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Abstract 27 

Metabolomic platforms using nuclear magnetic resonance (NMR) spectroscopy can now rapidly quantify 28 
many circulating metabolites which are potential biomarkers of cardiovascular disease (CVD). Here, we 29 
analyse ~170,000 UK Biobank participants (5,096 incident CVD cases) without a history of CVD and not 30 
on lipid-lowering treatments to evaluate the potential for improving 10-year CVD risk prediction using 31 
NMR biomarkers in addition to conventional risk factors and polygenic risk scores (PRSs). Using machine 32 
learning, we developed sex-specific NMR scores for coronary heart disease (CHD) and ischaemic stroke, 33 
then estimated their incremental improvement of 10-year CVD risk prediction when added to guideline-34 
recommended risk prediction models (i.e., SCORE2) with and without PRSs. The risk discrimination 35 
provided by SCORE2 (Harrell’s C-index = 0.718) was similarly improved by addition of NMR scores (ΔC-36 
index 0.011; 0.009, 0.014) and PRSs (ΔC-index 0.009; 95% CI: 0.007, 0.012), which offered largely 37 
orthogonal information. Addition of both NMR scores and PRSs yielded the largest improvement in C-38 
index over SCORE2, from 0.718 to 0.737 (ΔC-index 0.019; 95% CI: 0.016, 0.022). Concomitant 39 
improvements in risk stratification were observed in categorical net reclassification index when using 40 
guidelines-recommended risk categorisation, with net case reclassification of 13.04% (95% CI: 11.67%, 41 
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14.41%) when adding both NMR scores and PRSs to SCORE2. Using population modelling, we estimated 1 
that targeted risk-reclassification with NMR scores and PRSs together could increase the number of CVD 2 
events prevented per 100,000 screened from 201 to 370 (ΔCVDprevented: 170; 95% CI: 158, 182) while 3 
essentially maintaining the number of statins prescribed per CVD event prevented. Overall, we show 4 
combining NMR scores and PRSs with SCORE2 moderately enhances prediction of first-onset CVD, and 5 
could have substantial population health benefit if applied at scale. 6 

Introduction 7 

Circulating biomarkers play a central role in cardiovascular disease (CVD) risk scores recommended by 8 
clinical guidelines to identify high-risk individuals for CVD prevention1–3. Total cholesterol and high-9 
density lipoprotein (HDL) cholesterol are routinely measured and used alongside demographic and lifestyle 10 
risk factors to assess 10-year risk of CVD using risk scores such as SCORE24. Efforts to improve CVD risk 11 
prediction models have considered additional circulating biomarkers5, such as C-reactive protein (CRP)6,7, 12 
as well as incorporating polygenic risk scores (PRSs) to account for genetic predisposition8–10. While PRSs 13 
have shown potential to enhance CVD risk screening11–14, addition of individual CVD biomarkers have 14 
thus far shown limited overall incremental benefits15–17. 15 

High-throughput nuclear magnetic resonance (NMR) spectroscopy has enabled rapid and simultaneous 16 
quantification of several biomarkers from a single human blood plasma sample18,19. These include 17 
cholesterols and other lipids in lipoprotein sub-fractions, fatty acids, ketone bodies, amino acids, glycolysis 18 
metabolites and glycoprotein acetyls (GlycA)20,21. NMR metabolic biomarker data has been quantified in 19 
numerous cohorts over the last decade, helping derive new insights into the genetic determinants, molecular 20 
pathogenesis, and epidemiology of CVD22.  21 

Several studies have investigated the utility of biomarkers combinations from NMR platforms to improve 22 
prediction of CVD23–26; however, they have focused on multi-disease prediction, used outdated clinical risk 23 
prediction scores, and have not investigated improvements relative to clinically relevant guideline-24 
recommended risk thresholds. 25 

Here, we utilize NMR biomarker data in UK Biobank to assess whether NMR biomarkers, in isolation or 26 
combination (i.e., NMR scores), can improve 10-year CVD risk prediction when added to the SCORE2 risk 27 
model, which is recommended by the European Society of Cardiology (ESC) 2021 guidelines for CVD 28 
prevention3. We further assess whether incremental improvements in CVD risk prediction are meaningful 29 
at ESC 2021 recommended risk thresholds for treatment consideration3. In addition we compared the 30 
improvement in risk prediction provided by NMR scores to that provided by PRS11 and also assessed the 31 
PRSs and NMR scores combined. Finally, we modelled the potential public health benefits for CVD 32 
prevention if applied to the UK primary care population according to the ESC 2021 guidelines for statin 33 
initiation. A schematic of the overall study is given in Figure 1.   34 
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Results 1 

Characteristics of study participants 2 
Of the 502,207 participants enrolled in UK Biobank consenting to electronic health record linkage, 168,517 3 
participants met the inclusion criteria for this study (Figure S1), namely: participants who were eligible for 4 
10-year CVD risk assessment according to the ESC 2021 guidelines for CVD prevention3, had plasma 5 
NMR spectroscopy biomarker data available (with <5% missingness), had complete data on risk factors 6 
needed to compute SCORE2, were not taking lipid lowering medications, and had data on PRSs 7 
(Methods). Participants were eligible for 10-year CVD risk assessment at baseline if they were 40 to 69 8 
years of age and were apparently healthy3; i.e. with no prior history of established atherosclerotic 9 
cardiovascular disease, diabetes mellitus, chronic kidney disease, or familial hypercholesterolemia. During 10 
the 1,641,935 person-years at risk (median [5th, 95th percentile] follow-up of 10.0 [8.5–10.0] years), 5,096 11 
CVD cases were recorded. Baseline cohort characteristics are detailed in Table 1.  12 

Incremental CVD risk discrimination with individual biomarkers 13 
Improvements in CVD risk discrimination were assessed by differences in C-index (ΔC-index) beyond 14 
SCORE2 alone for each of the 249 NMR biomarkers (Table S1) and 28 clinical chemistry biomarkers 15 
(Table S2). The ΔC-index was assessed for each biomarker separately using sex-stratified Cox proportional 16 
hazards models for 10-year CVD risk with the biomarker as a predictor and the SCORE2 linear predictor as 17 
an offset term (Methods). The sex-stratified C-index for SCORE2 alone was 0.718 (95% confidence 18 
interval [CI]: 0.711, 0.724) in the analysis sample of 168,517 participants (5,096 CVD cases).  19 

Based on a false discovery rate (FDR) adjusted bootstrap P-value < 0.05 (Methods) we observed 20 
statistically significant improvement in C-index for 35 of the 277 biomarkers (Table S3A). Improvements 21 
in sex-stratified C-index over SCORE2 (ΔC-index) were modest (Figure 2A). The largest ΔC-index 22 
observed for any biomarker was with addition of cystatin-C measured by clinical biochemistry assay 23 
(Figure 2A), with ΔC-index of 0.006 (95% CI: 0.004, 0.008; Table S3A). The largest ΔC-index observed 24 
for any of the 249 NMR biomarkers was with addition of albumin (Figure 2A), with ΔC-index of 0.005 25 
(95% CI: 0.003, 0.006; Table S3A). Results were similar when analysing males and females separately, but 26 
with reduced power to detect statistically significant differences in ΔC-index (Table S3B,C).  27 

NMR biomarker scores 28 
Sex-specific NMR biomarker scores for CHD (4,054 cases; Table S4A) and ischaemic stroke (1,280 cases; 29 
Table S4B) were trained and tested in the 168,517 participants, then later combined (see next section) for 30 
10-year CVD risk prediction (Figure S2; Methods). NMR biomarker scores were trained for CHD and 31 
stroke separately and later combined, as we previously found that combining PRSs for CHD and stroke led 32 
to improved prediction of 10-year CVD risk over a single PRS trained for CVD, due to its heterogeneity11. 33 
NMR scores were also trained in males and females separately to capture sex-specific differences in their 34 
concentrations27 and well-known differences in baseline survival between males and females3. NMR scores 35 
were trained using elastic-net penalised Cox proportional hazards regression28,29 in nested cross validation 36 
using the 106 non-derived NMR biomarkers as candidate predictors (Figure S3; Methods). The per-37 
biomarker weights for computing the consensus optimal NMR scores after model training are given in 38 
Table S5.  39 

All four consensus optimal NMR scores included all 106 non-derived biomarkers (Figure S3C, Table S5). 40 
The biomarker with the strongest contribution to the CHD NMR scores was GlycA, which explained 12.8% 41 
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of the variance in the CHD NMR score in males, and 11.4% of the variance in the CHD NMR score in 1 
females (Table S5). The biomarker with the strongest contribution to the ischaemic stroke NMR scores was 2 
albumin, which explained 15.7% of the variance in the ischaemic stroke NMR score in males, and 27.1% of 3 
the variance in the ischaemic stroke NMR score in females (Table S5).  4 

To avoid overestimation of prediction performance in downstream analyses, we used for each NMR score 5 
the aggregate of their predicted values across cross-validation test partitions (Figure S2A). Sex-specific 6 
pairwise correlations between SCORE2, the NMR scores, and PRSs are shown in Figure S4. Predicted 7 
NMR scores and PRS were statistically significant independent predictors of 10-year CVD risk when fitting 8 
sex-stratified Cox proportional hazards regression with SCORE2 as an offset term (Figure 3A; Methods). 9 
Results were similar when fitting models with SCORE2 risk factors as independent predictors variables 10 
(Figure S6; Table S6B; Methods). Results were also similar when analysing males and females separately 11 
(Figure S5A, Figure S6, Table S6). 12 

Incremental value of NMR biomarker scores and PRSs to 10-year CVD risk prediction  13 
We assessed and compared three models to SCORE2 for 10-year CVD risk prediction in the 168,517 14 
participants: (1) SCORE2 + CHD NMR score + ischaemic stroke NMR score, (2) SCORE2 + CHD PRS + 15 
ischaemic stroke PRS, and (3) SCORE2 + NMR scores + PRSs (Methods). NMR scores and/or PRSs were 16 
combined with SCORE2 as part of the cross-validation procedure described above (Figure S2). Per-score 17 
weightings for centring adding NMR scores and/or PRSs to SCORE2 in new samples are given in Table 18 
S7. 19 

Incremental discrimination for 10-year CVD risk for each model was assessed by differences in sex-20 
stratified C-index from SCORE2 alone (Methods). We observed statistically significant improvement in 21 
ΔC-index for all three models (Figure 3B, Table S8). The ΔC-index with addition of NMR scores was 22 
0.011 (95% CI: 0.009, 0.014; Table S8), almost double the ΔC-index observed for any single biomarker 23 
alone (Table S3A). This was also similar to the ΔC-index observed with addition of PRSs, which was 24 
0.009 (95% CI: 0.007, 0.012; Table S8). Improvement in risk discrimination was greatest when adding 25 
both NMR scores and PRSs to SCORE2 (Figure 3B), with ΔC-index 0.019 (95% CI: 0.016, 0.022; Table 26 
S8)—an 8.8% gain in C-index relative to SCORE2 alone—for a total absolute C-index of 0.737. 27 
Improvements in ΔC-index were greater in males than in females for all models, and the differences were 28 
most pronounced for models incorporating PRSs (Figure S5B, Table S8).  29 

Incremental value in risk stratification using ESC 2021 risk thresholds for treatment consideration 30 
Next, we assessed whether incremental improvements in CVD risk prediction were meaningful at clinically 31 
relevant risk thresholds. For each model, we calculated absolute 10-year CVD risk using formulae 32 
calibrated to the UK population4 (Methods) and stratified participants into categories of low risk, medium 33 
risk, and high risk (Table S9) using ESC 2021 recommended risk thresholds for treatment consideration3 34 
(Methods). Distributions of predicted absolute risk are compared in Figure S7. Improvements in risk 35 
stratification over SCORE2 alone were then assessed using categorical net reclassification index (NRI) 36 
(Figure 3C, Table S10). 37 

Statistically significant improvement in risk stratification over SCORE2 among incident CVD cases was 38 
observed for all three alternative models tested (Figure 3C, Table S10A). Improvements in case 39 
classification from NMR scores were more than twice as strong as those from PRSs. We observed a net 40 
case reclassification rate of 10.71% (95% CI: 9.33%, 12.08%) with addition of NMR scores, and 4.21% 41 
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(95% CI: 3.08%, 5.34%; Table S10A) with addition of PRSs. Improvements in case classification were 1 
strongest with addition of both NMR scores and PRSs, with a net case reclassification rate of 13.04% (95% 2 
CI: 11.67%, 14.41%; Table S10A). Results were similar in sex-specific analyses (Figure S5C, Table 3 
S10B). 4 

A modest, but statistically significant, inappropriate reclassification for non-cases was also observed for all 5 
three alternative models (Figure 3C, Table S10B). The net reclassification rate for non-cases was −2.51% 6 
(95% CI: −2.69%, −2.34%) with addition of NMR scores, −0.58% (95% CI: −0.74%, −0.41%) with 7 
addition of PRSs, and −2.90% (95% CI: −3.10%, −2.70%) with addition of both NMR scores and PRSs 8 
(Table S10B). In sex-specific analyses greater inappropriate reclassification of non-cases was observed in 9 
females than in males (Figure S5C, Table S10B). 10 

Incremental value for CVD prevention with population-wide screening 11 
Next, we estimated the incremental benefits to CVD prevention if applied at scale to the UK population. 12 
We simulated a hypothetical population of 100,000 adults 40–69 years of age representative of the general 13 
UK population using the age- and sex- structure of the UK population30 and previously published 10-year 14 
CVD incidence rates amongst CVD- and statin- free primary care patients11 (Figure S8, Methods). In total, 15 
the simulated population comprised 49,156 males (4,391 incident CVD cases) and 50,844 females (2,245 16 
incident CVD cases) (Table S11).  17 

To model the benefits of population-wide screening with each model, we stratified the simulated population 18 
into the low-, medium-, and high- CVD risk groups based on the proportions allocated to each category in 19 
UK Biobank by SCORE2 alone and the three alternative models adding NMR scores and/or PRSs (Figure 20 
S9A, Methods). We modelled statin initiation in the high-risk group, who based on their risk thresholds 21 
would be recommended for risk factor treatment by the ESC 2021 guidelines for CVD prevention3. The 22 
impact of statin initiation was modelled as preventing one in five simulated incident CVD events; assuming 23 
a 20% reduction in 10-year CVD risk31. 24 

Incremental improvements in CVD prevention for each alternative model were assessed by differences 25 
from SCORE2 alone in (1) the number of people classified as high risk (ΔNhigh-risk); (2) the number of 26 
future CVD cases amongst the high-risk group (ΔCVDhigh-risk); (3) the number of future CVD events 27 
expected to be prevented by initiation of statins in the high-risk group (ΔCVDprevented); (4) the number 28 
needed to screen to prevent one CVD event (ΔNNS); and the number of statins prescribed per CVD event 29 
prevented (ΔNNT) (Methods).  30 

Consistent with the categorical NRI analyses above, we observed statistically significant improvements in 31 
CVD prevention with addition of NMR scores and/or PRSs (Figure 4A). For all three models we observed 32 
a statistically significant increase in the ΔNhigh-risk, ΔCVDhigh-risk, and ΔCVDprevented, along with a 33 
statistically significant decrease in the ΔNNS (Figure 4A, Table S12A). The number of events prevented 34 
increased from 201 per 100,000 screened with SCORE2 alone, to 309 with addition of NMR scores 35 
(ΔCVDprevented: 108; 95% CI: 96, 120), to 246 with addition of PRSs (ΔCVDprevented: 108; 95% CI: 35, 56), 36 
and to 339 with addition of both NMR scores and PRSs (ΔCVDprevented: 139; 95% CI: 125, 153) (Table 37 
S12A). Importantly, our modelling indicated no statistically significant change in NNT, the number of 38 
statins prescribed per CVD event prevented was constant at 23 (Table S12A). Sex-specific analyses were 39 
similar (Figure S10A, Table S12A). 40 
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Incremental value for CVD prevention with targeted screening 1 
Finally, we estimated the incremental benefits to CVD prevention if using NMR scores and/or PRSs for 2 
targeted risk-reclassification of those classified as medium-risk with SCORE2, for whom the ESC 2021 3 
guidelines suggest considering, but do not explicitly recommend, risk factor treatment3. When applying 4 
SCORE2 alone to the simulated population (Figure S9A, Methods), there were 36,005 people predicted to 5 
be classified to the medium CVD risk category, which included 3,728 incident CVD cases (56% events). 6 

We re-stratified the medium-risk population based on proportions re-stratified into each risk category in 7 
UK Biobank by the three alternative models adding NMR scores and/or PRSs (Figure S9B, Methods). 8 
Incremental improvements in CVD prevention from targeted screening with NMR scores and/or PRSs were 9 
consistent with and stronger than those observed from population-wide screening (Figure 4B, Table 10 
S12B). The number of events prevented increased from 201 per 100,000 screened with SCORE2 alone, to 11 
336 with additional targeted screening with NMR scores (ΔCVDprevented: 136; 95% CI: 125, 147), to 277 12 
with additional targeted screening with PRSs (ΔCVDprevented: 77; 95% CI: 68, 86), and to 370 with 13 
additional targeted screening with NMR scores and PRSs combined (ΔCVDprevented: 170; 95% CI: 158, 182) 14 
(Table S12B). A small but not statistically significant increase in the number of statins prescribed per CVD 15 
event was observed for all three models (ΔNNT: 1; Table S12B). Improvements in CVD prevention were 16 
statistically significant in both males and females, with no statistically significant change in the number of 17 
statins prescribed per CVD event prevented (Figure S10, Table S12B).  18 

Discussion 19 

Determining the added value of biomarkers beyond total and HDL cholesterol for 10-year CVD risk 20 
prediction is an area of interest for enhancing CVD prevention3. Here, we investigated whether 10-year 21 
CVD risk prediction in UK Biobank participants eligible for screening could be improved, in comparison to 22 
the currently recommended SCORE23,4.  23 

We found statistically significant improvements in 10-year CVD risk prediction from 35 of 277 biomarkers 24 
quantified either individually by clinical chemistry assays or simultaneously by plasma NMR spectroscopy. 25 
Although statistically significant due to the large sample size, the magnitude of these incremental 26 
improvements was modest. Combining NMR biomarkers into NMR scores almost doubled the gain in 27 
observed predictive performance (ΔC-index) as compared to any single NMR biomarker. NMR biomarker 28 
scores and PRSs offered largely orthogonal information and increased SCORE2 C-index to similar degrees.  29 

Apart from the cholesterol component of CVD risk in SCORE24, the biomarkers yielding the strongest 30 
improvement in 10-year CVD risk prediction were related to inflammation; a well-studied target in CVD 31 
prediction and prevention research32–34. Cystatin-C is a biomarker of renal function and cardiovascular 32 
disease also known to be associated with increased inflammation35,36. Albumin was the biomarker yielding 33 
the second strongest improvement over SCORE2 and was also the strongest contributor to the ischaemic 34 
stroke NMR score. Hypoalbuminemia has been associated with increased risk of stroke in numerous 35 
epidemiological studies37–39 and is also a biomarker of inflammation40,41. The strongest contributor to the 36 
CHD NMR score was GlycA, an NMR signal quantifying the levels of multiple proteins with key roles in 37 
inflammation21,42 and a stronger biomarker of chronic inflammation than C-reactive protein43, which has 38 
been associated with CVD risk in multiple studies20,44,45. 39 
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Risk prediction models including NMR scores and/or PRSs also improved risk stratification of future CVD 1 
events when using risk thresholds recommended for clinical decision making by the ESC 2021 guidelines 2 
for CVD prevention. NMR scores improved net case reclassification to a greater extent than PRSs (10.71% 3 
vs 4.21%, respectively); however, when combined, NMR scores and PRSs improved net case 4 
reclassification by 13.04%. These results highlight the complementary nature of the information capture by 5 
PRSs and NMR scores. While PRSs capture the lifetime risks due to genetics8–10, NMR scores capture part 6 
of the dynamic component of risk conferred by lifestyle and environment23, which act on that genetic 7 
background.  8 

When modelling the potential benefits for CVD prevention in the wider UK population eligible for 10-year 9 
CVD risk screening, we found adding NMR scores and/or PRSs to SCORE2 significantly increased the 10 
those would be recommended for statin initiation (following the ESC 2021 guidelines for risk factor 11 
treatment for CVD prevention3) and who would subsequently experience a CVD event. Importantly, the 12 
number of statins prescribed per CVD event prevented would stay constant. We estimated that adding 13 
NMR scores to SCORE2 would increase the number of CVD events prevented from 201 to 309 (per 14 
100,000); adding PRSs to SCORE2 would increase the number of CVD events prevented to 246; and 15 
adding both NMR scores and PRSs to SCORE2 would increase the number of CVD events prevented to 16 
339. 17 

To increase its efficiency, we also modelled the potential benefits of targeted follow-up screening in those 18 
at medium risk, for whom the ESC 2021 guidelines suggest considering, but do not explicitly recommend, 19 
risk factor treatment3. We estimated that, per 100,000 screened, that targeted risk-reclassification with 20 
NMR scores would increase the number of CVD events prevented to 336; targeted risk-reclassification with 21 
PRSs would increase the number of CVD events prevented to 277; and targeted risk-reclassification with 22 
both NMR scores and PRSs would increase the number of CVD events prevented to 370. We also 23 
estimated that this targeted follow-up screening would essentially maintain the number statins prescribed 24 
per CVD event prevented. 25 

This study represents the largest population health assessment of metabolomic and genomic biomarkers for 26 
CVD to date. While our findings suggest that there are potential gains for CVD risk prediction and 27 
prevention, there are obvious challenges for validating clinical utility and potential implementation. 28 
Commercial providers of NMR biomarkers and PRSs exist, yet fidelity, scale, and cost frequently mean 29 
that real world benefits are less than those estimated in prospective cohort studies. Nevertheless, our results 30 
indicate that current technologies that can scale to populations (e.g. NMR metabolomics and genomics) 31 
have the capacity to moderately improve CVD risk prediction. Our results from clinical biochemistry 32 
assays also indicate substantial potential benefit for CVD risk prediction from proteins, which with few 33 
exceptions are not measurable by NMR spectroscopy22. Initial studies of plasma proteomics scores in UK 34 
Biobank have also shown promise for enhancing CVD risk prediction46, but larger sample sizes are needed 35 
to investigate the potential for improving risk stratification at clinically relevant decision-making 36 
thresholds. For the ultimate goal of primordial prevention, further studies are also needed to investigate the 37 
potential for circulating biomarkers for CVD risk prediction in younger adults47.  38 

This study has several limitations. Ascertainment bias in UK Biobank means the analysis cohort is healthier 39 
than the general UK population48. The distribution of risk factors and biomarkers is likely wider in the 40 
general population eligible for 10-year CVD risk prediction, and thus the incremental improvement of 41 
NMR scores and PRSs may be higher than estimated in this study. On the other hand, the incremental 42 
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benefits in CVD prevention are potentially overestimated when modelling the population eligible for 10-1 
year CVD risk prediction with SCORE2 because no data were available on the age- and sex- structure of 2 
the CVD- and statin- free population, so our population was modelled using the age- and sex- structure of 3 
the wider UK population including those ineligible for screening. Nevertheless, despite these potential 4 
sources of bias, we believe our findings are robust as we have designed our analyses such that they do not 5 
differentially impact the different models for 10-year CVD risk prediction being compared. Finally, our 6 
study comprised middle-age adults of almost entirely (>95%) European ancestries in the UK Biobank. Our 7 
observations may not generalise to other countries, healthcare systems, or other ancestry groups within the 8 
UK. Similarly, while all training and test sets were distinct, the NMR scores were all generated within UK 9 
Biobank; therefore, their (relative) performances may differ in other populations. Further studies are needed 10 
to evaluate the efficacy and cost-effectiveness of NMR scores and PRSs for improving 10-year CVD risk 11 
prediction in these settings. 12 

In conclusion, our results indicate that incorporating scores of NMR metabolomic biomarkers into 10-year 13 
CVD risk prediction could enhance prediction of first-onset CVD. We further add to the growing body of 14 
evidence that PRSs can be used to enhance CVD risk prediction over conventional risk factors10,11 and 15 
show that improvements in 10-year CVD risk prediction from PRSs are orthogonal to, and can be 16 
combined with, NMR scores. Applied at scale, integrating NMR scores alongside PRSs with SCORE2 may 17 
have moderate population health benefit. 18 

Methods 19 

Study cohort 20 
UK Biobank is a cohort comprised of ~500,000 participants 35–75 years of age with written informed 21 
consent for health related research48,49. Participants were members of the UK population recruited through 22 
primary care lists whom accepted invitation to attend one of 22 assessment centres across the UK between 23 
2006 and 201048. 24 

In this study we analysed a subset of 168,517 participants who at baseline assessment (1) consented for 25 
electronic health record linkage, (2) were eligible for 10-year CVD risk prediction with SCORE23,4, (3) 26 
were not prescribed statins or other lipid lowering medications, and (4) had completed information on risk 27 
factors required for SCORE2 computation, (5) had NMR biomarker data (with <5% missingness), (6) had 28 
imputed genotypes, and (7) are were eligible for joint analysis with PRSs. Figure S1 shows the sample 29 
exclusions at each step.  30 

Sample exclusion criteria 31 
Eligibility for 10-year CVD risk prediction with SCORE2 was determined following the ESC 2021 32 
guidelines for CVD prevention in clinical practice3. UK Biobank participants were included if at baseline 33 
assessment they were (1) 40 years of age or older and less than 70 years of age, (2) did not have established 34 
atherosclerotic cardiovascular disease (ASCVD), (3) did not have diabetes mellitus, (4) did not have 35 
chronic kidney disease, and (5) did not have familial hypercholesterolemia.  36 

Disease history was determined using a combination of self-reported medical history (UK Biobank fields 37 
#6150, #4728, #20002, and #20004), prescription medications (fields #6153, #6177, and #20003), and 38 
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retrospective linkage to hospital episode statistics (fields #41259, #41234, and #41149). Prevalent ASCVD 1 
included acute myocardial infarction, acute coronary syndromes, transient ischaemic attack, peripheral 2 
arterial disease, and history of revascularization procedures. A full list of International Classification of 3 
Diseases (ICD) codes and self-report codes used to define ASCVD are given in Table S13. Prevalent 4 
diabetes mellitus was determined using the Eastwood et al. algorithms50, and included participants with 5 
probable or possible type 1 or type 2 diabetes. Prevalent chronic kidney disease was determined using the 6 
UK Biobank algorithmically defined outcome for end-stage renal disease (field #42026).  7 

Familial hypercholesterolemia (FH) was determined using the Dutch Lipid Clinical Network (DLCN) 8 
diagnostic criteria51 as described in the ESC 2021 guidelines for CVD prevention in clinical practice3. 9 
Participants were excluded where they had low density lipoprotein (LDL) cholesterol quantified by clinical 10 
biochemistry assay ≥ 8.5 mmol/L (8 points on the DLCN diagnostic score indicative of probable FH) 11 
(fields #30780 and #30786). All participants with possible clinical history used for the DLCN diagnostic 12 
criteria were excluded due to prevalent ASCVD. Physical examination and family history data relevant to 13 
the DLCN diagnostic criteria were not collected at UK Biobank assessment. Functional mutations in the 14 
LDLR, APOB, and PCSK9 genes were not assessed in this study. 15 

Participants already prescribed statins or other lipid lowering medications for CVD prevention were 16 
excluded as the primary purpose of 10-year CVD risk prediction with SCORE2 is to identify high-risk 17 
individuals for statin initiation in apparently healthy adults3. These participants were identified as those 18 
who at baseline assessment self-reported cholesterol lowering medication on the touchscreen questionnaire 19 
on health and medical history (field #6153 for women and field #6177 for men) and/or had been prescribed 20 
any of 18 lipid lowering prescription medications for CVD prevention (field #20003). The list of qualifying 21 
prescription medications (Table S14) was determined by cross-referencing the list of medications present 22 
in UK Biobank with the British National Formulary52 chapter 2.12: Lipid-regulating drugs with the 23 
restriction that the drug indications must include prevention of cardiovascular diseases.  24 

Participants were also excluded where it was not possible to predict 10-year CVD risk with SCORE2 due to 25 
missing quantitative risk factor information. Quantitative risk factors with missing data included systolic 26 
blood pressure (SBP) (missing data at baseline for all instances of fields #93 and #4080) and total 27 
cholesterol and high-density lipoprotein (HDL) cholesterol as measured by clinical biochemistry assays 28 
(fields #30690 and #30760 respectively). 29 

Participants with >5% missing NMR biomarker data were excluded, as after removal of technical variation, 30 
this excess missing data primarily arose due to removal of outlier plates of non-biological origin (89% of 31 
missing values).  32 

Finally, participants were excluded if they were used as part of the training for the PRSs for CHD 33 
(PGS000018)8 and ischaemic stroke (PGS000039)9 analysed in this study.  34 

Electronic health records 35 
UK biobank participants were linked by UK Biobank to hospital inpatient admissions records (fields 36 
#41259, #41234, and #41149) for hospitals in England, Wales, and Scotland and to national death registry 37 
records (fields #40000, #40001, and #40002). All incident hospital events or death records were coded with 38 
ICD-10 codes (or OPCS-4 codes for surgical procedures). Hospital and death records follow-up was 39 
available up to 6th March 2018 for events occurring in hospitals in Wales, and to 2021 (beyond 10 years of 40 
follow-up) for events occurring in hospitals in England and Scotland. 41 
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Retrospective follow-up in hospital records was available from 27th July 1993 for events occurring in 1 
hospitals in England, 2nd December 1980 for events occurring in hospitals in Scotland, and 18th April 1991 2 
for events occurring in hospitals in Wales, with median of 15.75 years retrospective follow-up (maximum 3 
29.76 years). Retrospective hospital events were coded with a combination of ICD-10 and ICD-9 codes (or 4 
OPCS-4 and OPCS-3 codes for surgical procedures).  5 

Participants with withdrawn consent for electronic health record linkage were identified from field #190 for 6 
sample exclusion.  7 

NMR biomarker data quantification and quality control 8 
NMR metabolite biomarker data was quantified in ~275,000 randomly selected participants as previously 9 
described18,53. Briefly, NMR spectroscopy (Nightingale Health Plc.) was used to measure the absolute 10 
concentrations of 168 biomarkers and 81 biomarker ratios from non-fasting plasma samples (UK Biobank 11 
aliquot 3). Details on the identity of the 249 NMR metabolite biomarkers are provided in Table S1. 12 

Technical variation was subsequently removed using a modified version of our previously described 13 
pipeline27 that has been updated to reflect our exploration the additional ~150,000 participants measured 14 
since the pipeline development. The updated pipeline is available in version 2.2.1 of the ukbnmr R package. 15 
Briefly, technical variation removed included (1) time between sample preparation and sample 16 
measurement, (2) systematic differences in biomarker concentrations in each shipping batch due to sample 17 
position on the 96-well shipment plate, (3) measurement drift over time, (4) inter-spectrometer differences, 18 
and (5) shipment plates with systematically extreme concentrations of non-biological origin. For further 19 
details see https://github.com/sritchie73/ukbnmr. 20 

Clinical biochemistry assay quantification and quality control 21 
Targeted blood biochemistry assays were quantified in all ~500,000 participants as previously described54. 22 
Briefly, absolute concentrations of 30 circulating biomarkers were quantified from serum (29 biomarkers) 23 
or red blood cell samples (glycated haemoglobin; HbA1c) using 24 analysis methods across six analytical 24 
platforms from five manufacturers (AU5800, Beckman Coulter; AU5800, Randox; LIASON XL, DiaSorin 25 
Ltd.; VARIANT II Turbo, Bio-Rad; and ADVIA 1800, Siemens). Missing data arising due to biomarker 26 
concentrations being above or below limits of reportability or detection were replaced with the largest or 27 
smallest non-missing value of that biomarker respectively with a small offset of 0.0001 units. Further 28 
details on the 30 biomarkers can be found in Table S2. 29 

Genotyping, imputation, and polygenic risk scores 30 
UK Biobank participants were genotyped on UK BiLEVE arrays and UK Biobank Axiom arrays and 31 
imputed to the 1000 genomes, UK10K, and Haplotype Reference Consortium panels55 using human 32 
genome build GRCh3749. Here, we converted the data to PLINK2 probabilistic dosages56 for analyses.  33 

PRSs for CHD and ischaemic stroke were obtained from the polygenic score (PGS) catalog57 (accessions 34 
PGS000018 and PGS000039 respectively) and computed in UK Biobank participants using the PLINK2 35 
software56 (PLINK v2.00a3LM AVX2 Intel [2 Mar 2021]) linear scoring function applied to the 36 
probabilistic allele dosages. These PRSs were chosen for this study as they are the most predictive PRSs for 37 
CHD and ischaemic stroke that do not include GWAS summary statistics derived from UK Biobank 38 
participants in their model development.  39 
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Cardiovascular risk factors 1 
Age and sex at baseline assessment were obtained from UK Biobank fields #21003 and #31 respectively.  2 

Systolic blood pressure (SBP) was measured using either an automated digital device (OMRON) (field: 3 
#4080) and/or by manual sphygmomanometer (field: #93). In both cases, two measurements were taken 4 
several moments apart, and the average was taken to obtain a single representative measure of SBP.  5 

Smoking status was defined as “current” or “other” based on self-reported current smoking (field #20116). 6 
Missing data (“don’t know”, “prefer not to answer”) were set to “other”. 7 

Incident cardiovascular disease 8 
Incident CVD events were defined following the definition used by the SCORE2 working group and ESC 9 
Cardiovascular risk collaboration4 to include fatal hypertensive disease (ICD-10 codes I10–I16), fatal 10 
ischaemic heart disease (ICD-10 codes I20–I25), fatal arrhythmias or heart failure (ICD-10 codes I46–I52, 11 
excluding I51.4), fatal cerebrovascular disease (ICD-10 codes I60–I69, excluding I60, I62, I67.1, I68.2, and 12 
I67.1), fatal atherosclerosis or abdominal aortic aneurysm (ICD-10 codes I70–I73), sudden death and death 13 
within 24 hours of symptom onset (ICD-10 codes R96.0 and R96.1), non-fatal myocardial infarction (ICD-14 
10 I21–I23), and non-fatal stroke (ICD-10 codes I60–I69, excluding I60, I62, I67.1, I68.2, and I67.1). 15 

Follow-up time for each participant was restricted to a maximum of 10 years, defined as the difference in 16 
years between baseline assessment and the earliest of the following records: (1) the date of the first CVD 17 
event, (2) the date of death, (3) the date lost to follow-up (fields #190 and #191; e.g. participant reported to 18 
NHS or UK Biobank as having left the UK), (4) the maximum follow-up date in hospital records from 19 
Wales—6th March 2018—for participants located in Wales at baseline assessment or inferred to have 20 
moved to Wales since baseline assessment (based on presence of hospital records from Wales before 2018 21 
and none in England or Scotland after, or change in location for subsequent UK Biobank assessments), or 22 
(5) date of baseline assessment plus ten years. Cohort characteristics reported in Table 1 include details on 23 
the number of people with non-CVD related mortality or otherwise lost to follow-up prior to 10 years.  24 

SCORE2 25 
Sex-specific per-participant values for SCORE2 (linear predictors) were computed from age, smoking 26 
status, SBP, total cholesterol, and HDL cholesterol using formulae published by the SCORE2 working 27 
group and ESC Cardiovascular risk collaboration4. Each risk factor was transformed as described in 28 
Supplementary methods Table 2 of the SCORE2 publication4:  29 

��� � ���� � 60	 5⁄  

������ �  �1 �� "�������"
0 �� "other"      � 

��� � ���� � 120	 20⁄  

�� �! � �"���! � �!������! � 6	 1⁄  

#$% � �#$% � �!������! � 1.3	 0.5⁄  

Then each transformed risk factor and risk factor × age- interaction was multiplied by the log hazard ratio 30 
obtained in the SCORE2 sensitivity analysis excluding UK Biobank participants from the log hazard ratio 31 
estimation (obtained from Supplementary Table 8 of the SCORE2 publication4 under the “Excluding UK 32 
Biobank” heading): 33 
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�()*+2���� � log�1.50	 ��� / log�1.77	 ������ / log�1.33	 ��� / log�1.13	 �� �! / log�0.80	 #$%
/ log�0.92	���� 3 ������	 / log�0.98	 ���� 3 ���	 / log�0.98	���� 3 �� �!	
/ log�1.04	 ���� 3 #$%	 

�()*+2������ � log�1.64	 ��� / log�2.09	 ������ / log�1.39	 ��� / log�1.11	 �� �! / log�0.81	 #$%
/ log�0.89	���� 3 ������	 / log�0.97	 ���� 3 ���	 / log�0.98	���� 3 �� �!	
/ log�1.06	 ���� 3 #$%	 

These log hazard ratios were used to prevent overestimation of the efficacy of SCORE2 for 10-year CVD 1 
risk prediction in this study (Figure S11), which could result in underestimation of any potential 2 
improvements in risk discrimination from addition of biomarkers or PRS. 3 

The sex-stratified C-index for SCORE2 in the 168,517 study participants was computed directly from this 4 
SCORE2 linear predictor using the concordance function in the survival R package version 3.3-1. The 95% 5 
confidence interval was computed from the standard error, which was computed by the survival R package 6 
using the infinitesimal jackknife method. 7 

Incremental value in 10-year CVD risk prediction for individual biomarkers 8 
Incremental improvement in 10-year CVD risk prediction for individual biomarkers beyond SCORE2 alone 9 
was assessed using differences in C-index from SCORE2 alone (ΔC-index) (Figure 2, Table S3). 10 
Incremental improvement in 10-year CVD risk was assessed for the 249 NMR biomarkers (Table S1) and 11 
28 of the 30 clinical biochemistry assay biomarkers (Table S2): clinical biochemistry assays for HDL 12 
cholesterol and total cholesterol were not assessed here as they were used to compute SCORE2 linear 13 
predictor (see above).  14 

For each biomarker, we fit a sex-stratified Cox proportional hazards regression for 10-year CVD risk with 15 
the biomarker as an independent variable and SCORE2 as an offset term in the 168,517 study participants 16 
(5,096 incident CVD cases) (Figure 2, Table S3A). SCORE2 was treated as an offset term, rather than an 17 
independent variable, as we sought to develop scores that added biomarkers to the existing SCORE2 18 
weights. Cox proportional hazards regressions were fit using the coxph function in the survival R package 19 
version 3.3-1. The hazard ratio, absolute C-index, and its standard error were obtained directly from the 20 
returned result for each SCORE2 + biomarker model (Table S3A). The standard error was computed by the 21 
survival R package using the infinitesimal jackknife method.  22 

The ΔC-index was subsequently computed for each SCORE2 + biomarker model by subtracting the sex-23 
stratified C-index for the SCORE2 linear predictor as described above (Figure 2, Table S3A). A bootstrap 24 
procedure with 1,000 bootstraps was used to estimate the standard error for the ΔC-index. Bootstrap 25 
resampling was performed using methods appropriate for right-censored data58; using the censboot function 26 
in the boot R package version 1.3-28. 95% confidence intervals and two-sided P-values were computed 27 
from the bootstrap standard error using the first order normal approximation method. P-values were 28 
corrected for multiple testing across the 277 tested biomarkers using Benjamini-Hochberg false-discovery 29 
rate (FDR) correction. 30 

In addition to sex-stratified analysis, incremental improvements in C-index beyond SCORE2 alone were 31 
similarly assessed in sex-specific analysis (Table S3B–C); performed separately in the 72,441 male 32 
participants (3,208 incident CVD cases) (Table S3B) and in the 96,076 female participants (1,888 incident 33 
CVD cases) (Table S3C). 34 
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NMR biomarker score training 1 
Four NMR biomarker scores were developed: (1) an NMR score in males for predicting 10-year risk of 2 
coronary heart disease (CHD), (2) an NMR score in females for predicting 10-year risk of CHD, (3) an 3 
NMR score in males for predicting 10-year risk of ischaemic stroke, and (4) an NMR score in females for 4 
predicting 10-year risk of ischaemic stroke. 5 

Incident CHD was defined as fatal or non-fatal myocardial infarction (ICD-10 codes I21–I24 or I25.2) or 6 
by presence of major coronary surgery (ICD-10 codes Z95.1 or OPSC-4 codes K40–K46, K49, K50.1, 7 
K75). Incident ischaemic stroke was determined using the respective UK Biobank algorithmically defined 8 
outcome (field #42008). Follow-up time was defined for each endpoint separately; i.e., a non-fatal 9 
ischaemic stroke event prior to CHD was not counted as a competing risk when defining follow-up for 10 
incident CHD and vice versa. Case numbers and follow-up characteristics are reported in Table S4A for 11 
CHD and Table S4B for ischaemic stroke. 12 

Each of the four NMR biomarker scores were developed using elastic-net penalised Cox proportional 13 
hazards regression28,29 in data from the 168,517 participants. A nested cross-validation procedure was used, 14 
comprising a 5-fold outer layer and 10-fold inner layer (Figure S2). For each iteration at the outer layer, 15 
NMR biomarker scores were trained in 4/5ths of the data, then predicted in the withheld 1/5th of the data 16 
(test fold) (Figure S2A). Model training in each iteration used 10-fold cross-validation (inner-layer) for 17 
hyperparameter tuning of the elasticnet model (Figure S2B). Random allocation of participants to test folds 18 
was performed using the caret R package version 6.0-92 to balance the number of males and females, and 19 
incident cases within males and females, across test folds. Test folds at the inner cross-validation layer were 20 
balanced by incident CHD or ischaemic stroke cases respectively when training NMR scores for the 21 
respective endpoint. Test-folds at the outer cross-validation layer were balanced by incident CVD cases as 22 
the outer cross-validation layer was also used for the training procedure used to combine NMR scores for 23 
CHD and stroke described in the next section. 24 

For each of the five iterations of training, sex- and endpoint- specific NMR scores were trained using 25 
elastic-net penalised Cox proportional hazards regression using the glmnet R package version 4.1-6 (Figure 26 
S2A). Each NMR biomarker score was trained with the 106 non-derived NMR biomarkers with SCORE2 27 
as an offset term. Biomarkers were classified as non-derived where they could not be computed by 28 
summing or dividing two or more other biomarkers27 (Table S1).  29 

Prior to NMR biomarker score training, missing data in the 106 NMR biomarkers were imputed as glmnet 30 
could not handle missing data. Missing data were imputed a single time in the 168,517 participants using 31 
the impute R package version 1.70.0 with the K-nearest neighbours algorithm59. K was set to 20 based on 32 
the number of principal components that cumulatively explained >95% of the variation in the 106 non-33 
derived biomarkers. Prior to imputation, >92% of participants had no missing NMR biomarker 34 
concentrations, >6% had only one biomarker missing, and the remaining <2% had 2–5 of 106 biomarkers 35 
missing. In total 0.1% of biomarker concentrations were imputed. Per-biomarker missingness rates are 36 
given in Table S1. Biomarker concentrations were standardised in males and females separately so that 37 
sex-specific coefficients fit by glmnet were comparable across biomarkers.  38 

For each of the five training iterations, the optimal elastic-net fit was determined with a grid search of α 39 

and λ where the range of α was [0 (ridge regression), 0.1, 0.25, 0.5, 0.75, 0.9, and 1 (lasso regression)] and 40 

a sequence of 100 λ values was automatically determined by the glmnet function for each α (Figure S3A). 41 
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β coefficients estimated for each biomarker for the optimal fit in each training data are shown in Figure 1 
S3C. The proportion of variance in the NMR score explained by each biomarker was calculated as the ratio 2 
of its β2 to the sum of β2 across all biomarkers.  3 

To obtain a single representative score (i.e., for computing NMR scores in new samples), coefficients were 4 
averaged across the five training iterations (Figures S3C, Table S5). Proportions of variance explained in 5 
the NMR score by each biomarker were also averaged across the five training iterations (Table S5). 6 

To avoid overfitting in our downstream analyses of individual NMR scores (Figure 3A, Figure S4, Figure 7 
S5A, Figure S6, Table S6), the aggregate of the predicted NMR scores in the five withheld test folds were 8 
used (Figure S2A). 9 

Independent associations of NMR scores, PRS, and risk factors with 10-year CVD risk  10 
Two sets of multivariable Cox proportional hazards regressions were fit in the 168,517 participants to 11 
assess independent associations between predicted NMR scores, PRSs, and SCORE2 risk factors with 10-12 
year CVD risk prediction (Figure 3A, Figure S5A, Table S6): (1) Multivariable Cox proportional hazards 13 
regression was fit with the CHD NMR score, stroke NMR score, CHD PRS, and stroke PRS as predictor 14 
variables and SCORE2 as an offset term (Figure 3A, Figure S5A, Table S6A); and (2) multivariable Cox 15 
proportional hazards regression was fit additionally with the individual SCORE2 risk factors as predictor 16 
variables instead of using SCORE2 as an offset term (Figure S6, Table S6B). Both multivariable models 17 
were fit in sex-stratified analysis and sex-specific (fit in the male and female participants separately) 18 
analyses (Figure 3A, Figure S5A, Figure S6, Table S6). 19 

Combining NMR biomarker scores and/or PRSs with SCORE2 20 
NMR scores and PRSs were combined with SCORE2 into three new scores for predicting 10-year CVD 21 
risk: (1) SCORE2 + NMR scores, (2) SCORE2 + PRSs, and (3) SCORE2 + NMR scores + PRSs.  22 

Sex-specific combined linear predictors were created by adding zero-centred linear predictors for the CHD 23 
NMR score, stroke NMR score, CHD PRS, and stroke PRS to the SCORE2 linear predictor after 24 
multiplying each score by scaling factors weighting their relative contributions to 10-year CVD prediction 25 
over SCORE2 alone. Sex- and model- specific scaling factors were estimated using Cox proportional 26 
hazards regression fit for 10-year CVD risk with the relevant respective scores as independent predictor 27 
variables and SCORE2 as an offset term.  28 

To avoid overfitting, offsets for score centring and scaling factors were calculated as part of the cross-29 
validation procedure described above (Figure S2C). For downstream analyses (Figure 3B–C, Figure 4, 30 
Figure S5B–C, Figure S9, Table S8–S10, Table S12), the aggregate of the predicted values for the 31 
combined linear predictors across the five withheld test folds were used (Figure S2A). To obtain a single 32 
set of representative model coefficients for computing the combined scores in new samples, model 33 
coefficients were average across the five training iterations (Table S7). 34 

Incremental value in 10-year CVD risk prediction for NMR biomarker scores and PRSs 35 
Incremental improvement in 10-year CVD risk prediction beyond SCORE2 alone for each of the three 36 
combined scores (above) were assessed using differences in sex-stratified C-index in the 168,517 study 37 
participants (5,096 incident CVD cases) (Figure 3B, Table S8).  38 

Sex-stratified C-indices and their infinitesimal jackknife standard errors were computed directly from the 39 
linear predictors for each of the three models using the concordancefit function in the survival package. The 40 
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sex-stratified ΔC-index was computed as the difference between the C-index for SCORE2 and the C-index 1 
for each model. 95% confidence intervals and P-values were calculated from the bootstrap standard error 2 
after estimating the ΔC-index in a bootstrap procedure with 1,000 bootstraps. Bootstrap resampling was 3 
performed using methods appropriate for right-censored data58; using the censboot function in the boot R 4 
package version 1.3-28. 5 

In addition to sex-stratified analysis, incremental improvements in C-index beyond SCORE2 alone were 6 
similarly assessed in sex-specific analysis (Figure S5B, Table S8); performed separately in the 72,441 7 
male participants (3,208 incident CVD cases) and in the 96,076 female participants (1,888 incident CVD 8 
cases). 9 

Computation of absolute risks 10 
Linear predictors for SCORE2, SCORE2 + NMR scores, SCORE2 + PRSs, and SCORE2 + NMR scores + 11 
PRSs were converted into predictions of absolute 10-year CVD risk using formulae developed by the 12 
SCORE2 working group and ESC cardiovascular risk consortium4: 13 

First, uncalibrated absolute risks were calculated using sex-specific estimates of baseline survival, which 14 
they calculated as the median baseline survival across 44 cohorts (including UK Biobank)4: 15 

5���!�6����7 10 8��� ��������� � 1 � 0.9605�	
������ ���������� 

5���!�6����7 10 8��� ����������� � 1 � 0.9776�	
������ ���������� 

Second, these were converted into absolute 10-year risks calibrated to the UK population using their scaling 16 
factors for the low-risk European region (which included the UK) applied in their risk recalibration 17 
formula4: 18 

(�!�6����7 10 8��� ��������� � 1 � �9: ;��9: <�0.5699 / 0.7476 3 ln >�!��1 � 5���!�6����7 10 8��� ����	?@A 

(�!�6����7 10 8��� ����������� � 1 � �9: ;��9: <�0.7380 / 0.7019 3 ln >�!��1 � 5���!�6����7 10 8��� ����	?@A 

Distributions of absolute risk for each model are shown in Figure S8. 19 

Incremental value in stratification at risk thresholds used for clinical decision making 20 
Categorical net reclassification improvement (NRI) analysis60,61 was used to assess the incremental value of 21 
NMR scores and/or PRSs over SCORE2 for stratifying individuals based on risk thresholds used for 22 
clinical decision making.  23 

Participants were stratified into categories of low risk, moderate risk, and high risk based on their absolute 24 
10-year CVD risk predicted by each model using risk thresholds recommended by the ESC 2021 guidelines 25 
for CVD prevention3 (Table S9). Participants <50 years of age were allocated to the low-risk group if their 26 
absolute 10-year CVD risk was < 2.5%, to the medium risk group if their absolute 10-year CVD risk was < 27 
7.5% risk, and to the high-risk group if their absolute 10-year CVD risk was ≥ 7.5%. Participants 50 years 28 
or older were allocated to the low-risk group if their absolute 10-year CVD risk was < 5%, to the medium 29 
risk group if their absolute 10-year CVD risk was < 10% risk, and to the high-risk group if their absolute 30 
10-year CVD risk was ≥ 10%. 31 

The three models adding NMR scores and/or PRSs to SCORE2 were assessed in comparison to SCORE2 32 
alone in categorical NRI analysis using the nricens R package version 1.6. Categorical NRI analysis was 33 
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used to assess (1) the % of incident CVD cases correctly reclassified from a lower risk group into higher 1 
risk group, and (2) the % of non-cases correctly reclassified from a higher risk group into a lower risk 2 
group. Categorical NRI analysis was performed separately in all participants (Figure 3C), male participants 3 
(Figure S5C), and female participants (Figure S5C). Bootstrap resampling of the categorical NRI analysis 4 
was performed using the nricens R package, and 95% confidence intervals and P-values were subsequently 5 
calculated from the bootstrap standard error (Figure 3C, Figure S5C, Table S10). 6 

Population simulation 7 
For downstream analyses we simulated a hypothetical population of approximately 100,000 individuals 8 
with age- and sex- structure and expected 10-year CVD incidence rates representative of the UK population 9 
eligible for 10-year CVD risk screening with SCORE2 (Figure S8, Table S11). 10 

Sex-specific CVD incidence rates expected in each five-year age-group (Figure S8) were obtained from 11 
Table A in the S2 Text in Sun et al 202111. These CVD incidence rates were obtained by Sun et al. from a 12 
random sample of 2.1 million people amongst 11.3 million CVD- and statin- free primary care patients 35–13 
74 years of age who, between 2004–2017, attended any of 674 general practices opting into data linkage to 14 
the UK Clinical Practice Research Datalink (CPRD)62. The published per-1000-year CVD incidence rates 15 
in the five-years ahead (Table A in the S2 Text in Sun et al 202111; Figure S8) were converted into 16 
percentages of males and females expected to have an incident CVD event within 10 years (Figure S8) as 17 
1−exp(rate/1000). Numbers of CVD- and statin- free individuals in each sex- and age- group in CRPD were 18 
not published4,11. Therefore, we derived the sizes of each age- and sex- group using the age- and sex- 19 
structure of the general UK population in the mid-2020 UK population estimates published by the Office of 20 
National Statistics30.  21 

The simulated population was derived by multiplying by 100,000 the relative sizes of each age-group and 22 
sex among those 40–69 in the mid-2020 UK population estimate, then multiplying by the percentages 23 
expected to have incident CVD within 10 years derived from CPRD (Figure S8, Table S11). 24 

Incremental value for CVD prevention with population-wide screening 25 
To assess the relative benefits for CVD prevention of each model if applied at scale to the UK population 26 
(Figure 4A, Table S12A) we stratified the simulated population into the low-, medium-, and high-risk 27 
groups based on the proportions allocated to each category in UK Biobank by SCORE2 alone (Figure 28 
S9A), SCORE2 + NMR scores, SCORE2 + PRSs, and SCORE2 + NMR scores + PRSs. We modelled 29 
statin initiation in the high-risk group, who based on their risk thresholds would be recommended for risk 30 
factor treatment by the ESC 2021 guidelines for CVD prevention3. The impact of statin initiation was 31 
modelled as preventing one in five simulated incident CVD events assuming a 20% reduction in 10-year 32 
CVD risk31. 33 

Benefits for CVD prevention were quantified for each model using five statistics: (1) the number of people 34 
classified as high-risk (Nhigh-risk), (2) the number of incident CVD events amongst those classified as high-35 
risk (CVDhigh-risk), (3) the expected number of events prevented by statin initiation in the high-risk group 36 
(CVDprevented), (4) the number of people needed to screen to prevent one CVD event (NNS; calculated as 37 
N/CVDprevented), and (5) the number of statins prescribed per CVD event prevented (NNT; calculated as 38 
CVDhigh-risk/CVDprevented). Incremental benefits for CVD prevention were assessed by differences in these 39 
five statistics from SCORE2 alone (ΔNhigh-risk, ΔCVDhigh-risk, ΔCVDprevented, ΔNNS, and ΔNNT). 40 
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95% confidence intervals and P-values were calculated from the bootstrap standard error estimated for each 1 
statistic in a bootstrap procedure with 1,000 bootstraps. Bootstrap resampling was performed using 2 
methods appropriate for right-censored data58; using the censboot function in the boot R package version 3 
1.3-28. 4 

Incremental value for CVD prevention with targeted screening 5 
Incremental benefits to CVD prevention were further modelled when using SCORE2 + NMR scores, 6 
SCORE2 + PRSs, or SCORE2 + NMR scores + PRSs for targeted risk-reclassification of those classified as 7 
medium risk by SCORE2 alone (Figure 4B, Table S12B), for whom the ESC 2021 guidelines suggest 8 
considering, but do not explicitly recommend, risk factor treatment3. For targeted-screening, the SCORE2-9 
classified medium-risk subset of the simulated population was re-stratified into the low-, medium, and 10 
high- CVD risk groups based on proportions re-stratified into each category in UK Biobank by each 11 
alternative model (Figure S9B, Methods). After targeted screening, the high-risk group comprised those 12 
classified as high-risk either by SCORE2 alone or the alternative model incorporating NMR scores and/or 13 
PRSs. Benefits for CVD preventing were quantified as described above.  14 
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Figures 1 

 2 

Figure 1: Study design. 3 
For details on sample inclusion and exclusion criteria when defining study eligibility for UK Biob4 
participants see Figure S1. A schematic of the NMR score training procedure is provided in Figure S2. 5 
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1 

Figure 2: Incremental 10-year CVD risk discrimination over SCORE2 for individual biomarkers 2 
A) Change in C-index (ΔC-index) relative to SCORE2 for the top 10 biomarkers by ΔC-index. The Δ3 
index were assessed for each biomarker and quantification method separately (277 tests total; Table S34 
sex-stratified Cox proportional hazards regression in the subset of the 168,517 study participants with n5 
missing biomarker concentrations for each test. Among the top 10 biomarker shown, only album6 
concentrations were quantified by both clinical biochemistry assays (orange) and high-throughput NM7 
spectroscopy (purple). 95% confidence intervals for the ΔC-index were estimated via a bootstrap sampl8 
procedure with 1000 bootstraps (Methods). B) Hazard ratios per standard deviation increase in 9 
respective biomarker concentration in the sex-stratified Cox proportional hazards model fit with SCOR10 
as an offset term.  11 
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1 

Figure 3: Incremental 10-year CVD risk discrimination over SCORE2 for NMR scores and PRSs 2 
A) Independent associations between NMR scores and PRSs with 10-year CVD risk. Sex-stratified haz3 
ratios for each NMR score and PRS were fit in multivariable Cox proportional hazards regression w4 
SCORE2 as an offset term in the 168,517 study participants (5,096 incident CVD cases). Hazard ratios 5 
95% confidence intervals are detailed in Table S6A. B) Incremental improvement in 10-year CVD r6 
discrimination over SCORE2 alone (ΔC-index) for models combining NMR scores and PRSs w7 
SCORE2 (Table S7; Methods). 95% confidence intervals for the ΔC-index were estimated via a bootst8 
sampling procedure with 1000 bootstraps (Methods). C-indices, ΔC-indices, and 95% confidence interv9 
are detailed in Table S8. C) Categorical net reclassification improvement (NRI) index relative to SCOR10 
when stratifying the 168,517 study participants into low-, medium-, and high-risk categories based on th11 
absolute 10-year CVD risk predicted by each model. Risk categories were defined using a risk-thresho12 
recommended by the European Society of Cardiology (ESC) 2021 guidelines for clinical decision mak13 
on initiating risk factor treatment for CVD prevention (Methods). Numbers allocated to each risk categ14 
by each model are detailed in Table S9. % reclassified: net % of cases that were correctly reclassified int15 
higher risk category (pink) or net % of non-cases that were correctly reclassified into a lower risk categ16 
(green) when comparing the given model to SCORE2. 95% confidence intervals were estimated vi17 
bootstrap sampling procedure with 1000 bootstraps (Methods). Categorical NRI details are provided18 
Table S10.  19 
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1 

Figure 4: Incremental value for CVD prevention in simulated population of 100,000 UK adults 2 
A) Incremental value of NMR scores and/or PRSs for CVD prevention over SCORE2 alone in populati3 
wide screening of a simulate population of 100,000 UK adults (6,636 incident CVD cases) (Methods).4 
Incremental value of NMR scores and/or PRSs for CVD prevention when used for targeted ri5 
reclassification of the SCORE2-classified medium-risk individuals using models with NMR scores and6 
PRSs (Methods). A–B) From left to right each plot shows, relative to population-wide screening w7 
SCORE2 alone, the change in: (1) the number of people classified as high risk (ΔNhigh-risk), who based8 
their risk thresholds would be recommended for risk factor treatment by the ESC 2021 guidelines for C9 
prevention3; (2) the number of expected incident CVD events amongst those classified as high-10 
(ΔCVDhigh-risk); (3) the expected number of events prevented with initiation of statins in those classified11 
high risk (CVDprevented), assuming a 20% reduction in 10-year CVD risk31; (4) the number of people nee12 
to screen to prevent one CVD event (ΔNNS); and (5) the number of statins prescribed per CVD ev13 
prevented (ΔNNT). 95% confidence intervals were estimated via a bootstrap sampling procedure with 1014 
bootstraps (Methods). Point estimates and 95% confidence intervals are detailed in Table S12. 15 
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Tables 1 

Table 1: Cohort characteristics 2 
SBP: systolic blood pressure. HDL: High density lipoprotein. LDL: Low density lipoprotein. sd: standard 3 
deviations. IQR: interquartile range. 4 

Baseline characteristics Males Females Total 
Number of participants 72,441 96,076 168,517 
Age (years), mean (SD) 55 (8.2) 55 (7.9) 55 (8.0) 
Cardiovascular risk factors    
Current smokers, n (%) 8,867 (12.2%) 8,232 (8.6%) 17,099 (10.1%) 
SBP (mmHg), mean (SD) 140 (17) 134 (19) 137 (19) 
Total cholesterol (mmol/L), mean (SD) 5.8 (1.0) 6.0 (1.1) 5.9 (1.1) 
HDL cholesterol (mmol/L), mean (SD) 1.3 (0.3) 1.6 (0.4) 1.5 (0.4) 
SCORE2 10-year CVD risk (%), mean (SD) 5.6% (3.0%) 3.3% (2.2%) 4.3% (2.8%) 
Incident CVD within 10 years of follow-up    
Events, n (%) 3,208 (4.4%) 1,888 (2.0%) 5,096 (3.0%) 
Years to first event, median (IQR) 6.1 (3.5, 8.3) 6.7 (4.1, 8.6) 6.3 (3.8, 8.4) 
Fatal events, n (%) 661 (20.6%) 283 (15.0%) 944 (18.5%) 
Event is primary, n (% of events) 2,442 (76.1%) 1,252 (66.3%) 3,694 (72.5%) 
Non-CVD mortality within 10 years of follow-up    
Events, n (%) 2,307 (3.2%) 2,233 (2.3%) 4,540 (2.7%) 
Years to fatal event, median (IQR) 6 (3.6, 8.3) 6.1 (3.7, 8.1) 6.1 (3.7, 8.2) 
Lost to follow-up before 10 years    
Events, n (%) 1,208 (1.7%) 1,637 (1.7%) 2,845 (1.7%) 
Maximum follow-up in Welsh hospital records, n (% lost to follow-up) 1,044 (86.4%) 1,415 (86.4%) 2,459 (86.4%) 
Years until end of Welsh hospital record linkage, median (IQR) 9.8 (8.6, 9.9) 9.8 (9.3, 9.9) 9.8 (8.8, 9.9) 
Other reason (e.g., left UK), n (% lost to follow-up) 164 (13.6%) 222 (13.6%) 386 (13.6%) 
Years until lost to follow-up, median (IQR) 4.6 (4.0, 5.5) 4.4 (3.2, 5.4) 4.6 (3.6, 5.4) 
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