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Abstract 

Objectives: This study aims to identify the cognitive events related to information use (e.g., “Analyze 
data”, “Seek connection”) during hypothesis generation among clinical researchers. Specifically, we 
describe hypothesis generation using cognitive event counts and compare them between groups.  

Methods: The participants used the same datasets, followed the same scripts, used VIADS (a visual 
interactive analysis tool for filtering and summarizing large data sets coded with hierarchical 
terminologies) or other analytical tools (as control) to analyze the datasets, and came up with 
hypotheses while following the think-aloud protocol. Their screen activities and audio were recorded 
and then transcribed and coded for cognitive events.  

Results: The VIADS group exhibited the lowest mean number of cognitive events per hypothesis and 
the smallest standard deviation. The experienced clinical researchers had approximately 10% more 
valid hypotheses than the inexperienced group. The VIADS users among the inexperienced clinical 
researchers exhibit a similar trend as the experienced clinical researchers in terms of the number of 
cognitive events and their respective percentages out of all the cognitive events. The highest 
percentages of cognitive events in hypothesis generation were “Using analysis results” (30%) and 
“Seeking connections” (23%). 

Conclusion: VIADS helped inexperienced clinical researchers use fewer cognitive events to generate 
hypotheses than the control group. This suggests that VIADS may guide participants to be more 
structured during hypothesis generation compared with the control group. The results provide 
evidence to explain the shorter average time needed by the VIADS group in generating each 
hypothesis. 

What is already known on this topic: how hypotheses were generated when solving a puzzle or a 
medical case and the reasoning differences between experienced and inexperienced physicians. 

What this study adds: Our study facilitates our understanding of how clinical researchers generate 
hypotheses with secondary data analytical tools and datasets, the cognitive events used during 
hypothesis generation in an open discovery context. 
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How this study might affect research, practice, or policy: Our work suggests secondary data 
analytical tools and visualization may facilitate hypothesis generation among inexperienced clinical 
researchers regarding the number of hypotheses, average time, and the cognitive events needed per 
hypothesis. 
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Introduction 

A research hypothesis is an educated guess regarding relationships among different variables [1,2]. A 
research question typically comprises one to several scientific hypotheses that drive the direction of 
most research projects [1,3-5]. If we consider the life cycle of a research project, hypothesis 
generation constitutes its starting point. Without a significant, insightful, and novel hypothesis to 
begin with, it is difficult to have an impactful research project regardless of the study design, 
experiment implementation, and results analysis. Therefore, hypothesis generation plays a critical 
role in a research project. There are several studies investigating the mechanism of the generation of 
scientific hypotheses by researchers, both in science (e.g., Dunbar and Khar [6,7]) and in clinical 
medicine (e.g., Joseph and Patel [8,9]). However, none of these studies address how an analytic tool 
can be used to facilitate the hypothesis-generation process.  

At least two categories of hypothesis are used frequently in scientific research. One is a hypothesis 
originating from experimental observations, e.g., any unusual phenomena observed during 
experiments in the context of “wet lab”. The other category is a hypothesis originating from the 
context of data analysis, for example, studies in epidemiology, genomics, and informatics [10-12]. 
Observations of unique or unusual phenomena in the first category and observations of trends in the 
second category are both critical in developing hypotheses [7,13]. Herein, we focus on the 
hypothesis generation within the second category.  

In the past decades, there has been much work toward understanding scientific thinking and 
reasoning, medical reasoning, analogy, and working memory [7,14]. Educational settings and math 
problems were used to explore the reasoning process [15-17]. However, scientific hypothesis 
generation was not addressed, and the mechanism of explicit cognitive processes during scientific 
hypothesis generation remains unclear. The main differences between scientific reasoning and 
hypothesis generation include: a) the starting points of the two processes are different; many studies 
involving scientific reasoning start from an existing problem or puzzle [17-20], whereas data-driven 
hypothesis generation searches for a problem or a focus area to begin, named as open discovery by; 
Henry et al. [21]; b) the mechanisms between the start and end points of the two processes may 
differ, with convergent thinking used more in scientific reasoning when a question or a puzzle needs 
to be solved [7] and divergent thinking used more in data-driven scientific hypothesis generation. 
Meanwhile, hypothesis generation in medical diagnosis starts with a presented medical case or 
symptoms [19,22], which is similar to scientific reasoning. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.31.23297860doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.31.23297860
http://creativecommons.org/licenses/by-nc-nd/4.0/


We previously developed a conceptual framework for scientific hypothesis generation and its 
contributing factors [23]. Researchers have explored the possibilities of automatically generating 
scientific hypotheses in the past [10,24-28]; however, these authors recognized the challenges faced 
by an automated tool for such an advanced cognitive process [24,29,30]. 

Our study aims to obtain a better understanding regarding the scientific hypothesis generation 
process in clinical research. Considering hypotheses can directly impact and guide the direction of 
any research project, the findings of this work can potentially impact the clinical research enterprise. 
The research protocol [31], VIADS [32-34] (a visual interactive analytic tool for filtering and 
summarizing large health data sets coded with hierarchical terminologies—VIADS, a secondary data 
analytical tool developed by our team) usability [35], and quality evaluation of the hypotheses 
generated by participants [23] have all been published. This manuscript focuses on the cognitive 
events used by experienced and inexperienced clinical researchers during hypothesis generation. 

Methods 

Study flow and data sets used 

The 2 × 2 study compared the hypothesis generation process of the clinical researchers with and 
without VIADS on the same datasets (Appendix A), with the same study scripts (Appendix B), and 
within the same timeframe (2 hours/study session), and they all followed the think-aloud method. 
The participants were separated into experienced and inexperienced clinical researchers based on 
predetermined criteria[31], e.g., years of experience and number of publications as significant 
contributors. The data were extracted from the National Ambulatory Medical Care Survey (NAMCS) 
conducted by the Centers for Disease Control and Prevention in 2005 and 2015 [36]. We 
preprocessed the NAMCS data sets by calculating and aggregating the ICD-9-CM diagnostic and 
procedural codes and their frequencies. The participants were asked to analyze the data and 
generate hypotheses and articulate their mind and actions during the process, i.e., study sessions. 
The screen activities and conversations between participants and the study facilitator were recorded 
via BBFlashback. The recordings were transcribed by a professional service.  

Cognitive events coding for the hypothesis generation recordings 

Based on the experience of conducting all study sessions, initial data analysis, the feedback from the 
investigation team, and literature review [1,13,37-41], a preliminary conceptual framework of the 
cognitive hypothesis generation process was developed before coding (Figure 1). The conceptual 
framework served as a foundational framework to formulate the initial codes and code groups 
(Appendix C) that were used to code the transcriptions of the recordings, mainly for cognitive events 
(e.g., seek connections, analogy) in the hypothesis generation process. For example, “Analogy” was 
used when a participant compared one’s last study with the analysis results in front of him/her. “Use 
PICOT” was used when a participant used PICOT (i.e., patient, intervention, comparison, outcome, 
type of study) to formulate an idea into a formal hypothesis.   
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Figure 1 Initial version of the framework on cognitive events during hypothesis generation 

The transcription of one study session was utilized as a pilot coding case to set the initial coding 
principles (Appendix D). The pilot coding sessions were used as training sessions for the two coders 
as well. The rest of the transcriptions were coded by the two coders independently and separately 
first. The two coders compared their coding results, discussed any discrepancies, and reached a 
consensus on coding later by including the study facilitator and modifying the coding principles.  
More codes and code groups were added while the coding progressed. After coding all the study 
session transcripts, the two coders also organized each hypothesis generation as an independent 
process and labeled the cognitive events during each hypothesis generation. We investigated the 
possible hypothesis generation processes based on coded cognitive events. 

Data analytics strategy 

This study used the cognitive events and the aggregated frequencies of these events to demonstrate 
the possible hypothesis generation process. While analyzing the cognitive events, we considered the 
results from four levels: (1) each hypothesis generation as a unit and we examined all hypotheses (n 
= 199), (2) each participant as a unit and all participants (n = 16) as a unit, (3) the group of 
participants who used VIADS as a unit (n = 9), and (4) the group of participants who did not use 
VIADS as a unit (n = 7). Correspondingly, the results were also organized at these four levels. We 
performed independent t-tests to compare the cognitive events between participants (a) in the 
VIADS and control groups and (b) between the experienced (3 participants, 36 hypotheses) and 
inexperienced clinical researchers (13 participants, 163 hypotheses). The study sessions of two 
participants’ (in the control group, both were inexperienced clinical researchers) were missing from 
the coding data because of technical failures resulting in partial recording of their study sessions, and 
their data were excluded from the analysis. 

All hypotheses were rated by an expert panel of seven members using the same metrics for quality 
evaluation [23,42]. We deemed a hypothesis as invalid if three or more experts rated it as 1 (the 
lowest rating) on validity (significance and feasibility are two additional dimensions used for 
evaluation) of the hypothesis. However, we included the analysis of the result for all the hypotheses 
and valid hypotheses. 
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Ethics statement 

The study was approved by the Institutional Review Board of Clemson University, South Carolina 
(IRB2020-056) and Ohio University Institutional Review Boards (18-X-192). 

Results 

Hypothesis generation framework  

Figure 2 is a refined and evolving version of the initial framework shown in Figure 1, our preliminary 
understanding of hypothesis generation. Figure 2 was instrumental in directly guiding the coding of 
the cognitive events. The predominant cognitive events within the processing evidence category 
include “Using analysis results” (30%), “Seeking connections” (23%), and “Analyze data” (20.81%, 
Figure 2). Appendix E illustrates the processes and events used percentages while generating 
hypotheses. Appendix F presents individual cognitive events used for all hypotheses and valid 
hypotheses, respectively. 

 

Figure 2 Cognitive process frameworks for scientific hypothesis generation in clinical research; the 
highest percentages of cognitive events used by clinical researchers were highlighted.   

Overall cognitive events usage during hypothesis generation 

Sixteen participants generated 199 hypotheses during the 2-hour study sessions, with 163 
originating from the inexperienced groups (Table 1). We used 20 distinct codes, i.e., cognitive events 
and 6 code groups (Figure 2). Appendix C showcases the comprehensive codebook. Appendix D 
delineates the rationale and principles established during the coding phase.  In total, 1216 times of 
cognitive events were applied across the 199 hypotheses. On average, inexperienced clinical 
researchers in the control group applied 7.38 cognitive events per hypothesis. Conversely, 
inexperienced clinical researchers in the VIADS group used 4.48 (p< 0.001 versus control) cognitive 
events per hypothesis with the lowest standard deviation (SD, 2.43). Experienced clinical researchers 
employed 6.15 (p < 0.01 versus junior VIADS) cognitive events per hypothesis. Notably, the 
inexperienced clinical researchers in the control group demonstrated the highest average number of 
cognitive event usage with the largest SD (5.02), whether we considered all hypotheses or just valid 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.31.23297860doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.31.23297860
http://creativecommons.org/licenses/by-nc-nd/4.0/


ones (Table 1). The experienced participants have approximately 10% higher valid hypotheses 
(72.22% vs. 63.19%) than junior participants. 

Table 1 Group-wise comparison of cognitive events used while generating hypotheses  

 All hypotheses Valid # (%) Invalid # (%) 
# Hypotheses by different groups 
# Hypotheses by all participants 199 129 (64.82) 70 (35.18) 
# Hypotheses by juniors (n = 13) 163 103 (63.19) 60 (36.81) 
# Hypotheses by experienced (n = 3) 36 26 (72.22) 10 (27.78) 
Aggregated cognitive event counts by different groups 
Total events by all 1216 840 (69.08) 376 (30.92) 
Total events by juniors 970 664 (68.45) 306 (31.55) 
Total events by juniors- Control (C) 450 315 (70) 135 (30) 
Total events by juniors- VIADS (V) 520 349 (67.12) 171 (32.89) 
Total events by experienced 246 176 (71.54) 70 (28.46) 
Average cognitive events per participant per hypothesis 
Mean events-junior C/hypothesis (SD) 7.38 (5.02) 7.68 (5.21) 6.75 (4.66) 
Mean events-junior V/hypothesis (SD) 4.48 (2.43)# 4.59 (2.69) 4.28 (1.84) 
Mean events-experienced/hypothesis (SD) 6.15 (3.03)* 5.87 (3.03) 7 (3.06) 

Note: SD, standard deviation; # p < 0.001 between junior C and junior V; *p < 0.01 between junior V 
and experienced.  

Cognitive events comparison between VIADS and non-VIADS participants 

Furthermore, we compared the percentages of cognitive event count between the VIADS and non-
VIADS groups among inexperienced clinical researchers (Figure 3). “Use analysis results” (31.3% 
vs.27.1%, p < 0.001), “Seek connections” (25.4% vs. 17.8%, p < 0.001), and “Analyze data” (22.1% vs. 
21.1%) were the events with the highest percentages. The “Seek connections”, “Use analysis 
results”, and “Pause/think” (3.8% vs. 9.3%, p < 0.05) all show statistical differences between the 
VIADS and control groups by t tests. Our results indicate that the participants in the VIADS group 
registered higher event counts during “Preparation”, when “Analyzing results”, and when “Seeking 
connections”.  Conversely, the control group exhibited greater event counts in categories such as 
“Needing further study”, “Inferring”, “Pausing”, “Using checklists”, and “Using PICOT”.  
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Figure 3 Comparing cognitive events generated by VIADS and control groups among inexperienced 
clinical researchers while generating hypotheses 

Cognitive events comparison between experienced and inexperienced clinical researchers  

We also examined the differences between experienced and inexperienced clinical researchers 
regarding the percentages of cognitive events they used (Figure 4). “Use analysis results” (31.7% vs. 
29.4%, p < 0.01), “Seek connections” (27.6% vs. 21.9%, p < 0.01), and “Analyze data” (17.5% vs. 
21.6%, p< 0.01)) were events with the highest percentages of use. The data suggest that experienced 
clinical researchers exhibit higher percentages regarding these cognitive events: “Using analysis 
results”, “Seeking connections”, “Inferring”, and “Pausing”.  Conversely, inexperienced clinical 
researchers demonstrated elevated percentages in cognitive events such as “Preparation”, “Data 
analysis”, “Utilizing suggestions”, “Utilizing checklists”, and “Utilizing PICOT”. 
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Figure 4 Comparison of cognitive events between experienced and inexperienced clinical researchers 
while generating hypotheses 

Summary of results 

The inexperienced clinical researchers in the VIADS group used the fewest cognitive events to 
generate each hypothesis on average versus the control group (p < 0.001) and the experienced 
clinical researchers (p < 0.01, Table 2). The most frequently used cognitive events were “Use analysis 
results” (29.85%), “Seek connections” (23.03%), and “Analyze data” (20.81%) during hypothesis 
generation (Figure 2). It seems the inexperienced clinical researchers in the VIADS group 
demonstrated a similar trend to experienced clinical researchers (Figures 3 and 4).  

Discussion 

Results interpretation 

Several findings of this study were notable. The experienced clinical researchers had a 10% higher 
percentage of valid hypotheses than the inexperienced clinical researchers (72.22% vs. 63.19%; 
Table 1), consistent with proposition and experience. Another interesting phenomenon is regarding 
the average cognitive events used by the different groups: the junior VIADS group used far fewer 
events per hypothesis than the control or experienced groups (4.38 vs. 7.38 vs. 6.15, Table 1) and 
exhibited the lowest SD. This is highly significant as it indicates that the VIADS group, despite 
comprising inexperienced clinical researchers, used fewer cognitive events to generate each 
hypothesis on average. This result supports our hypothesis that VIADS facilitates hypothesis 
generation. In addition, this result supports our findings that the VIADS group used a shorter time to 
generate each hypothesis on average [23]. 

Our results show clinical researchers spent ≥ 70% of cognitive events to process evidence during 
hypothesis generation. The top three cognitive events used by clinical researchers during hypothesis 
generation included “Using analysis results” (29.85%), “Seeking connections” (23.03%), and 
"Analyzing data” (20.81%, Figure 2). 

Figure 3 presents the cognitive events and their distributions between the VIADS and control groups 
comprising the inexperienced clinical researchers. The participants in the VIADS group showed a 
higher number of cognitive events for interpreting the results, and the participants in the control 
group showed a higher number of cognitive events for external help, such as checklists and PICOT, 
during hypothesis generation. Figures 3 and 4 show that the VIADS group exhibits similar cognitive 
event trends with those of the experienced group in terms of “Using analysis results” and “Seeking 
connections”: 

• Using analysis results:  
o VIADS versus control: 31.35% versus 27.11% (p< 0.001);  
o experienced versus inexperienced: 31.71% versus 29.38% (p < 0.01) 

• Seeking connection:  
o VIADS versus control: 25.38% versus 17.78% (p< 0.001);  
o experienced versus inexperienced: 27.64% versus 21.86% (p< 0.01). 

The results indicate that VIADS may help inexperienced clinical researchers move in a direction that 
aligns more with that of experienced clinical researchers. A more carefully designed study is needed 
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to support or deny such a statement. However, it appears that the current quantitative evidence of 
cognitive events and their distributions among all cognitive events support such a trend.  

Significance of the work 

We consider this study to have the following significance: 1) developed the cognitive framework for 
hypothesis generation in the clinical research context and provided quantitative evidence through 
cognitive events for the framework; 2) identified and elaborated evidence-based cognitive 
mechanisms that might be underneath hypothesis generation; 3) identified that experienced clinical 
researchers possess a considerably higher valid rate of hypothesis generated in a 2-hour window 
than the inexperienced clinical researchers; 4) demonstrated that VIADS may help inexperienced 
clinical researchers to use fewer cognitive events than participants without using in hypothesis 
generation, which indicates VIADS provides a structured way of thinking during hypothesis 
generation; and 5) established the baseline measures of cognitive events in hypothesis generation 
and the following events were used in descending order: processing evidence, seeking evidence, and 
preparation. 

Comparing to other studies 

Patel et al. have explored medical reasoning through diagnoses, which have significantly influenced 
the design of the current study [7,8,20,22]. From their studies, we know that there were differences 
in the reasoning processes and thinking steps between experienced and inexperienced clinicians in 
medical diagnosis [9,19,22,43,44]. Therefore, we separated the participants into experienced and 
inexperienced groups before assigning them randomly into VIADS or control groups. The findings of 
this study mostly align with those of Patel et al. despite our different settings, medical diagnosis 
versus scientific hypothesis generation in clinical research. The experienced participants used fewer 
cognitive events than inexperienced participants on average, although the VIADS group used the 
lowest number of cognitive events despite comprising inexperienced clinical researchers.  

Klahr and Dunbar’s landmark study published in 1988 [6] also enlightened our study [6]. Their study 
taught participants to use an electronic device. The participants had to figure out an unencountered 
function of the device. The process was employed to study hypothesis generation, reasoning, and 
testing iteratively. They concluded that searching memory and using results from prior experiments 
are critical for hypothesis generation. The primary differences between our studies lay in two folds: 
(1) the tasks for the participants (2) and the types of hypotheses generated. In the Klahr and 
Dunbar’s study, hypotheses had correct answers, i.e., problem-solving with one or multiple correct 
answers. Most likely, the participants used convergent thinking [7]. Their study used a simulated lab 
environment to assess scientific thinking. Conversely, the hypothesis generation in our study is open 
discovery without correct answers. The participants in our study used more divergent thinking 
during the process [7]. The hypothesis generation process in our study was substantially messier, 
unpredictable, and challenging to consistently evaluate comparing to their well-defined problems.  

Limitations and challenges 

One of the main limitations is only three experienced clinical researchers participated in our study 
who generated 36 hypotheses. We compared the inexperienced and experienced groups regarding 
all the hypotheses and cognitive events used. However, we could not compare the cognitive events 
between the VIADS and control groups among the experienced clinical researchers. We made similar 
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efforts to recruit inexperienced and experienced clinical researchers via comparable platforms; 
however, the recruitment results were considerably worse in the experienced group. 

Another limitation of the study was that the information could be captured via the think-aloud 
protocol. We acknowledge that we only captured the verbalized events during the study sessions, 
which is a subset of the conscious process and a small portion of the real process. Our coding, 
aggregation, and analysis are based on the captured events.  

In addition, we also faced challenges in terms of unexpected technical failure and unpredictability 
because this was a human-participation study. The audio recordings of two participants were partial 
because of a technical failure. One mitigation strategy that could be used was to conduct a test 
recording each time for every participant, which can be particularly critical if a new device is used in 
the middle of the study. 

Future work 

Several avenues for future research emerge from our study. First, we aim to explore the sequence 
pattern of cognitive events to furnish additional insights into hypothesis generation. Furthermore, 
juxtaposing the frequencies of cognitive events with the quality evaluation results of the generated 
hypotheses might illuminate the potential patterns, further enriching our understanding of the 
process. Finally, a larger scale study encompassing a larger participant sample size and situated in a 
more natural environment can enhance the robustness of our findings. 

Conclusion 

Experienced clinical researchers exhibit a higher valid hypothesis rate than inexperienced clinical 
researchers. The VIADS group of inexperienced clinical researchers used the fewest cognitive events 
with the lowest standard deviation to generate each hypothesis compared with experienced and 
inexperienced clinical researchers not using VIADS. This efficiency is further underscored by the 
VIADS group taking the least average time to generate a hypothesis. Notably, the VIADS 
inexperienced cohort mirrored the trend observed in experienced clinical researchers in terms of 
cognitive event distribution. Such findings indicate that VIADS may provide structured guidance 
during hypothesis generation. Further studies, ideally on a grander scale and in a more natural 
environment, could offer a deeper understanding of the process. Our research provides foundational 
metrics on cognitive event measures during hypothesis generation in clinical research, 
demonstrating the viability of executing such experiments in a simulated setting and unraveling the 
intricacies of the hypothesis generation process through these experiments. 
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Appendix A: Datasets used by participants during study sessions 
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Appendix B: Study session scripts followed by all participants 

Appendix C: Codes and code group used during study session transcription analysis 

Appendix D: Rationale and guidelines for coding data-driven hypothesis generation recordings 

Appendix E: Cognitive events and their percentages during hypothesis generation in clinical research 
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