
1 
 

Original Article  1 

Machine learning predicts metastatic 2 

progression using novel differentially 3 

expressed lncRNAs as potential markers in 4 

pancreatic cancer 5 

Hasan Alsharoh1* 6 

1 “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania 7 

*Corresponding author: hasanalsharoh@gmail.com 8 

Abstract 9 

Pancreatic cancer (PC) is associated with high mortality overall. Recent literature has focused on 10 

investigating long noncoding RNAs (lncRNAs) in several cancers, but studies on their functions in PC are 11 

lacking. To identify significantly altered expression of lncRNA in PC, I collected information from The 12 

Cancer Genome Atlas (TCGA) and extracted RNA-sequencing (RNA-seq) transcriptomic profiles of 13 

pancreatic carcinomas and performed differential gene expression analysis. Out of 60,660 gene 14 

transcripts shared between 151 PC patients, I identified 38 lncRNAs that were significantly differentially 15 

expressed. To further investigate the functions of these genes, gene set enrichment analysis (GSEA) was 16 

performed on the population lncRNA panel. GSEA results revealed enrichment of several terms implicated 17 

in proliferation. To assess the contribution of these lncRNAs to metastatic progression, I used different 18 

ML algorithms, including logistic regression (LR), support vector machine (SVM), random forest classifier 19 

(RFC) and eXtreme Gradient Boosting Classifier (XGBC). Explicitly using significantly differentiated lncRNA 20 

genes and hyperparameter tuning, in addition to reducing bias through the synthetic minority 21 

oversampling technique, the accuracy of the ML models improved. Regardless, out of the four algorithms, 22 
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both SVM and RFC were able to predict metastatic progression with 76% accuracy. To the best of my 23 

knowledge, this is the first study of its kind to identify this lncRNA panel to differentiate between 24 

nonmetastatic PC and metastatic PC, with many novel lncRNAs previously unmapped to PC. The ML 25 

accuracy score reveals important involvement of the detected RNAs. Based on these findings, I suggest 26 

further investigations of this gene panel in vitro and in vivo, as they could be targeted for improved 27 

outcomes in PC patients, as well as assist in the diagnosis of metastatic progression based on RNA-seq 28 

data of primary pancreatic tumors. 29 

  30 
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1. Introduction 31 

Pancreatic cancer (PC) is one of the deadliest cancers, with an overall five-year survival between 7.2 32 

and 10% according to the literature1,2. Evidence suggests that PC is often diagnosed in the late stages of 33 

tumorigenesis, likely contributing to its high mortality rate3. Recent literature has provided increasing 34 

evidence regarding the involvement of long noncoding RNAs (lncRNAs) in the development, invasiveness, 35 

angiogenic potential, chemotherapeutic resistance and metastatic capacity of PC4. 36 

LncRNAs are RNA molecules characterized by having an arbitrary lower cutoff of 200 nucleotides that 37 

have been shown not to code for proteins post-transcriptionally 4,5. LncRNAs have been shown to play 38 

complex roles in biological processes in various tissues, with possible implications in DNA repair, cellular 39 

proliferation, and human diseases, which made them a common target for recent literature to investigate 40 

in cancer 6. lncRNAs have further been used as biomarkers for overcoming chemoresistance, as well as for 41 

the diagnosis of several cancers, including PC 7-10. 42 

Emerging research has been able to provide evidence regarding the use of lncRNAs for improved 43 

diagnostic accuracy, prognosis prediction, and treatment adjustment using various methods, including 44 

machine learning (ML) techniques8-10. Literature regarding the utilization of ML algorithms has been 45 

rapidly rising, with literature urging more rapid use of such algorithms in oncology to increase diagnostic 46 

accuracy or to further improve on the available algorithms 11-13. 47 

In this study, I aimed to investigate potential lncRNAs involved in the metastatic progression of PC 48 

based on RNA-sequencing (RNA-seq) data. To achieve this objective, I collected publicly available data 49 

from the cancer genome atlas (TCGA) for 172 patients and filtered the data according to predefined 50 

inclusion and exclusion criteria, which resulted in 151 PC records. PC records were further categorized 51 

according to their TNM staging, and tumor data were separated into tumors with metastatic activity 52 

(TMAs) and tumors without metastatic activity (TWAs). Using bioinformatics analytic techniques, I 53 
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identified 125 differentially expressed genes (DEGs) among 60,660 genes involved in this study, many of 54 

which were novel. I further assessed the functions of this global gene panel using a multiparametric 55 

approach. 56 

Finally, I extracted lncRNA counts from the RNA-seq data from the PC population and further 57 

characterized 38 novel lncRNAs that were significantly differentially expressed. To further evaluate their 58 

involvement, I used 4 ML algorithms to predict and distinguish between TMAs and TWAs. These 59 

algorithms included multivariate logistic regression (LR), support vector machine (SVM), random forest 60 

classifier (RFC), and eXtreme Gradient Boosting Classifier (XGBC). I used several techniques to further 61 

reduce the bias within the included sample as described in the methodology. 62 

Training and evaluation of the ML algorithms was performed by separating the dataset from the 38 63 

DEGs into a training set and a testing set to eventually evaluate the performance of each of the models. 64 

Out of all the ML algorithms, SVM and RFC were able to predict TMAs and TWAs with 76% accuracy using 65 

the 38 lncRNA data, suggesting important implications for the specified set of lncRNAs in PC. To the best 66 

of my knowledge, this is the first study to identify the involvement of this specific lncRNA panel in PC, with 67 

many novel lncRNAs lacking any studies performed on which. 68 

The results of this research have important clinical implications, as the novelty of the lncRNAs requires 69 

further comprehensive validation and in vitro and in vivo investigations. The accuracy shown by the ML 70 

model suggests that these novel lncRNAs could be used as biomarkers and further targeted for improved 71 

diagnosis and outcome in PC patients. 72 
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2. Methods 73 

2.1. Data acquisition 74 

TCGA database was used for data collection and is available at https://www.cancer.gov/tcga. 75 

Exploration of TCGA-PAAD project data to acquire pancreatic RNA-seq data was performed on 76 

25/10/2023. File filters applied included a) Data Category: transcriptome profiling; b) Data Type: Gene 77 

Expression Quantification; c) Experimental strategy: RNA-Seq; d) Access: open. The case filters applied 78 

included the following: a) primary site: pancreas; b) project: TCGA-PAAD; and c) disease type: ductal and 79 

lobular neoplasms, adenomas and adenocarcinomas. 80 

The inclusion criteria were that for each RNA-seq dataset to be of similar structure, for the predefined 81 

PC tumors mentioned in the filters, or regardless of age and gender. Primary tumors, regardless of 82 

metastatic stage, were also included. Exclusion criteria included defects in dataset structure, RNA-seq for 83 

tumor adjacent tissues, or those that had undergone prior therapy to a potential previous malignancy. I 84 

also excluded records with annotations specifying that tumor data were incorrectly labeled in terms of 85 

whether the tumor was neoplastic. 86 

Further categorization was performed for the acquired data using Excel sheets. For TNM subgroup 87 

analysis, tumors with staging data were categorized into tumors with metastatic activity, which included 88 

those classified as M1, MX/M0 and N1 or above, and tumors without metastatic activity, which included 89 

those classified as M0N0. Acquired data were also filtered to include only lncRNA gene expression 90 

quantification. This subgrouping was performed prior to DGEA to assess differentially expressed genes 91 

between TWAs and TMAs. 92 
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2.2. Data analysis 93 

Bioinformatics analysis was conducted on the data following matching the subjects to the study’s 94 

inclusion and exclusion criteria. Python v3.11 (available at https://www.python.org/) was used in an 95 

Anaconda jupyter lab environment 14,15. To restructure the dataset up for the study population RNA-seq 96 

datasets and to import the data into Python, the glob module was used 16. Data manipulation was 97 

performed using pandas library v1.5.3 17. Libraries such as numpy and scipy were also utilized for data 98 

processing 18,19. 99 

Differential gene expression analysis (DGEA) was performed using PyDESeq2, an R package 100 

implemented in Python that has been suggested to be reliable and comparable to the R package20. The 101 

DEGs were matched to gene symbols and further visualized using the matplotlib21, seaborn22, and 102 

sanbomics23 packages. PyDeseq2 calculates the significance of genes using the Wald test, performs count 103 

normalization using the trimmed mean of M values (TMM), similar to DESeq2, and relies on the 104 

statsmodels library24,25. Using count normalization has been shown to have higher accuracy than TPM 105 

(transcripts per million) and FPKM (fragments per kilobase of transcript per million fragments mapped)26. 106 

A further description of the package is available elsewhere20. Significant differentiation after adjustment 107 

of p values was considered at p<0.05 and an absolute log2-fold change (log2FC) of >0.5. 108 

A heatmap of the DEGs was made through the matplotlib21 package as well. Pearson’s correlation 109 

coefficient was calculated and mapped for all gene transcript data. 110 

2.3. Gene set and ontology enrichment analysis 111 

Gene set enrichment analysis (GSEA) is a method of interpreting gene-wide expression profiles27. 112 

GSEA was performed using the GSEApy v1.0.6 package, a Rust implementation of GSEA in python, used 113 

for performing computation of RNA-seq count data to evaluate predefined gene sets in association with 114 

different phenotypes. I ranked expression data using the prerank function available in the package. The 115 
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accuracy of this package has been previously proven, and the method to use it is described extensively 116 

elsewhere28. 117 

Enrichment was performed for several gene collections from MSigDB available at (https://www.gsea-118 

msigdb.org/) and miRTarBase 201729. Gene sets and collections that were evaluated for enrichment were 119 

c2.cp.kegg.v2023.1.Hs.symbols, c3.mir.v2023.1.Hs.symbols, c3.tft.v2023.1.Hs.symbols, 120 

c4.cgn.v2023.1.Hs.symbols, c5.go.bp.v2023.1.Hs.symbols, c5.go.cc.v2023.1.Hs.symbols, 121 

c5.go.mf.v2023.1.Hs.symbols, c5.hpo.v2023.1.Hs.symbols, c6.all.v2023.1.Hs.symbols, 122 

h.all.v2023.1.Hs.symbols, and miRTarBase_2017. 123 

Gene Ontology (GO) is a detailed resource with annotations of gene and gene product functions 30,31. 124 

It provides the potential to describe gene functions by assigning them to specific terms in which the genes 125 

are linked, detailing their relationships with each other. GO term enrichment was performed through 126 

GSEApy, and the results were extracted through tools available in said package. GO graph was made after 127 

extracting enriched GO terms and the source identifiers were insert into AmiGO32. 128 

The false discovery rate (FDR) was considered significant when FDR<0.05. Visualization of GSEA results 129 

was performed using tools from GSEApy. Data collected from GSEA results included terms, FDR, 130 

enrichment and negative enrichment scores, as well as matched genes. The minimum matching size for 131 

gene sets when performing GSEA for the global gene panel was set to 150. However, for the lncRNA panel, 132 

the minimum matching size was set to 3, as there were few enriched gene sets. 133 

2.4. Machine learning models 134 

I employed multivariate LR, SVM, RFC, and XGBC to predict metastatic risk for the population based 135 

on the lncRNA gene count data from TCGA. DEGs were extracted from DGEA for use as sole predictors of 136 

metastatic progression in the study population. Analysis of the models’ accuracy was performed using 137 

packages from the scipy, scikit-learn, and matplotlib libraries. 138 
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To train the ML algorithms, data were categorized into a training set (70% of the data) and a testing 139 

set (30%). A random state number was set for all the implemented ML models to dictate a specific seed 140 

of randomness during the analysis to maintain reproducibility. For binary classification, TNM stage of IIa 141 

or below was designated “0” and considered the TWM for the ML algorithms, while TNM stage IIb or 142 

above was designated “1” and considered the TMA. The testing sets were hidden from the ML algorithms 143 

to evaluate the predictive capacity performance following model training. 144 

Furthermore, hyperparameter tuning was performed to improve the predictive accuracy of the 145 

model. This was done through the GridSearchCV and BayesianSearchCV modules. Fivefold cross-validation 146 

was set as a parameter, and data regularization was done through L2 method. The inverse of the 147 

regularization strength (or penalty values) was set according to the optimal values found by the search 148 

modules specified above. To identify the best parameters, values were also tested over 50 iterations. 149 

Moreover, the synthetic minority oversampling technique (SMOTE) was performed to artificially increase 150 

TWM population numbers to reduce bias, which has proven to be a powerful tool in improving ML 151 

accuracy and addressing imbalanced samples33. 152 

These methods of standardization were performed for all ML algorithms used. ML algorithms used 153 

were also provided by the scikit-learn and XGBoost libraries. All of the algorithms consist of supervised 154 

machine learning algorithms, and are commonly used for classifications of tumors34,35. Further, L2 155 

regularization has been considered to provide improved accuracy of the ML algorithms36. 156 

3. Results 157 

3.1. Primary characteristics of the study population 158 

Of the 179 retrieved records, 23 were excluded for the following annotations: a) “This case is a 159 

neuroendocrine tumor and should not have been included in the PAAD study” (n = 8); b) “Per the PAAD 160 
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EPC, this tumor is a normal pancreas with atrophy” (n = 5); c) “Per the PAAD EPC, this tumor is an atrophic 161 

pancreas” (n = 3); d) “Per the PAAD EPC, this tumor is a noninvasive IPMN” (n = 1); e) “Per the PAAD EPC, 162 

this tumor is an acinar cell carcinoma” (n = 1); f) “Per the PAAD EPC, this tumor is a normal ampula of 163 

Vater” (n = 1); g) “The PAAD EPC states that this case likely did not arise in the pancreas (ampullary)” (n = 164 

1); h) “Systemic treatment given to the prior/other malignancy” (n = 1); i) “Per the PAAD EPC, this tumor 165 

is an atrophic pancreas with a single focus of low-grade PanIN” (n = 2); “Samples identified in the sample 166 

sheet with a sample type of "Solid Tissue Normal" (from normal tissue adjacent to malignancy)” ( 167 

According to the flow diagram found in Figure 1. A total of 151 patient records were included. Table 168 

1 summarizes the characteristics of the cohort. Notably, 115 records were classified as TMAs, while 36 169 

were classified as TWAs. Of the TMAs, 116 were diagnosed as TNM stage IIb, and 8 were diagnosed as 170 

stage III and IV. For the TWAs, 26 were at TNM stage IIa. 171 
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 172 

Figure 1. Flow diagram of the study. Created with Lucidchart, www.lucidchart.com. TCGA: The Cancer 173 

Genome Atlas; PAAD: Pancreatic adenocarcinoma; TMA: Tumor with metastatic activity; TWA: Tumor 174 

without metastatic activity; DGEA: Differential gene expression analysis; GSEA: Gene set enrichment 175 

analysis; ML: Machine learning. 176 

Table 1. Population primary characteristics 

General Characteristics 

Average age 64.62209 

Confidence 1.173259 

STDEV 10.92365 

Max age 88 

Min age 35 

Males 80 

females 70 

Pancreas, NOS 14 
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Head of pancreas 112 

Body of pancreas 11 

Tail of pancreas 11 

Infiltrating duct 
carcinoma, NOS 

133 

Adenocarcinoma, NOS 16 

Included patient records characteristics 

TMA 115 

TWA 36 

MX 78 

M0 68 

M1 5 

NX 1 

N0 39 

N1 108 

N1b 3 

Staging 

I 0 

III 3 

IIb 106 

IIa 23 

IV 5 

STDEV; Standard deviation; NOS: Not 
otherwise specified; TMA: Tumor with 
metastatic activity; TWA: Tumor without 
metastatic activity 

 

 177 

The age range of the total patient sample was between 35 and 88 years old (mean = 64.66 ± 10.91). 178 

Ninety-four were males, and 78 were females. When reported, 143 had infiltrating duct carcinoma, and 179 

16 had adenocarcinoma as the primary diagnosis. Eight had neuroendocrine tumors but were excluded. 180 

Seventeen pancreatic tumors had no specified location, 125 were pancreatic head lesions, 15 were 181 

pancreatic body lesions, and 13 were pancreatic tail lesions. 182 

 183 

The RNA-seq data included 60,660 gene expression profiles for each of the included patient and 184 

control samples. Transcriptomic profiling was performed for the same genes in all patient samples. Of the 185 
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available transcripts, 16,901 were lncRNAs. After removing lncRNAs with 0 values among all patients, 186 

15,879 lncRNAs remained. All details regarding the included samples are available in Supplementary 187 

Material 1. 188 

3.2. DGEA and GSEA of all gene transcripts 189 

A total of 60,660 gene transcripts were filtered following PyDESeq2 analysis, and unavailable values 190 

were dropped, resulting in 47,528 transcripts. DGEA revealed 125 differentially expressed genes, as shown 191 

in Table 2, and the top differentially expressed genes are shown in Figure 2. Notably, ADH7, SERPINB13, 192 

MIR205HG, NTS, and LINC01300 were the most downregulated genes, with log2FC values of -3.42295, -193 

3.4189, -3.12513, -3.02808, and -2.72096, respectively. The most upregulated genes were PAX7, 194 

AC010789.1, TMPRSS15, DEFA6, and DEFA5 and had log2FC values of 3.149596, 3.506053, 3.538356, 195 

3.594891, and 4.800701, respectively. 196 

 197 

Figure 2. Differentially expressed genes in PC. Absolute log2FC>0.5 and adjusted p value<0.05 were 198 

considered as the significance thresholds. 199 
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Table 2. Differentially expressed genes found in the global gene sample 

ENSEMBL ID Symbol log2FoldChange Rank Adjusted p-value 

ENSG00000196344 ADH7 -3.42295 -4.80123 0.001852 

ENSG00000197641 SERPINB13 -3.4189 -5.41464 0.00018 

ENSG00000230937 MIR205HG -3.12513 -5.2119 0.000392 

ENSG00000133636 NTS -3.02808 -7.0417 2.79E-08 

ENSG00000253595 LINC01300 -2.72096 -6.20744 3.95E-06 

ENSG00000196427 NBPF4 -2.37012 -4.89494 0.001312 

ENSG00000122133 PAEP -2.21459 -5.13911 0.00054 

ENSG00000137975 CLCA2 -2.02911 -4.3518 0.007622 

ENSG00000241794 SPRR2A -2.01833 -4.2515 0.010747 

ENSG00000176919 C8G -1.83355 -7.32595 6.96E-09 

ENSG00000285722 AC207130.1 -1.7953 -3.80052 0.04115 

ENSG00000162951 LRRTM1 -1.77758 -3.70984 0.049095 

ENSG00000075673 ATP12A -1.72492 -4.41944 0.007122 

ENSG00000273143 DUSP5-DT -1.64896 -5.64949 6.75E-05 

ENSG00000230916 MTCO1P53 -1.63588 -5.3881 0.000181 

ENSG00000170477 KRT4 -1.62228 -3.73908 0.047978 

ENSG00000258010 AC016705.1 -1.59722 -4.30607 0.009204 

ENSG00000086570 FAT2 -1.58451 -5.08612 0.00067 
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ENSG00000214711 CAPN14 -1.56223 -5.95983 1.48E-05 

ENSG00000101197 BIRC7 -1.55642 -4.98114 0.001031 

ENSG00000110680 CALCA -1.52146 -3.93287 0.02735 

ENSG00000130822 PNCK -1.51657 -3.71624 0.04873 

ENSG00000166558 SLC38A8 -1.51515 -4.3587 0.007531 

ENSG00000015592 STMN4 -1.50729 -3.91404 0.02896 

ENSG00000205426 KRT81 -1.50078 -4.00887 0.021539 

ENSG00000154975 CA10 -1.46245 -4.02791 0.020145 

ENSG00000016602 CLCA4 -1.40473 -3.69932 0.049966 

ENSG00000124466 LYPD3 -1.39559 -4.79298 0.001855 

ENSG00000228705 LINC00659 -1.34601 -4.17454 0.013082 

ENSG00000134339 SAA2 -1.29552 -4.26585 0.010255 

ENSG00000108786 HSD17B1 -1.2613 -6.32798 2.43E-06 

ENSG00000121552 CSTA -1.25807 -5.5557 0.000101 

ENSG00000116014 KISS1R -1.23273 -4.14973 0.014369 

ENSG00000204882 GPR20 -1.21769 -4.39539 0.007122 

ENSG00000184564 SLITRK6 -1.17582 -3.70529 0.049585 

ENSG00000253522 MIR3142HG -1.17478 -4.3625 0.007531 

ENSG00000255129 TTC12-DT -1.15786 -4.24636 0.01081 

ENSG00000233828 MIR4280HG -1.15767 -4.56131 0.004522 
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ENSG00000132746 ALDH3B2 -1.15254 -3.81836 0.039435 

ENSG00000181652 ATG9B -1.14738 -4.6546 0.003036 

ENSG00000115008 IL1A -1.12498 -3.77886 0.043629 

ENSG00000177627 C12orf54 -1.02545 -4.3938 0.007122 

ENSG00000180739 S1PR5 -0.99067 -4.65304 0.003036 

ENSG00000272948 AP001412.1 -0.92415 -3.72701 0.048613 

ENSG00000167971 CASKIN1 -0.90985 -3.8412 0.036673 

ENSG00000278743 AC087239.1 -0.90938 -4.0769 0.01772 

ENSG00000175189 INHBC -0.90458 -3.79432 0.041787 

ENSG00000272906 AL353708.3 -0.88897 -4.40552 0.007122 

ENSG00000178445 GLDC -0.88519 -4.03342 0.020145 

ENSG00000268041 ERFL -0.8732 -4.28133 0.009738 

ENSG00000254266 PKIA-AS1 -0.86706 -4.38841 0.007122 

ENSG00000117407 ARTN -0.8143 -4.08225 0.01772 

ENSG00000204963 PCDHA7 -0.79643 -3.97143 0.024672 

ENSG00000286810 AL513128.3 -0.793 -4.66358 0.003036 

ENSG00000268403 AC132192.2 -0.78124 -4.29421 0.00953 

ENSG00000277218 AL139123.1 -0.77132 -3.75731 0.046252 

ENSG00000102466 FGF14 -0.76382 -3.83777 0.036813 

ENSG00000100162 CENPM -0.76299 -3.89051 0.031239 
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ENSG00000232573 RPL3P4 -0.76122 -4.96717 0.00105 

ENSG00000237181 PRKAR1B-AS1 -0.75848 -4.09162 0.017711 

ENSG00000233901 LINC01503 -0.73675 -3.75264 0.046672 

ENSG00000267710 EDDM13 -0.71591 -4.18507 0.013075 

ENSG00000196420 S100A5 -0.70536 -3.75049 0.046672 

ENSG00000287575 AL390755.3 -0.70456 -3.84387 0.036651 

ENSG00000227256 MIS18A-AS1 -0.66983 -3.80296 0.041147 

ENSG00000263412 NFE2L1-DT -0.66855 -4.03071 0.020145 

ENSG00000158292 GPR153 -0.6636 -3.71762 0.04873 

ENSG00000270426 AC099343.2 -0.66056 -4.09624 0.017609 

ENSG00000269961 ERBIN-DT -0.62896 -4.4063 0.007122 

ENSG00000270659 AC079610.1 -0.55231 -3.93098 0.02735 

ENSG00000109684 CLNK 0.811049 3.743661 0.047532 

ENSG00000007171 NOS2 0.9501 3.727137 0.048613 

ENSG00000168004 PLAAT5 1.046959 3.713844 0.04873 

ENSG00000217275  1.103167 3.945237 0.026898 

ENSG00000244675 AC108676.1 1.121008 4.006455 0.021539 

ENSG00000249574 AC226118.1 1.122255 3.758216 0.046252 

ENSG00000165186 PTCHD1 1.127601 4.425499 0.007122 

ENSG00000204710 SPDYC 1.164409 3.774913 0.043911 
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ENSG00000133317 LGALS12 1.185546 4.074521 0.01772 

ENSG00000110195 FOLR1 1.236702 4.28444 0.009738 

ENSG00000179766 ATP8B5P 1.248188 4.18952 0.013025 

ENSG00000243910 TUBA4B 1.26142 3.699883 0.049966 

ENSG00000231106 LINC01436 1.269281 3.713818 0.04873 

ENSG00000079841 RIMS1 1.301664 4.104695 0.017223 

ENSG00000254872 LINC02688 1.359219 3.809804 0.040421 

ENSG00000077935 SMC1B 1.37522 4.3749 0.007278 

ENSG00000047936 ROS1 1.462054 3.733667 0.048592 

ENSG00000250337 PURPL 1.478326 3.784362 0.043081 

ENSG00000211951 IGHV2-26 1.607862 4.072645 0.01772 

ENSG00000113722 CDX1 1.619806 4.955568 0.001058 

ENSG00000261409  1.673178 4.087027 0.01772 

ENSG00000095627 TDRD1 1.695616 4.99184 0.001031 

ENSG00000275874 PICSAR 1.709471 3.859728 0.034709 

ENSG00000138823 MTTP 1.75384 4.194027 0.012975 

ENSG00000109182 CWH43 1.779912 4.179552 0.013082 

ENSG00000286734 AC133530.1 1.81407 4.219397 0.011788 

ENSG00000159251 ACTC1 1.820261 4.924839 0.00118 

ENSG00000248635  1.82577 4.389008 0.007122 
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ENSG00000124237 C20orf85 1.830513 3.714347 0.04873 

ENSG00000070019 GUCY2C 1.911694 5.38153 0.000181 

ENSG00000185105 MYADML2 1.961126 4.745671 0.002179 

ENSG00000179914 ITLN1 2.039036 4.069503 0.01773 

ENSG00000130700 GATA5 2.082396 3.959788 0.025605 

ENSG00000264404 LINC02675 2.097143 3.871155 0.03347 

ENSG00000189052 CGB5 2.11069 4.450157 0.006997 

ENSG00000198788 MUC2 2.134906 3.90208 0.030102 

ENSG00000142449 FBN3 2.180393 5.489955 0.000131 

ENSG00000250376  2.232802 4.650635 0.003036 

ENSG00000151365 THRSP 2.253533 4.419036 0.007122 

ENSG00000115850 LCT 2.267295 4.842754 0.001634 

ENSG00000198842 STYXL2 2.278382 4.441746 0.007079 

ENSG00000205076 LGALS7 2.337392 3.713775 0.04873 

ENSG00000166869 CHP2 2.35771 4.533106 0.005018 

ENSG00000113196 HAND1 2.366848 4.07674 0.01772 

ENSG00000091138 SLC26A3 2.457377 4.823641 0.001724 

ENSG00000282122 IGHV7-4-1 2.461323 4.384127 0.007122 

ENSG00000016490 CLCA1 2.822016 4.177146 0.013082 

ENSG00000122711 SPINK4 2.828123 5.854698 2.34E-05 
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ENSG00000228674 PPIAP59 2.932048 4.462678 0.006788 

ENSG00000090402 SI 3.119419 4.749043 0.002179 

ENSG00000009709 PAX7 3.149596 4.052701 0.018812 

ENSG00000224817 AC010789.1 3.506053 3.93045 0.02735 

ENSG00000154646 TMPRSS15 3.538356 5.363727 0.000184 

ENSG00000164822 DEFA6 3.594891 4.227086 0.011582 

ENSG00000164816 DEFA5 4.800701 4.413106 0.007122 

 200 

GSEA was subsequently performed, with libraries investigated available in Supplementary 201 

Materials 2. There were many gene sets enriched with the genes, as many genes were included in the 202 

study’s gene panel. Notably, several GO terms were enriched, as well as some terms from miRTarBase 203 

2017, as shown in Figure 3 A and B. FDR values were significant for the enriched terms (FDR<0.01). 204 
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 205 

Fig.3 A. GOBP (GO biological process) term enrichment. Upregulated genes had a lower rank, and 206 

downregulated genes had a higher rank. The enrichment score correlates with the number of genes 207 

from the gene panel enriching the gene set with significantly differentiated expression. More genes 208 

enriching this term are downregulated in this study due to the enrichment score reaching -0.5 since 209 

these genes have a higher density of higher ranked genes. B. miRTarBase_2017 term enrichment. 210 

Upregulated genes had a lower rank, and downregulated genes had a higher rank. The enrichment score 211 

correlates with the number of genes from the gene panel enriching the gene set with significantly 212 
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differentiated expression. Here, the gene set was more enriched with the upregulated genes from the 213 

gene panel. 214 

3.3. lncRNA DGEA, correlations, and GSEA 215 

Further subgroup analysis was performed for lncRNAs in PC, which returned 16,901 gene expression 216 

values, for which PyDeseq2 was also used to analyze DEGs. Dropping the 0-sum, duplicate, and unavailable 217 

values retrieved 15,568 lncRNAs. Of the lncRNA panel, 38 lncRNAs were significantly differentially 218 

expressed (shown in Figure 4). 219 

 220 

Figure 4. Differentially expressed LncRNA. Absolute log2FC>0.5 and adjusted p value<0.05 were 221 

considered as the significance thresholds. 222 

 Interestingly, the most downregulated genes were LINC01300, DUSP5-DT, AL513128.3, 223 

MIR205HG, and AC132192.2, with Log2FC values of -2.55682, -1.55378, -0.70877, -2.68894, and -0.68868, 224 

respectively. The most upregulated genes were AC010789.1, LINC00486, ENSG00000261409 (referred to 225 

as RF00019), LINC01115, and AC133530.1, with log2FC values of 2.154221, 1.214608, 3.647081, 1.705921, 226 

and 2.388161, respectively. Results of DGEA on the lncRNAs are shown in Table 3. 227 
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Table 3. DGEA of lncRNAs in PC. 

ENSEMBL ID symbol log2FoldChange Rank Adjusted p-value 

ENSG00000253595 LINC01300 -2.55682 -5.79229 5.25E-05 

ENSG00000273143 DUSP5-DT -1.55378 -5.24801 0.000582 

ENSG00000286810 AL513128.3 -0.70877 -4.56204 0.007988 

ENSG00000230937 MIR205HG -2.68894 -4.5098 0.007988 

ENSG00000268403 AC132192.2 -0.68868 -4.48214 0.007988 

ENSG00000287692 AC053545.1 -1.46588 -4.42416 0.009158 

ENSG00000233828 MIR4280HG -1.09978 -4.37975 0.00999 

ENSG00000269961 ERBIN-DT -0.53815 -4.31064 0.011198 

ENSG00000272906 AL353708.3 -0.76963 -4.27697 0.011946 

ENSG00000254266 PKIA-AS1 -0.82096 -4.11833 0.020627 

ENSG00000258010 AC016705.1 -1.49399 -4.08738 0.022009 

ENSG00000270426 AC099343.2 -0.56239 -4.03685 0.024114 

ENSG00000253522 MIR3142HG -1.02076 -3.95022 0.029262 

ENSG00000263412 NFE2L1-DT -0.5603 -3.93248 0.029262 

ENSG00000277218 AL139123.1 -0.69149 -3.90873 0.029262 

ENSG00000227256 MIS18A-AS1 -0.61208 -3.88033 0.03036 

ENSG00000228705 LINC00659 -1.24398 -3.8544 0.030461 

ENSG00000285886 AC211476.6 -0.70691 -3.76746 0.037816 

ENSG00000272948 AP001412.1 -0.82452 -3.75478 0.038514 

ENSG00000278743 AC087239.1 -0.74556 -3.74815 0.038514 

ENSG00000285763 AL358777.1 -0.60768 -3.67036 0.048983 

ENSG00000276791 AC092117.1 -0.63072 -3.66641 0.048983 

ENSG00000285722 AC207130.1 -1.71493 -3.65656 0.049573 

ENSG00000265933 LINC00668 2.298864 3.643841 0.049573 

ENSG00000268388 FENDRR 0.916365 3.644596 0.049573 

ENSG00000231106 LINC01436 1.30986 3.795489 0.035968 

ENSG00000248740 LINC02428 2.458109 3.852876 0.030461 

ENSG00000275874 PICSAR 1.742661 3.862257 0.030461 

ENSG00000250337 PURPL 1.495827 3.887343 0.03036 

ENSG00000228709 LINC02575 1.235504 3.908659 0.029262 

ENSG00000254872 LINC02688 1.363374 3.920829 0.029262 

ENSG00000264404 LINC02675 2.154221 3.993045 0.025979 

ENSG00000249574 AC226118.1 1.214608 3.998806 0.025979 

ENSG00000224817 AC010789.1 3.647081 4.04573 0.024114 

ENSG00000261409  1.705921 4.224935 0.013912 

ENSG00000230876 LINC00486 2.388161 4.312419 0.011198 

ENSG00000237667 LINC01115 2.347361 4.509832 0.007988 

ENSG00000286734 AC133530.1 2.092716 4.689599 0.006905 

 228 
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Moreover, since the number of DEGs was feasible, to further visualize the relationship between 229 

these lncRNAs, each was correlated to the rest, and Pearson’s correlation coefficients for all the lncRNAs 230 

were extracted. The results are visualized in Figure 5. A table of all Pearson’s correlation coefficients can 231 

be found in Supplementary Material 3. 232 

 233 
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Figure 5. Hierarchical clustering heatmap of lncRNAs amongst the sample population. The color 234 

gradient in the legend refers to Pearson’s correlation coefficient. The dendrogram linkage is based on 235 

the correlation strength. Geneid: ENSEMBL ID. tw: TWAs; tm: TMAs. 236 

GSEA and GO analyses were subsequently performed for all the lncRNA data. Due to the lack of 237 

studies on the genes of these transcripts, there was no significant enrichment in most databases. Notably, 238 

a few terms were enriched from the MSigDB c3.tft.v2023.1.Hs.symbols collection, which is focused on 239 

transcription factors. The results of the term enrichment for the top 10 terms in this collection are shown 240 

in Figure 6, and the results for insignificant term enrichment for other collections and databases can be 241 

found in Supplementary Material 3. 242 

 243 

Figure 6. GSEA of lncRNA data. Terms are more significantly enriched with downregulated genes. 244 

3.4. ML model prediction of PC metastatic potential according to lncRNA gene 245 

expression 246 

Following the training and testing of each of the ML models, optimizations were performed to find 247 

the highest possible accuracy obtainable while reducing bias. Therefore, SMOTE was implemented in all 248 
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the ML algorithms. Reducing sample imbalances improved the predictive accuracy of the utilized 249 

algorithms. 250 

Following SMOTE implementation and thorough hyperparameter tuning, LR demonstrated an 251 

accuracy score of 73.91% when distinguishing between TMAs and TWAs when tested, as well as an F1 252 

score of 82.57% and a recall of 90.63%. Regardless, the area under the curve (AUC) for LR was 0.63, which 253 

was relatively low. Figure 7 A and B show the receiver operating characteristic (ROC) curve and for logistic 254 

regression following the implementation of SMOTE and the precision-recall (PR) curve. C shows the weight 255 

of each lncRNA (feature) in assisting the regression 256 

 257 
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Fig.7 A. The LR model showed an AUC = 0.63, demonstrating relatively weak classification performance, 258 

despite the good accuracy of detecting PC cases at TNM stage IIb or above. B. LR model accuracy of 259 

predicting positive values in comparison to the true positive rate (recall). C. Weights of each of the 260 

differentially expressed lncRNAs allowing the LR model to differentiate between nonmetastatic tumors 261 

and metastatic tumors. 262 

For the SVM model, SMOTE implementation, and hyperameter tuning also improved the predictive 263 

potential of the algorithm, which, on testing, returned an accuracy of 76.09%, with a true positive rate of 264 

84.51% and a recall of 93.75%. Figure A and B show the ROC curve as well as the PR curve of the SVM 265 

model. 266 

 267 

Fig. 8 A. The SVM algorithm showed an AUC = 0.65, demonstrating modest accuracy of detecting PC 268 

cases at TNM stage IIb or above and distinguishing them from less metastatic stages. B. SVM model 269 

accuracy of predicting positive values in comparison to its recall capacity. 270 

RFC was one of the most accurate models; after hyperparameter tuning, it returned an accuracy of 271 

76.09% and an F1 score of 81.96%, with a recall of 78.13%. Most importantly, the AUC for this model was 272 

0.75, showing good performance in classifying the tumors. Regardless, the gene panel consisting of 38 273 

genes allowed the ML algorithms to discern advanced TNM stages from relatively early TNM stages in PC. 274 

Figure 9 A and B also show the RFC model accuracy and PR curve.  275 
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 276 

Fig.9 A. The RFC ROC AUC was 0.75, demonstrating acceptable accuracy of detecting PC cases among 277 

the other ML algorithms when using the differentially expressed lncRNA counts data, regardless of 278 

hyperparameter tuning. B. The RFC PR curve showed good recall, albeit with low precision.  279 

As for XGBC, the model showed 71.73% accuracy; This specific model had the most inconsistency in 280 

predicting tumor types following each randomization. Figure 10 A and B show the low AUC and its PR 281 

curve. Data regarding the evaluation of the ML algorithms are available in Supplementary Material 4. 282 

 283 

4. Discussion 284 

Despite advances in diagnostics and therapeutics, PC remains a very challenging condition to treat, 285 

with consistently high mortality rates and limited available treatments37,38. Recently, research has focused 286 

on identifying prognostic markers for PC, and preclinical studies have identified several prognostic lncRNA 287 
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signatures8,39-41. LncRNAs have been further suggested to have implications in diagnosis, drug resistance, 288 

and therapeutics in PC4. However, as most patients are often diagnosed at advanced stages of disease, 289 

mutational burdens show complex relationships with lncRNA regulation4. Therefore, as the literature 290 

suggests, these relationships must be investigated to adjust treatment modalities. This becomes even 291 

more crucial in the latter stages of PC. 292 

This study aimed to provide details regarding DEGs in PC first and then to further analyze differentially 293 

expressed lncRNA and assess the diagnostic potential of these lncRNAs during the transition from stage 294 

IIa and stage IIb and above. These lncRNAs were extracted after performing DGEA to extract 38 gene 295 

transcripts from the global RNA-seq gene panel among 151 patient samples. The diagnostic potential of 296 

lncRNAs was assessed using supervised ML techniques to predict metastatic transition. I employed four 297 

ML techniques with established accuracy in prediction: LR42, SVM43, RFC43 and XBGC44. 298 

DGEA of the global gene panel revealed 125 DEGs, many of which were previously uninvestigated. Of 299 

the downregulated DEGs, ADH7 was hypothesized to have implications when mutated in pancreatic 300 

injury45. NTS was also associated with PC46. However, SERPINB13 and MIR205HG were previously 301 

unexplored in PC but had been discussed in other cancers and were implicated in poor clinical 302 

outcomes47,48. No studies are available regarding LINC01300, which warrants further investigation. For the 303 

upregulated DEGs, PAX7 was previously reported to have some relationship with cancers, yet studies 304 

regarding this specific gene transcript are lacking 49. For DEFA6 and DEFA5, a report suggested a link 305 

between them and clinical outcomes in colorectal cancer50. While there were no studies regarding 306 

AC010789.1 and TMPRSS15 in PC, some studies linked the potential implications of these genes with other 307 

cancers51,52. 308 

GSEA for the global gene panel revealed several enriched pathways. For example, GO enrichment 309 

revealed that the gene panel significantly enriched pathways relevant in the regulation of aerobic 310 
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respiration (GO:1903715), electron transport carrier chain (GO:0022900), and mitochondrial gene 311 

expression and translation into RNA transcripts (GO:0140053). Notably, of the miRTarBase enriched 312 

pathways, mir-30b-5p microRNA (miRNA) was previously linked to PC53,54. While miR-548x-3p has not 313 

been studied regarding its function in cancer, miR-144-3p was previously implicated in PC55,56. 314 

Additionally,  mir-548j-3p had no studies documenting its relationship with cancer. For miR-1468-3p, 315 

some studies have suggested it as a biomarker for non-small cell lung cancer and prostate cancer57,58. 316 

Following the filtering of the global RNA-seq gene panel to lncRNAs exclusively, DGEA revealed 38 317 

differentially expressed lncRNAs, many of which were novel. LINC01300 and MIR205HG, as previously 318 

described, in addition to DUSP5-DT and AL513128.3, had no studies in PC, with the latter two lacking any 319 

studies on which. In contrast, one report regarding AC132192.2 indicated its relevance in prostate 320 

cancer59. For the upregulated lncRNAs, AC010789.1, as previously stated, had a report regarding its 321 

function in colorectal cancer52,60. LINC00486, RF00019, LINC01115, and AC133530.1 all lack validation 322 

studies in PC, but other reports indicate involvement in several diseases, including cancer61-64. 323 

As these novel lncRNAs lack studies regarding their functions, GSEA of the selected MSigDB collections 324 

returned no significant enrichment but in one transcription factor collection. Notably, the most enriched 325 

pathway described genes containing one or more binding regions for a transcription factor that regulates 326 

cell fate and controls cell cycle progression from the mitotic phase to interphase, known as TOX high 327 

mobility group box family member 4 (TOX4)65,66. Interestingly, lncRNAs enriching this path were primarily 328 

downregulated. 329 

To further explore the significance of the identified 38 lncRNAs, ML algorithms were employed to 330 

predict the metastatic state of cancer (designated “0” for stages IIa or below and “1” for stages IIb and 331 

above). Of all the algorithms, RFC showed superior accuracy to the other algorithms, showing an AUC of 332 

0.75 and an accuracy of over 76%. While there is much to be understood regarding the functions of the 333 
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identified lncRNA panel, the accuracy shown by RFC reveals important aspects about the involvement of 334 

these lncRNAs in PC. This finding warrants further in vitro and in vivo investigations. 335 

For most of the identified lncRNA panels, this was the first study to uncover their involvement in PC. 336 

Regardless, there are many clinical implications for the findings discussed here. The results of this study 337 

suggest that the identified lncRNAs could be further utilized to assess the metastatic potential of PC, as 338 

well as aid in drug development, since these lncRNAs can be used as drug targets. Since their involvement 339 

allowed the prediction and distinction between TNM stages, further investigation of their functions seems 340 

crucial. 341 

Despite the significant findings, this study is not without limitations. First, DEGA was performed for a 342 

large number of data, which likely raised data noise. Second, TWAs used as controls were low in number, 343 

as most samples had a stage IIb diagnosis, and SMOTE was necessary to utilize for the ML algorithms to 344 

reduce bias. Third, there was a lack of normal tissue control samples, which makes it difficult to provide 345 

more accurate assessments of the nature of these genes. Last, there might have been biases in the TCGA 346 

data from incorrect measurements or sequencing, potentially skewing the results of the RNA-seq data. All 347 

of these findings indicate that the findings of this study should be further validated and interpreted with 348 

caution. 349 

Regardless, the presence of evidence regarding some of the identified novel lncRNAs indicates the 350 

strength of the rigorous methods used in this study. This further adds to the implications of the findings 351 

discussed here and the importance of future research to address these novel lncRNAs as potential markers 352 

of metastatic progression in PC. 353 
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5. Conclusion 354 

DGEA utilized in this study identified a set of 38 novel lncRNAs that could contribute to metastatic 355 

progression in PC. GSEA was unable to provide sufficient information to further describe the functions of 356 

these lncRNA, due to the scarcity of available data relevant to the genes identified. Since different ML 357 

algorithms were able to predict metastatic PC with acceptable accuracy and the RFC model predicted PC 358 

with 76% accuracy based on the 38 lncRNA DEG panel, it is likely that these genes participate in the 359 

metastatic progression of PC, warranting further investigation. 360 

The significance and importance of this study is represented by the identified novel lncRNA gene set. 361 

Metastatic PC lacks sufficient studies regarding the involvement of lncRNAs in tumor proliferation and 362 

progression, especially those that use ML algorithms with proven accuracy. This is the first study of its 363 

kind to use this methodology to reveal the discussed gene set in PC to distinguish between early-stage 364 

and advanced PC. Regardless, more studies are needed to identify the role these genes play in PC 365 

metastasis and other cancers. 366 

Based on the findings of this study, I suggest further research to take place into the role of these 367 

genes. In vitro and in vivo experiments must be conducted to further elucidate the functions these genes 368 

may take part in. The accuracy of the ML algorithms to determine PC metastatic potential reveals that 369 

these genes could be added to diagnostic methods if their clinical manifestations are confirmed by future 370 

studies.  371 
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6. Data availability statement 372 

All raw data acquired from TCGA, in addition to all analyses performed on said data and source code 373 

utilized to perform the analyses mentioned in the methodology, are available at the link 374 

https://github.com/hasanalsharoh/PanC.   375 
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