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 2 

Summary  10 

 11 

Public health interventions for respiratory virus outbreaks increasingly rely on genomic 12 

sequencing for the rapid identification of new (variant) viruses1–5. However, global 13 

sequencing efforts are unevenly distributed6–9, with some high-income countries sequencing 14 

at >100,000 times the rate of many low-income countries. Given the importance of virus 15 

genomic sequencing and substantial global disparities in sequencing capacities, there is a 16 

need for meaningful minimum sequencing targets and functional upper bounds that maximise 17 

resource efficiency1,2,8,10,11. Here, using mathematical models and analyses of data on global 18 

SARS-CoV-2 sequencing output in 2022, we show that increases in sequencing rates typical 19 

of low-income countries are >100-fold more effective at reducing time to detection of new 20 

variants than increases from rates typical of high-income countries. We find that relative to 21 

2022 sequencing rates, establishing a minimum respiratory virus sequencing capacity of two 22 

sequences per million people per week (S/M/wk) with a two-week time from sample 23 

collection to sequence deposition in all countries, while simultaneously capping sequencing 24 

rates at 30 S/M/wk in all countries, could reduce mean time to first variant detection globally 25 

by weeks-to-months while also reducing global sequencing output by >60%. Our results 26 

show that investing in a minimum global respiratory virus sequencing capacity is far more 27 

effective at improving variant surveillance than expanding local sequencing efforts in 28 

countries with existing high-intensity respiratory virus surveillance programs and can guide 29 

rightsizing of global respiratory virus genomic surveillance infrastructure.  30 
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 3 

Main 31 

 32 

Genomic surveillance of respiratory viruses has expanded substantially since the late 1990s 33 

and is now a critical component of public health preparedness and response, particularly for 34 

identifying and monitoring the spread of new virus variants of concern1–5. However, genomic 35 

surveillance infrastructure is unequally distributed globally2,6,8,9. For viruses collected in 2022 36 

alone, ~7 million SARS-CoV-2 genomes have been submitted to GISAID (www.gisaid.org, 37 

the most commonly used repository for respiratory virus genome sequencing data), but 38 

country-level sequencing rates as estimated from GISAID submissions varied by over six 39 

orders of magnitude (Fig. 1a), with 17 countries not depositing any sequences. Half of all 40 

publicly shared SARS-CoV-2 genomes from samples collected in 2022 originated from 41 

countries that account for only 4.4% of the global human population, while countries 42 

comprising half of the global population deposited only 0.7% of available genomes (Fig. 1b). 43 

Additionally, the time from sample collection to sequence deposition (henceforth, turnaround 44 

time) ranged across countries from less than two weeks to hundreds of days (interquartile 45 

range 28-108 days; Fig. 1c). Sequencing rates and median turnaround times (Spearman’s r = 46 

0.79, P = 6.3×10-41; r = -0.54, P = 7.1×10-16, respectively) are strongly correlated with per 47 

capita GDP, indicating that the capacity of a country’s genomic surveillance infrastructure 48 

correlates with its economic output (Fig. 1d, Extended Data Fig. 1). As new variants can 49 

potentially emerge in any country, this global variability in genomic surveillance capacity 50 

raises important questions about the amount of sequencing and associated turnaround time 51 

needed to effectively and efficiently detect new virus variants worldwide1,2,8,10,12,13. 52 

 53 

To address these questions, we deterministically simulated the emergence of a variant virus in 54 

the background of circulating wildtype virus with susceptible-infected-recovered (SIR) 55 

dynamics under different scenarios of variant emergence (i.e. initial Re of wildtype and 56 

variant viruses and prevalence of wildtype virus; Extended Data Fig. 2). Using the 57 

simulations, we computed the expected day of variant detection with 95% confidence based 58 

on binomial sampling for different sequencing rates. We then derived a new mathematical 59 

model characterising the relationship between sequencing rates and time to detection of the 60 

new virus variant. For a variant virus, introduced in a population at an initial frequency f0, of 61 

which the change in variant proportion through time can be described by a logistic growth 62 

rate s, the time since variant introduction after which the variant virus is expected to have 63 
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 4 

been detected with confidence level 1-q, when sequencing n samples per unit time, is equal to 64 

(log[(q-s/n-1)/f0]+1)/s. This model is applicable to all respiratory viruses that can be described 65 

by SIR dynamics14, including SARS-CoV-2, respiratory syncytial virus, and pandemic or 66 

seasonal influenza viruses.  67 

 68 

For all modelled scenarios of variant emergence (Extended Data Fig. 2), time to variant 69 

detection rapidly decreased as sequencing rate increased up to ~10 S/M/wk (Fig. 2a, 70 

Extended Data Fig. 3a). In comparison, the benefits of further increases in sequencing rate 71 

beyond 10 S/M/wk were much smaller (Fig 2a). In 2022, many high-income countries 72 

sequenced SARS-CoV-2 genomes at rates well in excess of 10 S/M/wk (some >>100 73 

S/M/wk), whereas many lower-and-middle-income countries sequenced at rates (<<1 S/M/k 74 

in many countries) at which, in absolute terms, small increases in sequencing rates would 75 

substantially speed up variant detection (Fig. 1a, 2b, Extended Data Fig. 3b). For example, in 76 

a country of 100 million people sequencing at the median 2022 SARS-CoV-2 sequencing rate 77 

in low-income countries (0.035 S/M/wk), increasing the sequencing rate by 1 S/M/wk would 78 

reduce the time to detection of a variant with Re = 1.6 at 95% confidence by ~28 days, given 79 

a wildtype prevalence of 0.5% and a wildtype Re of 1.1 at time of variant emergence. In 80 

contrast, if the same country was sequencing at the 2022 median high-income country rate 81 

(58.7 S/M/wk), the reduction in time to detection resulting from the same 1 S/M/wk increase 82 

in sequencing rate would be only 3.5 hours (Fig. 2b).   83 

 84 

Sequencing rates similarly impact the number of people that will have been infected by the 85 

variant when it is first detected (Fig. 2c, Extended Data Fig. 4a). In the same scenario of 86 

variant emergence described above (variant Re = 1.6, wildtype Re  = 1.1, wildtype prevalence 87 

= 0.5% at variant emergence), given a sequencing turnaround time of two weeks, the 88 

expected number of variant infections by the day of first detection with 95% confidence 89 

amounted to ~4.7 million in a country of 100 million people sequencing at the median low-90 

income country rate. Increasing the sequencing rate in this country by 1 S/M/wk would 91 

reduce the expected number of variant infections by the time of detection by ~4.5 million 92 

infections (Fig. 2d). In contrast, only ~3,400 variant infections would be expected by the day 93 

of first detection in a country sequencing at the median 2022 sequencing rate in high-income 94 

countries (Fig. 2c), and increasing the sequencing rate in this country by the same 1 S/M/wk 95 

would only reduce the expected number of variant infections by the day of first detection by 96 

~60 infections (Fig. 2d). Hence, for reducing a variant’s extent of spread through a 97 
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population by the time of first detection, the benefits of increases in sequencing rates are far 98 

more substantial at lower sequencing rates (Fig. 2d, Extended Data Fig. 4b).  99 

 100 

In addition to sequencing rate, turnaround time is an essential component of effective 101 

genomic surveillance1,7,8,15. For reducing time to variant detection, any reduction in 102 

turnaround time is functionally equivalent to a fold increase in sequencing rate, and the 103 

magnitude of this equivalent fold increase depends on the scenario of variant emergence (Fig. 104 

2e). For example, if the wildtype virus is circulating with Re  = 1 at 0.1% prevalence, reducing 105 

turnaround time by three weeks is equivalent to increasing the sequencing rate 2.4-fold for 106 

detecting a variant with Re = 1.2. In contrast, for detecting a variant with Re = 2, the same 107 

three-week reduction in turnaround time is equivalent to a ~55-fold increase in sequencing 108 

rate. As reductions in turnaround time might be more cost-efficient than increases in 109 

sequencing rate, the benefits of increasing sequencing output should be carefully weighed 110 

against the gains from strengthening the ancillary infrastructure necessary for rapid 111 

sequencing.  112 

 113 

For individual countries, the above results inform how resources can be efficiently allocated 114 

to detect new virus variants locally. However, new (variant) viruses can emerge anywhere 115 

globally1,16. The global time to variant detection is shaped by (1) the global human mobility 116 

network, which determines how the virus spreads internationally17–22 and (2) the global 117 

genomic surveillance network, which determines how rapidly it can be detected in individual 118 

countries where it is present. To investigate how global variation in respiratory virus genomic 119 

surveillance infrastructure impacts the speed of new variant detection, we simulated global 120 

variant spread using a global metapopulation model, validated against GLEAM23,24 121 

(Extended Data Fig. 5). For each value of variant Re, ranging from 1.2 to 2, we performed 122 

10,000 independent simulations. In each simulation, the country where the variant emerged 123 

was randomly selected based on a country population size-weighted probability. We then 124 

estimated the expected global time to variant detection for each simulation given empirical 125 

country-specific SARS-CoV-2 sequencing rates and turnaround times in 2022 as estimated 126 

from submissions to GISAID25.  127 

 128 

The mean time to first variant detection globally, averaged across all simulated variant Re 129 

values, was 82.1 days (95% CI 17 – 193) with substantial variability at lower values of 130 

variant Re (Fig. 3a). The global number of variant infections by the day of first global 131 
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detection varied widely (mean 566,413 infections, 95% CI 73 – 4,999,369) and spanned up to 132 

five orders of magnitude for all values of variant Re (Fig. 3b). The continent in which the 133 

variant emerged strongly shaped the time to variant detection (Fig. 3c) and the number of 134 

global variant infections by the day of first detection (Fig. 3d), the latter ranging from a mean 135 

of 20,264 infections (95% CI 26 – 235,022) when emerging in Europe to 1,559,748 infections 136 

(95% CI 950 – 12,213,845) in case of emergence in Africa (Fig. 3d). The differences in time 137 

to detection (Fig. 3e) and the number of variant infections by the day of detection (Fig. 3f) 138 

were strongly associated with the sequencing rate in the variant’s country of emergence. In 139 

29.1% of all simulations, new variants were first detected outside of their continent of origin, 140 

driven especially by variants emerging in Africa (detected outside origin continent in 74.4% 141 

of simulations), Asia (23.8%) and South America (20.0%), meaning that the variant would 142 

have frequently spread widely within and between continents prior to initial detection (Fig. 143 

3g, 3h).    144 

 145 

Since reductions in time to detection resulting from increases in sequencing rate beyond ~10 146 

S/M/wk (Fig. 2b) are limited, we hypothesised that reducing sequencing output in countries 147 

that strongly exceeded this rate would have little effect on speed of variant detection while 148 

substantially reducing global sequencing output. We re-simulated the genomic surveillance 149 

process using the same metapopulation epidemic simulations and found that relative to the 150 

2022 baseline (henceforth, strategy 1), the expected time to variant detection (Fig. 4a, 151 

Extended Data Fig. 6a) and the expected number of variant infections by the day of detection 152 

(Fig. 4b, Extended Data Fig. 6b) remained largely unchanged if sequencing rates were capped 153 

at 30 S/M/wk in all countries (henceforth, strategy 2): mean time to variant detection would 154 

increase by only 4.5 days, from mean 82.1 days to 86.6 days (95% CI 24-199) (Fig. 4a), 155 

while global sequencing output would be reduced by 67.0% (Fig. 4c).    156 

 157 

Because the largest reductions in time to detection are attained at relatively low sequencing 158 

rates (Fig. 2b), we further hypothesised that establishing basic sequencing infrastructure 159 

globally, even at a limited sequencing rate but with a low turnaround time, could substantially 160 

reduce the global time to variant detection relative to the 2022 baseline. Ensuring a global 161 

minimum sequencing capacity of 2 S/M/wk with a turnaround time of 14 days, while 162 

maintaining sequencing output in countries that already satisfied this capacity in 2022 163 

(henceforth, strategy 3), reduced mean time to global variant detection by 26.1 days to 56.0 164 

days (95% CI 16 – 118) (Fig. 4a). The mean number of global variant infections by the day of 165 
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 7 

detection decreased from 566,413 infections (95% CI 73 – 4,999,369) to 26,415 infections 166 

(95% CI 61 –196,092) (Fig. 4b). A sequencing rate of 2 S/M/wk corresponds to 0.18% of the 167 

maximum country-specific SARS-CoV-2 sequencing rate in 2022 and its establishment 168 

globally would increase global sequencing output by 6.0% relative to the 2022 baseline (Fig. 169 

4c). 170 

 171 

Combining the insights above, we hypothesised that reducing the inequity in the global 172 

genomic surveillance could strongly improve its efficiency and effectiveness. In our 173 

simulations, combining strategies 2 and 3 (i.e. capping individual countries’ sequencing 174 

output at 30 S/M/wk while also ensuring the minimum global capacity of 2 S/M/wk with 175 

turnaround time of 14 days; henceforth, strategy 4) reduced mean time to detection and the 176 

mean number of variant infections by the day of first detection to 57.7 days (95% CI 20 – 177 

120) and 27,717 infections (95% CI 90 – 201,028) respectively (Fig. 4a, 4b, Extended Data 178 

Fig. 6). The performance of strategy 4 is effectively identical to that of strategy 3, which 179 

establishes the global minimum capacity but without capping individual countries’ output, 180 

but strategy 4 still reduces global sequencing output by 61.0% relative to the 2022 baseline 181 

(Fig. 4c). While the initial costs of establishing the infrastructure necessary to achieve the 182 

minimum respiratory virus sequencing capacity globally are likely to be high, our results 183 

show that opportunities exist for redistribution of existing resources or investments in new 184 

ones in order to achieve a more equal distribution of sequencing infrastructure across the 185 

globe, yielding a global surveillance system that is more effective while more than halving 186 

overall global sequencing output.  187 

 188 

The establishment of global minimum respiratory virus sequencing capacity would also 189 

increase the probability that a variant is first detected in the continent where it emerged from 190 

70.9% (strategy 1) to 98.4% (strategy 4) (Fig. 4d). Consequently, in all countries, including 191 

those that were to reduce their national sequencing output, the lead time between the variant’s 192 

first global detection and its first local case would increase (Fig. 4e). This would allow for 193 

more time for potential local public health measures in preparation for variant outbreaks in all 194 

countries. These benefits are particularly valuable for countries that are extensively connected 195 

in the global mobility network, located largely in Europe, Asia and North America, as these 196 

countries tend to experience especially early invasion and hence typically have a shorter lead 197 

time a priori (Fig. 4e). Importantly, the relative performance of the different strategies for the 198 

global distribution of genomic surveillance infrastructure is robust to biases in the estimates 199 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2023. ; https://doi.org/10.1101/2023.11.01.23297901doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297901
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

of turnaround time resulting from delays in sequence deposition in GISAID26,27 (Extended 200 

Data Fig. 7) and deviations from the assumed global mobility rates (Extended Data Fig. 8). 201 

 202 

This study primarily focuses on the simple detection of a variant virus, but ascertaining the 203 

public health risk posed by a variant requires information such as its virulence and 204 

transmissibility28, that at best can only partially be inferred from genomic sequencing1,29–32. 205 

Accruing such information and translating it to public health policy likely occurs on 206 

timescales beyond the reductions in time to variant detection that increases in sequencing rate 207 

beyond the order of 10-30 S/M/wk can yield, thus limiting the public health impact of further 208 

increases. For example, the SARS-CoV-2 Alpha variant was first detected in the UK in a 209 

sample collected on 20 September 2020, likely within days of its initial emergence33. At the 210 

time, the sequencing rate in the UK was ~100 S/M/wk. However, it was not until December 211 

2020 that epidemiological evidence of the variant’s transmission advantage relative to pre-212 

existing viruses began to accumulate5,33. Hence, sequencing at rates much lower than ~100 213 

S/M/wk would likely have had similar public health impact. Because of the importance of 214 

complementary clinical and epidemiological data, the value of investments in global genomic 215 

surveillance capacity can be enhanced through clinical and public health infrastructure 216 

development27,34. 217 

 218 

Our results are broadly applicable to respiratory viruses in both endemic and epidemic 219 

scenarios, including potential future pandemics similar to the 2009 influenza A/H1N1pdm09 220 

and COVID-19 pandemics. The global heterogeneity in genomic surveillance of SARS-CoV-221 

2 is also apparent for other respiratory viruses, including those with extensive global public 222 

health surveillance histories: seasonal influenza virus genomic sequencing output in the pre-223 

pandemic era was similarly unequally distributed (Extended Data Fig. 9).  224 

 225 

Our results are limited by the assumption of representative sampling in the genomic 226 

surveillance process, including the ready availability and access to diagnostic tools, which 227 

does not always hold in reality35,36. As the departure from this assumption is especially strong 228 

in resource-constrained settings15,35, the reported reductions in time to variant detection 229 

resulting from the establishment of a global minimum sequencing capacity are likely 230 

underestimates. Our results primarily apply to variant detection (and monitoring variant 231 

prevalence, see Extended Data Fig. 10, Supplementary Text), and not to other analyses such 232 

as reconstructing geographical spread19 or targeted outbreak investigations37, for which the 233 
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shape of the relationship between sequencing rate, turnaround time, and performance is likely 234 

different12. However, initial detection is the necessary starting point for all analyses that make 235 

use of genomic data. The proposed global minimum respiratory virus sequencing capacity 236 

offers increased and faster information for public health actions targeting the identification 237 

and monitoring of new variants, as well as tracking viruses through space and time38,39. 238 

Additionally, the optimal sequencing rate depends on the characteristics of the pathogen and 239 

the required timeliness of sequencing data for public health action, but a minimum capacity 240 

of 2 S/M/wk at 14 days turnaround time will even allow for relatively rapid detection when a 241 

highly transmissibly variant emerges in a background of high wildtype incidence. The 242 

balance of sequencing rate and turnaround time in our proposed minimum capacity serves as 243 

a potential target, but the most resource-efficient balance of sequencing rate and turnaround 244 

time could differ among countries. See Supplementary Text for further discussion of other 245 

approaches and comparisons to other guidance. 246 

 247 

Our analyses use empirical SARS-CoV-2 sequencing rates based on submissions to GISAID 248 

from 2022, when COVID-19 was still a public health emergency of international concern. 249 

Although sequencing outputs have since declined in many countries1,2, the fundamental 250 

notion persists that relatively small increases in global sequencing output in the right places 251 

can profoundly improve global respiratory virus genomic surveillance in ways that even large 252 

increases in places with established surveillance infrastructure cannot. Establishing the 253 

necessary infrastructure for robust global genomic surveillance will require substantial 254 

investments in countries that often have other competing public health priorities2,40. Our 255 

results suggest that, because the establishment of such infrastructure benefits the world at 256 

large, filling this investment gap will provide a strong return on investment for well-257 

resourced countries that already possess strong genomic surveillance infrastructure locally. 258 

For these countries, such investments likely represent a more efficient use of public health 259 

resources than investments in increasing local sequencing output and should be a public 260 

health priority in the post-pandemic period.   261 
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 10 

   262 

Fig. 1. The global landscape of SARS-CoV-2 genomic surveillance infrastructure in 263 
2022. a) The distribution of non-zero weekly sequencing rates per million people, for 264 
individual countries (n = 198), coloured by continent (AF: Africa, EU: Europe, OC: Oceania, 265 
AS: Asia, NA: North America, SA: South America). b) The cumulative proportion of the 266 
global population that accounts for a cumulative proportion of global sequence output. Solid 267 
grey lines show the smallest proportion of the population that accounts for 50% of 268 
sequencing output. Dashed grey lines show the smallest proportion of sequencing output that 269 
is accounted for by 50% of the global population. c) The distribution of median country-270 
specific turnaround times (n = 198), coloured by continent. d) Correlation between per capita 271 
GDP and weekly sequencing rate per million people by country (n = 188) (each circle 272 
represents one country, coloured by continent). 273 
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 275 

276 
Fig. 2. The dependence of time to variant detection on sequencing rate and turnaround 277 
time for a single country. In all panels, lines are coloured by values of variant Re, with a 278 
distinct scenario of variant emergence for each value of variant Re; sequencing turnaround 279 
time was assumed to be 14 days. a) Relationship between sequencing rate and the number of 280 
days until the variant will have been detected with 95% confidence. The small black tick 281 
marks on the x-axes in this plot and in b-d show country-specific SARS-CoV-2 sequencing 282 
rates for 2022. Vertical dotted lines correspond to the median SARS-CoV-2 sequencing rates 283 
for high-income (HIC) and low-income (LIC) countries in 2022. b) Relationship between 284 
sequencing rate and the reduction in time to variant detection that results from increasing the 285 
existing sequencing rate (x-axis) by 1 S/M/wk. c) Relationship between sequencing rate and 286 
the number of variant infections by the day the variant will have been detected with 95% 287 
confidence. d) Relationship between sequencing rate and the reduction in the number of 288 
variant infections by the day of detection that results from increasing the existing sequencing 289 
rate (x-axis) by 1 S/M/wk. e) Relationship between a reduction in turnaround time (in days) 290 
and the fold increase in sequencing rate that would be required to effect the same reduction in 291 
time to detection if turnaround time was kept constant. 292 
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 294 
 295 
Fig. 3. The global time to variant detection based on the SARS-CoV-2 genomic 296 
sequencing landscape in 2022. a) The distribution of days to variant detection for different 297 
values of variant Re, each with a distinct scenario of variant emergence (n = 10,000 for each 298 
variant Re). Vertical lines correspond to the median and 95% CI. b) The distribution of the 299 
number of global variant infections by the day of variant detection. c) The time to variant 300 
detection by variant origin continent. Thin and thick lines correspond to 95% and 50% CIs, 301 
respectively. d) The number of global variant infections by the day of detection by variant 302 
origin continent, analogous to c. e) The relationship between a country’s sequencing rate and 303 
the mean time to first global detection of a variant emerging in that country. f) The 304 
relationship between a country’s sequencing rate and the mean number of global variant 305 
infections by the day of detection of a variant emerging in that country. g) The probability 306 
that the variant is first detected in its origin continent, by origin continent. h) Four example 307 
simulations of dynamics of variant spread and detection. Each point represents a country that 308 
has seen at least one variant infection by the day the variant is detected, coloured by the day 309 
of the first infection. Triangles and inverted triangles depict the country where the variant is 310 
first detected and first emerged, respectively. Simulations are for variant Re of 1.6. 311 
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 314 

Fig. 4. The time to detection under varying global distributions of global respiratory 315 
virus genomic sequencing infrastructure. a) Comparison of time to variant detection for 316 
different global strategies for the global distribution of genomic surveillance infrastructure. 317 
Each value of variant Re corresponds to a distinct scenario of variant emergence (n = 10,000 318 
for each). Thin and thick lines correspond to 95% and 50% CIs, respectively. b) The 319 
cumulative number of global variant infections by the day of variant detection by strategy, 320 
analogous to a. c) Total global sequencing output relative to the 2022 baseline by strategy. d) 321 
The probability that the variant is first detected in its origin continent, by strategy. e) 322 
Comparison of the mean time between the first detection of the variant globally, and the first 323 
local within-country infection, by strategy, for individual countries, averaged across values of 324 
variant Re. Each point corresponds to a country, coloured by continent. Boxplots show the 325 
median, first and third quartiles, and minimum and maximum values. 326 
  327 
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Online Methods 330 

 331 

Sequence metadata analysis 332 

 333 

We downloaded metadata corresponding to all SARS-CoV-2 genomes in the GISAID13 334 

database with collection date between January 1st 2022 and January 1st 2023 and submission 335 

date up to July 1st 2023 (n = 6,894,449). For each country with at least one sequence in the 336 

dataset, we computed the weekly sequencing rate by dividing the number of viruses sampled 337 

in that country by 52 and the country’s population size in millions, yielding a sequencing rate 338 

in units of sequences per million people per week (S/M/wk). Population sizes for July 1st 339 

2022 were extracted from the United Nations World Population Prospects 2022 340 

(https://population.un.org/wpp/Download/Standard/MostUsed/). For each sequence, we 341 

computed the turnaround time from the number of days between the sample collection and 342 

submission day in GISAID. We extracted countries’ per capita gross domestic product 343 

(GDP) for 2022, or the most recent year before 2022 if data for 2022 was unavailable, from 344 

the World Bank (https://data.worldbank.org/indicator/NY.GDP.PCAP.CD (last updated 345 

2023/10/26)). We extracted income classifications for each country for fiscal year 2024 from 346 

the World Bank (https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-347 

bank-country-and-lending-groups). For the analysis of seasonal influenza sequencing output, 348 

we downloaded metadata for all seasonal influenza haemagglutinin sequences from humans 349 

with sampling date between January 1st 2018 and January 1st 2019 (n = 28,992) as the last full 350 

year for which sequencing would have been minimally affected by the COVID-19 pandemic. 351 

 352 

Surveillance simulations 353 

 354 

In all analyses, we assumed that a variant virus emerges in the context of circulating wildtype 355 

virus. In our simulations, both variant and wildtype epidemiological dynamics are described 356 

by a susceptible-infected-recovered (SIR) compartmental model with infectious period 1/g 357 

equal to 5 days for both viruses, with no interactions between genotypes. We simulated 358 

variant epidemics under a range of values of variant Re at time of introduction (variant Re = 359 

1.2, 1.3, 1.6, and 2). In the main text, we assumed a different scenario of variant emergence 360 

for each value of variant Re, characterized by a wildtype (wt) Re at time of variant 361 

introduction and a wildtype prevalence at time of variant introduction (variant Re = 1.2: wt Re 362 
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= 1, wt prevalence = 0.1%; variant Re = 1.3: wt Re = 1.05, wt prevalence = 0.2%; variant Re = 363 

1.6: wt Re = 1.1, wt prevalence = 0.5%; variant Re = 2: wt Re = 1, wt prevalence = 2%). These 364 

scenarios were chosen such that circulation dynamics of wildtype and variant were 365 

comparable (e.g. the emergence of a highly transmissible variant in the background of high 366 

wildtype prevalence). In the Extended Data, we show the same analyses for all combinations 367 

of variant Re and scenario of variant emergence (e.g. a variant with Re = 2 with wildtype 368 

dynamics corresponding to the scenario for variant Re = 1.2 (wt Re = 1, wt prevalence = 369 

0.1%)). Epidemic dynamics for each scenario in the main text are shown in Extended Data 370 

Fig. 2. We note that, for any combination of initial variant proportion and variant proportion 371 

logistic growth rate, including those not explicitly discussed in this study, the mathematical 372 

model derived below can be used to compute the expected time to variant detection, for any 373 

sequencing rate. 374 

 375 

For the single-country analyses presented in Fig. 2, we assumed a population of 100 million 376 

and turnaround time of two weeks. We deterministically simulated variant and wildtype 377 

epidemics, starting with one variant-infected individual, and computed the variant proportion 378 

f(t) through time. For each sequencing rate and given f(t), we computed the expected day of 379 

detection with 95% confidence as the day on which the probability that zero wildtype 380 

sequences would have been binomially sampled up to and including that day declined below 381 

0.05. On each day, the total number of samples to sequence was assumed to be a Poisson-382 

valued random variable with rate given by the sequencing rate. For each sequencing rate, the 383 

day of detection was computed as the median across 100 replicates. To compute the 384 

equivalent fold increase in sequencing rate for each reduction in turnaround time, we 385 

computed the slope of a linear model that relates the logarithm of the sequencing rate to the 386 

simulated day of detection for 1 < n < 100 S/M/wk.  387 

 388 

Mathematical model 389 

 390 

To derive a mathematical model for the relationship between sequencing rate and time to 391 

variant detection, we based our analyses on the premise that, starting from a single 392 

introduction, the proportion of all new infections of a particular virus type that is attributable 393 

to a variant virus with a transmission advantage at time t follows a logistic growth function 394 

f(𝑡) = !

!"!"#$#$
#"%&

. Here 𝑓$ is the initial variant proportion relative to all circulating virus and s 395 
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is the variant proportion’s logistic growth rate. Given that we are sampling to sequence n 396 

samples per unit time, the binomial probability that the variant is detected at or before time 397 

step 𝜏 is 398 

𝑃(𝑡 ≤ 𝜏) = 1 −∏ ,1 − !

!"!"#$#$
#"%&

-
%

&
'($  [Eq. 1] 399 

If we define 𝑞 = 1 − 𝑃(𝑡 ≤ 𝜏) (i.e. the probability that the variant will not be detected before 400 

or during time step 𝜏), we can rewrite Eq. 1 as:  401 

𝜏 = 	 )*+,-
"%/(.!//1$2"!

3
   [Eq. 2] 402 

Hence, for given s, f0, and n, and q, Eq. 2. computes the day on which the variant will have 403 

been detected with confidence level 1-q. We validated Eq. 2 by comparing the simulated time 404 

to detection as shown in Fig. 2 to time to detection predicted using Eq. 2. Details are given in 405 

the Supplementary Information.  406 

 407 

Metapopulation model 408 

 409 

We used a metapopulation model that couples local SIR dynamics with global migration to 410 

simulate the global spread of a variant, given a single index country. Given a rate of 411 

movement 𝑤%4 from population m to n, the expected number of variant-infected (𝐼%) and 412 

variant-susceptible (𝑆%) people in population n with population size 𝑁%, given transmission 413 

rate b and recovery rate g, is described by  414 

𝜕'𝐼% =
𝛽𝑆%𝐼%
𝑁%

−	g𝐼% +	 7(𝑤%4𝐼4
45%

−	𝑤4%𝐼%) 415 

𝜕'𝑆% =
−𝛽𝑆%𝐼%
𝑁%

+	 7(𝑤%4𝑆4
45%

−	𝑤4%𝑆%) 416 

This model is the basis of the model used by Brockmann et al.20 to fit empirical arrival times 417 

for multiple respiratory viruses to global air transportation data. We used the estimated 418 

pairwise number of trips between all countries from the Global Transnational Mobility 419 

(GTM)41 to inform 𝑤%4. Specifically, for any two countries n and m we computed wnm by 420 

dividing the number of trips from country m to n in the year 2016 by the population size of 421 

country m and by 365. Modelled arrival times using the GTM have been shown to strongly 422 

correlate with those from the global air transportation network42. For each value of variant Re, 423 

we performed 10,000 independent simulations of the metapopulation model, assuming that 424 

the probability a variant virus would emerge in a particular country is proportional to the 425 
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country’s relative population size (simulations initialized in Africa: n = 1793; Asia: n = 5946, 426 

Europe: n = 934; North America: n = 739; Oceania: n = 54; South America: n = 534). We 427 

integrated the model forward in time at a daily timescale using a tau-leap algorithm, which 428 

also furnishes the epidemic dynamics and global spread with stochasticity. Each simulation 429 

was initialized with an infected population of 10 individuals. We validated the model by 430 

comparing the simulated spread dynamics to simulations using an equivalent model in 431 

GLEAMviz 7.223,24 (www.gleamviz.org), a global metapopulation model that incorporates 432 

dynamics of air travel and mobility. Details are given in the Supplementary Information.  433 

 434 

Genomic surveillance simulations 435 

 436 

We performed the genomic surveillance simulations using empirical turnaround times and 437 

sampling rates for each country, using data for 2022. For each sequence in GISAID, we 438 

computed the time T between the sample’s collection date and submission date. In some 439 

cases, sequence analysis might have been performed but the sequence would only later be 440 

deposited in GISAID. Hence, given the computed turnaround time T, we assumed that a 441 

sequence’s adjusted turnaround time T̃ was equal to fT, for 0 < f < 1. In the main text, f = 1, 442 

and we performed sensitivity analyses for f  = 0.25 and f = 0.5. For each country c, the 443 

turnaround-time specific sequencing rate in unit of sequences per day nx,c, for each value of 444 

turnaround time x in days, was equal to the country’s total sequencing rate in sequences per 445 

day multiplied by the proportion of sequences from that country with T̃ = x. 446 

 447 

For each country, for each simulation, starting from the first day on which the number of new 448 

variant infections exceeded 10 onwards, we deterministically simulated the wildtype 449 

epidemic dynamics. For each value of variant Re, we assumed the same scenario of variant 450 

emergence (characterized by a wildtype prevalence and wildtype Re) as in the single-country 451 

analyses presented in Figure 3. In Extended Data Fig. 6, we show the same analyses for all 452 

combinations of variant Re and scenario of variant emergence. Until the first day on which 453 

variant incidence exceeded 10, wildtype incidence was assumed to be equal to wildtype 454 

incidence on the first day of the simulated wildtype epidemic, to account for the stochasticity 455 

observed when the number of infections was small and the potential for stochastic variant 456 

extinction.  457 

 458 
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Using the simulated variant and wildtype incidence on each day, we computed the variant 459 

proportion through time f(t). For each country c, on each day t, we used the simulated 460 

country-specific variant proportion fc(t) to simulate genomic surveillance by, for each value 461 

of turnaround time x, generating a sample count ñx,c ~ Poisson(nx,c), using the estimated 462 

turnaround-time specific sequencing rates nx,c described above, and simulating the total 463 

number of variant samples Vc(t) =	∑ 𝑣6,8'
6($ , with 𝑣6,8~ Binomial(ñx,c, fc(t-x)). In each of 464 

10,000 replicate simulations, and for each strategy for the global distribution of surveillance 465 

infrastructure, we computed the detection day as the first day t on which Vc(t) was at least one 466 

in at least one country c. We defined the detection country as the first country for which this 467 

held.  468 

 469 

To investigate the sensitivity of our results with respect to mobility rates, we multiplied each 470 

country’s mobility rate by 3 and 1/3, representing faster and slower spread, respectively, and 471 

re-simulated the epidemic dynamics. We applied the same genomic surveillance simulations 472 

to the epidemic simulations with increased and reduce mobility rates, respectively, to assess 473 

the sensitivity of our results to the mobility dynamics underlying global variant spread. 474 

 475 

Global surveillance strategies 476 

 477 

We investigated four strategies for the global distribution of sequencing infrastructure: 478 

  479 

Strategy 1: the 2022 baseline. For each country, turnaround time-specific sequencing rates 480 

were extracted from GISAID metadata.  481 

 482 

Strategy 2: Equivalent to strategy 1, but individual countries’ sequencing output capped at 30 483 

S/M/wk. Countries that sequenced at rates exceeding 30 S/M/wk had their sequencing output 484 

capped by dividing sequencing rate uniformly across all values of turnaround time such that 485 

total output across all values of turnaround time was equal to 30 S/M/wk. 486 

 487 

Strategy 3: the 2022 baseline + a global minimum sequencing capacity of 2 S/M/wk at 14 day 488 

turnaround time in each country. If a country already satisfied this requirement (i.e., the sum 489 

of turnaround time-specific sequencing rates with turnaround time ≤14 days was equal to or 490 

greater than 2 S/M/wk), its sequencing rates were unchanged relative to strategy 1. If a 491 
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country satisfied the sequencing rate across all values of turnaround time, but not within the 492 

required two-week turnaround time, the deficit in S/M/wk in the sum of turnaround time-493 

specific sequencing rates with turnaround time ≤14 days was uniformly removed from the 494 

sequencing rates exceeding 14 days and added to the sequencing rate corresponding to a 495 

turnaround time of 14 days. Hence, in this scenario, total sequencing output remained 496 

unchanged, and the minimum sequencing capacity was attained by reducing turnaround time. 497 

If a country did not satisfy the minimum sequencing rate at all, all sequencing output 498 

corresponding to a sequencing rate >14 days was set to a turnaround time of 14 days. The 499 

remaining deficit in S/M/wk in the sum of turnaround time-specific sequencing rates with 500 

turnaround time ≤14 days was added to the sequencing rate corresponding to a turnaround 501 

time of 14 days.  502 

 503 

Strategy 4: In countries that, after capping according to strategy 2, did not satisfy the 504 

minimum sequencing rate of 2 S/M/wk at 14 day turnaround time, this minimum was ensured 505 

analogous to Strategy 3.  506 

  507 
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  640 
 641 
Extended Data Fig. 1. Relationship between median turnaround time and per capita 642 
GDP. Each point corresponds to a country (n =188), coloured by continent. 643 
 644 
 645 
  646 

101

102

103 104 105

GDP per capita (USD)

M
ed

ia
n 

tu
rn

ar
ou

nd
 ti

m
e 

(d
)

AF
AS

EU
NA

OC
SA

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 1, 2023. ; https://doi.org/10.1101/2023.11.01.23297901doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.01.23297901
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

  647 
  648 

Extended Data Fig. 2. Different scenarios of variant emergence. For each of the values of 649 
variant Re, the corresponding panel shows the epidemiological dynamics of variant and 650 
wildtype for that scenario of variant emergence, starting from the day of variant introduction. 651 
For each value of variant Re, the scenario of variant emergence is characterised by a different 652 
value of wildtype Re and wildtype prevalence at introduction.  653 
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 655 

 656 
Extended Data Fig. 3. The dependence of time to variant detection on sequencing rate 657 
for varying scenario of variant emergence. a) Relationship between sequencing rate and 658 
the number of days until the variant will have been detected with 95% confidence. The small 659 
black tick marks on the x-axes in this plot and in b show country-specific SARS-CoV-2 660 
sequencing rates for 2022. Each panel corresponds to a different scenario of variant 661 
emergence, characterized by a wildtype (wt) Re and wildtype prevalence at introduction. In 662 
each panel, lines are colored by value of variant Re.  b) Relationship between sequencing rate 663 
and the reduction in time to variant detection that results from increasing the existing 664 
sequencing rate (x-axis) by 1 S/M/wk.   665 
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 667 

 668 
Extended Data Fig. 4. The dependence of the number of variant infections by the day of 669 
variant detection on sequencing rate for varying scenario of variant emergence. a) 670 
Relationship between sequencing rate and the number of variant infections by the day the 671 
variant will have been detected with 95% confidence. The small black tick marks on the x-672 
axes in this plot and in b show country-specific SARS-CoV-2 sequencing rates for 2022. 673 
Each panel corresponds to a different scenario of variant emergence, characterized by a 674 
wildtype (wt) Re and wildtype prevalence at introduction. In each panel, lines are colored by 675 
value of variant Re.  b) Relationship between sequencing rate and the reduction in the number 676 
of variant infections by the day of detection that results from increasing the existing 677 
sequencing rate (x-axis) by 1 S/M/wk. 678 
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 681 

 682 
Extended Data Fig. 5. Validation of the metapopulation model against GLEAM. For ten 683 
geographically representative countries, global variant spread was simulated, initialised in the 684 
country’s capital city, in GLEAM. For each of the ten index countries, all global countries’ 685 
epidemic onset timings as simulated using GLEAM were compared against the countries’ 686 
epidemic onset timings as simulated using the epidemic model used in this study. For both 687 
models, timings were computed as the median across 10 independent simulations. 688 
Simulations are for a variant Re of 1.6. 689 
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  691 

 692 
Extended Data Fig. 6. Time to global variant detection by strategy and scenario of 693 
variant emergence. a) Time to global variant detection by strategy for the global distribution 694 
of respiratory virus surveillance infrastructure, by variant Re, for varying scenario of variant 695 
emergence (characterised by wildtype (wt) Re and wildtype prevalence).  Thin and thick lines 696 
correspond to 95% and 50% CIs, respectively. b) Number of global variant infections by the 697 
day of first detection by strategy for the global distribution of respiratory virus surveillance 698 
infrastructure, by variant Re, for varying scenario of variant emergence (characterised by 699 
wildtype (wt) Re and wildtype prevalence). Thin and thick lines correspond to 95% and 50% 700 
CIs, respectively. 701 
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 704 

 705 

 706 
Extended Data Fig. 7. Sensitivity analysis for delay in time to GISAID submission. Time 707 
to global variant detection by strategy for the global distribution of respiratory virus 708 
surveillance infrastructure, by variant Re, for varying scenario of variant emergence 709 
(characterised by wildtype (wt) Re and wildtype prevalence).  Thin and thick lines correspond 710 
to 95% and 50% CIs, respectively. Given a sequence in GISAID’s computed turnaround time 711 
T, a sequence’s adjusted turnaround time T̃ was equal to fT. These adjusted turnaround times 712 
were used to inform country-specific sequencing infrastructure in the global genomic 713 
surveillance simulations. 714 
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 717 

 718 
Extended Data Fig. 8. Sensitivity analysis for mobility rate. Time to global variant 719 
detection by strategy for the global distribution of respiratory virus surveillance 720 
infrastructure, by variant Re, for varying scenario of variant emergence (characterised by 721 
wildtype (wt) Re and wildtype prevalence). Thin and thick lines correspond to 95% and 50% 722 
CIs, respectively. Each row corresponds to a modified global mobility rate (top: baseline 723 
mobility rate multiplied by 3; bottom: baseline mobility rate divided by 3).   724 
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  725 

Extended Data Fig. 9. The global distribution of seasonal influenza sequencing output in 726 
2018. The cumulative proportion of the global population that accounts for a cumulative 727 
proportion of global sequence output. Solid grey lines show the smallest proportion of the 728 
population that accounts for 50% of sequencing output. Dashed grey lines show the smallest 729 
proportion of sequencing output that is accounted for by 50% of the global population. Data 730 
is for seasonal influenza sequences in GISAID collected from humans in 2018. 731 
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 734 

Extended Data Fig. 10. The relationship between sequencing rate and error in estimated 735 
variant proportion. For each sequencing rate given on the x-axis, for varying true variant 736 
proportion and population size, the y-axis shows the maximum error in the estimated weekly 737 
proportion of total infections attributable to the variant. This maximum error is presented for 738 
varying confidence (i.e. the y-axis represents the error that the error in the estimated variant 739 
proportion relative to the true variant proportion will be smaller than n% of the time, for n 740 
given by the confidence level). 741 
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