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Abstract 25 

Public health decision-making for respiratory virus outbreaks relies heavily on genomic 26 
sequencing to detect new (variant) viruses. However, respiratory virus sequencing 27 
infrastructure is highly unequally distributed globally, potentially limiting the efficiency and 28 
effectiveness of surveillance efforts and raising concerns about preparedness for future threats. 29 
Using mathematical models, we demonstrate that relative to global sequencing efforts during 30 
the COVID-19 pandemic, increased global solidarity in respiratory virus genomic surveillance 31 
would vastly improve the capacity to rapidly detect novel threats, even with a substantially 32 
reduced number of viruses sequenced globally, leading to improved effectiveness and 33 
efficiency. As a result, the time between a (variant) virus’ first global detection and first local 34 
case would increase in all countries, allowing for more time to design and implement global 35 
and local public health measures to mitigate the threat’s potential public health impacts. Our 36 
results show that operationalizing global health solidarity is key to guiding investment in 37 
preparedness for future pandemic threats. 38 
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Introduction 40 

Genomic surveillance of respiratory viruses is a critical component of public health 41 
preparedness and response, particularly for identifying and monitoring the spread of new 42 
viruses and their variants1–3. According to Article 5 of the International Health Regulations 43 
(IHR), Member States to the World Health Organisation (WHO) are obligated to ensure 44 
national surveillance capacity4. The COVID-19 pandemic represented the zenith of global 45 
respiratory virus sequencing output so far, with ~7 million SARS-CoV-2 genomes submitted 46 
to GISAID (www.gisaid.org) in 2022 alone. However, this output was highly unequally 47 
distributed5: half of all publicly shared genomes originated from countries that account for 48 
only 4.4% of the global human population while half of the global population accounted for 49 
only 0.7% of publicly shared genomes (Fig. 1a, Extended Data Fig. 1). Novel viruses and 50 
their variants can potentially emerge in any country. As a result, the unequal distribution of 51 
sequencing infrastructure potentially strongly limits the global capacity to rapidly detect 52 
novel threats.  53 

Early detection of (variant) viruses such as potential zoonotic reassortant influenza viruses or 54 
highly genetically divergent SARS-CoV-2 variants maximises the time available to 55 
characterise the threat posed and design and implement potential interventions and mitigation 56 
strategies1,6–8. Hence, it is paramount for minimising potential public health impacts. To 57 
guide efforts toward improved preparedness for future respiratory virus threats, it is important 58 
to understand how the global landscape of genomic surveillance capabilities impacts the 59 
ability to swiftly identify new respiratory viruses and their variants. Furthermore, planning 60 
towards enhanced preparedness requires meaningful minimum sequencing targets as well as 61 
functional upper bounds for effective and efficient detection of new (variant) viruses2,3,5,9–11.  62 

We aimed to quantify how the global distribution of clinical genomic surveillance 63 
infrastructure affects the global capacity to rapidly detect and characterize the spread of a 64 
novel respiratory virus (variant). First, we used a mathematical model to determine a target 65 
minimum global sequencing capacity that balances effective performance and efficient 66 
resource use. Then, we leveraged large-scale epidemic simulations to investigate how 67 
varyingly solidaristic global distributions of genomic surveillance infrastructure affect 68 
surveillance effectiveness. We used 2022 SARS-CoV-2 sequencing output as baseline, 69 
representing an empirical pandemic scenario with unprecedentedly high but highly unequally 70 
distributed levels of virus genomic sequencing.  71 

Results 72 

Global variation in pandemic-period detection capacity 73 

To investigate how global variation in genomic surveillance capacity impacts the speed of 74 
new variant detection, we first investigated the performance of global genomic surveillance 75 
efforts for SARS-CoV-2 in 2022, representing an empirical baseline expectation for a 76 
potential future pandemic scenario. Sequencing output in 2022 was highly unequally 77 
distributed: country-specific sequencing rates estimated from submissions to GISAID12 78 
ranged from <0.01 sequences per million people per week (S/M/wk) in some countries to 79 
>1000 S/M/wk in others (Fig. 1a). The median sequencing rate across European countries 80 
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amounted to 64.3 S/M/wk, compared to 0.18 S/M/wk for countries in Africa. Similarly, the 81 
median time from sample collection to deposition in GISAID (henceforth, turnaround time) 82 
ranged across countries from less than a week to hundreds of days (Fig. 1b).   83 

To understand how this variation impacts potential global detection capacity, we used a 84 
global metapopulation model, validated against GLEAM13,14 (Extended Data Fig. 2), to 85 
simulate hypothetical scenarios of global variant spread and subsequent detection. We 86 
performed 10,000 independent simulations for values of variant Re ranging from 1.2 to 2. We 87 
assumed a distinct archetypal scenario of variant emergence, characterized by initial Re and 88 
prevalence of wildtype virus, for each value of variant Re (Extended Data Fig. 3). In each 89 
simulation, the country where the variant emerged was randomly selected based on a country 90 
population size-weighted probability. We then simulated the time to first variant detection for 91 
each metapopulation epidemic simulation, given empirical country-specific SARS-CoV-2 92 
sequencing rates and turnaround times in 2022 (Fig. 1a,b).  93 

Averaged across simulated variant Re values, the mean time to first variant detection globally 94 
was 83.0 days (95% CI 18 – 194), with substantial variability especially at lower values of 95 
variant Re (Fig. 1c). The simulated global number of variant infections by the day of first 96 
global detection varied widely (mean 632,899 infections, 95% CI 77 – 5,917,647), spanning 97 
up to five orders of magnitude for all values of variant Re (Fig. 1d). In many simulations, new 98 
variants were first detected outside of their continent of origin, driven especially by variants 99 
first emerging in Africa (first detected outside origin continent in 75.0% of simulations), Asia 100 
(23.5%) and South America (19.1%) (Fig. 1e). This means that the variant would have 101 
frequently spread widely within and between continents prior to initial detection (consistent 102 
with, for example, the early spread and detection of the SARS-CoV-2 Omicron BA.1 103 
variant1). The continent in which the variant first emerged strongly shaped the time to variant 104 
detection (Fig. 1f) and the number of global variant infections by the day of first detection 105 
(Fig. 1g), the latter ranging from a mean of 23,006 infections (95% CI 29 – 242,943) when 106 
emerging in Europe to 1,757,677 infections (95% CI 1028 – 13,369,527) in case of 107 
emergence in Africa across simulated values of variant Re. Differences in time to variant 108 
detection were strongly and highly nonlinearly associated with the sequencing capacity in the 109 
country of origin of the novel virus, with low sequencing rates being associated with longer 110 
times to variant detection (Fig. 1h).   111 

Operationalizing global health solidarity  112 

Globally, there is a shared risk of the emergence of pandemic viruses or their variants. In 113 
contrast, the results above indicate the capacity to rapidly detect new (variant) viruses is 114 
profoundly asymmetrically distributed. In part, this imbalance reflects a deficit of global 115 
health solidarity. Solidarity as a principle specifically underlies institutionalized forms of 116 
sharing as a result of mutual dependence15,16; it gives guidance to human action in the face of 117 
interdependency related to the shared risks of communicable disease, and underlies the 118 
obligations reflected in the IHR17,18. Given that pandemic risk is globally shared, we sought 119 
to investigate how more or less solidaristic approaches to respiratory virus genomic 120 
surveillance could lead to varyingly effective and efficient outcomes for purpose of the global 121 
detection of novel (variant) respiratory viruses. To do so, we specifically considered national 122 
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respiratory virus genomic surveillance capacity. We first sought to identify a minimum 123 
sequencing capacity at the national level that could serve as a target toward improving global 124 
capacity for rapid global (variant) virus detection. Ideally, this target would ensure timely 125 
information for public health action as well as efficient use of potentially limited resources. It 126 
would also need to be realistically attainable and sustainable in pandemic and inter-pandemic 127 
periods. 128 

To identify a target minimum global sequencing capacity, we explored the relationship 129 
between sequencing rate, turnaround time, and time to variant detection in any single country 130 
in more detail. Representing a scenario of emergence of a potential future pandemic 131 
respiratory virus (variant), we simulated the emergence of a variant virus in the background 132 
of circulating wildtype virus and computed the expected time to variant detection based on 133 
binomial sampling for different sequencing rates. We then derived a new mathematical model 134 
characterising the relationship between sequencing rates and time to detection of the new 135 
virus variant. For a variant virus, introduced in a population at an initial frequency f0, where 136 
the change in variant proportion through time can be described by a logistic growth rate s, the 137 
time since variant introduction when the variant virus is expected to have been detected with 138 
confidence level 1-q when sequencing n samples per unit time is equal to 139 
(log[(q‑s/n‑1)/f0]+1)/s (Extended Data Fig. 4). This model is applicable to all respiratory 140 
viruses that can be described by SIR dynamics19, including SARS-CoV-2, seasonal influenza 141 
virus, respiratory syncytial virus, and potential future pandemic respiratory viruses. 142 

Benefits of increases in sequencing rate are rapidly diminishing 143 

For all modelled scenarios of variant emergence (Extended Data Fig. 3), time to variant 144 
detection rapidly decreased as sequencing rate increased up to ~10 S/M/wk while the benefits 145 
of increases in sequencing rate beyond 10 S/M/wk were much smaller (Fig. 2a, Extended 146 
Data Fig. 5a). In 2022, many high-income countries sequenced SARS-CoV-2 genomes at 147 
rates well in excess of 10 S/M/wk, whereas sequencing rates in many lower-and-middle-148 
income countries were such that, in absolute terms, small increases would substantially speed 149 
up variant detection (Fig. 2a, Extended Data Fig. 5a). For example, in a country of 100 150 
million people sequencing at the median 2022 SARS-CoV-2 sequencing rate in low-income 151 
countries (0.035 S/M/wk), increasing the sequencing rate by 1 S/M/wk would reduce the time 152 
to detection of a variant with Re = 1.6 at 95% confidence by ~28 days, given a wildtype 153 
prevalence of 0.5% and a wildtype Re of 1.1 at time of variant emergence. In contrast, if the 154 
same country was sequencing at the 2022 median high-income country rate (58.9 S/M/wk), 155 
the reduction in time to detection resulting from the same 1 S/M/wk increase in sequencing 156 
rate would be only 3.5 hours (Fig. 2a, Extended Data Fig. 5b). The diminishing returns at 157 
rates characteristic of high-income countries are particularly prominent when looking at the 158 
relationship between sequencing rate and the expected number of variant infections by the 159 
day the variant has been detected (Fig. 2b, Extended Data Fig. 6a). Assuming a 14-day 160 
turnaround time, increasing the sequencing rate in a country sequencing at the median low-161 
income country rate by 1 S/M/wk would reduce the expected number of variant infections by 162 
the time of detection with 95% confidence by ~4.5 million infections for the scenario of 163 
variant emergence described above; in a country sequencing at the median high-income rate, 164 
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the same 1 S/M/wk increase would only reduce the expected number of variant infections by 165 
the day of first detection by ~60 infections (Fig. 2b, Extended Data Fig. 6b).  166 

In addition to sequencing rate, turnaround time is an essential component of effective 167 
genomic surveillance2,5,20,21. For reducing time to variant detection, any reduction in 168 
turnaround time is functionally equivalent to a fold increase in sequencing rate (Fig. 2c). 169 
Reductions in turnaround time are especially valuable for the detection of variant viruses that 170 
are highly transmissible. For example, for the archetypal variant with Re = 2, a three-week 171 
reduction in turnaround time is equivalent to an 89.0-fold increase in sequencing rate (Fig. 172 
2c). Hence, the benefits of increasing sequencing output should be carefully weighed against 173 
the gains from strengthening the ancillary infrastructure necessary for timely availability of 174 
sequencing results. 175 

Using these results, we identified a possible target for a global minimum sequencing 176 
capacity. Given the identified relationship between sequencing rate, turnaround time, and 177 
time to detection, a sequencing capacity of 2 S/M/wk with a two-week turnaround time is a 178 
sensible potential global minimum target (Fig. 2a, vertical grey line). Its position at the elbow 179 
of the relationship between sequencing rate and time to detection (Fig. 2a) suggests that 2 180 
S/M/wk is efficient, and its rapid variant detection even when a highly transmissible variant 181 
emerges in the background of high wildtype prevalence suggests that it results in strong 182 
performance. We chose a relatively low turnaround time of fourteen days given the vital 183 
importance of turnaround time in shaping time to detection. A sequencing rate of 2 S/M/wk 184 
corresponds to 0.18% of the maximum country-specific SARS-CoV-2 sequencing rate in 185 
2022. If all countries sequencing at rates lower than 2 S/M/wk in 2022 were to attain this 186 
minimum capacity, the de novo generated sequencing capacity would represent 6.0% of 187 
global sequencing output in 2022. This suggests that in terms of raw sequencing capacity, the 188 
expansion necessary to effectuate the global minimum would be modest compared to 189 
empirical global sequencing output in a pandemic scenario. 190 

Global solidarity improves surveillance effectiveness and efficiency  191 

To model the effect of more solidaristic global genomic surveillance, we re-simulated the 192 
global (variant) virus detection process given the global metapopulation epidemic simulations 193 
in a scenario where all countries possessed a global minimum capacity of at least 2 S/M/wk 194 
with 14-day turnaround time. Ensuring this global minimum sequencing capacity globally 195 
while keeping sequencing output unchanged for countries that already satisfied the minimum 196 
requirement in 2022 (henceforth, strategy A) reduced mean time to global variant detection 197 
by 26.0 days to 57.0 days (95% CI 17 – 119) relative to the simulated 2022 baseline (red bar, 198 
Fig. 3a). The mean number of global variant infections by the day of detection decreased 199 
from 632,899 infections (95% CI 77 – 5,917,647) to 31,485 infections (95% CI 67 – 235,057) 200 
(red bar, Fig. 3b), and the probability that the variant was first detected in its origin continent 201 
increased from 71.0% to 96.4% (red cross, Fig. 3c).  202 

Since reductions in time to detection resulting from increases in sequencing rate beyond ~10 203 
S/M/wk (Fig. 2b) are limited, we further hypothesized that relative to the 2022 baseline, 204 
limiting sequencing rates to 30 S/M/wk would have little detrimental effect on time to variant 205 
detection (Fig. 2a, vertical grey line). In our simulations, setting a 30 S/M/wk upper limit in 206 
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all countries relative to the 2022 baseline but no minimum requirement (henceforth, strategy 207 
B) left the expected time to first global variant detection (green bar, Fig. 3a) and the expected 208 
number of variant infections by the day of detection (green bar, Fig. 3b) largely unchanged: 209 
mean time to variant detection increased by only 4.6 days, from mean 83.0 days to 87.6 days 210 
(95% CI 22-202) (green bar, Fig. 3a), while global sequencing output was reduced by 67.0%.   211 

To model a globally solidaristic approach to respiratory virus genomic surveillance, we 212 
combined the insights that establishing a global minimum sequencing capacity could strongly 213 
reduce time to variant detection whereas the reductions in time to detection beyond ~10 214 
S/M/wk rapidly diminish. Simulations indicated that in a hypothetical future pandemic 215 
scenario, ensuring a minimum global capacity of 2 S/M/wk, while also setting a 30 S/M/wk 216 
upper limit (henceforth, strategy C), could improve time to variant detection by weeks while 217 
still reducing sequencing output by 61.0% relative to the 2022 pandemic baseline (blue bar, 218 
Fig. 3a, Extended Data Fig. 7). This result suggests that achieving a global minimum 219 
surveillance capacity could allow for substantial improvements in the capacity for rapid 220 
global virus detection, even with substantially fewer total viruses sequenced globally. We 221 
also investigated a scenario of independent country-level expansion, where each country’s 222 
sequencing output increased proportional to its existing rate. Independently doubling each 223 
country’s 2022 sequencing output, (strategy D) would only reduce mean time to detection by 224 
7.2 days (brown bar, Fig. 3a, Extended Data Fig. 7), suggesting that siloed expansion of 225 
individual countries’ sequencing output cannot replace a solidaristic global approach. 226 

Initial detection is a necessary starting point for responses to potential novel threats. 227 
However, additional information beyond simple detection is often necessary to characterize 228 
the public health risk that a (variant) virus poses. For example, the SARS-CoV-2 Alpha 229 
variant was first detected in the UK in a sample collected on 20 September 2020, likely 230 
within days of its initial emergence22. However, it was not until December 2020 that 231 
epidemiological evidence of the variant’s transmission advantage relative to pre-existing 232 
viruses began to accumulate22,23. To that end, we also investigated how a more solidaristic 233 
global distribution of sequencing output would affect the time elapsed until the variant would 234 
have been estimated to account for a substantial proportion of circulating virus, suggestive of 235 
a potential transmission advantage. In our simulations, the time until estimated variant 236 
frequencies, in at least one country, provided evidence with 95% confidence that the variant 237 
had reached 1% circulating frequency, decreased from 117.7 days (95% CI 42-252) for the 238 
2022 baseline to 103.8 days (95% CI 42-210) for strategy C (Extended Data Fig. 8a). 239 
Correspondingly, the mean number of global infections by that day decreased from 2,072,633 240 
(95% CI 4,896-20,293,166) to 205,311 (95% CI 4,873-1,428,529) (Extended Data Fig. 8b). 241 
In contrast, capping sequencing rates at 30 S/M/wk (strategy B) increased the mean time until 242 
the variant was established to have reached 1% circulating frequency somewhere globally by 243 
only 0.5 days relative to the 2022 baseline (Extended Data Fig. 8a). Mathematical models 244 
indicate that a sequencing capacity of 2 S/M/wk would ensure robust ascertainment of variant 245 
prevalence (Extended Data Fig. 9). 246 

Solidaristic approaches improve opportunities for mitigation 247 
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To investigate how establishing a global minimum capacity could affect public health 248 
preparedness, we computed the mean lead time between first global detection and the first 249 
local case for all countries under the different strategies. As the first global detection of a 250 
(variant) virus represents a potential starting point for the design and implementation of local 251 
public health responses, this lead time provides a measure for individual countries of the time 252 
horizon for public health measures that aim to mitigate potential impacts. In all countries, the 253 
lead time would increase under more solidaristic distributions of global sequencing 254 
infrastructure (Fig. 3d), potentially allowing for more time to implement public health 255 
measures in preparation for variant outbreaks or nascent pandemics. For example, for the 256 
archetypal variant virus with Re = 1.6, the mean time between first global detection and 257 
arrival in the United States was ‑8.5 days under the 2022 baseline, suggesting that on average, 258 
the variant would already be present in the United States by the time it was first detected 259 
globally. Under the solidaristic strategy C, the public health lead time in the US increased by 260 
two weeks to +6.6 days. The increases in lead time were stronger for lower values of Re; for 261 
example, for the archetypal variant with Re = 1.3, the mean lead time increased from +114 to 262 
+144 days in Rwanda, +82 to +111 days in Kazakhstan, +47 to +76 days in Indonesia, and 263 
+21 to +51 days in the United Kingdom, for strategy C relative to the 2022 baseline. 264 

Discussion 265 

Our results indicate that operationalizing global health solidarity in respiratory virus genomic 266 
surveillance could strongly improve preparedness for potential future respiratory virus 267 
threats. Relative to siloed surveillance efforts, where countries’ policies are strongly 268 
domestically focused, pursuing sustainable global capacity could substantially reduce the 269 
time to first global detection of variant viruses and the time until variant viruses are found to 270 
exhibit signatures of rapid spread. Initial detection and sequencing is a necessary first step in 271 
assessing and responding to the threat posed by novel viruses and underlies the design and 272 
deployment of countermeasures such as vaccines and therapeutics7,24. As such, earlier 273 
warning of potential threats could substantially improve the time horizon for global and local 274 
public health measures that aim to mitigate viral threats’ potential impacts, and solidaristic 275 
approaches to global genomic surveillance could improve outbreak preparedness and 276 
response for all countries globally.  277 

Our results suggest that only a small fraction of pandemic-period sequencing output, in the 278 
right places, could transform the global capacity to rapidly detect novel threats. This fact, 279 
combined with the fact that a country can only detect a virus that emerged elsewhere once it 280 
is already present locally, suggests that to improve outbreak preparedness, siloed expansion 281 
of surveillance capacity in countries that already possess strong capacity cannot replace 282 
solidaristic global investment, and that solidaristic approaches to genomic surveillance could 283 
yield greater public health benefit even to countries that already possess strong surveillance 284 
infrastructure locally. Our analyses are primarily focused on detecting novel (variant) viruses 285 
and tracking their spread. Hence, our arguments weighing the enhancement of local 286 
surveillance capacity against the development of basic global capacity do not consider 287 
ancillary benefits of high-intensity genomic surveillance in high-income settings such as 288 
characterization of local transmission dynamics. However, we stress the fundamental 289 
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immediate importance of basic global capacity for initial detection for all countries, such as 290 
in the context of vaccine development and deployment, where speed-ups of a few weeks 291 
could have substantial public health impacts globally25. 292 

In our model we assumed representative sampling in the genomic surveillance process, 293 
including the ready availability and access to diagnostic tools, which does not always hold in 294 
reality26,27. As the departure from this assumption is especially strong in resource-constrained 295 
settings20,26, the reported reductions in time to variant detection resulting from the 296 
establishment of a global minimum sequencing capacity are likely underestimates. 297 
Furthermore, our model does not model the spatial distribution of the minimum capacity in 298 
the country. The spatial distribution of sequencing capacity and the structure of sample 299 
referral networks interplays with turnaround time to shape surveillance performance and 300 
affects the optimal country-level implementation of surveillance networks. Our model is not 301 
applicable to (variant) viruses with no or a detrimental effect on transmissibility such as those 302 
that only result in increased disease severity or reduced sensitivity of diagnostics. 303 
Importantly, our results are robust to biases in the estimates of turnaround time resulting from 304 
delays in sequence deposition in GISAID28,29 (Extended Data Fig. 10a) and deviations from 305 
the assumed global mobility rates (Extended Data Fig. 10b).  306 

While solidarity is a helpful principle to guide policy in the case of an interdependence of 307 
risks given a particular context, reaching health equity or health justice will require 308 
overcoming substantial challenges30–35. Even with the capacity to detect new viruses sooner, 309 
the capacity to respond is also distributed asymmetrically. Even if the proposed models help 310 
undergird global health solidarity, the benefits of more rapidly available vaccines or better-311 
matched vaccine updates due to timelier detection will only extend to countries with access to 312 
these benefits30–32,36. Furthermore, rapidly detecting and sharing information concerning new 313 
(variant) viruses must not paradoxically disadvantage countries that do so. Open sharing of 314 
pathogen genomic data must operate within a system of fair access and benefit-sharing to 315 
achieve its intended public health purpose without exacerbating global health inequity33,36,37. 316 
Despite these challenges, in many countries there is a desire for enhanced genomic 317 
surveillance capacity to inform local public health responses21,27,29,38,39.  318 

Given the relationship between turnaround time and sequencing rate, we proposed a 319 
sequencing capacity of 2 S/M/wk with 14-day turnaround time as a target. We note that given 320 
this capacity, the optimal sequencing rate and its balance with turnaround time depends on 321 
the characteristics of the pathogen, the epidemiological background in which the variant were 322 
to emerge, and the required timeliness of sequencing data for public health action; for 323 
example, when levels of wildtype respiratory virus circulation are very low, relatively fewer 324 
sequences might yield a better balance between surveillance performance and resource use. 325 
The proposed target aims to balance the resources necessary for surveillance in periods of 326 
seasonal circulation of respiratory pathogens with the capacity to rapidly detect and scale up 327 
capacity during potential pandemic scenarios. While our study is focused on respiratory 328 
viruses and their variants, leveraging the infrastructure associated with the proposed target for 329 
surveillance of non-respiratory pathogens would yield further benefits. Our results underscore 330 
the importance of turnaround time in shaping the effectiveness and public health utility of 331 
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surveillance efforts20,21, and particularly its balance with sequencing rate. Relieving barriers 332 
to attaining low turnaround times in resource-limited settings, such as the availability of 333 
reagents, is key to realizing the potential benefits of global surveillance capacity20,40. 334 

While our modelling results provide a principled target that balances resource use and 335 
performance, the optimal design, including the balance of sequencing rate and turnaround 336 
time, will likely differ from country to country, depending on local constraints and priorities. 337 
Our study provides quantitative evidence of how solidaristic approaches provide a rational 338 
basis for improving global surveillance performance, but implementation requires addressing 339 
challenges related to infrastructure, personnel, and funding that currently form barriers to the 340 
implementation of genomic capacity in under-resourced settings29,40–42. To achieve the long-341 
term advancement of global genomics capacity in these settings, coherent capacity-building is 342 
necessary, and that requires sustainable, diversified financing which minimizes dependency 343 
on single funding source while aligning well with national needs40.  344 

The COVID-19 led to an unprecedented expansion of sequencing capacity globally. Some of 345 
the most consequential gains were made in resource-limited settings20,21, and it essential that 346 
such gains are maintained and where necessary expanded to maximize preparedness for 347 
future threats. Our results suggest that a global minimum respiratory virus sequencing 348 
capacity offers a path toward improved responses to respiratory virus threats, even for 349 
countries with existing strong national surveillance capacities. For these countries, supporting 350 
a global minimum sequencing capacity could yield benefits in preparation for and during 351 
potential future outbreak scenarios that are not attainable through siloed focuses on local 352 
capacity. Our study shows how a global outlook on pandemic preparedness is essential to 353 
improve both global and local public health. To improve outbreak preparedness, there is no 354 
substitute for global solidarity; it offers a path toward better responses to respiratory virus 355 
threats that would be mutually beneficial to all WHO Member States. 356 
  357 
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Figures 358 
 359 
 360 

 361 
Figure 1. The global time to variant detection based on the SARS-CoV-2 genomic 362 
sequencing landscape in 2022.  363 
(A) Distribution of non-zero country-specific weekly sequencing rates per million people by 364 
continent estimated from GISAID metadata (N = 199) (AF: Africa, EU: Europe, OC: 365 
Oceania, AS: Asia, NA: North America, SA: South America). (B) Distribution of median 366 
country-specific time from sample collection to sequence deposition in GISAID, i.e. 367 
turnaround time (N = 199). (C) The distribution of days to variant detection for different 368 
values of variant Re in global metapopulation model simulations, each with a distinct scenario 369 
of variant emergence (N = 10,000 for each variant Re). Vertical lines correspond to the 370 
median and 95% CI. (D) The simulated distribution of the number of global variant infections 371 
by the day of first variant detection. (E) The simulated probability that the variant is first 372 
detected in its origin continent, by origin continent. (F) The simulated time to variant 373 
detection by variant origin continent. Thin and thick lines correspond to 95% and 50% CIs, 374 
respectively. Points correspond to means. (G) The simulated number of global variant 375 
infections by the day of detection by variant origin continent, analogous to F. (H) The 376 
relationship between a country’s sequencing rate and the mean time to first global detection 377 
of a variant emerging in that country in metapopulation simulations (N = 160 for each variant 378 
Re). Lines correspond to LOESS fits by variant Re. 379 
  380 
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 381 
Figure 2. The dependence of time to variant detection on sequencing rate and 382 
turnaround time for a single country.  383 
(A) Relationship between sequencing rate and the number of days until the variant will have 384 
been detected with 95% confidence. The small black tick marks on the x-axes in this plot and 385 
in B show country-specific SARS-CoV-2 sequencing rates for 2022. Vertical dotted lines 386 
correspond to the median SARS-CoV-2 sequencing rates for high-income (HIC) and low-387 
income (LIC) countries in 2022. In all panels, lines are coloured by values of variant Re, with 388 
a distinct scenario of variant emergence for each value of variant Re; sequencing turnaround 389 
time was assumed to be 14 days. (B) Relationship between sequencing rate and the expected 390 
number of variant infections by the day the variant will have been detected with 95% 391 
confidence. (C) Relationship between a reduction in turnaround time (in days) and the fold 392 
increase in sequencing rate that would be required to effect the same reduction in time to 393 
detection if turnaround time was kept constant. 394 
  395 
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 396 
Figure 3. The time to first global detection of a new variant under varying global 397 
distributions of global respiratory virus genomic surveillance infrastructure.  398 
(A) Comparison of time to variant detection for different global strategies for the global 399 
distribution of genomic surveillance infrastructure. Each value of variant Re corresponds to a 400 
distinct scenario of variant emergence (N = 10,000 for each). Thin and thick lines correspond 401 
to 95% and 50% CIs, respectively. Points correspond to means. (B) The cumulative number 402 
of global variant infections by the day of variant detection by strategy, analogous to A. (C) 403 
The probability that the variant is first detected in its origin continent, by strategy. (D) 404 
Comparison of the mean time between the first detection of the variant globally, and the first 405 
local within-country infection, by strategy, for individual countries, averaged across values of 406 
variant Re (N = 195 for each strategy). Each point corresponds to a country, coloured by 407 
continent (AF: Africa, EU: Europe, OC: Oceania, AS: Asia, NA: North America, SA: South 408 
America). Boxplots show the median, first and third quartiles, and minimum and maximum 409 
values. 410 
 411 
  412 
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Methods 413 
 414 
Operationalizing global health solidarity 415 
 416 
Genomic surveillance capacity has become a core component of preparedness and response to 417 
global disease outbreaks. In accordance with Article 5 and annex 1 of the International Health 418 
Regulations (IHR), Member States of the World Health Organization (WHO) must ensure 419 
national surveillance capacity. The WHO can assist Member States to develop, strengthen and 420 
maintain surveillance capacities as needed (Article 5(4) IHR)4. Underlying this obligation is 421 
solidarity; a principle that gives guidance to human action in the face of interdependency 422 
because of the shared risks of communicable disease17,18.  423 
 424 
Solidarity connotes a sense of commitment to help similar others in need43. More specifically 425 
solidarity –  quite apart from charity or other forms of ‘helping out’ and sharing –  as a principle 426 
underlies institutionalized forms of sharing as a result of mutual dependence15,16. Solidarity is 427 
relational, meaning that its institutional scope is determined by societal bounds of whom we 428 
feel solidary towards44,45. In the field of health this plays out in national schemes of health 429 
insurance, redistribution, planning and rationing to ensure access to medicines and services46,47.  430 
 431 
The relational aspect of solidarity has made it difficult globally to determine what exactly is 432 
owed in interstate and global health interactions. In this regard it has been argued that in global 433 
health, solidarity needs to be based on ‘similarity in a specific context’43.  In line with this 434 
presupposition, we operationalize global health solidarity here specifically considering national 435 
capacity for genomic sequencing, by modelling for the most effective and efficient global 436 
distribution to the extent that we globally face the shared risk of unforeseeable pandemic 437 
respiratory virus occurrence. Operationalizing global health solidarity through modelling the 438 
global distribution of genomic sequencing capacity in this regard can guide WHO efforts to the 439 
implementation of Article 5 IHR, and to rationally invest in genomic sequencing capacity 440 
where needed to safeguard global pandemic preparedness as risk-sharing among WHO’s 441 
Member States.  442 
 443 
Sequence metadata analysis 444 
 445 
We downloaded metadata corresponding to all SARS-CoV-2 genomes in the GISAID12 446 
database with collection date from January 1st to December 31st 2022 and submission date 447 
before July 1st 2023 (n = 6,914,601). For each country with at least one sequence in the 448 
dataset, we computed the weekly sequencing rate by dividing the number of viruses sampled 449 
in that country by 52 and the country’s population size in millions, yielding a sequencing rate 450 
in units of sequences per million people per week (S/M/wk). Population sizes for July 1st 451 
2022 were extracted from the United Nations World Population Prospects 2022 452 
(https://population.un.org/wpp/Download/Standard/MostUsed/). For each sequence, we 453 
computed the turnaround time from the number of days between the sample collection and 454 
submission day in GISAID. We extracted countries’ per capita gross domestic product 455 
(GDP) for 2022, or the most recent year before 2022 if data for 2022 was unavailable, from 456 
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the World Bank (https://data.worldbank.org/indicator/NY.GDP.PCAP.CD (last updated 457 
2023/10/26)). We extracted income classifications for each country for fiscal year 2024 from 458 
the World Bank (https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-459 
bank-country-and-lending-groups).  460 
 461 
Variant epidemic simulations 462 
 463 
In all analyses, we assumed that a variant virus emerges in the context of circulating wildtype 464 
virus. In our simulations, both variant and wildtype epidemiological dynamics are described 465 
by a susceptible-infected-recovered (SIR) compartmental model with infectious period 1/g 466 
equal to 5 days for both viruses, with no interactions between genotypes. We simulated 467 
variant epidemics under a range of values of variant Re at time of introduction (variant Re = 468 
1.2, 1.3, 1.6, and 2). In the main text, we assumed a different scenario of variant emergence 469 
for each value of variant Re, characterized by a wildtype (wt) Re at time of variant 470 
introduction and a wildtype prevalence at time of variant introduction (variant Re = 1.2: wt Re 471 
= 1, wt prevalence = 0.1%; variant Re = 1.3: wt Re = 1.05, wt prevalence = 0.2%; variant Re = 472 
1.6: wt Re = 1.1, wt prevalence = 0.5%; variant Re = 2: wt Re = 1, wt prevalence = 2%). These 473 
scenarios were chosen such that circulation dynamics of wildtype and variant were 474 
comparable (e.g. the emergence of a highly transmissible variant in the background of high 475 
wildtype prevalence). In the Extended Data Figures, we show the same analyses for all 476 
combinations of variant Re and scenario of variant emergence (e.g. a variant with Re = 2 with 477 
wildtype dynamics corresponding to the scenario for variant Re = 1.2 (wt Re = 1, wt 478 
prevalence = 0.1%)). Epidemic dynamics for each scenario in the main text are shown in 479 
Extended Data Fig. 3. While we report results based on variant Re, we note that results are 480 
primarily dependent on the logistic growth rate of the variant proportion (see section 481 
‘Mathematical model’ below). In this context, the scenario of variant Re = 2 with wt Re = 1 is, 482 
for example, functionally equivalent to a scenario with variant Re = 2.5 and wt Re = 1.5. 483 
Similarly, the first scenario of variant Re = 1.2 and wt Re = 1 is functionally equivalent to a 484 
scenario of variant Re = 1.6 and wt Re = 1.3, approximating a scenario of emergence of a 485 
A/H1N1pdm09 pandemic-like virus early in a seasonal influenza virus epidemic. 486 
 487 
Metapopulation model 488 
 489 
We used a metapopulation model that couples local SIR dynamics within each index country 490 
with global migration to simulate the global spread of a variant. Given a rate of movement 491 
𝑤!" from population m to n, the expected number of variant-infected (𝐼!) and variant-492 
susceptible (𝑆!) people in population n with population size 𝑁! for a variant with 493 
transmission rate b and recovery rate g, is described by  494 
 495 

𝜕#𝐼! =
𝛽𝑆!𝐼!
𝑁!

−	g𝐼! +	 +(𝑤!"𝐼"
"$!

−	𝑤"!𝐼!) 496 

𝜕#𝑆! =
−𝛽𝑆!𝐼!
𝑁!

+	 +(𝑤!"𝑆"
"$!

−	𝑤"!𝑆!) 497 
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 498 
This model is the basis of the model used by Brockmann et al.48 to fit empirical arrival times 499 
for multiple respiratory viruses to global air transportation data. We used the estimated 500 
pairwise number of trips between all countries from the Global Transnational Mobility 501 
(GTM)49 to inform 𝑤!". This dataset combines a tourism dataset from the World Tourism 502 
Organization and an origin-final destination dataset corresponding to global air travel data. 503 
Previous work has validated the GTM against the world airline network50, which Brockmann 504 
et al. 48 showed to strongly reproduce observed dynamics of global pathogen spread. 505 
Specifically, for any two countries n and m we computed wnm by dividing the number of trips 506 
from country m to n in the year 2016 by the population size of country m and by 365. For 507 
each value of variant Re, we performed 10,000 independent simulations of the 508 
metapopulation model, assuming that the probability a variant virus would emerge in a 509 
particular country is proportional to the country’s relative population size (simulations 510 
initialized in Africa: n = 1793; Asia: n = 5946, Europe: n = 934; North America: n = 739; 511 
Oceania: n = 54; South America: n = 534). We integrated the model forward in time at a daily 512 
timescale using a tau-leap algorithm, which also furnishes the epidemic dynamics and global 513 
spread with stochasticity. Each simulation was initialized with an infected population of 10 514 
individuals.  515 
 516 
We validated the metapopulation model by comparing arrival times against those that were 517 
independently estimated using GLEAM14, a separate metapopulation model that incorporates 518 
commuting but which relies on different underlying data. Given an epidemic origin location, 519 
we simulated 10 epidemic instances using the metapopulation model, each initialized with 10 520 
infected individuals, and we simulated 10 instances using GLEAM, where we implemented 521 
the same SIR model. In the GLEAM simulations, we assumed 100% of airline traffic, no 522 
seasonality, and a gravity commuting model with 8 hours spent at the commuting 523 
destinations. For each country, we computed the first day on which median cumulative 524 
incidence across simulations exceeded 0.01 per 1000 individuals for both model 525 
implementations. We performed these simulations for ten countries (Cameroon, Ecuador, 526 
France, Jamaica, Malaysia, Mali, Nepal, Nicaragua, Oman, Uzbekistan) with the GLEAM 527 
model initialized in each country’s capital city. For all ten origin locations we find a strong 528 
concordance between arrival times (r = 0.89 overall) estimated using the metapopulation 529 
model and GLEAM (Extended Data Fig. 2). This provides support for the use of the 530 
metapopulation model. 531 
 532 
Global genomic surveillance simulations 533 
 534 
We performed the genomic surveillance simulations using empirical turnaround times and 535 
sampling rates for each country, using data for 2022. For each sequence in GISAID, we 536 
computed the time T between the sample’s collection date and submission date. For each 537 
country c, the turnaround-time specific sequencing rate in unit of sequences per day nx,c, for 538 
each value of turnaround time x in days, was equal to the country’s total sequencing rate in 539 
sequences per day multiplied by the proportion of sequences from that country with T = x. 540 
 541 
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For each country in each simulation, starting from the first day on which the number of new 542 
variant infections exceeded 10 onwards, we deterministically simulated the wildtype 543 
epidemic dynamics. For each value of variant Re, we assumed a scenario of variant 544 
emergence (characterized by a wildtype prevalence and wildtype Re) as described above in 545 
the main text. In the Extended Data Figures, we show the same analyses for all combinations 546 
of variant Re and scenario of variant emergence. Until the first day on which the number of 547 
variant infections exceeded 10, wildtype incidence was assumed to be equal to wildtype 548 
incidence on the first day of the simulated wildtype epidemic, to account for the stochasticity 549 
observed when the number of infections was small and the potential for stochastic variant 550 
extinction.  551 
 552 
Using the simulated variant and wildtype incidence on each day, we computed the variant 553 
proportion through time f(t). For each country c, on each day t, we used the simulated 554 
country-specific variant proportion fc(t) to simulate genomic surveillance: For each value of 555 
turnaround time x, we assumed that total sample count ñx,c ~ Poisson(nx,c) and simulated the 556 
total number of variant samples Vc(t) =	∑ 𝑣%,'#

%() , with 𝑣%,'~ Binomial(ñx,c, fc(t-x)). In each 557 
of 10,000 replicate simulations, and for each strategy for the global distribution of 558 
surveillance infrastructure (see next section), we computed the detection day as the first day t 559 
on which Vc(t) was at least one in at least one country c. We defined the detection country as 560 
the first country for which this held.  561 
 562 
To investigate the time until the variant could be said to account for a substantial proportion 563 
of circulating virus in at least one country, we used the simulated weekly sequence counts to 564 
compute, for each country, if there was any week in the past in which the variant accounted 565 
for at least a proportion p of all samples collected that week with 95% confidence given a 566 
one-tailed binomial test for proportions. We performed this analysis on a weekly basis for 567 
each country, and the day on which the p-value for this binomial test declined below 0.05 in 568 
at least country, for any week in the past, was defined as the day the variant was established 569 
to account for a substantial proportion of circulating virus in at least one country globally. We 570 
chose p to be 1% for all countries with a population of 100 million individuals or fewer. We 571 
ensured a more flexible threshold for countries with a population larger than 100 million. For 572 
these countries, the threshold decreased proportionally as the population size increased, e.g. 573 
using a threshold of 0.5% for a population of 200 million individuals and a threshold of 0.1% 574 
in a population of 1 billion individuals.  575 
 576 
Global surveillance strategies 577 
 578 
We investigated five strategies for the global distribution of sequencing infrastructure: 579 
  580 
Strategy 2022: the 2022 baseline. For each country, turnaround time-specific sequencing 581 
rates were extracted from GISAID metadata.  582 
 583 
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Strategy A: the 2022 baseline + a global minimum sequencing capacity of 2 S/M/wk with 14-584 
day turnaround time in each country. If a country already satisfied this requirement (i.e., the 585 
sum of turnaround time-specific sequencing rates with turnaround time ≤14 days was equal to 586 
or greater than 2 S/M/wk), its sequencing rates were unchanged relative to the 2022 baseline. 587 
If a country satisfied the sequencing rate across all values of turnaround time, but not within 588 
the required two-week turnaround time, the deficit in S/M/wk in the sum of turnaround time-589 
specific sequencing rates with turnaround time ≤14 days was uniformly removed from the 590 
sequencing rates exceeding 14 days and added to the sequencing rate corresponding to a 591 
turnaround time of 14 days. Hence, in this scenario, total sequencing output remained 592 
unchanged, and the minimum sequencing capacity was attained by reducing turnaround time. 593 
If a country did not satisfy the minimum sequencing rate at all, all sequencing output 594 
corresponding to a sequencing rate >14 days was set to a turnaround time of 14 days. The 595 
remaining deficit in S/M/wk in the sum of turnaround time-specific sequencing rates with 596 
turnaround time ≤14 days was added to the sequencing rate corresponding to a turnaround 597 
time of 14 days.  598 
 599 
Strategy B: Equivalent to the 2022 baseline, but individual countries’ sequencing output 600 
capped at 30 S/M/wk. Countries that sequenced at rates exceeding 30 S/M/wk had their 601 
sequencing output capped by dividing sequencing rate uniformly across all values of 602 
turnaround time such that total output across all values of turnaround time was equal to 30 603 
S/M/wk. 604 
 605 
Strategy C: A combination of strategies A and B. In countries that, after capping according to 606 
strategy B, did not satisfy the minimum sequencing rate of 2 S/M/wk with 14-day turnaround 607 
time, this minimum was ensured analogous to Strategy A.  608 
 609 
Strategy D: The 2022 baseline, doubled. In each country, the sequencing rate in 2022 was 610 
doubled across all values of turnaround time. Hence, the absolute increase in sequencing 611 
output was greater in countries that had a higher baseline sequencing rate.  612 
 613 
Mathematical model 614 
 615 
For the single-country analyses presented in Figure 2, we assumed a population of 100 616 
million and turnaround time of two weeks. We deterministically simulated variant and 617 
wildtype epidemics, starting with one variant-infected individual, and computed the variant 618 
proportion f(t) through time. For each sequencing rate and given f(t), we computed the 619 
expected day of detection with 95% confidence as the day on which the probability that zero 620 
wildtype sequences would have been binomially sampled up to and including that day 621 
declined below 0.05. On each day, the total number of samples to sequence was assumed to 622 
be a Poisson-valued random variable with rate given by the sequencing rate. For each 623 
sequencing rate, the day of detection was computed as the median across 100 replicates. To 624 
compute the equivalent fold increase in sequencing rate for each reduction in turnaround 625 
time, we computed the slope of a linear model that relates the logarithm of the sequencing 626 
rate to the simulated day of detection for 1 < n < 100 S/M/wk. In Extended Data Fig. 5 and 6 627 
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we show the analyses of time to detection for all combinations of variant Re and scenario of 628 
variant emergence (e.g. a variant with Re = 2 with wildtype dynamics corresponding to the 629 
scenario for variant Re = 1.2 (wt Re = 1, wt prevalence = 0.1%)). 630 
 631 
To mathematically model time to variant detection, we assumed that the variant frequency 632 
follows a logistic growth function, where the proportion f(t) of all new infections at time t 633 
that is attributable to the variant follows: 634 

𝑓(𝑡) =
1

1 + 1 − 𝑓)𝑓)
𝑒*+#

 635 

Here, s is the logistic growth rate that defines the speed at which the variant displaces the 636 
wildtype and f0 represents the initial variant frequency. The dynamics of logistic growth of 637 
variant proportion characterized the sequential replacement of variants during the COVID-19 638 
pandemic. Assuming no interactions between genotypes, the value of s is equal to the 639 
difference of variant and wildtype exponential growth rates23. In reality, s is governed by 640 
factors such as pre-existing immunity in the population and differences in epidemiological 641 
characteristics of variant and wildtype such as their generation interval. Nevertheless, the 642 
derived relationship relies solely on the value of s, and hence is agnostic to the precise 643 
epidemiological characteristics of wildtype and variant. Given these dynamics, we derived a 644 
relationship between the number of viruses to sequence per unit time n and the expected time 645 
until the variant is detected. Beginning with the binomial probability that variant is detected 646 
at or before time step 𝜏:  647 

𝑃(𝑡 ≤ 𝜏) = 1 −7[1 − 𝑓(𝑡)]!
,

#()

 648 

we derived an expression for 𝜏:  649 

7[1− 𝑓(𝑡)]!
,

#()

= 1 − 𝑃(𝑡 ≤ 𝜏) 650 

𝑛 =
ln[1 − 𝑃(𝑡 ≤ 𝜏)]
ln{∏ [1 − 𝑓(𝑡)],

#() } 651 

Using the Volterra product integral:  652 

7[1+ 𝑓(𝑥)𝑑𝑥]
-

.

= expEF 𝑓(𝑥)
-

.
𝑑𝑥G 653 

𝑛 =
ln[1 − 𝑃(𝑡 ≤ 𝜏)]

lnHexpI∫ −𝑓(𝑡),
) 𝑑𝑡KL

=
ln[1 − 𝑃(𝑡 ≤ 𝜏)]
−∫ 𝑓(𝑡),

) 𝑑𝑡
 654 

Integrating 𝑓(𝑡):  655 

𝐹(𝑡) = F𝑓(𝑡) 𝑑𝑡	656 

= F
1

1 + 1 − 𝑓)𝑓)
𝑒*+#

𝑑𝑡 657 
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= F
𝑒+#

𝑒+# + 1 − 𝑓)𝑓)

𝑑𝑡 658 

=
1
𝑠 F

1

𝑒+# + 1 − 𝑓)𝑓)

𝑠𝑒+#𝑑𝑡	660 

 659 

=
1
𝑠 ln O𝑒

+# 	+
1 − 𝑓)
𝑓)

O + 𝐶 661 

=
1
𝑠 ln Q

𝑓)(𝑒+# − 1) + 1
𝑓)

Q + 𝐶 662 

	663 

=
1
𝑠 ln

|𝑓)(𝑒+# − 1) + 1| −	
1
𝑠 ln O

1
𝑓)
O + 𝐶		 664 

=
1
𝑠 ln(𝑓)

(𝑒+# − 1) + 1) 665 

We can then rewrite:  666 

𝑛 =
ln[1 − 𝑃(𝑡 ≤ 𝜏)]

−𝐹(𝜏)  667 

=
𝑠 ⋅ ln[1 − 𝑃(𝑡 ≤ 𝜏)]
−ln(𝑓)(𝑒+, − 1) + 1)

 668 

𝑛
𝑠 =

ln[1 − 𝑃(𝑡 ≤ 𝜏)]
−ln(𝑓)(𝑒+, − 1) + 1)

 669 

 670 
Let 𝑞 = 1 − 𝑃(𝑡 ≤ 𝜏) which is the probability that the variant will not be detected before or 671 
during time step 𝜏. 672 

Ln(𝑓)(𝑒+, − 1) + 1) = −
𝑠 ln 𝑞
𝑛  673 

𝑓)(𝑒+, − 1) + 1 = 𝑞*+/! 674 

𝑒+, =
𝑞*+/! − 1

𝑓)
+ 1	676 

𝜏 =
!"	!

"#/%"&
'(

$%

&
 [Eq. 1] 675 

 677 
This equation yields, given s, n, f0, and q, the day 𝜏 on which the variant will have been 678 
detected at least once with confidence level 1 – q. This equation is valid when the timescales 679 
of detection are smaller than the timescales at which the logistic growth dynamics do not 680 
hold. For example, in extreme scenarios of a very high wildtype Re, a small variant 681 
transmission advantage and a low sequencing rate, the timescale of variant detection is 682 
beyond that of depletion of the susceptible population and the assumptions of the equation are 683 
not satisfied. We compared the predicted time to detection at 95% confidence for sequencing 684 
rates n ranging from 0.1 to 1000 S/M/wk as computed using epidemic simulations (Fig. 2a in 685 
main text) to predicted time to detection using only Eq. 1. In computing time to detection 686 
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using the equation, we used the empirical value of f0 from the epidemic simulations as input, 687 
with q = 0.05. We used the theoretical value of s, computed as (variant Re - wildtype Re) / 5. 688 
We performed this simulation for all four scenarios of variant emergence (each corresponding 689 
to a different initial wildtype Re and wildtype prevalence) and all four values of variant Re. As 690 
seen in Extended Data Fig. 4, there was high correspondence between the time to detection 691 
from the explicit epidemic simulations and Eq. 1 when the variant Re was high and/or 692 
wildtype prevalence was low. In contrast, when variant Re was low and wildtype prevalence 693 
was high, susceptible depletion would occur before the timescale at which the variant would 694 
be detected, and the time to detection as predicted using the equation would deviate from the 695 
simulated time to detection. We note that, for combinations of initial variant proportion and 696 
variant proportion logistic growth rate not explicitly discussed in this study, the mathematical 697 
model can be used to compute the expected time to variant detection.  698 
 699 
Variant prevalence estimation 700 
 701 
In addition to variant detection, we investigated the relationship between sequencing rates 702 
and the accuracy with which the spread dynamics of the variant can be tracked following its 703 
detection. Specifically, we investigated the accuracy with which the weekly proportion of 704 
new infections that is attributable to the variant can be estimated, and how this accuracy 705 
depends on sequencing rate. Mathematically, assuming a small, finite population 𝑁 was 706 
infected at prevalence 𝜌 and samples were collected from fraction 𝑠 of infected individuals 707 
during each week, the potential (finite) number of samples that could be sampled from for 708 
sequencing is 𝑁𝜌𝑠.  709 
 710 
Suppose the true circulating proportion is 𝑝 and 𝑛 (i.e. 𝑛 < 𝑁𝜌𝑠) number of samples were 711 
sequenced, the number of variant sequences (𝑋) follows a hypergeometric distribution with 712 
mean and variance: 713 

𝐸(𝑋) = 𝑛𝑝 714 

𝑉𝑎𝑟(𝑋) = 𝑛𝑝(1 − 𝑝) ^
𝑁𝜌𝑠 − 𝑛
𝑁𝜌𝑠 − 1_ 715 

The variance of the variant proportion 𝑝̂ (= 𝑋/𝑛) showing up in the sequences is:  716 

𝑉𝑎𝑟(𝑝̂) =
𝑝(1 − 𝑝)

𝑛 ^
𝑁𝜌𝑠 − 𝑛
𝑁𝜌𝑠 − 1_ 717 

By Central Limit Theorem, 01*0

2!(#$!)& 3'()$&'()$#4
 follows an approximate Normal distribution.  718 

As such, at 95% (𝛼 = 5%) confidence, the error (𝜖) around the true variant proportion is:  719 

𝜖 = 𝑍5/6g
𝑝(1 − 𝑝)

𝑛 ^
𝑁𝜌𝑠 − 𝑛
𝑁𝜌𝑠 − 1_ 720 

For sequencing rate of 𝑟 sequences per million persons per week (hence 𝑛 = 78
'

 where 𝑐 =721 
109):  722 
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𝜖 = 𝑍5/6g
𝑝(1 − 𝑝)

𝑟 ^
𝑐𝜌𝑠 − 𝑟
𝑁𝜌𝑠	 − 1_ 723 

If 𝑁𝜌𝑠 is sufficiently large (i.e. 𝑁𝜌𝑠 ≫ 𝑛 = 78
'
→ 𝑐𝜌𝑠 ≫ 𝑟 ),  724 

𝜖 → 𝑍5/6g
𝑝(1 − 𝑝)

𝑟 l
𝑐
𝑁m 725 

In Extended Data Fig. 9, we visualized the relationship between sequencing rate and the error 726 
in the estimated variant proportion, for different population sizes, true variant proportions, 727 
and values of 𝛼.  728 
 729 
Sensitivity analyses 730 
 731 
In our analyses, we defined a sequence’s turnaround time as the time between the sequence’s 732 
collection date and its submission date on GISAID. This represents the most accurate 733 
measure of turnaround time available and has been used in previous analyses of global 734 
sequencing output5. Nevertheless, a potential issue with this definition of turnaround time is a 735 
lag between acquiring the sequence and its submission to GISAID, which is not reflected in 736 
these estimates28; in some cases, sequence analysis might have been performed but the 737 
sequence would only later be deposited in GISAID. To establish the sensitivity of our global 738 
simulation results to such delays in upload to GISAID, we re-simulated our global 739 
metapopulation genomic surveillance simulations, where we assumed that the day the 740 
sequence was acquired was somewhere between the sample’s collection date and date of 741 
submission to GISAID. Specifically, for each sequence, we computed the modified 742 
turnaround time as f(tsubmission – tcollection), for 0 < f < 1. We re-simulated the genomic 743 
surveillance simulation results as presented in Figure 3 for f  = 0.25, 0.5. Varying f modifies 744 
the (country-specific) turnaround time-specific sequencing rates used in the global genomic 745 
surveillance system. Results for different values of f  are presented in Extended Data Fig. 746 
10a. For all values of f  tested, we find that the conclusion holds that more solidaristic 747 
strategies for the global distribution of respiratory virus surveillance infrastructure (strategies 748 
A and C) offer strongly reduced time to variant detection. Hence, our results are robust to 749 
biases resulting from deviations from the assumption that the submission date represents the 750 
date on which the sample is available. Importantly, the observed consistency between a 751 
country’s sequencing rate and its median turnaround time (Spearman’s r = -0.60, P = 5.1× 752 
10-21) suggests that a country’s distribution of turnaround times as computed from GISAID 753 
yields a representative picture of a country’s true capacity to rapidly sequence a virus after 754 
sample collection.  755 
 756 
In our model, we estimated the mobility rate wnm for countries m and n by dividing the 757 
number of trips from m to n in 2016 in the GTM by the population in m. This assumes that all 758 
members of the population participate in disease-relevant spread. In reality, this will not be 759 
the case. However, for the results of our study, these differences are likely to be of little 760 
consequence. Specifically, a lower effective mobility rate would further increase the 761 
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reduction in time to detection that would result from the establishment of minimum 762 
sequencing infrastructure globally, as the time until a variant that emerges in a low-763 
sequencing rate environment is exported to a high-sequencing rate environment would 764 
increase. We explicitly investigated the potential effects of misspecification of the mobility 765 
matrix on our results by multiplying and dividing the mobility rate matrix by three, 766 
representing substantially increased and reduce spread, respectively (Extended Data Fig. 767 
10b). A reduced rate would further increase the gains to be effected by the establishment of 768 
sequencing infrastructure globally. Even if the mobility rate was increased three-fold, the 769 
strategies with increased solidarity in the global distribution of genomic surveillance 770 
infrastructure yield strongly improved performance compared to the 2022 baseline. Hence, 771 
our results are robust to specifics of the mobility dynamics.  772 
 773 
Our analyses wholly rely on GISAID data to inform the global landscape of respiratory virus 774 
genomic surveillance infrastructure. In some countries, incomplete or absent deposition of 775 
sequence data in GISAID may result in sequencing rates computed from GISAID data being 776 
unreliable. For example, the zero-covid policy in China that was in place for parts of 2022, 777 
combined with a relatively small number of sequences in GISAID, suggest that submission 778 
rates to GISAID may not accurately represent China’s true genomic surveillance capacity51. 779 
We tested the possible implications of such biases on our results by comparing the results if 780 
all epidemic simulations with new variant viruses originating in China were removed. When 781 
China was removed from the set of possible epidemic origin locations, the conclusions 782 
regarding the performance of the different strategies for the global distribution of genomic 783 
surveillance infrastructure remained unchanged. The representativeness of GISAID data is 784 
further supported by the extremely strong correlation between sequence output and GDP 785 
(Spearman’s r = 0.79, P = 6.3×10-41). 786 
 787 
Data availability 788 
 789 
Data on global population sizes are available from the United Nations World Population 790 
Prospects 2022 (https://population.un.org/wpp/Download/Standard/MostUsed/). Data on 791 
country GDP (https://data.worldbank.org/indicator/NY.GDP.PCAP.CD) and income 792 
classification (https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-793 
bank-country-and-lending-groups) is available from the World Bank. The Global 794 
Transnational Mobility Dataset is available from the Global Mobilities Project 795 
(https://migrationpolicycentre.eu/globalmobilities/dataset/). Metadata on global SARS-CoV-2 796 
and seasonal influenza virus sequencing rates were extracted from GISAID 797 
(www.gisaid.org). Raw global epidemic simulation output is available at 798 
https://zenodo.org/records/10051237. 799 
 800 
Code availability 801 
 802 
Custom code and data used to generate the results in this study is publicly available at 803 
https://github.com/AMC-LAEB/genomic_surveillance_solidarity. 804 
 805 
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 926 
 927 

Extended Data Fig 1. The global distribution of sequencing output. 928 
(A) The cumulative proportion of the global population that accounts for a cumulative 929 
proportion of global sequence output for SARS-CoV-2. Data on sequencing output 930 
corresponds to SARS-CoV-2 sequences in GISAID with collection date in 2022. Solid grey 931 
lines show the smallest proportion of the population that accounts for 50% of sequencing 932 
output. Dashed grey lines show the smallest proportion of sequencing output that is 933 
accounted for by 50% of the global population. (B) The cumulative proportion of the global 934 
population that accounts for a cumulative proportion of global seasonal influenza sequence 935 
output. Data on sequencing output corresponds to seasonal influenza sequences collected 936 
from humans in GISAID with collection date in 2018. Solid grey lines show the smallest 937 
proportion of the population that accounts for 50% of sequencing output. Dashed grey lines 938 
show the smallest proportion of sequencing output that is accounted for by 50% of the global 939 
population. 940 
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 944 

 945 
Extended Data Fig. 2. Validation of the metapopulation model against GLEAM. For ten 946 
geographically representative countries, global variant spread was simulated, initialized in the 947 
country’s capital city, in GLEAM. For each of the 10 index countries, all global countries’ 948 
epidemic onset timings as simulated using GLEAM were compared against the countries’ 949 
epidemic onset timings as simulated using the epidemic model used in this study. For both 950 
models, timings were computed as the median across 10 independent simulations. 951 
Simulations are for a variant Re of 1.6. 952 
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 954 
  955 

Extended Data Fig. 3. Different scenarios of variant emergence. For each of the values of 956 
variant Re, the corresponding panel shows the epidemiological dynamics of variant and 957 
wildtype for that scenario of variant emergence, starting from the day of variant introduction. 958 
For each value of variant Re, the scenario of variant emergence is characterized by a different 959 
value of wildtype Re and wildtype prevalence at introduction.  960 
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 962 
Extended Data Fig. 4. Validation of derived time to variant detection. The red points 963 
show the relationship between time to detection simulated using binomial sampling (x-axis) 964 
and time to detection computed using the derived mathematical model (y-axis). The dashed 965 
grey line corresponds to y=x. Each panel corresponds to a different variant Re and different 966 
scenario of variant emergence (i.e. a different value of wildtype Re and wildtype prevalence 967 
at time of variant introduction). This illustrates that the equation is valid, unless the 968 
timescales of detection are smaller than the timescales at which the logistic growth dynamics 969 
do not hold (bottom left quadrant), e.g. when susceptible depletion occurs before the variant 970 
is expected to be detected (see Methods). 971 
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  975 

 976 
Extended Data Fig. 5. The dependence of time to variant detection on sequencing rate 977 
for varying scenario of variant emergence. (A) Relationship between sequencing rate and 978 
the number of days until the variant will have been detected with 95% confidence. The small 979 
black tick marks on the x-axes in this plot and in B show country-specific SARS-CoV-2 980 
sequencing rates for 2022. Each panel corresponds to a different scenario of variant 981 
emergence, characterized by a wildtype (wt) Re and wildtype prevalence at introduction. In 982 
each panel, lines are colored by value of variant Re.  (B) Relationship between sequencing 983 
rate and the reduction in time to variant detection that results from increasing the existing 984 
sequencing rate (x-axis) by 1 S/M/wk.   985 
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 987 
Extended Data Fig. 6. The dependence of the number of variant infections by day of 988 
detection on sequencing rate for varying scenario of variant emergence. (A) Relationship 989 
between sequencing rate and the number of infections by the day the variant will have been 990 
detected with 95% confidence. The small black tick marks on the x-axes in this plot and in B 991 
show country-specific SARS-CoV-2 sequencing rates for 2022. Each panel corresponds to a 992 
different scenario of variant emergence, characterized by a wildtype (wt) Re and wildtype 993 
prevalence at introduction. In each panel, lines are colored by value of variant Re.  (B) 994 
Relationship between sequencing rate and the reduction in the number of variant infections 995 
by the day of variant detection that results from increasing the existing sequencing rate (x-996 
axis) by 1 S/M/wk.   997 
 998 
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    999 

 1000 
Extended Data Fig. 7. Time to global variant detection by strategy and scenario of 1001 
variant emergence. (A) Time to global variant detection by strategy for the global 1002 
distribution of respiratory virus surveillance infrastructure, by variant Re, for varying scenario 1003 
of variant emergence (characterized by wildtype (wt) Re and wildtype prevalence (N = 10,000 1004 
for each).  Thin and thick lines correspond to 95% and 50% CIs, respectively. Points 1005 
correspond to means. (B) Number of global variant infections by the day of first detection by 1006 
strategy for the global distribution of respiratory virus surveillance infrastructure, by variant 1007 
Re, for varying scenario of variant emergence (characterized by wildtype (wt) Re and wildtype 1008 
prevalence).  1009 
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 1010 
Extended Data Fig. 8. Time to ascertainment of substantial variant proportion by 1011 
strategy and scenario of variant emergence.  (A) Time until the variant was found to 1012 
account for a substantial proportion of circulating virus in at least one country, by strategy for 1013 
the global distribution of respiratory virus surveillance infrastructure, by variant Re, for 1014 
varying scenario of variant emergence (characterized by wildtype (wt) Re and wildtype 1015 
prevalence). Thin and thick lines correspond to 95% and 50% CIs, respectively. Points 1016 
correspond to means. (B) Number of global variant infections by the day the variant was 1017 
found to account for a substantial proportion of circulating virus in at least one country, by 1018 
strategy for the global distribution of respiratory virus surveillance infrastructure, by variant 1019 
Re, for varying scenario of variant emergence (characterized by wildtype (wt) Re and wildtype 1020 
prevalence). 1021 
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 1023 

Extended Data Fig. 9. The relationship between sequencing rate and error in estimated 1024 
variant proportion. For each sequencing rate given on the x-axis, for varying true variant 1025 
proportion and population size, the y-axis shows the maximum error in the estimated weekly 1026 
proportion of total infections attributable to the variant. This maximum error is presented for 1027 
varying confidence (i.e. the y-axis represents the error that the error in the estimated variant 1028 
proportion relative to the true variant proportion will be smaller than n% of the time, for n 1029 
given by the confidence level). 1030 
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 1036 
Extended Data Fig. 10. Sensitivity analyses for time to detection. 1037 
(A) Sensitivity analysis for time to GISAID submission. Time to global variant detection by 1038 
strategy for the global distribution of respiratory virus surveillance infrastructure, by variant 1039 
Re, for varying scenario of variant emergence (characterized by wildtype (wt) Re and wildtype 1040 
prevalence).  Thin and thick lines correspond to 95% and 50% CIs, respectively. Points 1041 
correspond to means. Given a sequence in GISAID’s computed turnaround time T, a 1042 
sequence’s adjusted turnaround time T̃ was equal to fT. These adjusted turnaround times 1043 
were used to inform country-specific sequencing infrastructure in the global genomic 1044 
surveillance simulations. (B) Sensitivity analysis for mobility rate. Time to global variant 1045 
detection by strategy for the global distribution of respiratory virus surveillance 1046 
infrastructure, by variant Re, for varying scenario of variant emergence (characterized by 1047 
wildtype (wt) Re and wildtype prevalence). Thin and thick lines correspond to 95% and 50% 1048 
CIs, respectively. Points correspond to means. Each row corresponds to a modified global 1049 
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mobility rate (top: baseline mobility rate multiplied by 3; bottom: baseline mobility rate 1050 
divided by 3). 1051 
 1052 
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