that had significant TWAS p-values (p ≤ 0.05 / 119,270 = 4.2 × 10−7) 

but were not fine-mapped by TGFM (all with PIP ≤ 0.01), underscoring the benefit of 

joint fine-mapping of gene-tissue pairs. Additional examples are discussed in the 

Supplementary Note and Supplementary Figure 18 (including an additional implicated 

tissue for Vitamin D level). 

 

TGFM pinpoints disease genes and fine-grained cell-types in single-cell eQTL data 

It is widely hypothesized that eQTL in fine-grained cell types/contexts may help resolve 

the limited proportion of disease heritability explained by eQTL in bulk tissues28,55. 

Accordingly, we applied TGFM to fine-map disease genes and fine-grained cell types in 

45 disease and complex traits from the UK Biobank (same diseases/traits as above) 

using a recently generated single-cell eQTL data set spanning 9 fine-grained peripheral 

blood mononuclear cell (PBMC) cell types33 (average N=112; Methods and 

Supplementary Table 14). We converted single-cell expression measurements in each 

cell type to pseudobulk expression (see Methods), and also included the 38 GTEx 

tissues analyzed above. For each disease/trait, we applied TGFM to 2,682 overlapping 

3-Mb loci spanning 1,851 (protein-coding) gene-PBMC cell type pairs with cis-predicted 
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expression models (206 genes per cell type on average, Supplementary Table 14; 1,066 

unique genes), 119,270 (protein-coding) gene-tissue pairs with cis-predicted expression 

models (GTEx tissues; 3,139 genes per tissue on average, Supplementary Table 6; 

13,700 unique genes) and 10,545,304 genetic variants with MAF ≥ 0.005. We assigned 

a PIP to each gene-PBMC cell type pair, gene-tissue pair, gene, and non-mediated 

genetic variant, analogous to above. We have publicly released PIPs for all gene-PBMC 

cell type pairs, gene-tissue pairs, genes, and non-mediated variants for each 

disease/trait (see Data Availability). 

 

Results are reported in Figure 6a-b (18 representative traits), Supplementary Figure 19 

(all 45 traits), and Supplementary Table 15. Across all 45 traits, TGFM identified 30 

gene-PBMC cell type-trait triplets at PIP > 0.5; TGFM was not sufficiently powered to 

detect any gene-PBMC cell type-trait triplets at PIP > 0.9, likely due to the limited single-

cell eQTL sample size. Of the 30 gene-PBMC cell type-trait triplets with PIP > 0.5, 25 

involved a trait locus that had no confidently fine-mapped gene-tissue pair (no TGFM 

PIP > 0.5 in GTEx-only analysis corresponding to Figures 3-5). For the 18 

representative traits, TGFM identified 12 gene-PBMC cell type pairs at PIP > 0.5 for 

autoimmune diseases and blood cell traits (Figure 6a) vs. 5 gene-PBMC cell type pairs 

at PIP > 0.5 for non-blood-related traits (Figure 6b; includes 2 gene-PBMC cell type 

pairs for Menarche age, which we conservatively labeled as non-blood-related even 

though it has been reported to be partially immune-mediated72,73), increasing to 23 vs. 7 

for all 45 traits; this validates the importance of gene expression in blood cell types for 

blood-related traits.  
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For each trait, we identified the most frequently implicated PBMC cell types, computing 

the proportion of fine-mapped gene-PBMC cell type pairs in each PBMC cell type by 

counting gene-PBMC cell type pairs with PIP > 0.5. Results are reported in Figure 6c-e 

(3 representative blood-related traits), Supplementary Figure 20 (all 45 traits), and 

Supplementary Table 15. Despite low power, the fine-mapped gene-PBMC cell type 

pairs at PIP > 0.5 were concentrated in expected trait-critical PBMC cell types, e.g. 

62.5% in non-classical monocyte (ncM) cells and 37.5% in classical monocyte (cM) 

cells for Monocyte count, 100% in CD4+ T (CD4) cells for Lymphocyte count, and 100% 

in CD8+ T (CD8) cells for All autoimmune disease7,74,75. Results were similar at other 

PIP thresholds (Supplementary Figure 20). 

 

We highlight 4 examples of fine-mapped (PIP > 0.5) gene-PBMC cell type-trait triplets 

that recapitulate known biology or nominate biologically plausible mechanisms. First, 

TGFM fine-mapped CTLA4 (Cytotoxic T-lymphocyte associated protein 4) in CD8+ T 

(CD8) cells for All autoimmune disease (Figure 7a; gene-PBMC cell type PIP: 0.84; 

gene PIP: 0.85). CTLA4 is a well-studied regulator of immune responses in T cells76,77 

and has previously been linked to autoimmune diseases (rheumatoid arthritis, systemic 

lupus erythematosus, and type 1 diabetes) in genetic association studies78,79. CD8 cells 

were also identified as an All autoimmune disease-critical cell type genome-wide 

(bootstrap p = 0.05 for tissue-specific prior; Supplementary Table 17). CTLA4 did not 

meet the criteria for having a cis-predicted expression model in any GTEx tissue, 
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underscoring the advantages of modeling gene expression in fine-grained PBMC cell 

types. 

 

Second, TGFM fine-mapped CD52 in classical monocyte (cM) cells for Monocyte count 

(Figure 7b; gene-PBMC cell type PIP: 0.55; gene PIP: 0.88; gene-tissue PIP ≤	0.05 in 

all GTEx tissues); TGFM also assigned non-negligible PIPs to CD52 in multiple 

correlated PBMC cell types and GTEx tissues including 0.29 in non-classical monocyte 

(ncM) cells and 0.05 in GTEx whole blood. Previous work demonstrated that CD52 

regulates immune homeostasis in monocytes and T cells by inhibiting NF-𝜅B 

signalling80–82, but CD52 has not previously been linked to Monocyte count to our 

knowledge. cM cells were also identified as a Monocyte count-critical cell type genome-

wide (bootstrap p = 0.04 for tissue-specific prior; Supplementary Table 17). There exist 

56 other gene-tissue pairs and 3 other gene-PBMC cell type pairs within 1 Mb of the 

TSS of CD52 (14 and 2 of which correspond to CD52 in a cell type or tissue other than 

cM, respectively) with significant TWAS p-values (p ≤ 0.05 / 121,121 = 4.1 × 10−7, 

where 121,121 = 119,270 + 1,851) but not fine-mapped by TGFM (all with PIP ≤ 0.01), 

underscoring the benefit of joint fine-mapping of gene-tissue and gene-PBMC cell type 

pairs. CD52 was not prioritized in any tissue in the GTEx-only analysis of Figure 3 

(highest gene-tissue PIP = 0.07 (whole blood)), underscoring the advantages of 

modeling gene expression in fine-grained PBMC cell types. 

 

Third, TGFM fine-mapped KLF13 in CD4+ T (CD4) cells for Lymphocyte count (Figure 

7c; gene PBMC cell type PIP: 0.75; gene PIP: 0.75; gene-tissue PIP ≤	0.01 in all GTEx 
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tissues) despite a non-significant TWAS p-value (p = 3.5 × 10−6 > 0.05 / 121,121 = 4.1 × 

10−7). KLF13 has been shown to regulate lymphocyte development and survival83,84, but 

KLF13 has not previously been linked to Lymphocyte count in genetic association 

studies to our knowledge. CD4 cells were suggestively implicated as a Lymphocyte 

count-critical cell type genome-wide (bootstrap p = 0.12 for tissue-specific prior; 

Supplementary Table 17). KLF13 was not prioritized in any tissue in the GTEx-only 

analysis of Figure 3 (highest gene-tissue PIP = 0.002 (brain cerebellum)), again 

underscoring the advantages of modeling gene expression in fine-grained PBMC cell 

types. 

 

Fourth, TGFM fine-mapped HMGB1 in B cells for Mean corpuscular hemoglobin (Figure 

7d; gene-tissue PIP: 0.75; gene PIP: 0.75). HMGB1 has previously been shown to 

mediate anemia of inflammation (i.e. anemia resulting from a prolonged immune 

response) in mice85,86, but HMGB1 has not previously been linked to Mean corpuscular 

hemoglobin to our knowledge. B cells were also identified as a Mean corpuscular 

hemoglobin-critical cell type genome-wide (bootstrap p = 0.05 for tissue-specific prior; 

Supplementary Table 17). HMGB1 did not meet the criteria for having a cis-predicted 

expression model in any GTEx tissue, again underscoring the advantages of modeling 

gene expression in fine-grained PBMC cell types. TGFM also fine-mapped one non-

mediated variant (rs149180914; PIP: 0.59) within 1 Mb of the TSS of HMGB1 (see 

Discussion). 

 

Discussion 
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We developed a new method, TGFM, that jointly fine-maps causal gene-tissue pairs 

and non-mediated genetic variants at disease-associated loci. We applied TGFM to 45 

UK Biobank diseases and traits using 38 GTEx tissues and identified many causal 

gene-tissue pairs (PIP > 0.5), which were concentrated in known disease-critical 

tissues2–11 and strongly enriched in known disease-relevant genes44,45. Causal gene-

tissue pairs identified by TGFM recapitulated known biology, but also included 

biologically plausible novel findings. We further applied TGFM to single-cell eQTL data 

from 9 cell types in PBMC (analyzed jointly with GTEx tissues) and identified additional 

causal gene-PBMC cell type pairs (PIP > 0.5), primarily for autoimmune disease and 

blood cell traits. 

 

TGFM is distinct from previous methods for fine-mapping causal genes in three ways.  

First, TGFM identifies causal gene-tissue pairs, not just causal genes. Second, TGFM 

jointly models the disease contribution of each gene-tissue pair and non-mediated 

variant, disentangling causal gene-tissue pairs from both tagging gene-tissue pairs and 

tagging non-mediated genetic variants. Third, TGFM employs a sampling procedure that 

accounts for uncertainty in cis-predicted expression models. Our simulations show that 

TGFM attains accurate calibration, in contrast to previous methods such as coloc17 and 

FOCUS24 (Figure 1). We attribute the superior calibration to both our joint modeling of 

gene-tissue pairs and non-mediated variants, and our sampling procedure that accounts 

for uncertainty cis-predicted expression models (Supplementary Figure 6a-b). We note 

that a recent preprint developed a method, causal-TWAS27, to jointly fine-map genes 

(from a single tissue) and non-mediated genetic variants; however causal-TWAS only 
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fine-maps genes, not fine-map gene-tissue pairs, and does not account for uncertainty 

in cis-predicted expression models. Another method, CAFEH19, was recently developed 

to identify causal variants underlying GWAS and eQTL in multiple tissues; however, 

CAFEH does not model co-regulation between gene-tissue pairs and is thus unable to 

distinguish causal from tagging gene-tissue pairs. Other recent studies have made 

valuable contributions in nominating causal gene-tissue pairs for disease by linking fine-

mapped causal variants to causal genes using tissue-specific SNP-to-gene linking 

strategies such as Activity-By-Contact or EpiMap enhancer-gene linking12–14. However, 

this approach, unlike TGFM, is based on heuristic prioritization and does not provide 

direct evidence that the regulatory variant’s effect is mediated by the nominated gene-

tissue pair. 

 

We note several limitations of our work. First, TGFM leverages in-sample LD from the 

GWAS sample35,87 (analogous to other fine-mapping methods36), but in-sample LD may 

be unavailable in some applications (e.g. disease consortium meta-analyses). Following 

ref. 36, our recommendation when in-sample LD is unavailable is as follows: if there 

exists a LD reference panel from a population closely matching the GWAS sample 

population spanning at least 10% of the GWAS sample size, run the default version of 

TGFM with the LD reference panel; otherwise, run TGFM assuming a single causal 

genetic element per locus (in the latter case, no LD reference panel is needed). Second, 

TGFM may be susceptible to false positives in the case of unassayed causal genetic 

elements (analogous to other fine-mapping methods23,30,36,41). Specifically, if the causal 

gene-tissue pair is not assayed, TGFM may prioritize a correlated assayed gene-tissue 
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pair or a correlated non-mediated genetic variant. We anticipate that this limitation will 

be mitigated over time as emerging eQTL data sets increasingly capture diverse 

tissues, cell types, and cellular contexts88. Third, TGFM is only moderately well-powered 

to detect causal gene-tissue pairs, particularly at lower eQTL sample sizes (Figure 1). In 

addition, at low eQTL sample sizes, undiscovered causal gene-tissue pairs may be 

falsely prioritized as non-mediated genetic variants (Supplementary Figure 7). We 

anticipate this limitation will be mitigated over time as eQTL data sets increase in size89.  

Fourth, a recent study showed that GWAS and eQTLs studies are well-powered to 

detect different types of genetic variants, limiting the number of GWAS associations that 

can be explained by eQTL data at current sample sizes90 Nevertheless, TGFM identified 

causal gene-tissue pairs at hundreds of GWAS loci using current eQTL data, and we 

anticipate that TGFM will identify a larger number of causal gene-tissue pairs over time 

as eQTL data sets increase in size89 and capture increasingly diverse tissues, cell 

types, and cellular contexts88. Fifth, it is theoretically possible that TGFM could prioritize 

gene-tissue pairs due to reverse causality, whereby the disease/trait causally impacts 

the gene-tissue pair. However, we believe that this is very unlikely in practice, as cis-

eQTL variants with a detectable effect on gene expression at current eQTL sample 

sizes explain a substantial proportion of gene expression variation25,91,92 whereas 

diseases/traits are highly polygenic with each causal variant (outside the HLA locus, 

which we exclude from our analyses) explaining a small proportion of disease/trait 

variation37,93–95. Sixth, we have focused here on single-ancestry fine-mapping, but an 

important future direction is to extend this work to multi-ancestry fine-mapping 

(incorporating multi-ancestry eQTL analysis96,97), which is likely to further increase fine-
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mapping power98–100. Seventh, an important future direction is to extend TGFM to 

incorporate variant-level functional annotations that are enriched for disease 

heritability3,38–40, which is likely to further increase fine-mapping power36,101. Eighth, 

another important future direction is to extend TGFM to incorporate gene sets that are 

enriched for disease heritability explained by cis-predicted expression26, which may also 

further increase fine-mapping power. Finally, we have focused here on cis-genetic 

components of gene expression, but TGFM could be extended to genetic components 

of other molecular traits102–107. Despite these limitations, TGFM is a robust and powerful 

method for fine-mapping causal tissues and genes at disease-associated loci. 

 

Methods 

TGFM model overview 
 

TGFM estimates the posterior inclusion probability (PIP) for each genetic element 

(gene-tissue pair or genetic variant) to have a non-zero causal effect on disease using a 

model that includes mediated causal effects of each gene-tissue pair (via the cis-genetic 

component of expression of a given gene in a given tissue) and non-mediated causal 

effects of each genetic variant: 

𝑌 =##𝑊!"𝛼!"
"

+ 𝑋𝛽
!

+ 𝜖																																																																																																																	(2) 

where 𝑌 denotes the phenotype vector across GWAS individuals,	𝑔 indexes genes, 𝑡 

indexes tissues, 𝑋 is the matrix of genotypes, 𝑊!" is the vector of the cis-genetic 

component of gene expression across GWAS individuals in gene 𝑔 and tissue t, 𝛼!" 

denotes the (scalar) effect of cis-genetic expression in gene 𝑔 and tissue 𝑡 on the 
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disease or trait, 𝛽 denotes the vector of non-mediated causal effects of each genetic 

variant on the disease or trait, and 𝜖 denotes environmental noise. We assume that the 

trait 𝑌, the cis-genetic component of gene expression 𝑊!" in each gene 𝑔 and tissue 𝑡, 

and the genotype vector of each variant (each column of 𝑋) are standardized to have 

mean 0 and variance 1. We model the cis-genetic component of gene expression as a 

linear combination of variant-level effects: 

𝑊!" = 𝑋𝛿!"																																																																																																																																																			(3) 

where 𝛿!" denotes the vector of causal cis-eQTL effect sizes of each variant on gene 

expression in gene 𝑔 and tissue 𝑡. We emphasize that we model the phenotype Y as a 

linear combination of the unobserved true cis-genetic component of gene expression 

𝑊!" (a deterministic function of the unobserved true causal eQTL effect sizes 𝛿!") in 

each gene and tissue. The predicted cis-genetic component of gene expression 𝑊!"; =

𝑋𝛿!";  can be estimated (according to predicted causal eQTL effect sizes  𝛿!"; ), with 

uncertainty, from finite sample-size eQTL data sets in the specified tissue 𝑡, and provide 

noisy estimates of the true unobserved cis-genetic component of gene expression 𝑊!". 

Later (see below), we explain how TGFM models uncertainty in predicted cis-genetic 

expression. 

 

TGFM places the Sum of Single Effects (SuSiE)30,31 fine-mapping prior distribution on 

the vector of causal disease (mediated and non-mediated) effect sizes: 

[𝛼, 𝛽] =#𝛾(𝑑( 																																																																																																																																											(4)
(

 

𝛾( ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋)																																																																																																																																		(5) 
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𝑑( ∼ 𝑁(0, 𝜎())																																																																																																																																																(6) 

where 𝛼 denotes the vector of expression-mediated causal effects of genetic gene 

expression of each gene-tissue pair on the disease or trait, 𝛽 denotes the vector of non-

mediated causal effects of each genetic variant on the disease or trait, [𝛼, 𝛽] denotes 

the concatenated vector of mediated and non-mediated genetic effects, 𝑙 indexes fine-

mapping components where a single component represents the disease signal from a 

single genetic element, 𝛾( denotes a Categorical random variable indicating which one 

of the genetic elements disease component 𝑙 comes from, 𝜋 denotes the simplex vector 

of prior probabilities on each genetic element being causal, 𝑑( denotes a Gaussian 

random variable specifying the causal effect size of component 𝑙, and 𝜎() denotes the 

prior variance on 𝑑(. This approach assumes the true causal disease effect sizes 

originate in a small number (𝑙) of genetic elements with non-zero effects. 

 

TGFM will automatically infer posterior distributions on the random variables defining 

equations 5 and 6 (𝛾(, 𝑑(, 𝜎(); inference details provided below). Posterior inclusion 

probabilities (PIPs), or the probability that a genetic element has a non-zero effect on 

disease, can be calculated for each genetic element from these inferred posterior 

distributions as follows: 

𝑃𝐼𝑃* = 1 −Q(1 − 𝛾(+R
(

)																																																																																																																												(7) 

where 𝑗 indexes genetic elements, 𝑙	indexes components, 𝑃𝐼𝑃* denotes the PIP for 

genetic element 𝑗, and  𝛾(+R  denotes the expected value of the posterior distribution on 𝛾( 

for genetic element 𝑗. 
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Sum of Single Effects (SuSiE) fine-mapping prior distribution and inference 

The SuSiE prior distribution was developed in refs. 30,31 for the purpose of fine-mapping 

trait-causal variants. We briefly summarize the SuSiE fine-mapping prior distribution 

here: 

𝛽 =#𝛾(𝑑(

,

(-.

																																																																																																																																																		(8) 

𝛾( ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝜋)																																																																																																																																		(9) 

𝑑( ∼ 𝑁(0, 𝜎())																																																																																																																																														(10) 

where 𝛽 denotes the vector of causal effects of each genetic variant on the disease or 

trait, 𝑙 indexes fine-mapping components where a single component represents the 

disease signal from a single genetic variant, 𝛾( denotes a Categorical random variable 

indicating which one of the genetic variants disease component 𝑙 comes from, 𝜋 

denotes the simplex vector of prior probabilities on each genetic variant being causal, 𝑑( 

denotes a Gaussian random variable specifying the causal effect size of component 𝑙, 

and 𝜎() denotes the prior variance on 𝑑(.  

 

Briefly, the SuSiE prior distribution assumes that only a subset of variants (𝐿 total) have 

non-zero effect (i.e., are causal) on the trait, the effect sizes of each causal variant are 

independent, and the trait causal effect sizes can be calculated by summing the causal 

effect size of each of the 𝐿 causal variants. A “single effect” refers to the effect of one of 

the 𝐿 causal variants; hence why the model is called Sum of Single Effects. 
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Ref. 30 proposed a simple model-fitting approach (to infer posterior distributions on 

random variables in equations 9 and 10), which the authors referred to as Iterative 

Bayesian Stepwise Selection (IBSS). Briefly, IBSS iteratively updates each of the 𝐿 

single effects while keeping all other single effects fixed. It is computationally simple to 

update a single effect given fixed values of all other single effects (details of updating a 

single effect provided in the supplement of Ref. 30). 

 

Overview of TGFM inference 

TGFM inference consists of four steps. In step 1, we apply SuSiE to perform eQTL fine-

mapping of each gene-tissue pair in the external gene expression data set (estimating a 

posterior distribution of the causal cis-eQTL effect sizes for each gene-tissue pair). In 

step 2, we randomly sample 100 cis-predicted expression models for each gene-tissue 

pair from the posterior distributions of causal cis-eQTL effect sizes estimated in step 1 

(Methods). In step 3, we apply SuSiE to perform disease fine-mapping in the target data 

set (estimating the PIP of each genetic element) 100 times, iterating over the sampled 

cis-predicted expression models for each gene-tissue pair from step 2. In step 4, we 

average the results of step 3 across the 100 disease fine-mapping runs. TGFM utilizes 

a custom implementation of the SuSiE algorithm that provides efficient estimation of 

PIPs across 100 parallel SuSiE runs that differ only in their cis-predicted expression 

models. 

 

TGFM inference Step 1: Estimating causal eQTL effect size distributions from external 

eQTL data 
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TGFM inference relies on probability distributions defining the causal eQTL effects for 

each gene-tissue pair. These causal eQTL effect size distributions are estimated by 

applying SuSiE30 to eQTL data; SuSiE infers the following posterior distribution on the 

causal eQTL effect sizes for a given gene-tissue pair from eQTL data: 

𝛿!" =#𝜆(𝑑( 																																																																																																																																													(11)
(

 

𝜆( ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙Y𝜙(;[																																																																																																																													(12) 

𝑑(/|𝜆(/ = 1 ∼ 𝑁Y𝜇(/R,𝜎(/);[																																																																																																																								(13) 

where 𝛿!" denotes the vector of causal eQTL effect sizes corresponding to the effects of 

standardized cis-variants on gene 𝑔 in tissue 𝑡, 𝑙 indexes fine-mapping components 

where a single component represents the eQTL signal from a single cis-genetic variant, 

𝜆( denotes a Categorical random variable indicating which one of the genetic variants 

component 𝑙 comes from,  𝜙(; denotes the simplex vector of inferred posterior 

probabilities on each genetic variant being causal for component 𝑙, 𝑑(/|𝜆(/ = 1 denotes 

a Gaussian random variable specifying the causal effect size of component 𝑙 for variant 

𝑘 conditioned on variant 𝑘	being causal for component 𝑙, and  𝜇(/R  and  𝜎(/);  define the 

inferred posterior mean and variance on 𝑑(/|𝜆(/. The posterior mean causal eQTL effect 

sizes of this distribution are ∑ 𝜙(;( 𝜇(̀.  

 

We restrict TGFM to gene-tissue pairs that are well-predicted by genetic variants, using 

the SuSiE “purity filter”30. Specifically, this filter removes any gene-tissue pair such that 

all components defining the gene-tissue pair have a minimum absolute correlation 

between all variants in the component’s 95% credible set less than 0.5. The 95% 
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credible set for a given component is calculated by selecting the minimum set of 

variants that contain the causal variant with 95% confidence (according to the inferred 

posterior distribution 𝜙(;). 

 

Although in the present study we utilized SuSiE for generating distributions of causal 

eQTL effect sizes due to its computational efficiency, the TGFM inference procedure is 

generalizable to a variety of methods that generate probabilistic cis-predicted 

expression models potentially including probabilistic/Bayesian multivariable regression 

methods (for example, BSLMM108, SBayesR109, or LDpred2110) or bootstrapping111.  

 

TGFM inference Step 2: Randomly sample 100 cis-predicted expression models for 

each gene-tissue pair 

Instantiations of the causal eQTL effect sizes (which determine instantiations of cis-

predicted expression models) for each gene-tissue pair can be randomly sampled from 

that gene-tissue pair’s SuSiE-inferred posterior distribution (equations 11-13). To draw a 

single random sample of the causal eQTL effects for a given gene-tissue pair: (1) 

randomly sample the causal variant for each of the 𝑙 components from 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙Y𝜙(;[ 

(2) randomly sample the causal eQTL effect size of the sampled causal variant 𝑘 

(identified in Step 1) for each of the 𝑙 components from 𝑁Y𝜇(/R ,𝜎(/);[ (3) sum the sampled 

causal eQTL effects across the 𝑙 components. 

 

TGFM inference step 3: Fine-mapping inference conditioned on a sampled cis-predicted 

expression models 
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We describe here tissue-gene fine-mapping inference conditioned on setting the cis 

genetic component of gene expression for each gene-tissue pair equal to a sampled 

cis-predicted expression model (see TGFM inference step 2) for that gene-tissue pair.  

In this setting: 

𝑌 =##𝑊!"; 𝛼!"
"

+ 𝑋𝛽
!

+ 𝜖																																																																																																																	(14) 

where	𝑔 indexes genes, 𝑡 indexes tissues, 𝑊!";  denotes the predicted cis-genetic 

component of gene expression in gene 𝑔 and tissue 𝑡 (as determined by sampled cis-

predicted expression model’s causal eQTL effect sizes 𝛿!"; ; 𝑊!" = 𝑋𝛿!"; ),	𝑌 denotes the 

phenotype vector across GWAS individuals, 𝑋 is the matrix of genotypes, 𝛼!" denotes 

the (scalar) effect of cis-genetic expression in gene 𝑔 and tissue 𝑡 on the disease or 

trait, 𝛽 denotes the vector of non-mediated causal effects of each genetic variant on the 

disease or trait, and 𝜖 denotes environmental noise. The trait 𝑌, the predicted cis-

genetic component of gene expression 𝑊"!;  in each gene 𝑔 and tissue 𝑡, and the 

genotype vector of each variant (each column of 𝑋) are standardized to have mean 0 

and variance 1. We place SuSiE fine-mapping prior distributions on the disease/trait 

causal effect sizes (equations 4-6).  

 

In this setting, we use the existing SuSiE software for inference of posterior distributions 

on the fine-mapping random variables (𝛾(, 𝑑(, and 𝜎() in equations 5-6) and generation 

of corresponding PIPs for each genetic element (equation 7). We refer to these PIPs as 

conditional PIPs as they are conditional upon the predicted causal eQTL effect sizes. 

SuSiE inference applied to this task requires the following input: GWAS summary 
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statistic z-scores for each non-mediated variant, transcriptome-wide association study 

(TWAS) summary statistic z-scores for each gene-tissue pair corresponding to the 

marginal association between predicted genetic gene expression and the trait, in-

sample correlations between all pairs of genetic elements (variants and predicted 

genetic gene-tissue pairs) and specified prior probabilities 𝜋. We assume the user 

provides GWAS summary statistic z-scores for each variant, in-sample LD (ie. 

correlations between all pairs of genetic variants based on the GWAS samples), 

predicted causal eQTL effect sizes for each gene-tissue pair, and the prior causal 

probabilities 𝜋 (we discuss below how 𝜋 can be inferred). TWAS summary statistic z-

scores and in-sample correlations between all genetic elements can be computed from 

the user-provided input as follows: 

TWAS summary statistic z-scores for a particular gene-tissue pair can be easily 

calculated from GWAS summary statistic z-scores, in-sample variant LD, and predicted 

causal cis-eQTL effect sizes defining the genetic component of gene expression for the 

gene-tissue pair following ref. 21: 

𝑧!" =
𝑍!0123 	𝛿!"; 			

c𝛿!"3 		; Σ		𝛿!"; 				
																																																																																																																																		(15) 

where 𝑧!" denotes the TWAS summary statistic z-score for gene 𝑔 in tissue 𝑡, 𝑍!012 

denotes the vector GWAS summary statistic z-scores across variants, 𝛿!";  denotes the 

vector of predicted causal eQTL effect sizes for gene 𝑔 in tissue 𝑡, and Σ denotes the in-

sample variant LD. We note that ref. 21 only requires LD from a reference panel (instead 

of in-sample LD) for TWAS; TGFM instead requires in-sample LD (see Discussion). 
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The correlation between the predicted genetic gene expression of two genes can be 

computed from in-sample variant LD and the predicted causal eQTL effect sizes of both 

genes: 

𝐶𝑜𝑟𝑟Y𝑊!"; ,𝑊!4"4e[=	
𝛿!"3;Σ	𝛿!4"4;

c𝛿!"3 		; Σ		𝛿!"; 	c𝛿!4"43 		eΣ		𝛿!4"4e
																																																																															(16) 

where 𝑔𝑡 indexes one gene-tissue pair and 𝑔′𝑡′ indexes the other gene-tissue pair, 𝑊!";  

denotes the predicted genetic component of gene expression in gene 𝑔 in tissue 𝑡 

across in-sample GWAS individuals, 𝛿!";  denotes the vector of predicted causal eQTL 

effect sizes for gene 𝑔 in tissue 𝑡, and Σ denotes the in-sample variant LD. Similarly, the 

in-sample correlation between a non-mediated variant and the predicted genetic 

component of gene-tissue pair is: 

𝐶𝑜𝑟𝑟Y𝑋/ ,𝑊!"; [ =
Σ/𝛿!";

c𝛿!"3 		; Σ		𝛿!";
																																																																																																																(17) 

where 𝑘 indexes the non-mediated variant, 𝑔𝑡 indexes the gene tissue pair, 𝑋/ is the 

genotype of variant 𝑘 across in-sample GWAS individuals, 𝑊!";  denotes the cis-

predicted genetic component of gene expression in gene 𝑔 and tissue 𝑡 across in-

sample GWAS individuals, Σ/ denotes row 𝑘 of the in-sample variant LD matrix, and 𝛿!";  

denotes the vector of causal eQTL effect sizes for gene 𝑔 in tissue 𝑡. 

 

TGFM inference step 4: Marginalize uncertainty in cis-predicted expression on fine-

mapping PIPs by averaging fine-mapping results across 100 runs 
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TGFM PIPs for a given locus are calculated by marginalizing out the uncertainty in the 

cis-predicted causal eQTL effect sizes on the conditional PIPs: 

𝑃𝐼𝑃*3567 =# Y𝑃𝐼𝑃*g𝛿 = 𝛿h[
89

𝑝(𝛿 = 𝛿h)																																																																																														(18) 

where 𝑃𝐼𝑃*3567 is the TGFM PIP for genetic element 𝑗, 𝛿 is the set of causal eQTL effect 

sizes for all gene-tissue pairs in the fine-mapping region, 𝛿h is a specific instantiation of 

the set of causal eQTL effect sizes for all gene-tissue pairs in the fine-mapping region, 

𝑃𝐼𝑃*|𝛿 = 𝛿h is the conditional PIP of genetic element 𝑗 conditioned on genetic gene 

expression determined by 𝛿h, and 𝑝Y𝛿 = 𝛿h[ is the probability of estimating causal eQTL 

effect sizes 𝛿h given the eQTL data. The conditional PIPs, (𝑃𝐼𝑃*|𝛿 = 𝛿h,), can be inferred 

using SuSiE fine-mapping of both non-mediated variants and gene-tissue pairs where 

cis-predicted genetic gene expression is determined by 𝛿h (described in previous 

Methods subsection, TGFM inference step 3). The causal eQTL effect size distribution, 

𝑝(𝛿), is approximated by the posterior distribution on causal eQTL effect sizes for each 

gene-tissue pair estimated by applying SuSiE to eQTL data (described in previous 

Methods subsection, TGFM inference step 1). In practice, we approximate 𝑃𝐼𝑃*3567 in 

equation 18 by drawing 100 random samples of causal eQTL effect sizes across gene-

tissue pairs from 𝑝(𝛿)	(described in previous Methods subsection, TGFM inference step 

2), calculating the conditional PIP (𝑃𝐼𝑃*|𝛿 = 𝛿h)	for each of the 100 random samples, and 

taking the average across 100 conditional PIPs. In the next methods subsection, we 

discuss how this approach can be extended to integrate the inferred tissue-specific 

prior. 
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In practice, we do not run the existing SuSiE package30,31 100 times in series for each 

fine-mapping region. TGFM utilizes a custom implementation of the SuSiE algorithm 

that provides efficient estimation of PIPs across 100 parallel runs where each of 100 

parallel SuSiE runs differ only in their cis-predicted expression models. The rate-limiting 

step of each iteration of the SuSiE algorithm involves multiplying the LD matrix with that 

iteration’s estimate of the trait-causal effect sizes. The custom TGFM implementation 

exploits the fact that the variant LD matrix (which constitutes the majority of the full 

correlation matrix of all pairs of genetic elements) is identical across all 100 runs; TGFM 

uses matrix multiplication to multiply the variant LD matrix with the current causal non-

mediated variant effects for each of the 100 runs (corresponding to a single 

(𝐾X𝐾)X(𝐾X100) matrix multiplication instead of 100 (𝐾X𝐾)X(𝐾X1) multiplications in 

series where 𝐾 is the number of variants in the region). In addition, the custom TGFM 

implementation of SuSiE does not compute the ELBO at each iteration for each of the 

100 runs; computing the ELBO is computationally intensive and primarily utilized to 

assess convergence. Instead, we run each of the 100 runs for a pre-specified number of 

iterations; we use a default of 5 iterations which performed well in simulations (Figure 

2). We set the default number of components 𝑙 underlying each of the 100 runs to 10.  

 

The iterative algorithm underlying SuSiE is not guaranteed to reach a global optimum 

and can get stuck in local optima30. We found TGFM was prone to reaching local optima 

in which a non-causal gene-tissue pair was confidently fine-mapped (i.e., a false 

positive) when the gene-tissue pair was moderately correlated with multiple 

independent causal non-mediated variants. This is likely due to the greedy nature of the 
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SuSiE iterative algorithm. We use the following initialization strategy to mitigate 

convergence on local optima: (1) Run TGFM where the causal effects are initialized to 

be zero (this is the default initialization used by SuSiE) (2) If the TGFM PIP for any 

gene-tissue pair in the fine-mapping region is greater than 0.2: (2a) Run SuSiE fine-

mapping on only the non-mediated variants (2b) Run TGFM where the non-mediated 

variant effects are initialized to the converged values from step 2a and the gene-tissue 

pair effects are initialized to zero (2c) For each of the 100 TGFM runs, select the fitted 

TGFM model (either (1) or (2b)) with the larger ELBO. 

 

Inference of tissue-specific TGFM prior causal probabilities 

TGFM increases fine-mapping power by specifying tissue-specific prior probabilities for 

each genetic element in a locus that are informed by genome-wide data, similar to 

PolyFun36. For each trait separately, TGFM assigns one prior causal probability 𝜋"	for 

each gene-tissue pair from tissue t and one prior causal probability 𝜋#$	for each non-

mediated genetic variant where 𝜋" reflects the prior probability that an arbitrary gene 

from tissue 𝑡 at a disease-associated locus has a non-zero causal effect on the 

disease/trait and 𝜋#$	reflects the prior probability that an arbitrary non-mediated variant 

at a disease-associated locus has a non-zero causal effect on the disease/trait. We note 

that  𝜋" is a genome-wide parameter reflecting the probability that an arbitrary gene 

from tissue t has non-zero effect on disease, which is related but distinct from genome-

wide expression-mediated disease heritability parameters previously estimated in refs. 

11,26,28. We infer 𝜋" and 𝜋#$ separately for each disease/trait using an iterative 

algorithm, starting with flat priors, and at each iteration: (1) updating the PIP of each 
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genetic element using a computationally efficient approximation of TGFM (see next 

paragraph for details) given the current prior causal probabilities, which are normalized 

to sum to one across genetic elements at each locus, analogous to PolyFun36. (2) 

updating the prior causal probabilities according to: 

𝜋: =	
∑ 𝑃𝐼𝑃//∈:

|𝑐| 																																																																																																																																									(19) 

where 𝑐 is the genetic element class (for example a specific tissue or non-mediated 

variant), 𝜋: is the prior causal probability corresponding to genetic element class 𝑐, 𝑘 

indexes genetic elements from genetic element class 𝑐, 𝑃𝐼𝑃/ is the current PIP of 

genetic element 𝑘, and |𝑐| is the number of genetic elements belonging to genetic 

element class 𝑐. 

 

It is computationally prohibitive to run TGFM genome-wide tens to hundreds of times for 

each trait while updating the prior probabilities at each iteration. We make two 

approximations to TGFM to allow for efficient computation of genome-wide PIPs at each 

iteration (and we emphasize that these approximations are only used for inference of 

the prior). First, we run TGFM with a single cis-predicted expression model for each 

gene-tissue pair (based on SuSiE posterior mean causal cis-eQTL effect sizes) instead 

of averaging results across 100 sampled cis-predicted expression models. We refer to 

this approach as TGFM (no sampling). Thus, PIPs at each iteration can be inferred by 

applying SuSiE to fine-map both non-mediated variants and gene-tissue pairs where 

genetic gene expression of each gene-tissue pair is determined by the posterior mean 

causal eQTL effect sizes. While we show TGFM (no sampling) generates poorly 

calibrated PIPs (Supplementary Figure 6), using TGFM (no sampling) to infer prior 
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causal probabilities results in well-calibrated causal prior probabilities in simulations 

(Supplementary Figure 11a), perhaps because the causal prior probabilities integrate 

information across the genome (equation 19) and fine-mapping errors resulting from 

uncertainty in the genetic component of gene expression will be averaged out across all 

genes in the genome. Second, we only run TGFM (no sampling) inference once, during 

the first iteration. After running TGFM (no sampling) in the first iteration, we save the 

resulting Bayes Factors30 for each component-genetic element pair; a Bayes Factor 

reflects the relative support for including that genetic element in that component of the 

model, irrespective of the prior probabilities.  PIPs can be easily calculated based on the 

Bayes Factors and the current prior: 

𝛾(+R =
𝐵𝐹(*𝜃*

∑ 𝐵𝐹(/𝜃//
																																																																																																																																								(20) 

𝑃𝐼𝑃* = 1 −Q(1 − 𝛾(+R
(

)																																																																																																																										(21) 

 

where 𝑙 indexes fine-mapping components, 𝑗 and 𝑘 index genetic elements in the fine-

mapping region,  𝛾(+R denotes the expected value of the posterior distribution on 𝛾( for 

genetic element 𝑗, 𝐵𝐹(* denotes the Bayes Factor for genetic element 𝑗 on component 𝑙, 

𝜃* denotes the normalized prior causal probability of genetic element 𝑗, and 𝑃𝐼𝑃* is the 

TGFM (no sampling) PIP for genetic element 𝑗. We do not recalculate the Bayes 

Factors after the first iteration, and simply used the saved Bayes Factors from the first 

iteration in all subsequent iterations. This approximation is reasonable as while we 

expect PIPs to change with the evolving prior, we do not expect posterior mean causal 
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effect sizes of each fine-mapping component to drastically change with the evolving 

prior, ultimately leaving the Bayes Factors stable.  

 

During inference of the causal prior probabilities, TGFM (no sampling) is run genome-

wide on overlapping 3Mb windows36. The prior probability updates at each iteration 

(equation 16) are calculated from PIPs corresponding to genetic elements located in the 

middle Mb of these 3 Mb windows. To limit to windows with at least one disease causal 

signal, we remove 3Mb windows from the prior probability inference procedure that do 

not pass the SuSiE “purity filter” (see above) after running TGFM (no sampling) with a 

uniform prior.   

 

In addition, TGFM inference can also rely on probability distributions defining the 

uncertainty in our estimated prior causal probabilities (see below). Empirical 

distributions, as well as significance testing, on the causal prior probabilities can be 

calculated using 100 iterations of bootstrapping111 across the genome (we refer to this 

as “genomic bootstrapping”). Specifically, for each of the 100 bootstraps, we randomly 

sample 𝑇 fine-mapping 3Mb windows with replacement (assuming 𝑇 total 3Mb fine-

mapping windows for the disease/trait) and run the iterative algorithm on the 

bootstrapped regions. This procedure results in 100 empirical samples of the causal 

prior probabilities which reflect their estimation uncertainty. These 100 empirical 

samples are input directly into the sampling procedure underlying TGFM inference (see 

below). Significance testing of whether the prior causal probability is greater than zero 

for a particular genetic element class can be generated using a z-score computed from 
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the mean and standard error of the bootstrapped distribution. For a single analyzed trait, 

we assess significance using Benjamini-Hochberg112 FDR correction across all tissues 

and/or cell types included in the analysis. 

 

Inference of TGFM (no sampling) is performed using the function ‘susie_rss’ from the 

SuSiE package30,31 with default parameters. We used the same initialization strategy 

that was used by TGFM (described above). The iterative algorithm for inference of prior 

causal probabilities was run for 400 iterations. 

 

TGFM inference including uncertainty in tissue-specific prior causal probabilities 

The previous subsection described inference of probability distributions defining the 

tissue-specific prior causal probabilities. Here we described an extension of TGFM 

inference step 4 that integrates out uncertainty in both cis-predicted causal eQL effect 

sizes and the prior causal probabilities on the conditional PIPs: 

𝑃𝐼𝑃*3567 =# # Y𝑃𝐼𝑃*g𝛿 = 𝛿h, 𝜋 = 𝜋o[𝑝Y𝛿 = 𝛿h[
<=89

𝑝(𝜋 = 𝜋o)																																																					(22) 

where 𝑃𝐼𝑃*3567 is the TGFM PIP for genetic element 𝑗, 𝛿 is the set of causal eQTL effect 

sizes for all gene-tissue pairs in the fine-mapping region, 𝛿h is a specific instantiation of 

the set of causal eQTL effect sizes for all gene-tissue pairs in the fine-mapping region, 𝜋 

are the causal prior probabilities,  𝜋o are a specific instantiation of the causal prior 

probabilities, 𝑃𝐼𝑃*|𝛿 = 𝛿h, 𝜋 = 𝜋o is the conditional PIP of genetic element 𝑗 conditioned 

on genetic gene expression determined by 𝛿h and causal prior probabilities equal to 𝜋o,  

𝑝Y𝛿 = 𝛿h[ is the probability of estimating causal eQTL effect sizes 𝛿h given the eQTL data, 

and 𝑝(𝜋 = 𝜋o) is the probability of estimating prior causal probabilities 𝜋o. In practice, we 
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approximate 𝑃𝐼𝑃*3567 by drawing 100 random samples of causal eQTL effect sizes 

across gene-tissue pairs from 𝑝(𝛿) and prior causal probabilities from 𝑝(𝜋), calculating 

the conditional PIP (𝑃𝐼𝑃*|𝛿 = 𝛿h, 𝜋 = 𝜋o)	for each of the 100 random samples, and taking 

the average across 100 conditional PIPs. 

 

Calculating gene-level PIPs with TGFM 

We define a gene as causal for a disease/trait if there exists at least one tissue where 

the gene-tissue pair is causal for the trait. Gene-level PIPs can be computed by 

aggregating gene-tissue pair fine-mapping results across all gene-tissue pairs 

corresponding to the gene of interest: 

𝜏(!R =#𝛾(/R
/∈!

																																																																																																																																															(23) 

𝑃𝐼𝑃!
!>#> = 1 −Q(1 − 𝜏(!R

(

)																																																																																																																		(24) 

where 𝑙 indexes fine-mapping components, 𝑔 indexes genes, 𝑘 ∈ 𝑔 indexes all gene-

tissue pairs corresponding to gene 𝑔, 𝜏(!R  denotes the expected value of the posterior 

distribution on 𝛾( for gene 𝑔,  𝛾(/R  denotes the expected value of the posterior distribution 

on 𝛾( for gene-tissue pair 𝑘, and 𝑃𝐼𝑃!
!>#> is the gene-level PIP corresponding to gene 𝑔. 

Similar to TGFM PIPs for variants and gene-tissue pairs, we are describing here the 

calculation of conditional gene PIPs (conditional upon a given instantiation of predicted 

causal cis-eQTL effect sizes and prior causal probabilities). These conditional gene 

PIPs will be averaged across 100 samples of cis-predicted genetic gene expression and 

predicted causal prior probabilities (equation 22).  

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


This approach can also be used to calculate PIPs for causal genes in a specified subset 

of tissues, or gene-tissue subset PIPs. For example, identifying gene-tissue subset 

pairs for the subset of adipose tissues (defined as adipose subcutaneous U adipose 

visceral). Gene-tissue subset PIPs can be computed by aggregating (as done in 

equations 23-24) gene-tissue pair fine-mapping results across all gene-tissue pairs 

corresponding to the gene of interest from tissues in the tissue subset of interest. 

 

Simulation framework 

We used real genotypes from unrelated UK Biobank British (UKBB) samples32 to 

simulate both gene expression phenotypes (for each gene-tissue pair) and quantitative 

trait phenotypes. Default simulation parameters were specified as follows: the gene 

expression sample size ranged from 300 to 1000; the quantitative trait sample size was 

set to 100,000 (disjoint from gene expression samples); we analyzed 426,593 SNPs 

and 1,976 genes on chromosome 1; the number of tissues was set to 10, of which 2 

were causal for the quantitative trait; the quantitative trait architecture was simulated to 

have average polygenicity37, consisting of 2,700 causal non-mediated variants and 300 

causal gene-tissue pairs (150 for each causal tissue allowing for the option of two 

causal gene-tissue pairs from the same gene) with the expected heritability per causal 

genetic element (non-mediated variant or gene-tissue pair) set to 0.0001 (expected 

quantitative trait heritability of 0.3, 10% of which was mediated through gene 

expression, consistent with genome-wide estimates from MESC28); causal non-

mediated variants were randomly selected with probability proportional to their expected 

per-variant heritability based on baseline-LD model annotations3,38,39 (estimated using 
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S-LDSC3 applied to the UKBB trait White blood cell count) in order to make the 

simulations as realistic as possible. We simulated the genetic architecture of gene 

expression across related tissues using an approach similar to the approach 

implemented in ref. 11: we simulated all 1,976 protein-coding genes on chromosome 1 to 

be expressed in all tissues, with 50% of these gene-tissue pairs being cis-genetically 

heritable (only cis-genetically heritable gene-tissue pairs could have a simulated causal 

effect on the trait, though we considered all expressed gene-tissue pairs for fine-

mapping, not just those that were heritable); each heritable gene-tissue pair was 

randomly assigned 5 causal cis-eQTLs within 100Kb of the gene’s TSS, 3 of the 5 

causal cis-eQTLs were shared across tissues and 2 of the 5 causal cis-eQTLs were 

specific to each tissue; each causal cis-eQTL explains 1.5% of the variance of each 

gene-tissue pair (resulting in an average gene heritability of .075); effect sizes of shared 

causal cis-eQTLs covaried across tissues as follows (based on ref. 11): the tissues were 

split into 3 categories to mimic biological tissue modules in GTEx25 (tissues 1-3, tissues 

4-6, and tissues 7-10) and the correlation of shared cis-eQTL effect sizes across tissues 

was set to 0.8 and 0.74 for tissues in the same tissue category and across tissues in 

different tissue categories, respectively. 

 

Our simulation indicates that PIPs reported by TGFM are slightly anti-conservative with 

respect to (1 – average PIP) (Supplementary Figures 1, 4), consistent with previous 

simulations of variant-level fine-mapping methods using polygenic trait 

architectures36,41. Following ref. 36, we circumvent this problem by using an alternative 

FDR estimator given by (1 – PIP threshold); setting all PIPs greater than the specified 
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PIP threshold equal to the PIP threshold. For example, at a PIP threshold of 0.9, we 

treat all genetic elements with PIP ≥	0.9 as if they had PIP = 0.9. 

 

UK Biobank GWAS summary statistics and in-sample LD 

We applied to TGFM to 45 of the 49 UK Biobank traits analyzed via functionally 

informed fine-mapping in ref. 36 (average N=316K; Supplementary Table 5); the four 

excluded traits were Dermatology, Diabetes (any), Endocrine Diabetes, and Childless; 

these four diseases and traits were excluded due to redundancy and low heritability. We 

considered the set of  10,545,304 UK Biobank imputed variants with MAF ≥ 0.5% and 

INFO score ≥ 0.6, similar to previous work36,113. We used GWAS summary statistics 

that were generated and described in ref. 36. Briefly, the summary statistics were 

computed in ref. 36 from n=337,426 unrelated British-ancestry individuals in UK Biobank 

using BOLT-LMM114 adjusting for sex, age and age squared, assessment center, 

genotyping platform, the top 20 genotyping principal components, and dilution factor for 

biochemical traits (see ref. 36 for complete details). We used Liftover115 to convert 

variant positions from hg19 to hg38. Z-scores used by TGFM were computed from the 

Bolt-LMM output as follows: as the noninfinitesimal version of BOLT-LMM does not 

calculate effect sizes, we calculated z-scores by taking the square root of the BOLT-

LMM chi-squared statistics and multiplying them by the sign of the effect size estimate 

from the infinitesimal version of BOLT-LMM. 
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We computed in-sample variant LD matrices using 337,426 unrelated British-ancestry 

individuals in UK Biobank (same individuals as summary statistics); missing values 

were imputed by the mean of a variant across individuals. 

 

Overlapping 3Mb loci used for fine-mapping 

We applied TGFM to fine-map each of the 2,682 overlapping 3Mb loci spanning the 

entire genome. Analogous to ref. 36, the overlapping 3Mb loci had 1 Mb spacing 

between the start points of consecutive loci, were limited to autosomal chromosomes, 

and did not include 3 long-range LD regions including the MHC region (chromosome 6 

positions 25499772-33532223, chromosome 8 positions 8142478-12142491, and 

chromosome 11 positions 45978449-57232526 in hg38; lifted over from long-range LD 

regions ignored in ref. 36). Distinct from the windows generated in ref. 36,  for each 

disease/trait, we limited TGFM fine-mapping to loci with at least 50 genetic variants and 

at least one genetic variant with marginal GWAS p-value less than 1e-5.  

 

GTEx cis-predicted expression models 

We analyzed GTEx25 data from 47 GTEx tissues, which were aggregated into 38 meta 

tissues of similar sample size consisting of European-ancestry individuals (average 

N=259, range: N=101-320 individuals, 23 meta-tissues with N=320; Supplementary 

Table 6) to reduce heterogeneity in eQTL sample sizes across tissues. Testis tissue was 

removed from analysis as it has outlier (cis- and trans-) eQTL discovery power after 

controlling for sample size (see ref. 25 Figure 2C). Meta-tissues were constructed using 

the same individuals and tissue aggregation strategy as described in ref. 11. Normalized 
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expression matrices and covariates used in GTEx consortium’s single-tissue cis-eQTL 

analysis25 were downloaded from the GTEx portal (https://gtexportal.org/home/datasets) 

for each of the 47 analyzed tissues. In each tissue, we subset individuals to those 

composing the corresponding meta-tissue, and then re-standardize gene expression of 

each gene to have mean zero and variance one in each subsetted tissue. Cis-eQTLs 

were called in each tissue independently while controlling for covariates and limiting to 

variant-gene pairs such that the variant is within 500Kb of the gene’s TSS. For each 

meta-tissue, we removed variants with MAF < .05 across samples in the meta-tissue, 

were strand-ambiguous, or did not overlap the 10,545,304 analyzed UK Biobank 

variants. Cis-predicted expression models  were generated using SuSiE30,31 applied to 

eQTL summary statistics and eQTL in-sample LD matrices (using the function 

‘susie_rss’ from the SuSiE package30,31 with default parameters) for each (gene, meta-

tissue) pair, independently. If a meta-tissue is composed of more than 1 constituent 

tissues, meta-analyzed eQTL summary statistics were generated using a fixed-effect 

meta-analysis across constituent tissues and meta-analyzed in-sample LD was 

generated by computing variant-variant correlations across all samples composing the 

meta-analyzed tissue. After removing gene-tissue pairs that did not pass the SuSiE 

“purity filter” (see above), we identified 119,270 gene-tissue pairs with a cis-predicted 

expression model; all 119,270 cis-predicted expression models are publicly available 

(see Data availability). 

 

PBMC cis-predicted expression models 
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PBMC single-cell eQTL (described and generated in ref. 33) expression data was 

downloaded from the Human Cell Atlas Data Coordination Platform and genotype data 

downloaded from dbGaP (accession number phs002812.v1.p1). We removed 

individuals that were not European ancestry or had fewer than 2,500 detected cells. We 

generated pseudobulk expression in the 9 most abundant cell types (cell type 

assignment determined by ref. 33) for all individuals in each cell type with greater than 5 

cells. In each of the 9 cell types separately, we removed genes that were expressed in 

less than 80% of that cell type’s pseudobulk samples. Pseudobulk expression in each 

cell type was transformed using EdgeR’s logCPM function116 followed by normalizing 

each gene to have mean 0 and variance 1. The top 10 expression PCs for each cell 

type were calculated based on the normalized expression matrix. The number of 

pseudobulk samples per cell type is described in Supplementary Table 14 (average 

N=112).  

 

Cis-eQTLs were called in each cell type independently while controlling for covariates 

(the top 10 expression PCs) and limiting to variant-gene pairs such that the variant is 

within 500Kb of the gene’s TSS. For each cell type, we removed variants with MAF < 

0.05 across samples in the cell type, that were strand-ambiguous, or did not overlap the 

10,545,304 analyzed UK Biobank variants. Cis-predicted expression models were 

generated using SuSiE30,31 applied to eQTL summary statistics and eQTL in-sample LD 

matrices (using the function ‘susie_rss’ from the SuSiE package30,31 with default 

parameters) for each (gene, cell type) pair, independently. After removing gene-PBMC 

cell type pairs that did not pass the SuSiE “purity filter” (see above), we identified 1,851 
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gene-PBMC cell type pairs with a cis-predicted expression model; all 1,851 cis-

predicted expression models are publicly available (see Data availability). 

 

Data availability 

We have made TGFM PIPs for gene-tissue pairs, gene-PBMC cell type pairs, genes, 

and non-mediated variants across 45 diseases/traits (for both analyses of 38 GTEx 

tissues + analyses of 38 GTEx tissues and 9 PBMC cell types) publicly available at 

https://doi.org/10.7910/DVN/S26PFI, GTEx cis-predicted expression models for all 

gene-tissue pairs publicly available at https://doi.org/10.7910/DVN/8IPOPK, PBMC cis-

predicted expression models for all gene-PBMC cell type pairs publicly available at 

https://doi.org/10.7910/DVN/A6K9QW, GWAS summary statistics for all 45 

diseases/traits publicly available at https://doi.org/10.7910/DVN/GTEGPE. To limit the 

use of computational resources, we refer the reader to UK Biobank in-sample LD (337K 

unrelated British-ancestry samples) from ref. 36, which is publicly available at 

https://registry.opendata.aws/ukbb-ld/. The UK Biobank resource is publicly available via 

application (http://www.ukbiobank.ac.uk/). 

 

Code availability 

Software implementing TGFM will be made publicly available at 

https://github.com/BennyStrobes prior to publication.  
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Figure 1: Calibration and power of tissue-gene fine-mapping methods in 
simulations. (a,b) Average gene-tissue pair fine-mapping FDR across 100 simulations 
for various fine-mapping methods (see legend) across eQTL sample sizes (x-axis) at 
PIP=0.5 (a) and PIP=0.9 (b). Dashed horizontal line denotes 1 – PIP threshold (see 
main text). Numerical results are reported in Supplementary Table 1. (c,d) Average 
gene-tissue pair fine-mapping power across 100 simulations for various fine-mapping 
methods (see legend) across eQTL sample sizes (x-axis) at PIP=0.5 (c) and PIP=0.9 
(d). Error bars denote 95% confidence intervals. Numerical results are reported in 
Supplementary Table 2. 
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Figure 2: Calibration and power of fine-mapping different classes of genetic 
elements with TGFM in simulations. (a,b) Average fine-mapping FDR across 100 
simulations using TGFM for different classes of genetic elements (see legend) across 
eQTL sample sizes (x-axis) at PIP=0.5 (a) and PIP=0.9 (b). Dashed horizontal line 
denotes 1 – PIP threshold (see main text). Numerical results are reported in 
Supplementary Table 3. (c,d) Average fine-mapping power across 100 simulations using 
TGFM for different classes of genetic elements (see legend) across eQTL sample sizes 
(x-axis) at PIP=0.5 (c) and PIP=0.9 (d). Error bars denote 95% confidence intervals. 
Numerical results are reported in Supplementary Table 4. 
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Figure 3: Summary results of fine-mapping genetic elements with TGFM for 16 
independent UK Biobank diseases and traits. We report the number of (a) Gene-
tissue pairs, (b) Genes, and (c) (non-mediated) Variants fine-mapped using TGFM (y-
axis; square root scale) across 16 independent UK Biobank traits (x-axis) at various PIP 
thresholds ranging from 0.2 to 1.0 (color-bars). Horizontal black lines denote the 
number of genetic elements fine-mapped at PIP=0.5. FEV1:FVC, ratio of forced 
expiratory volume in 1 second to forced vital capacity; Platelet volume, Mean platelet 
volume; Diastolic BP, Diastolic blood pressure; Reticulocyte count, High-light scatter 
reticulocyte count; Corp. hemoglobin, Mean corpuscular hemoglobin; FVC, Forced vital 
capacity. Results for all 45 UK Biobank diseases and traits are reported in 
Supplementary Figure 13, and numerical results are reported in Supplementary Table . 
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Figure 4: Validation of fine-mapped tissues and genes. (a) Proportion of fine-
mapped gene-tissue pairs in each tissue (x-axis) for 14 representative traits (y-axis). 
Proportions for each trait were calculated by counting the number of gene-tissue pairs 
with TGFM PIP > 0.5 in each tissue and normalizing the counts across tissues. Tissues 
are only displayed if their proportion is > 0.2 for at least one of the 14 representative 
traits. Results for all remaining traits and tissues are reported in Supplementary Figure 
14, and numerical results are reported in Supplementary Table 9. The 14 representative 
traits were selected by including 12 of the 16 independent traits (Figure 3) with many 
high PIP gene-tissue pairs and two additional, interesting traits (All autoimmune and 
Vitamin D levels). (b) Average PoPS score (y-axis) of genes stratified by TGFM (Gene) 
PIP (x-axis). Averages were computed across genes for the 16 independent traits listed 
in Figure 3, as both PoPS score and TGFM gene PIPs are trait-specific. Error bars 
denote 95% confidence intervals. Numerical results are reported in Supplementary 
Table 11. 
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Figure 5: Examples of fine-mapped gene-tissue-disease triplets identified by 
TGFM. We report 6 example loci for which TGFM fine-mapped a gene-tissue pair (PIP > 
0.5). In each example we report the marginal GWAS and TWAS association -log10 p-
values (y-axis) of non-mediated variants (blue circles) and gene-tissue pairs (red 
triangles). Marginal TWAS association -log10 p-values were calculated by taking the 
median -log10 TWAS p-value across the 100 sets of sampled cis-predicted expression 
models for each gene-tissue pair. The genomic position of each gene-tissue pair (x-
axis) was based on the gene’s TSS. The color shading of each variant and gene-tissue 
pair was determined by its TGFM PIP. Any genetic element with TGFM PIP > 0.5 was 
made larger in size. Dashed horizontal blue and red lines represent GWAS significance 
(5 × 10−8) and TWAS significance (4.2 × 10−7) thresholds, respectively. Numerical 
results are reported in Supplementary Table 13. 
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Figure 6: Summary results of fine-mapping gene-PBMC cell type pairs with TGFM 
for 18 representative UK Biobank diseases and traits. (a-b) Number of gene-PBMC 
cell type pairs fine-mapped using TGFM (y-axis; square root scale) across 18 
representative UK Biobank traits (x-axis) at various PIP thresholds ranging from 0.2 to 
1.0 (color-bar), distinguishing between (a) autoimmune diseases and blood cell traits 
and (b) non-blood-related traits. Horizontal black lines denote the number of gene-
PBMC cell type pairs fine-mapped at PIP=0.5. The 18 representative traits consist of the 
16 independent traits (Figure 3) and two additional, interesting traits (All autoimmune 
and Vitamin D levels). Results for all 45 UK Biobank diseases and traits are reported in 
Supplementary Figure 19. (c-e) Number of gene-PBMC cell type pairs fine-mapped 
using TGFM (y-axis; square root scale) in each of the 9 PBMC cell types (x-axis) at 
various PIP thresholds ranging from 0.2 to 1.0 (color-bar) for (c) Monocyte count, (d) 
Lymphocyte count, and (e) All autoimmune disease. Horizontal black lines denote the 
number of gene-PBMC cell type pairs fine-mapped at PIP=0.5. Results for all 45 UK 
Biobank diseases and traits are reported in Supplementary Figure 20. Numerical results 
are reported in Supplementary Table 15. 
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Figure 7: Examples of fine-mapped gene-PBMC cell type-disease triplets 
identified by TGFM. We report 4 example loci for which TGFM fine-maps a gene-
PBMC cell type pair (PIP > 0.5). In each example we report the marginal GWAS and 
TWAS association -log10 p-values (y-axis) of non-mediated variants (blue circles) and 
gene-tissue (or gene-PBMC cell type) pairs (red triangles). Marginal TWAS association -
log10 p-values were calculated by taking the median -log10 TWAS p-value across the 
100 sets of sampled cis-predicted expression models for each gene-tissue (or gene-
PBMC cell type) pair. The genomic position of each gene-tissue (or gene-PBMC cell 
type) pair (x-axis) was based on the gene’s TSS. The color shading of each variant and 
gene-tissue (or gene-PBMC cell type) pair was determined by its TGFM PIP. Any 
genetic element with TGFM PIP > 0.5 was made larger in size. Dashed horizontal blue 
and red lines represent GWAS significance (5 × 10−8) and TWAS significance (4.1 × 
10−7) thresholds, respectively. Numerical results are reported in Supplementary Table 
16. 

 

 
 
 
 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


References 

1. Hekselman, I. & Yeger-Lotem, E. Mechanisms of tissue and cell-type specificity in 

heritable traits and diseases. Nat. Rev. Genet. 21, 137–150 (2020). 

2. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping 

complex trait variants. Nat. Genet. 45, 124–130 (2013). 

3. Finucane, H. K. et al. Partitioning heritability by functional annotation using 

genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015). 

4. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 

518, 317–330 (2015). 

5. Ongen, H. et al. Estimating the causal tissues for complex traits and diseases. Nat. 

Genet. 49, 1676–1683 (2017). 

6. Calderon, D. et al. Inferring relevant cell types for complex traits by using single-cell 

gene expression. Am. J. Hum. Genet. 101, 686–699 (2017). 

7. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes 

identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018). 

8. Shang, L., Smith, J. A. & Zhou, X. Leveraging gene co-expression patterns to infer 

trait-relevant tissues in genome-wide association studies. PLoS Genet. 16, 

e1008734 (2020). 

9. Zhang, M. J. et al. Polygenic enrichment distinguishes disease associations of 

individual cells in single-cell RNA-seq data. Nat. Genet. 54, 1572–1580 (2022). 

10. Jagadeesh, K. A. et al. Identifying disease-critical cell types and cellular processes 

by integrating single-cell RNA-sequencing and human genetics. Nat. Genet. 54, 

1479–1492 (2022). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


11. Amariuta, T., Siewert-Rocks, K. & Price, A. L. Modeling tissue co-regulation 

estimates tissue-specific contributions to disease. Nat. Genet. 55, 1503–1511 

(2023). 

12. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from 

thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019). 

13. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. 

Nature 593, 238–243 (2021). 

14. Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory 

genomic circuitry of human disease loci by integrative epigenomics. Nature 590, 

300–307 (2021). 

15. Downes, D. J. et al. Identification of LZTFL1 as a candidate effector gene at a 

COVID-19 risk locus. Nat. Genet. 53, 1606–1615 (2021). 

16. Kosoy, R. et al. Genetics of the human microglia regulome refines Alzheimer’s 

disease risk loci. Nat. Genet. 54, 1145–1154 (2022). 

17. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic 

association studies using summary statistics. PLoS Genet. 10, e1004383 (2014). 

18. Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target 

genes. Am. J. Hum. Genet. 99, 1245–1260 (2016). 

19. Arvanitis, M., Tayeb, K., Strober, B. J. & Battle, A. Redefining tissue specificity of 

genetic regulation of gene expression in the presence of allelic heterogeneity. Am. 

J. Hum. Genet. 109, 223–239 (2022). 

20. Gamazon, E. R. et al. A gene-based association method for mapping traits using 

reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


21. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide 

association studies. Nat. Genet. 48, 245–252 (2016). 

22. Wainberg, M. et al. Opportunities and challenges for transcriptome-wide 

association studies. Nat. Genet. 51, 592–599 (2019). 

23. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to 

candidate causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491–504 

(2018). 

24. Mancuso, N. et al. Probabilistic fine-mapping of transcriptome-wide association 

studies. Nat. Genet. 51, 675–682 (2019). 

25. The GTEx Consortium et al. The GTEx Consortium atlas of genetic regulatory 

effects across human tissues. Science 369, 1318–1330 (2020). 

26. Siewert-Rocks, K. M., Kim, S. S., Yao, D. W., Shi, H. & Price, A. L. Leveraging gene 

co-regulation to identify gene sets enriched for disease heritability. Am. J. Hum. 

Genet. 109, 393–404 (2022). 

27. Zhao, S. et al. Adjusting for genetic confounders in transcriptome-wide association 

studies leads to reliable detection of causal genes. bioRxiv 2022.09.27.509700 

(2022) doi:10.1101/2022.09.27.509700. 

28. Yao, D. W., O’Connor, L. J., Price, A. L. & Gusev, A. Quantifying genetic effects on 

disease mediated by assayed gene expression levels. Nat. Genet. 52, 626–633 

(2020). 

29. Benner, C. et al. FINEMAP: efficient variable selection using summary data from 

genome-wide association studies. Bioinformatics 32, 1493–1501 (2016). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


30. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to 

variable selection in regression, with application to genetic fine mapping. J. R. Stat. 

Soc. Series B Stat. Methodol. 82, 1273–1300 (2020). 

31. Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary 

data with the “Sum of Single Effects” model. PLoS Genet. 18, e1010299 (2022). 

32. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic 

data. Nature 562, 203–209 (2018). 

33. Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and 

genetic associations to lupus. Science 376, eabf1970 (2022). 

34. Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS 

discovery: Realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023). 

35. Pasaniuc, B. & Price, A. L. Dissecting the genetics of complex traits using summary 

association statistics. Nat. Rev. Genet. 18, 117–127 (2017). 

36. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization 

of complex trait heritability. Nat. Genet. 52, 1355–1363 (2020). 

37. O’Connor, L. J. et al. Extreme polygenicity of complex traits is explained by 

negative selection. Am. J. Hum. Genet. 105, 456–476 (2019). 

38. Gazal, S. et al. Linkage disequilibrium–dependent architecture of human complex 

traits shows action of negative selection. Nat. Genet. 49, 1421–1427 (2017). 

39. Gazal, S. et al. Functional architecture of low-frequency variants highlights strength 

of negative selection across coding and non-coding annotations. Nat. Genet. 50, 

1600–1607 (2018). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


40. Gazal, S., Marquez-Luna, C., Finucane, H. K. & Price, A. L. Reconciling S-LDSC 

and LDAK functional enrichment estimates. Nat. Genet. 51, 1202–1204 (2019). 

41. Cui, R. et al. Improving fine-mapping by modeling infinitesimal effects. bioRxiv 

(2022) doi:10.1101/2022.10.21.513123. 

42. Mancuso, N. et al. Large-scale transcriptome-wide association study identifies new 

prostate cancer risk regions. Nat. Commun. 9, 1–11 (2018). 

43. Emdin, C. A. et al. Genetic association of waist-to-hip ratio with cardiometabolic 

traits, type 2 diabetes, and coronary heart disease. JAMA 317, 626 (2017). 

44. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict 

genes underlying complex traits and diseases. Nat. Genet. 55, 1267–1276 (2023). 

45. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 

536, 285–291 (2016). 

46. Boukas, L. et al. Coexpression patterns define epigenetic regulators associated 

with neurological dysfunction. Genome Res. 29, 532–542 (2019). 

47. Georgi, B., Voight, B. F. & Bućan, M. From mouse to human: evolutionary genomics 

analysis of human orthologs of essential genes. PLoS Genet. 9, e1003484 (2013). 

48. Bikker, H. et al. A 20-basepair duplication in the human thyroid peroxidase gene 

results in a total iodide organification defect and congenital hypothyroidism. J. Clin. 

Endocrinol. Metab. 79, 248–252 (1994). 

49. Bakker, B. et al. Two decades of screening for congenital hypothyroidism in The 

Netherlands: TPO gene mutations in total iodide organification defects (an update). 

J. Clin. Endocrinol. Metab. 85, 3708–3712 (2000). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


50. Hwangbo, Y. & Park, Y. J. Genome-wide association studies of autoimmune thyroid 

diseases, thyroid function, and thyroid cancer. Endocrinol. Metab. (Seoul) 33, 175 

(2018). 

51. Furue, K. et al. The IL -13– OVOL 1– FLG axis in atopic dermatitis. Immunology 

158, 281–286 (2019). 

52. Sun, P. et al. OVOL1 regulates psoriasis-like skin inflammation and epidermal 

hyperplasia. J. Invest. Dermatol. 141, 1542–1552 (2021). 

53. Dragan, M. et al. Ovol1/2 loss-induced epidermal defects elicit skin immune 

activation and alter global metabolism. EMBO Rep. 24, (2023). 

54. the EArly Genetics and Lifecourse Epidemiology (EAGLE) Eczema Consortium. 

Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls 

identifies new risk loci for atopic dermatitis. Nat. Genet. 47, 1449–1456 (2015). 

55. Umans, B. D., Battle, A. & Gilad, Y. Where are the disease-associated eQTLs? 

Trends Genet. 37, 109–124 (2021). 

56. Nachat, R. et al. Peptidylarginine deiminase isoforms are differentially expressed in 

the anagen hair follicles and other human skin appendages. J. Invest. Dermatol. 

125, 34–41 (2005). 

57. Zhang, X. et al. Peptidylarginine deiminase 1-catalyzed histone citrullination is 

essential for early embryo development. Sci. Rep. 6, 1–11 (2016). 

58. Revez, J. A. et al. Genome-wide association study identifies 143 loci associated 

with 25 hydroxyvitamin D concentration. Nat. Commun. 11, 1647 (2020). 

59. Manousaki, D. et al. Genome-wide association study for vitamin D levels reveals 69 

independent loci. Am. J. Hum. Genet. 106, 327–337 (2020). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


60. Maier, T. & Hoyer, J. Modulation of blood pressure by central melanocortinergic 

pathways. Nephrol. Dial. Transplant 25, 674–677 (2010). 

61. da Silva, A. A., do Carmo, J. M., Wang, Z. & Hall, J. E. The brain melanocortin 

system, sympathetic control, and obesity hypertension. Physiology (Bethesda) 29, 

196–202 (2014). 

62. do Carmo, J. M. et al. Role of the brain melanocortins in blood pressure regulation. 

Biochim. Biophys. Acta Mol. Basis Dis. 1863, 2508–2514 (2017). 

63. Wang, Y. & Wang, J.-G. Genome-wide association studies of hypertension and 

several other cardiovascular diseases. Pulse (Basel) 6, 169–186 (2019). 

64. Jacob, J., Chopra, S. & Baby, C. Neuro-endocrine regulation of blood pressure. 

Indian J. Endocrinol. Metab. 15, 281 (2011). 

65. Figueira, L. & Israel, A. Role of cerebellar adrenomedullin in blood pressure 

regulation. Neuropeptides 54, 59–66 (2015). 

66. de Oliveira, D. F., de Lemos, R. R. & de Oliveira, J. R. M. Mutations at the 

SLC20A2 gene and brain resilience in families with idiopathic basal ganglia 

calcification (“Fahr’s disease”). Front. Hum. Neurosci. 7, 420 (2013). 

67. Inden, M., Kurita, H. & Hozumi, I. Characteristics and therapeutic potential of 

sodium-dependent phosphate cotransporters in relation to idiopathic basal ganglia 

calcification. J. Pharmacol. Sci. 148, 152–155 (2022). 

68. Wallingford, M. C. et al. SLC20A2 deficiency in mice leads to elevated phosphate 

levels in cerbrospinal fluid and glymphatic pathway-associated arteriolar 

calcification, and recapitulates human idiopathic basal ganglia calcification. Brain 

Pathol. 27, 64–76 (2017). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


69. Sargurupremraj, M. et al. Cerebral small vessel disease genomics and its 

implications across the lifespan. Nat. Commun. 11, 1–18 (2020). 

70. Zhao, B. et al. Transcriptome-wide association analysis of brain structures yields 

insights into pleiotropy with complex neuropsychiatric traits. Nat. Commun. 12, 

(2021). 

71. Herting, M. M. & Sowell, E. R. Puberty and structural brain development in humans. 

Front. Neuroendocrinol. 44, 122–137 (2017). 

72. Kane, L. & Ismail, N. Puberty as a vulnerable period to the effects of immune 

challenges: Focus on sex differences. Behav. Brain Res. 320, 374–382 (2017). 

73. Resztak, J. A. et al. Analysis of transcriptional changes in the immune system 

associated with pubertal development in a longitudinal cohort of children with 

asthma. Nat. Commun. 14, 1–14 (2023). 

74. Alberts, B. et al. Lymphocytes and the cellular basis of adaptive immunity. (Garland 

Science, 2002). 

75. Lloyd, C. M. & Hessel, E. M. Functions of T cells in asthma: more than just TH2 

cells. Nat. Rev. Immunol. 10, 838–848 (2010). 

76. Walker, L. S. K. & Sansom, D. M. The emerging role of CTLA4 as a cell-extrinsic 

regulator of T cell responses. Nat. Rev. Immunol. 11, 852–863 (2011). 

77. Oyewole-Said, D. et al. Beyond T-cells: Functional characterization of CTLA-4 

expression in immune and non-immune cell types. Front. Immunol. 11, (2020). 

78. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to 

autoimmune disease. Nature 423, 506–511 (2003). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


79. Wang, K. et al. CTLA-4 +49 G/A polymorphism confers autoimmune disease risk: 

An updated meta-analysis. Genet. Test. Mol. Biomarkers 21, 222–227 (2017). 

80. Bandala-Sanchez, E. et al. T cell regulation mediated by interaction of soluble 

CD52 with the inhibitory receptor Siglec-10. Nat. Immunol. 14, 741–748 (2013). 

81. Rashidi, M. et al. CD52 inhibits Toll-like receptor activation of NF-κB and triggers 

apoptosis to suppress inflammation. Cell Death Differ. 25, 392–405 (2018). 

82. Bhamidipati, K. et al. CD52 is elevated on B cells of SLE patients and regulates B 

cell function. Front. Immunol. 11, (2021). 

83. Zhou, M. et al. Krüppel-like transcription factor 13 regulates T lymphocyte survival 

in vivo. J. Immunol. 178, 5496–5504 (2007). 

84. Outram, S. V. et al. KLF13 influences multiple stages of both B and T cell 

development. Cell Cycle 7, 2047–2055 (2008). 

85. Valdés-Ferrer, S. I. et al. HMGB1 mediates anemia of inflammation in Murine 

sepsis survivors. Mol. Med. 21, 951–958 (2015). 

86. Dulmovits, B. M. et al. HMGB1-mediated restriction of EPO signaling contributes to 

anemia of inflammation. Blood 139, 3181–3193 (2022). 

87. Benner, C. et al. Prospects of fine-mapping trait-associated genomic regions by 

using summary statistics from genome-wide association studies. Am. J. Hum. 

Genet. 101, 539–551 (2017). 

88. Cuomo, A. S. E., Nathan, A., Raychaudhuri, S., MacArthur, D. G. & Powell, J. E. 

Single-cell genomics meets human genetics. Nat. Rev. Genet. 24, 535–549 (2023). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


89. Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of 

genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 

53, 1300–1310 (2021). 

90. Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Systematic differences in 

discovery of genetic effects on gene expression and complex traits. Nat. Genet. 

(2023) doi:10.1038/s41588-023-01529-1. 

91. Jansen, R. et al. Conditional eQTL analysis reveals allelic heterogeneity of gene 

expression. Hum. Mol. Genet. 26, 1444–1451 (2017). 

92. Liu, C. et al. Whole genome DNA and RNA sequencing of whole blood elucidates 

the genetic architecture of gene expression underlying a wide range of diseases. 

Sci. Rep. 12, 1–11 (2022). 

93. Zhang, Y., Qi, G., Park, J.-H. & Chatterjee, N. Estimation of complex effect-size 

distributions using summary-level statistics from genome-wide association studies 

across 32 complex traits. Nat. Genet. 50, 1318–1326 (2018). 

94. O’Connor, L. J. The distribution of common-variant effect sizes. Nat. Genet. 53, 

1243–1249 (2021). 

95. Yengo, L. et al. A saturated map of common genetic variants associated with 

human height. Nature 610, 704–712 (2022). 

96. Bhattacharya, A. et al. Best practices for multi-ancestry, meta-analytic 

transcriptome-wide association studies: Lessons from the Global Biobank Meta-

analysis Initiative. Cell Genom. 2, 100180 (2022). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


97. Kachuri, L. et al. Gene expression in African Americans, Puerto Ricans and 

Mexican Americans reveals ancestry-specific patterns of genetic architecture. Nat. 

Genet. 55, 952–963 (2023). 

98. Zaitlen, N., Paşaniuc, B., Gur, T., Ziv, E. & Halperin, E. Leveraging genetic 

variability across populations for the identification of causal variants. Am. J. Hum. 

Genet. 86, 23–33 (2010). 

99. Kichaev, G. & Pasaniuc, B. Leveraging functional-annotation data in trans-ethnic 

fine-mapping studies. Am. J. Hum. Genet. 97, 260–271 (2015). 

100. Lu, Z. et al. Multi-ancestry fine-mapping improves precision to identify causal genes 

in transcriptome-wide association studies. Am. J. Hum. Genet. 109, 1388–1404 

(2022). 

101. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical 

fine-mapping studies. PLoS Genet. 10, e1004722 (2014). 

102. McVicker, G. et al. Identification of genetic variants that affect histone modifications 

in human cells. Science 342, 747–749 (2013). 

103. Li, Y. I. et al. RNA splicing is a primary link between genetic variation and disease. 

Science 352, 600–604 (2016). 

104. Xu, Y. et al. An atlas of genetic scores to predict multi-omic traits. Nature 616, 123–

131 (2023). 

105. Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK 

Biobank. Nature 622, 329–338 (2023). 

106. Hou, L. et al. Multitissue H3K27ac profiling of GTEx samples links epigenomic 

variation to disease. Nat. Genet. 55, 1665–1676 (2023). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/


107. Oliva, M. et al. DNA methylation QTL mapping across diverse human tissues 

provides molecular links between genetic variation and complex traits. Nat. Genet. 

55, 112–122 (2023). 

108. Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse 

linear mixed models. PLoS Genet. 9, e1003264 (2013). 

109. Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple 

regression on summary statistics. Nat. Commun. 10, 1–11 (2019). 

110. Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. 

Bioinformatics 36, 5424–5431 (2021). 

111. Marriott, P., Efron, B. & Tibshirani, R. J. An introduction to the bootstrap. J. R. Stat. 

Soc. Ser. A Stat. Soc. 158, 347 (1995). 

112. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and 

powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995). 

113. Yuan, K. et al. Fine-mapping across diverse ancestries drives the discovery of 

putative causal variants underlying human complex traits and diseases. bioRxiv 

2023.01.07.23284293 (2023) doi:10.1101/2023.01.07.23284293. 

114. Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association 

power in large cohorts. Nat. Genet. 47, 284–290 (2015). 

115. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–

1006 (2002). 

116. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package 

for differential expression analysis of digital gene expression data. Bioinformatics 

26, 139–140 (2010). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.01.23297909doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297909
http://creativecommons.org/licenses/by-nd/4.0/

