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Abstract 22 

Background 23 

P. ovale spp. infections are endemic across multiple African countries and are 24 

caused by two distinct non-recombining species, P. ovale curtisi (Poc) and P. ovale 25 

wallikeri (Pow). These species are thought to differ in clinical symptomatology and 26 

latency, but existing diagnostic assays have limited ability to detect and distinguish 27 

them. In this study, we developed a new duplex assay for the detection and 28 

differentiation of Poc and Pow that can be used to improve our understanding of these 29 

parasites. 30 

Methods 31 

Repetitive sequence motifs were identified in available Poc and Pow genomes and 32 

used for assay development and validation. We evaluated the analytical sensitivity and 33 

specificity of the best-performing assay using a panel of samples from Tanzania and the 34 

Democratic Republic of the Congo (DRC), then validated its performance using 55 P. 35 

ovale spp. samples and 40 non-ovale Plasmodium samples from the DRC. Poc and Pow 36 

prevalence among symptomatic individuals sampled across three provinces of the DRC 37 

were estimated.  38 

Results 39 

The best-performing Poc and Pow targets had 9 and 8 copies within the reference 40 

genomes, respectively. Our duplex assay had 100% specificity and 95% confidence 41 

lower limits of detection of 4.2 and 41.2 parasite genome equivalents/µl for Poc and 42 
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Pow, respectively. Species was determined in 80% of all P. ovale spp.-positive field 43 

samples and 100% of those with >10 parasites/µl. Most P. ovale spp. field samples from 44 

the DRC were found to be Poc infections.  45 

Conclusions 46 

We identified promising multi-copy targets for molecular detection and 47 

differentiation of Poc and Pow and used them to develop a new duplex real-time PCR 48 

assay that performed well when applied to diverse field samples. Though low-density 49 

Pow infections are not reliably detected, the assay is highly specific and can be used for 50 

high-throughput studies of P. ovale spp. epidemiology among symptomatic cases in 51 

malaria-endemic countries like the DRC.  52 

Keywords: P. ovale curtisi; P. ovale wallikeri; qualitative real-time PCR; prevalence; 53 

Congo; non-falciparum malaria 54 

Author Summary 55 

Non-falciparum malaria is gaining attention, especially in settings where P. falciparum 56 

transmission is declining. Plasmodium ovale curtisi (Poc) and wallikeri (Pow) are 57 

neglected parasites that can cause relapsing malaria and are thought to differ in clinical 58 

symptomatology and latency. However, existing diagnostic assays have limited ability 59 

to detect and distinguish Poc and Pow and are not well-suited for high-throughput use, 60 

hindering our understanding of P. ovale spp. epidemiology. Mining recently available 61 

Poc and Pow reference genomes, we identify new multi-copy targets for molecular 62 

detection and develop a novel duplex qualitative real-time PCR assay capable of species 63 
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differentiation. The assay is highly specific and requires short turn-around time. While 64 

sensitivity can be improved for low-density Pow infections, this new assay can be used 65 

for high-throughput studies of symptomatic P. ovale spp. infections in malaria-endemic 66 

countries. We apply this tool to samples collected during a large study conducted in the 67 

DRC and investigate P. ovale spp. epidemiology across health centers in three provinces.  68 
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Introduction 69 

Malaria remains a major global health concern despite decades of sustained 70 

investment in elimination efforts. Though most malaria programs prioritize 71 

Plasmodium falciparum, the parasite species responsible for most deaths, increasing 72 

evidence confirms co-circulation of other neglected Plasmodium species that cause 73 

human malaria [1]. Recent surveys reveal a previously unappreciated burden of 74 

Plasmodium ovale spp. in multiple African countries [2, 3], where relapsing malaria 75 

caused by P. ovale spp. may prove to be an obstacle to malaria elimination efforts [4-76 

6]. P. ovale comprises two distinct non-recombining species, P. ovale curtisi (Poc) and 77 

P. ovale wallikeri (Pow) [7]. Poc and Pow have potential differences in clinical 78 

symptomatology and latency [8], but existing diagnostic assays have limited ability to 79 

detect and distinguish them, and require multiple steps or prolonged cycling time that 80 

increases risk of false-positive results [9].  81 

Detection and differentiation of Poc and Pow is not currently possible using 82 

conventional malaria diagnostic assays relying on microscopy. Microscopic 83 

examination of blood smears remains the gold standard for malaria diagnosis, but 84 

differentiation of parasite species and examination of low parasite density or mixed-85 

species infections is challenging and requires significant expertise [10]. Poc and Pow 86 

infections often occur as mixed infections at low density, and are morphologically 87 

indistinguishable on blood slides [11, 12]. Furthermore, widely used malaria rapid 88 

diagnostic tests (RDTs) fail to detect samples with low parasite densities and cannot 89 
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distinguish parasite species other than P. falciparum and Plasmodium vivax [13, 14]. 90 

Thus, alternative methods are required to identify these neglected species.   91 

Molecular methods are more sensitive and specific for Plasmodium detection than 92 

microscopic examination or RDTs, but most existing assays target the 18S rRNA gene 93 

of both P. ovale spp. leading to potential cross-reactivity and a lack of complete species 94 

specificity for Poc and Pow. A duplex real-time PCR assay for Poc and Pow detection 95 

was published in 2011, however, results of the melt-curve analysis can be hard to 96 

interpret [15]. A nested PCR assay was developed in 2013 [16], and while it can detect 97 

samples with 2-10 parasites/µl, this assay requires multiple steps and long turnaround 98 

time. Available single-target quantitative real-time PCR assays require separate runs to 99 

distinguish Poc and Pow [9, 17, 18]. Because of the limitations of the existing assays, 100 

most studies of P. ovale spp. have not distinguished Poc and Pow. However, recently 101 

released Poc and Pow genomes (PocGH01 and PowCR01) provide opportunities for 102 

improved molecular assay development [19]. To improve our understanding of the 103 

epidemiology of P. ovale spp. malaria, we mined publicly available Poc and Pow 104 

genomes to identify novel multi-copy targets and developed a new duplex qualitative 105 

real-time PCR assay for detection and differentiation of Poc and Pow infection. 106 

 107 

Materials and Methods 108 

Mining and selection of multi-copy targets in P. ovale curtisi 109 
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and P. ovale wallikeri genomes 110 

Using the publicly available Poc (PocGH01) and Pow (PowCR01) reference 111 

genomes obtained from the NIH National Center for Biotechnology Information (NCBI) 112 

database, we identified sequence motifs of 100 base-pairs (bp) in length with ≥6 copies 113 

using Jellyfish (version 2.2.10) [20] (Fig 1). Sequences with low GC content (< 25%) 114 

and highly repetitive short sequences were excluded. The remaining multi-copy targets 115 

were aligned to NCBI nt database using blastn to investigate their specificity. 116 

Sequences aligned to other Plasmodium parasites were excluded. We then re-aligned 117 

the remaining targets to the Poc and Pow genomes separately using blastn to investigate 118 

their copy numbers in each genome. Candidate diagnostic assay targets for Poc and 119 

Pow were selected based on species-specificity and copy numbers. Primer and probe 120 

sets were designed manually using Oligo Calc [21] and DNAMAN (version 9, Lynnon 121 

BioSoft, Quebec City, Canada) to estimate primer and probe melting temperatures and 122 

to avoid self-complementarity and primer dimers (S1 Table). 123 

 124 

Fig 1. Approach to developing a real-time PCR assay for detection and 125 

differentiation of P. ovale curtisi and P. ovale wallikeri. 126 

 127 

Assay development and optimization 128 

A panel of 15 well-characterized Poc and Pow field samples and six non-ovale 129 
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Plasmodium laboratory controls were selected for assay development and analytical 130 

specificity analysis. Field samples included 11 Poc and four Pow leukodepleted blood 131 

samples and dried blood spot (DBS) samples from Tanzania and the Democratic 132 

Republic of the Congo (DRC). Laboratory controls included two P. falciparum, one P. 133 

malariae, two P. vivax, and one P. knowlesi samples from an external quality assurance 134 

program [22]. DNA was extracted from dried blood spot (DBS) and leukodepleted 135 

blood samples using Chelex 100 (Bio-Rad, Fishers, Indiana, USA) [23] and the 136 

QIAamp DNA Mini Kit (Qiagen, Mettmann, North Rhine-Westphalia, Germany), 137 

respectively. P. ovale parasite densities were estimated using a semi-quantitative real-138 

time PCR assay targeting the 18S rRNA gene of both P. ovale spp. as previously 139 

described [2]. Poc versus Pow species was determined using two singleplex real-time 140 

PCR assays as previously described [9].   141 

Primer sets with the best specificity for Poc and Pow versus this panel of samples 142 

were selected. A duplex qualitative real-time PCR assay was developed based on the 143 

selected primer sets and the corresponding probes. Assay optimization was then 144 

performed using synthetic plasmids containing targets for Poc and Pow detection 145 

(Azenta Life Sciences, Indianapolis, Indiana, USA). We tested a range of annealing 146 

temperatures and of primer and probe concentrations to identify optimal reaction 147 

conditions. All optimization analyses were performed in duplicate. 148 

Analytical sensitivity and specificity 149 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 31, 2023. ; https://doi.org/10.1101/2023.10.31.23297819doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.31.23297819
http://creativecommons.org/licenses/by/4.0/


 

9 

 

We further characterized the best performing assay to determine its analytical 150 

sensitivity and specificity. Analytical sensitivity estimates were determined using probit 151 

analysis [24] with serially diluted Poc and Pow plasmid DNA comprising 104 and 161 152 

total replicates, respectively (S2 Table). Analytical specificity of the present assay was 153 

assessed using the same panel of 15 well-characterized Poc and Pow field samples and 154 

six non-ovale Plasmodium laboratory controls described above in duplicate. Samples 155 

with Ct values less than 45 in both reactions were considered positive. 156 

Validation using field samples 157 

The assay’s clinical sensitivity and specificity were assessed using 95 dried blood 158 

spot samples selected from a large sample set from a previous study conducted in the 159 

DRC [25], including 55 P. ovale spp. samples and 40 non-ovale Plasmodium samples 160 

(20 P. falciparum infections, 10 P. malariae infections, and 10 P. falciparum and P. 161 

malariae mixed infections) [25]. DNA was extracted using Chelex 100 as described 162 

above. Plasmodium species and parasite densities were identified using real-time PCR 163 

assays for P. ovale, P. falciparum and P. malariae as previously described, with samples 164 

positive in duplicate selected for use during validation of the present assay, and the 165 

previously published singleplex real-time PCR assay for both P. ovale spp. used as the 166 

gold standard for clinical sensitivity and specificity calculations [2, 26, 27]. Samples 167 

with Ct values lower than 45 in duplicate by our new assay were considered to be 168 

positive.  169 
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Epidemiology of Poc and Pow among symptomatic patients in 170 

the DRC 171 

We investigated the epidemiology of P. ovale spp. infection and the distribution of 172 

Poc vs Pow infections using samples from a study of symptomatic malaria across three 173 

provinces in the DRC. Among a randomly selected group of 1,000 symptomatic 174 

individuals, 64 samples were previously found be positive for P. ovale spp. by real-time 175 

PCR testing [2, 25]. The χ2 test or Fisher's exact test was used for comparison with 176 

categorical variables that might be associated with P. ovale spp.-infections based on 177 

results of previously published studies [28-33], including age, sex, P. falciparum co-178 

infection, bed net use, education level, recurrent malaria infection (any prior 179 

Plasmodium species infections within 6 months), and rural residence. Though no 180 

significant association between pregnancy and malaria was reported in previous studies, 181 

pregnancy was included in the present analysis.  182 

We calculated crude odds ratios (cORs) and their 95% confidence intervals (CI) to 183 

evaluate associations between each of these eight factors and P. ovale infections. 184 

Because DNA degradation is possible during long-term storage, we repeated the 185 

previously published singleplex P. ovale spp. real-time PCR assay on the 64 samples 186 

previously identified as P. ovale spp.-positive. Among these, 44 tested positive in 187 

duplicate and were selected for species determination using the present duplex assay. 188 

To determine the proportions of Poc and Pow within these P. ovale spp.-positive 189 

samples, inverse probability weighting (IPW) was used to account for differences 190 
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between selected samples and the original 64 P. ovale spp.-positive samples. Selection 191 

weights were calculated by multiple logistic regression analysis with the following 192 

covariates: gender, age, area, and P. ovale spp. parasitemia.  193 

Statistical analysis 194 

Statistical analysis was performed using R software (version 4.2.0; R Core Team, 195 

Vienna, Austria) in RStudio (version 2022.02.2). Figures were generated using the 196 

ggplot2 (version 3.4.1) and forestplot (version 3.1.1) packages. Mapping was done via 197 

pixelmap [34].  198 

Ethical approvals 199 

Existing samples from previous studies were chosen based on convenience. DRC 200 

samples were collected as part of a 2017 study investigating malaria diagnostic test 201 

performance in three provinces, Kinshasa, Bas-Uele, and Sud-Kivu[25]. Tanzania 202 

samples were collected from participants enrolled in a malaria transmission study in 203 

rural Bagamoyo district from 2018-2019 [9, 35, 36]. Enrolled subjects provided 204 

informed consent or assent. Ethical approvals for these studies were obtained from the 205 

Kinshasa School of Public Health, Muhimbili University of Health and Allied Sciences, 206 

and the University of North Carolina at Chapel Hill. 207 

 208 

Results 209 

P. ovale curtisi and P. ovale wallikeri target selection and assay 210 
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development 211 

A total of 2,585 and 3,978 sequences of 100 bp in length with ≥ 6 repeats were 212 

found in the Poc and Pow reference genomes, respectively. Targets with low GC content, 213 

highly repetitive short sequences, or aligned to other Plasmodium parasite genomes 214 

were excluded. A total of three potential assay targets with ≥8 copies in each of the 215 

Poc and Pow genomes were selected. Focusing on these potential targets, we designed 216 

five and three primer and probe sets for Poc and Pow, respectively (S1 Table). After 217 

testing all primer and probe sets using a panel of 15 well-characterized Poc and Pow 218 

field samples and six laboratory non-ovale Plasmodium controls, we selected two 219 

primer and probe sets with the best specificity for Poc and Pow, respectively, for 220 

additional laboratory testing (Table 1). The selected Poc target had nine copies within 221 

putative liver stage antigen 3 (lsa3) gene on chromosome 4 (LT594585.1: 9,968-222 

11,125), while the Pow target had eight copies in a non-coding region on chromosome 223 

14 (LT594518.1: 1,842,975-1,844,586). Short distances (< 50 bp) were noted between 224 

the repetitive Poc target motifs and between Pow target motifs. 225 

Combining these Poc and Pow primers and probes, we optimized a duplex, 226 

qualitative real-time PCR assay for the detection and differentiation for Poc and Pow. 227 

The final, optimized duplex assay was performed in a small final volume of 10µl, 228 

including 7µl of reaction master-mix containing 2x FastStart Universal Probe Master 229 

(Rox) (Roche, Basel, Switzerland), primers and probes (240 nM of Poc_Fwd, 240 nM 230 

of Poc_Rev, 60 nM of Poc_Probe, 800 nM of Pow_Fwd, 800 nM of Pow_Rev, 320nM 231 
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of Pow_Probe); and 3µl of DNA template. Optimal thermocycling conditions were two 232 

min at 50°C, 10 min at 95°C, followed by 45 cycles of 15 s at 95°C and 60 s at 58°C, 233 

allowing for detection of parasite DNA in less than two hours. 234 

Table 1. Best performing primers and probes for P. ovale curtisi and P. ovale 235 

wallikeri detection 236 

Name Sequence (5’→3’) 

Poc_Fwd GTTRCCAAATATGCTATCACTTAC 

Poc_Rev GTARCACAAAACGACGAGAC 

Poc_Probe FAM - TACATCTTCTTCAAAGTTGYCATAYGCAT - BHQ1 

Pow_Fwd GRRTCTTCTGAACTTTGRAATG 

Pow_Rev CATCAAGGRTATCCATTTCA 

Pow_Probe VIC - AACAAYCACTTCAACATCAA - BHQ1 

Analytical sensitivity and specificity 237 

The 95% confidence lower limits of detection for Poc and Pow were 4.2 and 41.2 238 

parasite genome equivalents/µl, respectively (Fig 2A, S1 Fig and S2 Table). All well-239 

characterized Poc and Pow field samples were successfully detected and differentiated 240 

with no cross-reactivity between species, and no cross reactivity was found in six non-241 

ovale Plasmodium controls (Fig 2B), consistent with 100% analytical specificity. 242 

 243 

Fig 2. Duplex Poc and Pow assay performance. A) Analytical sensitivity when 244 
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applied to multiple replicates of serially diluted plasmid DNA (n=104 and 161 total 245 

replicates for Poc and Pow, respectively). Points are colored to display target detection 246 

(blue) versus no detection (red). The 95% lower limit of detection (LOD) determined 247 

using probit analysis is shown for each species. B) Analytical specificity versus 248 

genomic DNA extracted from a panel of well-characterized leukodepleted blood (LDB) 249 

and dried blood spot (DBS) samples from Tanzania and the DRC with Poc and Pow 250 

confirmed by nested PCR, and non-ovale Plasmodium samples from an external quality 251 

assurance program. All Poc and Pow samples were correctly identified, and no false-252 

positives were observed among other Plasmodium species. 253 

Validation using field samples 254 

The assay demonstrated excellent clinical sensitivity at higher parasite densities 255 

and perfect specificity when applied to 95 field samples collected in the DRC. Parasite 256 

densities of 55 P. ovale spp.-positive field samples included in this study ranged from 257 

0.9 parasites/µl to 2,468 parasites/µl; 29 (52.7%) had parasite densities <10 parasites/µl. 258 

The assay’s overall sensitivity was 80%, successfully determining P. ovale species in 259 

44 of the P. ovale spp.-positive field samples (Fig 3A); however, assay sensitivity was 260 

100% for infections with >10 parasites/µl. The lowest parasite densities in which 261 

species could be determined were 2.0 and 20.9 parasites/µl for Poc and Pow, 262 

respectively. None of the 40 non-ovale Plasmodium field samples were detected by the 263 

duplex assay, consistent with 100% specificity (Fig 3B).  264 
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 265 

Fig 3. Assay validation using field samples collected in the DRC. Gold standard 266 

species identification was performed previously using a series of semi-quantitative 267 

qPCR assays targeting pan-Plasmodium 18S rRNA, followed by singleplex species-268 

specific assays including P. ovale spp. [2] A) Detection of known P. ovale spp. PCR-269 

positive samples with varying parasite densities and co-infection status. Analytical 95% 270 

lower limits of detection (LOD) are represented by dashed lines. B) No detection of 271 

other Plasmodium species across a range of parasite densities. Abbreviations: Po = P. 272 

ovale spp. (comprising both Poc and Pow); Poc = P. ovale curtisi; Pow = P. ovale 273 

wallikeri; Pf = P. falciparum; Pm = P. malariae. 274 

 275 

Epidemiology of symptomatic malaria due to P. ovale in the 276 

DRC 277 

A total of 64 P. ovale spp.-positive samples were previously identified among 278 

randomly selected field samples from 1,000 participants in three provinces in the DRC 279 

[25]. The prevalences of P. ovale spp.-infection in Bas-Uele, Kinshasa, and Sud-Kivu 280 

were 14.3% (47/328), 2.8% (10/353), and 2.2% (7/319), respectively. Among these 281 

1,000 participants, urban residence (cOR: 0.31, 0.17-0.55) and bed net use (cOR: 0.50, 282 

0.24-0.85) had significant protective associations with P. ovale spp. infection; while 283 

recurrent malaria infection (within 6 months) (cOR: 1.75, 1.02-3.03) and coinfection 284 
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with P. falciparum (cOR: 7.70, 3.48-17.06) was associated with P. ovale spp. infection 285 

(Fig 4).  286 

 287 

Fig 4.  Factors associated with P. ovale spp. (comprising both Poc and Pow) 288 

infections. Crude odds ratio estimates and associated 95% confidence intervals are 289 

displayed.  290 

 291 

Among the subsample of 44 P. ovale spp.-positive samples selected for species 292 

determination, P. ovale species was determined in 37 (84%) samples using the present 293 

assay: 28 (75.7%), 6 (16.2%), and 3 (8.1%) were Poc infections, Pow infections, and 294 

Poc-Pow mixed infections, respectively. Inverse probability weighting analysis 295 

indicated that 89.8% of all P. ovale spp. infections in our cohort included Poc species, 296 

alone or as a Poc-Pow mixed infection, and 15.2% included Pow species, alone or as a 297 

Poc-Pow mixed infection.  298 

 299 

Discussion 300 

We mined recently published genomes of Poc and Pow to develop a highly specific 301 

duplex real-time PCR assay that can be used to improve our understanding of their 302 

epidemiology in malaria-endemic countries. Recent studies have revealed a previously 303 
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unappreciated burden of P. ovale spp. in Africa [2, 15, 36, 37]. Though Poc and Pow 304 

are distinct non-recombining species, the few existing assays capable of distinguishing 305 

them are not well-suited to large studies, requiring separate assays for each species and 306 

higher volumes of DNA, with potential for cross-reactivity at higher parasite densities. 307 

Because current assays require multiple steps, long turnaround time, or lack complete 308 

species specificity [15-18], most field studies do not distinguish Poc and Pow, and their 309 

prevalence and clinical features remain understudied [38-40]. Our new assay can be 310 

used to help bridge this knowledge gap, especially among symptomatic cohorts where 311 

low parasite density infections are not predominant. 312 

Our assay targets are distinct from those used in prior assays and take advantage of 313 

100 bp repetitive motifs in the putative lsa3 gene on Poc chromosome 4 and a non-314 

coding region on Pow chromosome 14, respectively. Studies of P. falciparum lsa3 315 

indicate that it is a mutable non-essential gene expressed during the pre-erythrocytic 316 

stages of infection that encodes an antigen with tetrapeptide repeats of unclear function 317 

[41, 42]. P. falciparum lsa3 was shown to be largely conserved across isolates collected 318 

from geographically diverse sites [42]. The non-coding Pow repetitive motif we 319 

targeted has unclear function, with no obvious orthologues identified in publicly 320 

available databases. Though non-essential genes are more likely to be lost over time 321 

based on in vitro P. falciparum studies, genes with putative roles in antigenic variation 322 

such as lsa3 might be important in human infection [41-44]. We leveraged the repetitive 323 

nature of these poorly understood Poc and Pow targets to develop an assay with several 324 
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advantageous performance characteristics. 325 

Compared to published real-time PCR assays that usually target Poc and Pow 18S 326 

rRNA genes [2, 17, 18], inclusion of distinct Poc and Pow targets enabled development 327 

of a highly specific assay. These targets’ copy numbers are higher than those reported 328 

for 18S rRNA genes in Plasmodium genomes [45, 46]. However, published 18S rRNA 329 

PCR assays achieve similar limits of detection compared to our assay, with 1.5 330 

parasites/µl and 50 plasmid copies/µl for Poc and Pow detection, respectively [17, 18]. 331 

It is possible that the short distances between our Poc targets and between Pow targets 332 

decrease the PCR efficiency, offsetting improved sensitivity that might otherwise be 333 

achieved from their increased copy number. Validation using field samples from the 334 

DRC confirmed robust species differentiation when the assay was applied to P. ovale 335 

spp. samples with >10 parasites/µL and 100% specificity across all parasite densities. 336 

Though its ability to identify Pow in particular was limited at lower parasite densities, 337 

the simultaneous amplification of Poc and Pow DNA in a single reaction tube allows 338 

our assay to have shorter turnaround time and require less materials compared to 339 

published singleplex assays [17, 18, 44]. The duplex assay’s high specificity, short 340 

turnaround time and capacity for high-throughput use make it an especially useful tool 341 

for field studies of symptomatic P. ovale infection.  342 

The prevalence of P. ovale infections in symptomatic individuals from the 343 

published study was 6.4% [25], while lower prevalence of P. ovale infections were 344 

found in nationally representative, asymptomatic adults (0.5%) and children (4.7%) in 345 
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DRC [28]. P. ovale spp. infections in symptomatic individuals had significant 346 

association with rural residence and co-infection with P. falciparum, which is consistent 347 

with previous studies [28, 37, 47]. Also similar to the results of previous studies [48, 348 

49], bed net use was found to be protective against P. ovale malaria in our study, 349 

indicating that it is an effective strategy to reduce P. ovale-related malaria burden. 350 

People who reported malaria infection within six months before enrollment showed 351 

higher odds of P. ovale-related malaria infection; this finding could be attributed to re-352 

infection, inadequate treatment of previous malaria infections, or P. ovale relapse [50]. 353 

Existing evidence indicates that the most prevalent P. ovale spp. vary across different 354 

countries [51]. Using the present duplex qPCR assay, we detected both Poc and Pow 355 

across three provinces in the DRC, with Poc more prevalent in symptomatic individuals. 356 

A previous, nationally representative study in asymptomatic and symptomatic school-357 

age children in DRC also showed high prevalence of Poc [47].  358 

Several limitations of our approach should be highlighted. First, the assay’s 359 

relatively low sensitivity at lower parasite densities, particularly for Pow detection, 360 

limits its utility in low-density or asymptomatic infections. Thus, the prevalence of Poc 361 

and particularly Pow in our study are likely underestimated. This limitation could be 362 

overcome in the future by combining a pan-P. ovale spp. 18S rRNA assay (e.g. such as 363 

that used by Mitchell et al. [2]) with our Poc lsa3 assay, allowing definitive 364 

identification of Poc (pan-P. ovale spp.-positive, Poc lsa3-positive) and deductive 365 

identification of Pow mono-infection (pan-P. ovale spp.-positive, Poc lsa3-negative). 366 
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Second, our Poc and Pow prevalence estimates are derived from people presenting with 367 

malaria symptoms to health facilities in three DRC provinces. The DRC is a large and 368 

diverse country. Our results provide further insight into the epidemiology of Poc and 369 

Pow in three large regions but do not provide precise, nationally representative 370 

estimates, nor information about asymptomatic infections. Third, crude associations 371 

were analyzed in this study to explore possible factors related to P. ovale; no causal 372 

relationships were assessed. Fourth, the assay targets two non-essential genomic 373 

regions at risk of deletion or disruption if future treatment choices are tied to diagnosis, 374 

as has been proposed for P. falciparum and observed for Chlamydia trachomatis non-375 

essential diagnostic targets [52, 53]. However, this hypothetical threat is unlikely to be 376 

realized any time soon. Malaria programs in Africa focus largely on P. falciparum and 377 

do not routinely offer radical cure to clear P. ovale spp. hypnozoites. 378 

In conclusion, we developed and validated a novel, highly specific duplex real-379 

time PCR assay capable of detection and differentiation of Poc and Pow. Though our 380 

assay’s sensitivity at lower parasite densities could be further improved, its streamlined 381 

work-flow reduces complexity and is well suited for high-throughput use in field 382 

studies. As some countries progress toward malaria elimination, improved assays for 383 

Poc and Pow like that presented here will become more important and open the way to 384 

improved understanding of P. ovale spp. epidemiology, clinical impact, to inform 385 

eradication strategies. 386 

 387 
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Supporting information 669 

S1 Table. Candidate primer and probe sets evaluated for the detection of P. ovale 670 

curtisi and P. ovale wallikeri. 671 

S2 Table. Limit of detection of the optimized, duplex P. ovale curtisi and P. ovale 672 

wallikeri assay versus serially diluted plasmid DNA. 673 

S1 Fig. 95% lower limits of detection determined using probit analysis. A) P. ovale 674 

curtisi 95% lower limits of detection (4.2 parasites/µl [95% CI 3.1-9.5]). B) P. ovale 675 

wallikeri 95% lower limits of detection (41.2 parasites/µl [95% CI 33.3-58.3]). 676 

Confidence intervals are shown in lighter shade.   677 
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