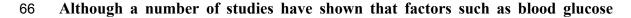


1	Diabetes, glycaemic profile and risk of vitiligo: a Mendelian
2	randomisation study
3	Shucheng Hu ¹ [†] , Yuhui Che ¹ [†] , Jiaying Cai ² ,Jing Guo ³ * Jinhao
4	Zeng ³
5	1Chengdu University of Traditional Chinese Medicine, Chengdu, China
6	2Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu,
7	China
8	* Correspondence:
9	Shucheng Hu,
10	Hushucheng031123@163.com
11	Jing Guo,
12	guojing66@cdutcm.edu.cn
13	Abstract
14	Objectives:
15	Previous observational studies have shown that vitiligo usually co-manifests with
16	a variety of dysglycemic diseases, such as Type 1 diabetes mellitus(T1DM) and
17	Type 2 diabetes mellitus(T2DM). Mendelian randomization analysis was
18	performed to further evaluate the causal association between fasting plasma
19	glucose, glycosylated hemoglobin(HbA1c),T1DM,T2DM and vitiligo.
20	Methods:
21	We used aggregated genome-wide association data from the (Integrative

Epidemiology Unit) IEU online database of European adults vitiligo; Glycated 22 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

23	hemoglobin (HbA1c) data were from (IEU). Fasting blood glucose data were
24	obtained from the European Bioinformatics Institute(EBI). T1DM and T2DM
25	data were from FinnGen(FINN).
26	We used bidirectional two-sample and multivariate Mendelian randomization
27	analyses to test whether dysglycemic measures (fasting blood glucose, HbA1c),
28	diabetes-related measures (T1DM, T2DM) are causatively associated with
29	vitiligo. IVW method was used as the main test method, MR-Egger, Weighted
30	mode and Weighted median were used as supplementary methods.
31	Results:
32	We found no statistically significant evidence to support a causal association
33	between dysglycemic traits and vitiligo, but in the correlation analysis of diabetic
34	traits, our data supported a positive causal association between T1DM and
35	vitiligo (p=0.018; 95%OR:1.000(1.000-1.000)); In the follow-up multivariate MR
36	Analysis, our results still supported this conclusion (p=0.016, 95% OR=
37	1.000(1.000-1.000)), and suggested that Hba1c was not a mediator of T1DM
38	affecting the pathogenesis of vitiligo. No reverse causality was found in any of the
39	reverse MR Analyses of dysglycemic traits and diabetic traits.
40	Conclusions:
41	Our findings support that T1DM is a risk factor for the development of vitiligo,
42	and this conclusion may explain why the co-presentation of T1DM and vitiligo is
43	often seen in observational studies. Clinical use of measures related to T1DM
44	may be a new idea for the prevention or treatment of vitiligo.



· 21

Key Words: Vitiligo; Abnormal blood glucose traits; Type 1 diabetes mellitus;
Type 2 diabetes mellitus; Mendelian randomization

47 Introdution.

Vitiligo is a pigment-loss disorder with a global incidence of about 1%(1). In 48 49 addition to affecting the appearance, vitiligo can also lead to the disorder of the patient's autoimmune system. The risk of autoimmune diseases in vitiligo patients 50 is significantly higher than that in normal people. For example, several controlled 51 trials(2) have been conducted in East Asian and African populations, Chang 52 53 etal.(3) found that the incidence of diabetes in patients with vitiligo was significantly higher than that in normal people, and believed that there was a 54 correlation effect between vitiligo and diabetes, but the causal relationship was not 55 56 clear. Such a conclusion is not confirmed only at the individual level. Existing studies (4) have shown that in the peripheral blood and skin tissue fluid of patients 57 with vitiligo, the levels of pro-inflammatory cytokines IL-6, IL-β, TNF-α and CD8 58 59 cells are increased, while the related indicators in patients with diabetes also have an increasing trend. It is not a coincidence that the levels of inflammatory 60 cytokines such as IL-6 and CD8 cells are often increased in the peripheral blood 61 of patients with diabetes. At the big data analysis level, a meta-analysis(3) showed 62 that vitiligo was significantly associated with diabetes (OR 2.515, 95% CI 1.972-63 3.208; p: 0.001). However, it is not clear whether there is a causal relationship 64 between vitiligo and diabetes. 65

medRxiv preprint doi: https://doi.org/10.1101/2023.10.30.23297752; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity

67 characteristics and diabetes mellitus are associated with the occurrence of vitiligo,
68 the current studies are mainly observational studies, and the results are
69 susceptible to confounding factors and reverse causality. For diabetic features, the
70 causal inference between blood glucose features and vitiligo is less convincing. The
71 MR Method can effectively avoid the interference of confounding factors and
72 reverse causality.

73 Understanding the causal relationship between vitiligo and diabetes mellitus can
74 help us prevent or treat the occurrence of diabetes in vitiligo patients, so it is of
75 practical significance to explore the causal relationship between vitiligo and
76 diabetes.

Mendelian randomization (5) is a data-analysis method that uses genetic variables 77 78 as instrumental variables for exposure in order to study causal associations between exposure and outcomes. It was first proposed by Katan(6) in 1986. 79 80 Because the genetic alleles associated with exposure follow the Mendelian 81 inheritance law and are randomly combined at the time of conception, MR 82 Analysis can greatly avoid the interference of environmental factors and other 83 diseases, thereby enhancing the inference of causal association of exposure outcomes(7). Therefore, we conducted a two-sample Mendelian randomization 84 85 (TSMR) study to investigate the causal relationship between levels of fasting plasma glucose, glycosylated hemoglobin, type 1 diabetes mellitus, type 2 diabetes 86 87 mellitus and vitiligo.

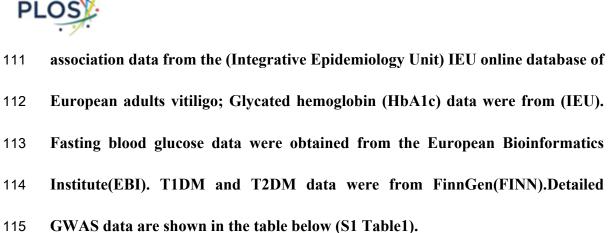
88 Materials and Methods.

medRxiv preprint doi: https://doi.org/10.1101/2023.10.30.23297752; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity

perpetuity. It is made available under a CC-BY 4.0 International license .

89 Study Design

The study adhered to Enhanced Reporting of Observational studies in 90 91 epidemiology (8)- Guidelines for reporting Mendelian randomization. The study design is shown in S 1 Fig. Study design and workflow. In order to explore the 92 93 causal relationship between blood glucose characteristics (including fasting blood 94 glucose and glycosylated hemoglobin), diabetes characteristics (including type 1 diabetes, type 2 diabetes) and vitiligo, we performed a total of three MR Analyses. 95 First, we used univariate Mendelian randomization to investigate the overall effect 96 97 of blood glucose and diabetes characteristics on vitiligo outcome and performed an inverse MR Analysis to investigate the effect of vitiligo on dysglycemia and the 98 99 onset of type T1 and T2DM. On this basis, multivariable MR Models were 100 constructed to analyze the direct or independent effects of Hba1c, T1DM, and other characteristics on outcomes. The model was developed to determine the 101 major factors affecting the prognosis of vitiligo, At present, some studies(9-11) 102 103 have suggested that glycosylated hemoglobin has statistical significance in peripheral blood of vitiligo patients, and glycosylated hemoglobin is one of the 104 indicators of type 1 diabetes. 105


- 106
- 107

S1fig. Study design and workflow.

108 **Data sources**

109 Our study used publicly available GWAS data for which informed consent and
110 ethical approval had previously been obtained. We used aggregated genome-wide

116

Supplementary Table 1.Data Source

Trait	Yea r	Consortium	Sample size	Numbe r of SNPs
HbA1c	2022	Within family GWAS consortium	45734	9696819
Fasting glucose	2021	NA	200622	31008728
Type 1 diabetes	2021	NA		16380008
Type 2 diabetes	2021	NA		16380440
Non-cancer illness code self- reported: vitiligo	2017	Neale Lab	337159	10894596

117

118 Instrumental variable selection

119 The selection of instrumental variables generally needs to meet the following three

120 assumptions(12):

121 1. Correlation hypothesis; The instrumental variable must have a strong

122 association with the exposure (p value < 0.05).

123 2. Assumption of independence; Instrumental variables were not associated with

- 124 confounders.
- 125 3. Assumption of exclusivity; Instrumental variables can only affect outcomes

medRxiv preprint doi: https://doi.org/10.1101/2023.10.30.23297752; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity

126 through exposure and cannot be directly correlated with outcomes.

In the univariate Mendelian randomization phase, we first tested for horizontal pleiotropy of exposures and outcomes and ensured that assumptions of independence were valid (linkage disequilibrium,LD cluster r² threshold of 0.001 and window size of 10 Mb). If the IVW test results were relevant (p value < 0.05), we performed sensitivity analyses for each trait.</p>

For multivariable Mendelian randomization, we constructed a multivariable 132 Mendelian randomization model using type 1 diabetes mellitus, glycated 133 134 hemoglobin, and vitiligo. SNPs for these traits were combined to remove confounding factors. To avoid bias caused by potentially weak instrumental 135 variables, we used the F-statistic (calculated by the formula F = beta2/se2) to 136 137 evaluate the strength of IV. If the F-statistic > 10, then the correlation between IV and exposure is considered strong enough to guarantee that the results of the MR 138 Analysis are protected from weak instrumental variable bias(13). 139

140 MR Analysis

In univariate MR Analysis, we used the IVW method as our primary test and performed sensitivity tests, such as MR-Egger(14); Weighted Median(15); Weighted Mode(16); MR-MR-PRESSO(17) was used to check for heterogeneity and horizontal pleiotropy to help inform confidence in the results. On this basis, we performed reverse MR Analysis. Specific methodological procedures were the same as for univariate MR Analysis. On the basis of univariate MR Analysis, multivariate MR Models were constructed for abnormal blood glucose, type 1

148	diabetes mellitus, type 2 diabetes mellitus and vitiligo. A total of 42 nSNPs were
149	extracted, and after harmonise was performed to remove unmatchable SNPs, 32
150	SNPs were retained for multivariate MR Analysis. At equilibrium, the Inverse-
151	Variance Weighted(IVW) method was still used as the main method to test the
152	results, and in the case of positive results, we used multivariate MR-Egger
153	(intercept), MR-PRESSO, and Weighted Mode to test for heterogeneity and
154	horizontal pleiotropy of multivariate results, and heterogeneity, defined as
155	variation in causal estimates of different SNPs, was used to assess heterogeneity of
156	different SNPs in multivariate MR.
157	Results.
158	The data selected for this study were all from the European population, and the

The data selected for this study were all from the European population, and the 158 159 number of instrumental variables and their correlations are shown in S2-S3 Tables. In univariate MR Analysis, F statistics for all SNPs were > 10, a result that 160 suggests no potential causal bias in the data. 161

Supplementary Table 2. Genetic variants that were used as instruments for 162

diabetes traits and blood sugar traits

SNP	Chr	Pos	Effect	Effect	Beta	SE	Р	F
			Allele	Allele			value	
				Frequ				
				ency				
rs1160	2	165508	Т	0.3576	-	0.0108	7.3090	38.2

• •/•								
39340		389			0.0668		3E-10	5652
rs1611	19	461570	С	0.4465	-	0.0105	1.3910	31.8
236		04			0.0593		1E-08	956
rs1836	11	927087	G	0.3567	0.1183	0.0108	8.9166	119.
97542		10					1E-28	9836
rs3129	10	944606	С	0.4769	-	0.0104	3.2077	61.8
871		50			0.0818		5E-15	6428
rs3184	4	451825	G	0.4736	0.0682	0.0104	5.1999	43.0
504		27					6E-11	0333
rs3433	9	221326	С	0.1518	-	0.0145	1.6398	77.4
7125		98			0.1276		3E-18	4
rs4117	9	429192	С	0.3757	0.0584	0.0107	4.9039	29.7
3		8					9E-08	8915
rs6679	12	427108	Α	0.0223	-	0.0365	2.8926	98.5
677		8		6	0.3623		8E-23	2602
rs689	17	361035	Α	0.6457	-	0.0109	3.0549	39.3
		65			0.0684		9E-10	785
rs7056	6	327104	С	0.0503	0.3246	0.024	1.0108	182.
99		07		2			8E-41	9256
rs7420	8	118185	G	0.3784	-	0.0107	1.9019	49.5
3920		733			0.0753		5E-12	2476
rs9275	18	579086	G	0.1947	0.0775	0.0131	3.0049	34.9

183		75					7E-09	9942
rs9468	3	123365	Α	0.1706	-	0.0138	3.6889	62.0
618		07			0.1087		3E-15	4416
rs1244	16	772619	G	0.0584	0.1342	0.0223	1.6199	36.2
9219		43		1			8E-09	1557
rs1314	4	631540	G	0.5422	0.0789	0.0104	3.9774	57.5
3143		6					1E-14	5557
rs1396	2	593140	С	0.4088	-	0.0106	4.2419	29.7
40586		86			0.0578		9E-08	3336
rs1397	12	715266	G	0.4275	-	0.0105	1.2489	32.2
566		77			0.0596		9E-08	1914
rs1441	10	114737	Т	0.0235	-	0.0345	8.8691	37.6
55527		633		6	0.2116		1E-10	1778
rs1703	2	605535	Α	0.0476	0.1481	0.0243	1.1620	37.1
9732		19					1E-09	4476
rs1815	6	724545	G	0.4053	0.062	0.0106	5.2100	34.2
311		8					3E-09	1146
rs1827	10	714498	Т	0.0387	0.1488	0.0269	3.155E	30.5
88819		78		3			-08	9858
rs1933	6	140291	Т	0.1913	-	0.0132	4.9029	34.3
742		319			0.0774		8E-09	8223
rs2303	19	797652	С	0.6741	-	0.0111	5.0750	34.1

700		9			0.0649		5E-09	8562
rs2583	12	661704	С	0.0563	0.1526	0.0226	1.4481	45.5
921		81		1			E-11	9237
rs2864	9	139248	G	0.6974	0.1005	0.0113	6.2459	79.0
2213		082					7E-19	9977
rs2943	2	227121	G	0.6174	0.0752	0.0107	1.7151	49.3
656		918					4E-12	9331
rs3110	17	360474	G	0.7867	0.0715	0.0128	2.5080	31.2
641		17					1E-08	027
rs3487	10	114754	С	0.2016	0.2962	0.0131	1.1722	511.
2471		071					E-112	2432
rs3887	3	186665	Т	0.463	0.0591	0.0104	1.3949	32.2
925		645					9E-08	9299
rs4293	19	454119	С	0.1825	-	0.0136	1.6330	36.4
58		41			0.0821		1E-09	4253
rs4555	20	576073	Т	0.0499	-	0.0243	5.4954	93.1
1238		63		1	0.2345		1E-22	2647
rs4931	12	326908	G	0.6926	0.0625	0.0113	3.0719	30.5
017		57					9E-08	9167
rs4984	7	282562	Α	0.6448	-	0.0108	8.2729	33.4
75		40			0.0625		4E-09	898
rs5215	11	174086	Τ	0.5284	-	0.0104	1.6230	31.7

		30			0.0586		1E-08	4889
rs5599	16	752367	G	0.0871	-	0.0185	5.5962	61.3
3634		63		7	0.1449		9E-15	47
rs5634	12	121432	С	0.2827	-	0.0116	1.2471	45.9
8580		117			0.0786		E-11	1231
rs5810	15	778928	G	0.4094	-0.06	0.0106	1.4119	32.0
2377		57					8E-08	3987
rs6073	20	428880	G	0.0366	0.179	0.0273	5.9251	42.9
386		82		7			6E-11	9132
rs6213	2	434802	Т	0.0489	0.1422	0.0239	2.5719	35.4
7406		21		6			9E-09	0001
rs6249	7	150537	А	0.3402	0.074	0.011	1.5219	45.2
2368		635					5E-11	562
rs6550	3	234076	С	0.8216	-	0.0135	1.048E	37.4
758		58			0.0826		-09	3627
rs6780	3	185503	Α	0.3066	0.0929	0.0112	1.2240	68.8
171		456					5E-16	011
rs6786	3	170629	Α	0.681	0.0654	0.0111	4.1750	34.7
846		884					3E-09	1439
rs7018	9	221376	G	0.279	0.1126	0.0116	2.5310	94.2
475		85					5E-22	2384
rs7109	11	724634	Α	0.2374	-	0.0122	3.8806	57.7

575		35			0.0927		1E-14	3508
rs7133 3	3	123124	Α	0.1878	-0.086	0.0133	1.0990	41.8
0995		513					1E-10	113
rs7486 1	12	436557	Т	0.0195	-	0.0388	6.8754	42.5
2545		2			0.2531		3E-11	5208
rs7617 5	5	102143	Α	0.0578	0.1409	0.0222	2.3219	40.2
7300		311		4			9E-10	8246
rs7689 1	12	438484	G	0.0311	-	0.0325	2.9302	221.
5963		4		6	0.4842		2E-50	9642
rs7765 7	7	102086	Т	0.1835	0.0968	0.0134	6.0841	52.1
5131		552					5E-13	8445
rs7847 1	12	452151	Α	0.0394	-	0.0273	4.3261	70.6
0967		1		4	0.2295		3E-17	7081
rs7998 1	13	807186	Α	0.3894	-	0.0107	1.0690	46.1
259		54			0.0727		5E-11	6377
rs8353 2	22	207961	Т	0.3009	-	0.0113	1.3399	36.8
		17			0.0686		9E-09	5457
rs8785 7	7	442556	Α	0.2071	0.0784	0.0128	8.9400	37.5
21		43					5E-10	1563
rs9348 (6	206806	Α	0.3289	0.123	0.011	4.9113	125.
441		78					4E-29	0331
rs9933 1	16	538181	С	0.4129	0.1161	0.0105	2.6242	122.

509		67					2E-28	2604
rs1030	6	390340	Т	0.065	0.0235	0.0032	1.2089	53.9
5457		95					3E-14	3066
rs1057	2	273240	Α	0.625	-	0.0018	1.9111	47.4
394		36			0.0124		7E-12	5679
rs1081	9	221340	Α	0.165	-	0.0022	7.9378	102.
1660		68			0.0223		E-25	7459
rs1083	11	927087	G	0.286	0.0772	0.0019	1E-200	1650
0963		10						.925
rs1083	11	458701	G	0.52	-	0.0016	1.5588	221.
8524		77			0.0238		3E-40	2656
rs1083	11	473505	С	0.314	0.0177	0.0018	3.4419	96.6
8693		53					1E-23	9444
rs1097	9	429192	С	0.38	0.0198	0.0017	9.8469	135.
4438		8					1E-31	654
rs1160	11	724606	С	0.168	-	0.0022	3.1160	115.
3349		94			0.0236		2E-25	0744
rs1161	12	133063	Α	0.454	0.0144	0.0019	3.2598	57.4
0045		768					7E-13	4044
rs1161	13	284875	G	0.234	0.0173	0.002	3.4119	74.8
9319		99					3E-20	225
rs1170	3	123065	G	0.177	-	0.002	1.6259	197.

8067		778			0.0281		2E-43	4025
rs1205	6	153431	Т	0.384	0.012	0.0017	1.166E	49.8
5786		125					-11	2699
rs1254	8	810768	Т	0.479	0.0118	0.0019	4.5109	38.5
1643		74					7E-09	7064
rs1260	2	277309	С	0.587	0.0282	0.0017	4.4812	275.
326		40					6E-65	1696
rs1278	10	113036	G	0.076	-	0.003	2.8628	120.
4552		354			0.0329		6E-31	2678
rs1288	14	100830	Α	0.189	-	0.002	6.0186	45.5
8855		818			0.0135		6E-12	625
rs1289	15	750903	Т	0.598	-	0.0017	4.6409	33.2
8997		49			0.0098		8E-09	3183
rs1575	5	558091	С	0.27	-	0.0021	5.426E	40.7
12		27			0.0134		-10	1655
rs1604	3	170709	Τ	0.288	-	0.0018	4.4678	121
038		193			0.0198		6E-28	
rs1685	3	141134	G	0.045	-	0.0042	1.2600	60.6
1397		818			0.0327		9E-12	1735
rs1691	9	111680	G	0.029	-	0.0049	2.8196	64.6
3693		359			0.0394		8E-16	5473
rs1716	7	148982	Т	0.176	0.028	0.0021	4.1696	177.

8486	82				5E-36	7778
rs1726 20	398326 C	0.204	0.0158	0.0021	5.1015	56.6
5513	28				2E-14	0771
rs1727 15	608625 G	0.24	0.0104	0.0021	3.6160	24.5
0243	00				1E-08	2608
rs1743 3	152180 T	0.11	-	0.0032	3.3309	29.9
7560	329		0.0175		6E-08	0723
rs1745 11	616097 T	0.375	-	0.0017	3.3713	97.6
83	50		0.0168		2E-22	609
rs1820 5	956965 C	0.296	-	0.002	1.9050	152.
176	85		0.0247		2E-34	5225
rs1895 2	549411 A	0.723	-	0.002	2.8109	37.8
48	12		0.0123		9E-09	225
rs1945 7	898531 A	0.52	0.0102	0.0018	8.7570	32.1
18	49				9E-09	1111
rs2075 1	214154 T	0.376	-	0.0017	3.1827	89.6
423	719		0.0161		3E-21	9204
rs2238 16	401428 G	0.619	-	0.0019	3.8240	34.7
435	2		0.0112		2E-09	4792
rs2461 2	169700 C	0.852	-	0.0024	2.7302	81.7
385	463		0.0217		3E-19	5174
rs2595 7	441485 G	0.683	-	0.0021	4.4781	81

701		53			0.0189		6E-19	
rs2657	12	568653	G	0.202	0.0119	0.0022	7.3339	29.2
879		38					8E-09	5826
rs2839	10	265058	Α	0.164	-0.016	0.0022	8.3791	52.8
671		22					5E-14	9256
rs3483	1	229672	Α	0.631	-	0.002	3.0359	37.2
30		955			0.0122		9E-10	1
rs3588	14	900554	Т	0.617	-0.013	0.0019	3.3650	46.8
9227		68					4E-10	144
rs3778	6	725027	Α	0.176	-	0.0021	3.1571	78.4
321		0			0.0186		8E-17	4898
rs3829	9	139256	Α	0.276	-	0.002	1.0869	66.4
109		766			0.0163		3E-15	225
rs3842	11	218106	G	0.72	-	0.0022	2.8409	37.0
753		0			0.0134		9E-09	9917
rs3971	22	303431	Т	0.062	-	0.0031	1.7670	29.7
3		86			0.0169		1E-08	2008
rs4760	12	577711	Α	0.181	-0.011	0.002	3.3309	30.2
278		53					6E-08	5
rs4862	4	185726	Τ	0.401	0.0123	0.0019	4.4470	41.9
423		548					3E-10	0859
rs5076	9	136149	Α	0.189	0.0164	0.0021	6.9919	60.9

66		399					8E-17	8866
rs5371	2	169774	Т	0.64	0.0663	0.0017	1E-200	1521
83		646						
rs5892	7	756545	Τ	0.032	0.0306	0.0053	5.8210	33.3
5536		74					3E-09	3428
rs6113	20	225570	Α	0.066	-	0.0044	7.6594	92.8
722		99			0.0424		9E-25	595
rs6489	12	121893	G	0.512	0.011	0.0018	3.2670	37.3
811		626					1E-09	4568
rs6538	12	978489	G	0.377	-	0.0019	9.4123	55.8
804		10			0.0142		9E-14	5596
rs6598	15	992711	G	0.648	-	0.0017	4.1238	44.9
541		35			0.0114		2E-12	6886
rs6662	1	100894	Α	0.198	0.0143	0.0023	3.3410	38.6
924		419					3E-10	5595
rs6808	3	187740	С	0.606	0.0127	0.0017	7.2094	55.8
574		523					1E-14	0969
rs7012	8	917320	Α	0.47	-0.018	0.0017	9.7454	112.
637		9					1E-25	1107
rs7095	10	953841	Т	0.358	-	0.0018	1.9760	34.6
788		52			0.0106		1E-09	7901
rs7163	15	623916	Т	0.433	-	0.0016	2.6411	183.

757		08			0.0217		9E-36	9414
rs7178	15	777471	G	0.679	0.0121	0.0018	7.0859	45.1
572		90					8E-10	8827
rs7708	5	764258	A	0.686	-	0.0019	1.253E	49
285		67			0.0133		-09	
rs7798	2	437779	Т	0.055	-	0.0035	1.5801	49.4
1966		64			0.0246		6E-14	0082
rs7813	1	150868	A	0.203	-	0.0022	2.5980	44.6
2593		102			0.0147		1E-10	4669
rs7903	10	114758	Т	0.307	0.0259	0.0019	1.9948	185.
146		349					E-35	8199
rs8785	7	442556	A	0.249	0.0549	0.002	2.6485	753.
21		43					E-174	5025
rs8968	8	959605	С	0.542	-	0.0016	5.6120	38.2
54		11			0.0099		3E-09	8516
rs9348	6	206806	А	0.272	0.0176	0.0018	4.4025	95.6
441		78					1E-20	0494
rs9650	8	118204	Т	0.284	-	0.0018	8.3061	252.
069		020			0.0286		5E-58	4568
rs1042	19	461501	G		-	0.0062	2.869E	39.9
0309		82			0.0392		-10	7503
rs1046	17	806856	G		-	0.007	1.4669	116.

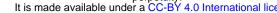
917		55		0.0757		E-27	9488
rs1096	9	221328	С	-	0.0084	1.8400	40.8
5248		78		0.0537		1E-10	6862
rs1106	10	710188	G	0.052	0.0067	6.1887	60.2
676		74				1E-15	3613
rs1170	3	123065	G	-	0.0073	9.5345	64
8067		778		0.0584		5E-16	
rs1457	18	437522	Τ	-	0.0083	3.8799	30.0
31180		67		0.0455		8E-08	5153
rs1747	10	710945	С	-	0.0101	3.02E-	908.
6364		04		0.3044		199	336
rs1753	19	172578	С	0.045	0.0065	6.0186	47.9
3945		02				6E-12	2899
rs1879	3	170727	Α	-	0.0071	1.4288	45.5
442		351		0.0479		9E-11	1498
rs2748	17	761218	G	0.0849	0.0076	9.1579	124.
427		64				9E-29	7924
rs2908	7	442239	Α	0.1141	0.0083	6.7158	188.
289		42				3E-43	9797
rs2968	16	888586	G	0.058	0.0064	2.1938	82.1
478		46				1E-19	2891
rs3818	17	177071	С	-	0.0064	1.8399	54.3

717		05		0.0472		2E-13	9063
rs3935	9	139238	G	0.0548	0.0073	4.3052	56.3
875		824				7E-14	5279
rs4300	8	118217	Α	-	0.0068	8.3926	65.1
038		915		0.0549		7E-16	8188
rs4340	4	144938	G	-	0.0066	3.1746	95.2
756		216		0.0644		8E-22	1028
rs4737	8	416304	Α	0.0735	0.0076	3.5917	93.5
010		47				E-22	2926
rs5608	2	169763	С	0.1156	0.0068	1.4849	289
87		148				1E-64	
rs6602	13	114551	С	0.0492	0.0066	1.2080	55.5
909		993				9E-13	7025
rs7632	7	441859	G	0.0574	0.0098	4.4100	34.3
3047		55				1E-09	0612
rs7903	10	114758	Т	0.0655	0.0074	5.7956	78.3
146		349				2E-19	4642
rs7922	6	260984	С	-	0.0112	1.9050	145.
0007		74		0.1353		2E-33	935
rs8557	22	374629	G	-	0.0064	9.4080	73.5
91		36		0.0549		6E-18	8423
rs9376	6	135411	С	-	0.0072	1.0639	59.2

090		228			0.0554		E-14	0448
rs9410	9	914277	G		-	0.0131	2.4541	72.0
357		77			0.1112		4E-17	5547
rs9826	3	122942	G		-	0.0063	2.2550	40.7
367		02			0.0402		2E-10	1655
rs1160	6	328498	Т	0.0498	-	0.0514	4.917E	102.
39340		21		4	0.5196		-24	1909
rs1611	6	297486	A	0.2234	-	0.0258	1.6951	49.9
236		90			0.1823		2E-12	2682
rs1836	6	308469	Т	0.0166	-	0.0918	5.8762	47.3
97542		41		8	0.6317		5E-12	5179
rs3129	6	324063	С	0.6448	0.7752	0.023	1E-200	1135
871		42						.983
rs3184	12	111884	С	0.5907	-	0.0212	8.9701	60.2
504		608			0.1646		6E-15	8204
rs3433	14	101307	A	0.4153	-	0.0213	3.5109	30.3
7125		703			0.1173		9E-08	2751
rs4117	22	304248	G	0.6835	-	0.0223	1.309E	36.8
3		63			0.1354		-09	6613
rs6679	1	114303	Α	0.1473	0.4475	0.0295	8.2375	230.
677		808					9E-52	1135
rs689	11	218222	Т	0.792	0.399	0.0274	5.2905	212.

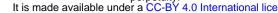
		4					4E-48	0531
rs7056	12	563848	Α	0.3857	0.1409	0.0215	5.2444	42.9
99		04					5E-11	4821
rs7420	21	457142	Τ	0.0372	0.3587	0.0549	6.6343	42.6
3920		94		6			7E-11	892
rs9275	6	326545	G	0.2187	0.9606	0.0256	1E-200	1408
183		02						.008
rs9468	6	297507	Τ	0.0559	-	0.0483	5.5513	52.0
618		76		7	0.3484		7E-13	3098

164


Supplementary Table 3. Genetic variants that were used as instruments for vilitigo

SNP	С	Pos	Effe	Effect	Beta	SE	Р	F
	hr		ct	Allele			valu	
			Alle	Freque			e	
			le	ncy				
rs108184	9	123634	G	0.01824	0.000860	0.000154	2.67	30.935
77		029		44	426	697	E-08	936
rs113405	7	644931	Т	0.00325	0.002188	0.000383	1.15	32.577
464				031	17	374	E-08	429
rs114423	2	457693	А	0.00328	0.002186	0.000380	9.11	33.023
859		59		441	11	416	E-09	756
rs115241	2	203383	С	0.00856	0.001424	0.000228	4.91	38.716
301		263		171	19	886	E-10	617

rs117217	20	142924	G	0.01397	0.001036	0.000179	7.35	33.441
780		67		25	9	305	E-09	746
rs117918	15	550961	С	0.00983	0.001390	0.000209	3.33	43.974
443		57		544	76	726	E-11	391
rs132701	8	413325	G	0.01730	0.001112	0.000160	4.22	48.024
91		11		73	81	579	E-12	687
rs138415	2	134190	Т	0.02434	0.000769	0.000138	2.83	30.818
604		944		47	211	56	E-08	764
rs140098	1	447721	Α	0.00902	0.001236	0.000221	2.42	31.129
080		00		138	13	553	E-08	563
rs141164	9	875216	Α	0.00774	0.001552	0.000244	2.23	40.252
669		26		024	91	765	E-10	6
rs144017	9	898405	Т	0.00975	0.001312	0.000212	6.92	38.044
585		75		537	13	73	E-10	883
rs145651	8	135649	Α	0.00318	0.002205	0.000378	5.84	33.887
908		198		803	27	826	E-09	847
rs147122	5	234518	G	0.01637	0.000937	0.000167	2.27	31.253
750		05		76	204	643	E-08	411
rs147843	10	943823	Α	0.02850	0.000686	0.000125	3.92	30.190
757		59		25	841	004	E-08	104
rs148393	10	143321	Α	0.02631	0.000751	0.000130	8.43	33.175



/								
137		99		68	015	389	E-09	335
rs149961	19	542695	С	0.00608	0.001581	0.000279	1.52	32.028
991		12		543	49	446	E-08	537
rs151035	2	161261	Α	0.00711	0.001438	0.000249	8.48	33.164
772		546		746	69	822	E-09	472
rs169420	18	235833	G	0.00454	0.001684	0.000304	3.14	30.621
56		15		183	31	376	E-08	273
rs181638	4	404169	Α	0.00606	0.001486	0.000272	4.71	29.835
428		41		912	13	076	E-08	487
rs482381	22	468350	С	0.00100	0.004158	0.000645	1.19	41.483
0		00		089	63	674	E-10	364
rs765297	9	757277	G	0.00709	0.001607	0.000243	4.29	43.480
09		48		225	31	754	E-11	626
rs108184	9	123634	G	0.01824	0.000860	0.000154	2.67	30.935
77		029		44	426	697	E-08	936
rs113405	7	644931	Т	0.00325	0.002188	0.000383	1.15	32.577
464				031	17	374	E-08	429
rs114423	2	457693	A	0.00328	0.002186	0.000380	9.11	33.023
859		59		441	11	416	E-09	756
rs115241	2	203383	С	0.00856	0.001424	0.000228	4.91	38.716
301		263		171	19	886	E-10	617

rs117217	20	142924	G	0.01397	0.001036	0.000179	7.35	33.441
780		67		25	9	305	E-09	746
rs117918	15	550961	С	0.00983	0.001390	0.000209	3.33	43.974
443		57		544	76	726	E-11	391
rs132701	8	413325	G	0.01730	0.001112	0.000160	4.22	48.024
91		11		73	81	579	E-12	687
rs138415	2	134190	Т	0.02434	0.000769	0.000138	2.83	30.818
604		944		47	211	56	E-08	764
rs140098	1	447721	Α	0.00902	0.001236	0.000221	2.42	31.129
080		00		138	13	553	E-08	563
rs141164	9	875216	A	0.00774	0.001552	0.000244	2.23	40.252
669		26		024	91	765	E-10	6
rs144017	9	898405	Т	0.00975	0.001312	0.000212	6.92	38.044
585		75		537	13	73	E-10	883
rs147122	5	234518	G	0.01637	0.000937	0.000167	2.27	31.253
750		05		76	204	643	E-08	411
rs147843	10	943823	Α	0.02850	0.000686	0.000125	3.92	30.190
757		59		25	841	004	E-08	104
rs148393	10	143321	Α	0.02631	0.000751	0.000130	8.43	33.175
137		99		68	015	389	E-09	335
rs149961	19	542695	С	0.00608	0.001581	0.000279	1.52	32.028

· /								
991		12		543	49	446	E-08	537
rs151035	2	161261	Α	0.00711	0.001438	0.000249	8.48	33.164
772		546		746	69	822	E-09	472
rs169420	18	235833	G	0.00454	0.001684	0.000304	3.14	30.621
56		15		183	31	376	E-08	273
rs181638	4	404169	Α	0.00606	0.001486	0.000272	4.71	29.835
428		41		912	13	076	E-08	487
rs482381	22	468350	С	0.00100	0.004158	0.000645	1.19	41.483
0		00		089	63	674	E-10	364
rs765297	9	757277	G	0.00709	0.001607	0.000243	4.29	43.480
09		48		225	31	754	E-11	626
rs108184	9	123634	G	0.01824	0.000860	0.000154	2.67	30.935
77		029		44	426	697	E-08	936
rs113405	7	644931	Т	0.00325	0.002188	0.000383	1.15	32.577
464				031	17	374	E-08	429
rs114423	2	457693	Α	0.00328	0.002186	0.000380	9.11	33.023
859		59		441	11	416	E-09	756
rs115241	2	203383	С	0.00856	0.001424	0.000228	4.91	38.716
301		263		171	19	886	E-10	617
rs117217	20	142924	G	0.01397	0.001036	0.000179	7.35	33.441
780		67		25	9	305	E-09	746

rs117918	15	550961	С	0.00983	0.001390	0.000209	3.33	43.974
443		57		544	76	726	E-11	391
rs132701	8	413325	G	0.01730	0.001112	0.000160	4.22	48.024
91		11		73	81	579	E-12	687
rs138415	2	134190	Т	0.02434	0.000769	0.000138	2.83	30.818
604		944		47	211	56	E-08	764
rs140098	1	447721	Α	0.00902	0.001236	0.000221	2.42	31.129
080		00		138	13	553	E-08	563
rs141164	9	875216	Α	0.00774	0.001552	0.000244	2.23	40.252
669		26		024	91	765	E-10	6
rs144017	9	898405	Т	0.00975	0.001312	0.000212	6.92	38.044
585		75		537	13	73	E-10	883
rs147122	5	234518	G	0.01637	0.000937	0.000167	2.27	31.253
750		05		76	204	643	E-08	411
rs147843	10	943823	Α	0.02850	0.000686	0.000125	3.92	30.190
757		59		25	841	004	E-08	104
rs148393	10	143321	A	0.02631	0.000751	0.000130	8.43	33.175
137		99		68	015	389	E-09	335
rs149961	19	542695	C	0.00608	0.001581	0.000279	1.52	32.028
991		12		543	49	446	E-08	537
rs151035	2	161261	Α	0.00711	0.001438	0.000249	8.48	33.164

7721.454674669822E-09472rs1694201.8253833G0.004540.001640.0003403.143.0.21561151618331376E-08273rs1816384404169A0.000600.0014800.0002724.7129.83542844111213076E-08487rs48238122468350C0.010100.0041580.0006451.1941.4830192468350C0.001000.0016070.002434.2943.48001757277G0.013240.0016070.001542.6730.935rs1081849123634G0.013240.0001542.6730.935rs11721720123634G0.013270.001350.001752.6730.935rs11721720142924G0.013970.001600.001757.3033.441rs132701814325G0.013740.001600.001752.6730.935rs1384152134190T0.024340.000760.001632.8330.8186041141<1<11111rs138415234518G0.016370.0001752.0231.23rs147123524545G0.016370.0001672.0231.23 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
561.15.18331376.E-08273rs1816384.404169A.0.006060.0014860.0002724.7129.83542844191213076E-08487rs4823812.468350C.0.001000.0041580.0006451.1941.4830.757277G.0.0070963674E-10364rs7652979.757277G.0.007090.0016070.002434.2943.48009.757277G.0.018240.008600.0001542.6730.935rs1081849.123634G.0.013970.001600.001752.6730.935rs11721720142924G.0.013970.001630.001797.3533.414780711.259305E-09746rs1327018.413325G.0.017300.001120.0001691.2248.0249111.7381579E-1267rs1384152.134190T.0.024340.0007690.0001382.8330.818604.944.4721156E-0874rs1471225.2.34518G.0.16370.000370.001672.2731.253750.5.34518G.0.16372.04643E-08411rs147843<	772		546		746	69	822	E-09	472
r r	rs169420	18	235833	G	0.00454	0.001684	0.000304	3.14	30.621
428141191213076E-08487rs48238122468350C0.001000.0041580.0006451.1941.48300063674E-10364rs7652979757277G0.007090.0016070.0002434.2943.480094822531754E-11626rs1081849123634G0.018240.008600.001542.6730.9357720123634G0.013270.001030.001797.3533.44178020142924G0.013970.001030.001797.3533.441780111129305E-0974rs1327018413325G0.017300.001120.001604.2248.024911117381579E-1267rs1384152134190T0.024340.0007690.001382.8330.81860419444721156E-0874rs1471225234518G0.016370.000370.001672.2731.253750194823A0.28500.0006860.001253.9230.190	56		15		183	31	376	E-08	273
rs482381 22 468350 C 0.00100 0.004158 0.000645 1.19 41.483 0 0 0 089 63 674 E-10 364 rs765297 9 757277 G 0.00709 0.001607 0.000243 4.29 43.480 09 1 48 1 225 31 754 E-11 626 rs108184 9 123634 G 0.01824 0.00860 0.00154 2.67 30.935 77 1 029 14 426 697 E-08 33.441 780 1 142924 G 0.01397 0.00130 0.00179 7.35 33.441 781 1 13255 G 0.01397 0.00130 0.00179 7.35 33.441 781 1 13325 G 0.01730 0.001112 0.00160 4.22 48.024 rs132701 8 13325 G 0.01730 </td <td>rs181638</td> <td>4</td> <td>404169</td> <td>A</td> <td>0.00606</td> <td>0.001486</td> <td>0.000272</td> <td>4.71</td> <td>29.835</td>	rs181638	4	404169	A	0.00606	0.001486	0.000272	4.71	29.835
010001008963674E-10364rs7652979757277G0.007090.0016070.0002434.2943.480094822531754E-11626rs1081849123634G0.018240.0008600.0001542.6730.9357710029444266977.3633.44178020142924G0.013970.0010360.0001797.3533.4417806720259305E-09746rs1327018413325G0.017300.0011120.0001604.2248.0249111127381579E-12687rs1384152134190T0.024340.0007690.0001382.8330.818604129441212156E-0874rs1471225234518G0.016370.0009370.0001672.2731.253750105451276204643E-08411rs14784310943823A0.028500.0006860.0001253.9230.190	428		41		912	13	076	E-08	487
 rs765297 $$ 9 757277 G G 0.00709 0.001607 0.000243 4.29 43.480 09 $$ 48 225 31 754 $E-11$ 626 $rs108184$ 9 123634 G 0.01824 0.000860 0.000154 2.67 30.935 77 $$ 029 $$ 44 426 697 $E-08$ 33.441 780 $$ 142924 G 0.01397 0.00136 0.000179 7.35 3.441 780 $$ 67 $$ 255 9 305 $E-09$ 746 $rs132701$ 8 413325 G 0.01730 0.001112 0.000160 4.22 48.024 91 11 $$ 73 81 579 $E-12$ 687 $rs138415$ 2 134190 T 0.02434 0.000769 0.00138 2.83 30.818 604 $$ 944 $$ 76 211 56 $E-08$ 764 $rs147122$ 5 234518 G 0.01637 0.00037 0.000167 2.27 31.253 750 $$ 56 $E-08$ 613 $E-08$ 411 $rs147843$ 10 943823 A 0.02850 0.000686 0.00125 3.92 30.190	rs482381	22	468350	С	0.00100	0.004158	0.000645	1.19	41.483
0914822531754E-11626rs1081849123634G0.018240.0008600.0001542.6730.93577102944426697E-08936rs11721720142924G0.013970.0010360.0001797.3533.4417801671259305E-09746rs1327018413325G0.017300.0011120.0001604.2248.02491117381579E-12687rs1384152134190T0.024340.0007690.001382.8330.818604194414721156E-08764rs1471225234518G0.016370.0009370.001672.2731.2537501943823A0.028500.0006860.001253.9230.190	0		00		089	63	674	E-10	364
rs108184 9 123634 G 0.01824 0.000860 0.000154 2.67 30.935 77 ' ' 029 ' 44 426 697 E-08 936 rs117217 20 142924 G 0.01397 0.001036 0.000179 7.35 33.441 780 ' 67 ' 25 9 305 E-09 746 rs132701 8 413325 G 0.01730 0.001112 0.000160 4.22 48.024 91 11 ' 73 81 579 E-12 687 rs138415 2 134190 T 0.02434 0.000769 0.000138 2.83 30.818 604 - 944 - 47 211 56 E-08 764 rs147122 5 234518 G 0.01637 0.000937 0.000167 2.27 31.253 750 ' 234518	rs765297	9	757277	G	0.00709	0.001607	0.000243	4.29	43.480
7702944426697E-08936rs11721720142924G0.013970.0010360.0001797.3533.44178067259305E-09746rs1327018413325G0.017300.0011120.0001604.2248.02491117381579E-12687rs1384152134190T0.024340.0007690.0001382.8330.8186049444721156E-08764rs1471225234518G0.016370.000370.0001672.2731.2537500576204643E-08411rs14784310943823A0.028500.0006860.0001253.9230.190	09		48		225	31	754	E-11	626
rs11721720142924G0.013970.0010360.0001797.3533.44178067259305E-09746rs1327018413325G0.017300.0011120.0001604.2248.02491117381579E-12687rs1384152134190T0.024340.0007690.0001382.8330.81860494414721156E-08764rs1471225234518G0.016370.0009370.0001672.2731.2537501943823A0.028500.0006860.0001253.9230.190	rs108184	9	123634	G	0.01824	0.000860	0.000154	2.67	30.935
780 \cdot 67 \cdot 25 9 305 $E-09$ 746 $rs132701$ 8 413325 G 0.01730 0.001112 0.000160 4.22 48.024 91 \cdot 11 \cdot 73 81 579 $E-12$ 687 $rs138415$ 2 134190 T 0.02434 0.000769 0.000138 2.83 30.818 604 \cdot 944 \cdot 47 211 56 $E-08$ 764 $rs147122$ 5 234518 G 0.01637 0.00037 0.000167 2.27 31.253 750 \cdot 943823 A 0.02850 0.00686 0.000125 3.92 30.190	77		029		44	426	697	E-08	936
rs1327018413325G0.017300.0011120.0001604.2248.02491117381579E-12687rs1384152134190T0.024340.0007690.0001382.8330.8186049444721156E-08764rs1471225234518G0.016370.0009370.0001672.2731.25375010943823A0.028500.0006860.0001253.9230.190	rs117217	20	142924	G	0.01397	0.001036	0.000179	7.35	33.441
911117381579E-12687rs1384152134190T0.024340.0007690.0001382.8330.818604 \cdot 944 \cdot 4721156E-08764rs1471225234518G0.016370.0009370.0001672.2731.253750 \cdot 05 \cdot 76204643E-08411rs14784310943823A0.028500.0006860.0001253.9230.190	780		67		25	9	305	E-09	746
indindindindindindindindrs1384152134190T0.024340.0007690.0001382.8330.818604·944·4721156E-08764rs1471225234518G0.016370.0009370.0001672.2731.253750·05·76204643E-08411rs14784310943823A0.028500.0006860.0001253.9230.190	rs132701	8	413325	G	0.01730	0.001112	0.000160	4.22	48.024
6049444721156E-08764rs1471225234518G0.016370.0009370.0001672.2731.2537500576204643E-08411rs14784310943823A0.028500.0006860.0001253.9230.190	91		11		73	81	579	E-12	687
rs147122 5 234518 G 0.01637 0.000937 0.000167 2.27 31.253 750 0 05 76 204 643 E-08 411 rs147843 10 943823 A 0.02850 0.000686 0.000125 3.92 30.190	rs138415	2	134190	Т	0.02434	0.000769	0.000138	2.83	30.818
750 05 76 204 643 E-08 411 rs147843 10 943823 A 0.02850 0.000686 0.000125 3.92 30.190	604		944		47	211	56	E-08	764
rs147843 10 943823 A 0.02850 0.000686 0.000125 3.92 30.190	rs147122	5	234518	G	0.01637	0.000937	0.000167	2.27	31.253
	750		05		76	204	643	E-08	411
757 59 25 841 004 E-08 104	rs147843	10	943823	Α	0.02850	0.000686	0.000125	3.92	30.190
	757		59		25	841	004	E-08	104

• 7	1	1		1	1	1		
rs148393	10	143321	Α	0.02631	0.000751	0.000130	8.43	33.175
137		99		68	015	389	E-09	335

165

166 Univariate MR Analysis

Glycemic traits (fasting blood glucose; Hba1c), diabetes traits (T1DM; T2DM) 167 168 and vitiligo. IVW method was used as the main test method, and the results showed as S3Table; Cochran's Q(18) was used as the heterogeneity test, and the 169 results showed that the Qpval value was < 0.05, suggesting that there was no 170 171 heterogeneity. Therefore, we used the fixed effects model IVW approach for the study. The specific results are shown in S4 table. Mendelian randomisation results 172 of causal effects between blood glucose characteristics ,diabetes mellitus and 173 vitiligo. The figure show that T1DM has a causal relationship with the onset of 174 vitiligo (p=0.018; 95%OR:1.000(1.000-1.000)). In sensitivity analysis (MR-175 176 Egger, Weighted Mode, Weighted Median), horizontal diversity was not found 177 (p=0.018; 95%OR: 1.000-1.000). We performed Leaveone analysis on the results to evaluate the influence of single SNPs on the outcome, and the results are shown 178 in S2Fig. 179

- Supplementary Table 4.Unltivariate mendelian randomisation results of causal
 efects between blood glucose characteristics ,diabetes mellitus and vitiligo (p < 5
- 182

outcome exposure	method	nsnp	pval
------------------	--------	------	------

vitiligo	T1DM	Inverse variance weighted	13	0.018
		MR Egger		0.625
		Weighted median		0.543
		Weighted mode		0.231
	T2DM	Inverse variance weighted	56	0.878
		MR Egger		0.914
		Weighted median		0.61
		Weighted mode		0.712
	Fasting glucose	Inverse variance weighted	64	0.247
		MR Egger		0.269
		Weighted median		0.40
		Weighted mode		0.326
	HbA1c	Inverse variance weighted	26	0.303
		MR Egger		0.313
		Weighted median		0.107
		Weighted mode		0.18

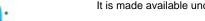
183

S2-S5 Fig. MR leave-one-out sensitivity analysis.

Multivariate MR Analysis 184

Based on the single-sample MR Analysis, we constructed a multivariate MR 185 Model to analyze the causal relationship between Hba1c and T1DM and vitiligo. 186 Associations were assessed using the multivariate IVW method as the primary 187 analysis method. The results showed that there was still a significant causal 188

189	association between T1DM and the onset of vitiligo (p=0.016, 95% OR=
190	1.000(1.000-1.000)), which was consistent with the results of univariate MR
191	Analysis(S5Table).Horizontal pleiotropy was tested by MR-PRESSO method, and
192	the results were consistent with the IVW results, and there was no horizontal
193	pleiotropy.
194	Supplementary Table 5.Multivariate mendelian randomisation results of causal
195	efects between Type 1 diabetes, glycated haemoglobin and vitiligo ($p < 5 \times 10-8$)


Exposure	Outcome	SNP	pval	OR	95%OR
T1DM			0.016	1	1.000(1.000
	Vitiligo	32			to 1.000)
H1bAc			0.235	0.999	0.999(0.999to
					1.000)

196

Reverse MR Analysis 197

After the univariate MR Analysis demonstrated the causal association of T1DM 198 in the pathogenesis of vitiligo, we further explored the causal association between 199 vitiligo and blood glucose features and diabetes features. To this end, we 200 201 performed reverse MR Analysis, the specific methods and procedures were consistent with univariate MR Analysis. The results of IVW method are shown 202 in S10, with vitiligo as exposure, blood glucose features and glycosuria There 203 were no significant causal associations between disease characteristics. S3 Fig. 204 Reverse MR leave-one-out sensitivity analysis. 205 206 S6 Table.Reverse mendelian randomisation results of causal efects between vitiligo and Type 1 diabetes, Type 2 diabetes, glycated haemoglobin, fasting blood 207 208 glucose ($p < 5 \times 10-8$)

Exposur	NSNPs	Method	OR(95% CI)	P value	Beta	Se	
---------	-------	--------	------------	---------	------	----	--

e						
vitiligo	20	IVW	0.033(1.469,745224.259)	0.693	-3.409	8.638
	20		0(1.346,1.587)	0.063	-8.831	4.741
	21		0.092(0.003,2.435)	0.153	-2.391	1.674
	7		0(2.656,31658.427)	0.354	-9.297	10.031

209	Taken together, our results suggest a significant causal association between T1DM
210	and vitiligo without reverse causality. Other indicators such as blood glucose
211	indicators; There is no significant causal association between T2DM and vitiligo.
212	S6-S9 Fig. Reverse MR leave-one-out sensitivity analysis.
213	
214	
215	
216	

Discussion. 217

Based on the results of this experiment, we conclude that there is a positive causal 218 association between diabetes and the occurrence of vitiligo in T1 stage, and there 219 is no negative causal association between diabetes and blood glucose traits in T2 220 stage and the occurrence of vitiligo. 221

Assumptions to explain the outcomes 222

223 The method used in this study is bidirectional MR Analysis(19) combined with 224 TSMR analysis, which has the advantage of further avoiding the interference of 225 horizontal pleiotropy and heterogeneity on the study results compared with single medRxiv preprint doi: https://doi.org/10.1101/2023.10.30.23297752; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

MR Analysis. Pleiotropy refers to genetic variants as SNPs that may be associated
with multiple phenotypes, which can lead to biased causal predictions from MR
Analysis.

A number of studies(20) have shown that diabetes induces different degrees of 229 230 metabolic problems, and many confounding factors may affect the outcome. Some 231 observational studies(4) have suggested that T1DM and T2DM are closely related to the development of vitiligo. However, in our study, our results do not support 232 an association between T2DM and the onset of vitiligo. Because of the complex 233 234 pathogenesis of diabetes and its tendency to be complicated by other disease complications, we believe that the association between type T2DM and vitiligo 235 mentioned in observational studies may be related to confounding factors. Two 236 237 MR Analyses(21, 22) suggested a significant causal association between T2DM and depression, and one meta-analysis(23) concluded that vitiligo induces varying 238 degrees of psychological problems. This finding may be an important reason why 239 240 vitiligo is associated with T2DM in several observational studies.

To investigate the relationship between blood glucose and diabetes characteristics and the pathogenesis of vitiligo. Supported by the available data, we conclude that T1DM is causally related to vitiligo and that T1DM does not affect the onset of vitiligo using Hba1c as a mediator.

Type 1 diabetes mellitus (T1DM)(24) is an autoimmune disease that results in the destruction of insulin-producing pancreatic beta cells. Some studies suggest that T cells and B cells play a crucial role(25) in the pathogenesis of diseases. It has medRxiv preprint doi: https://doi.org/10.1101/2023.10.30.23297752; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity

been shown(26) that β-cell-targeting autoantibodies targeting insulin or GAD65 248 can be detected in the serum early in the onset of type 1 diabetes. In addition, 249 250 CD4+ and CD8+ T cells that are specific for β-cell autoantigens are detectable in patients with stage 3 T1DM and even in patients with earlier stages of the 251 252 disease(27, 28). The specific differentiation of T cells may be one of the 253 mechanisms of vitiligo induced by type 1 diabetes. Studies(29) have shown that CD8+ cells play an important role in the pathogenesis of vitiligo. On the one hand, 254 production of the cytokine IFN- γ by CD8+ cells is central(29) to disease 255 256 progression. T cells(30) secrete IFN- γ and induce keratinocytes to produce T cell chemokine receptor CXCR3 ligands such as CXCL9 and CXCL10, thereby 257 258 increasing the number of T cells in the body and promoting the development of 259 vitiligo. On the other hand, the concentration of melanocyte-specific CD8 cells(31) was significantly increased in the early histological examination of vitiligo lesions, 260 and the clones generated by these cells could kill and pigmented cells in vitro(32). 261 We therefore suggest that the proliferation of CD8T cells induced by T1DM may 262 be a mediator of the effect of T1DM on the pathogenesis of vitiligo. We will explore 263 this issue in a follow-up study. 264

265 Our findings are consistent with those of some controlled experiments(33). We 266 provide theoretical support for this conclusion from the perspective of MR 267 Analysis.

268 Limitation analysis

269 The main potential limitations of this study are:

270	1. The analyzed population was limited to European populations, and since race
271	may have influenced our results, we may need to conduct the same MR Study
272	in other races for validation.
273	A controlled study(34) with 142 samples suggested an association between insulin
274	resistance and vitiligo. We did not include data on insulin resistance in our GWAS
275	database because the data were current for 2010 and the sample size was not large
276	enough to support the MR Analysis. Since insulin resistance is one of the major
277	clinical manifestations of type 2 diabetes, we believe that this may have had some
278	influence on our study. Further studies on this trait will be conducted after the
279	GWAS database updates the relevant data.

Conclusion. 280

281 The results of MR Studies have shown that T1DM is a potential risk factor for the development of vitiligo, and Mendelian randomization (MR) results have provided 282 genetic evidence for a causal relationship between T1DM and vitiligo. Clinical use 283 of measures to treat T1DM may be a new idea for the prevention or treatment of 284 vitiligo. 285

Author Contributions 286

Conceptualization, S.H.methodology, software, and investigation, Y.C.S.H.; 287

validation, Y.C; formal analysis, S.H; data curation, Y.C. and S.H.; writing-288

original draft preparation, S.H; writing-review and editing, S.H., Y.C. and J.C.; 289

visualization, Y.C; supervision, Y.C; project administration, J.G, J.Z.; All authors 290

have read and agreed to the published version of the manuscript. 291

medRxiv preprint doi: https://doi.org/10.1101/2023.10.30.23297752; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity

perpetuity. It is made available under a CC-BY 4.0 International license .

292 Funding

- 293 This study was supported by the National Natural Science Foundation of
- 294 China(grant nos. 82074443), and by the Program of Science and Technology
- 295 Department of Sichuan Province (2021ZYD0089).
- **Abbreviations and standard terms used in this study**
- 297 MR, Mendelian randomization; T1DM, Type 1 Diabetes Mellitus; T2DM, Type 2

298 Diabetes Mellitus; SNPs ,Single-nucleotide polymorphisms; NA, Not available;

- 299 SE,standard error; OR,Odds ratio; CI, Confidence interval; IV, Instrumental
- 300 variables; IVW, Inverse variance weighting; MR-PRESSO, Mendelian
- 301 Randomization Pleiotropy RESidual Sum and Outlier.

302 Acknowledgments

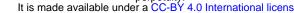
303 Special thanks to the IEU open GWAS project developed by The MRC Integrative

304 Epidemiology Unit (IEU) at the University of Bristol.We want to acknowledge the

305 participants and investigators of the FinnGen study.We would also like to

306 acknowledge the summary statistics provided by the UK Biobank and the

307 European Bioinformatics Institute.

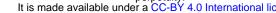

308 "†" on behalf of the cofirst author, The order of authorship was discussed and
309 agreed upon by all the authors.

310 Data Availability Statement

Publicly available datasets were analyzed in this study. This data can be found
here: All GWAS data used in this study are available in the IEU open GWAS

313 project (https://gwas.mrcieu.ac.uk/). Detailed data on vitiligo are available in the

medRxiv preprint doi: https://doi.org/10.1101/2023.10.30.23297752; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .



314	GWAS through the UK Biobank data(http://www.nealelab.is/uk-biobank/c).
315	Summary statistics for T1DM and T2DM are from the FinnGen Consortium
316	(https://r8.finngen.fi).
317	References.
318	1. Alikhan A, Felsten LM, Daly M, Petronic-Rosic V. Vitiligo: a comprehensive
319	overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential

- diagnosis, associations, histopathology, etiology, and work-up. J Am Acad 320
- Dermatol. 2011;65(3):473-91. 321
- 322 2. Afkhami-Ardekani M, Ghadiri-Anari A, Ebrahimzadeh-Ardakani M, Zaji N.
- Prevalence of vitiligo among type 2 diabetic patients in an Iranian population. Int 323
- 324 J Dermatol. 2014;53(8):956-8.
- 325 3. Chang HC, Lin MH, Huang YC, Hou TY. The association between vitiligo and diabetes mellitus: A systematic review and meta-analysis. J Am Acad Dermatol. 326 2019;81(6):1442-5. 327
- 328 4. Hosseini E, Mokhtari Z, Salehi Abargouei A, Mishra GD, Amani R. Maternal circulating leptin, tumor necrosis factor-alpha, and interleukine-6 in association 329 330 with gestational diabetes mellitus: a systematic review and meta-analysis. Gynecol Endocrinol. 2023;39(1):2183049. 331
- 5. Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of 332 pleiotropic genetic variants to estimate causal effects. Am J Epidemiol. 333 334 2015;181(4):251-60.
- 6. Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet. 335

medRxiv preprint doi: https://doi.org/10.1101/2023.10.30.23297752; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .

336 19	86;1(8479):50′	7-8	
--------	-------	------	-------	-----	--

337	7.	Davey Smith G, Ebrahim S. What can mendelian randomisation tell us about
338	mo	difiable behavioural and environmental exposures? Bmj. 2005;330(7499):1076-
339	9	
340	8.	Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM,

- 341 Swanson SA, et al. Strengthening the Reporting of Observational Studies in
- Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. 342
- 343 Jama. 2021;326(16):1614-21.
- 344 9. Gough A, Sitch A, Ferris E, Marshall T. Within-subject variation of HbA1c:
- A systematic review and meta-analysis. PLoS One. 2023;18(8):e0289085. 345
- 346 10. Ghosh K, Das K, Ghosh S, Chakraborty S, Jatua SK, Bhattacharya A, et al.
- 347 Prevalence of Skin Changes in Diabetes Mellitus and its Correlation with Internal
- Diseases: A Single Center Observational Study. Indian J Dermatol. 348 2015;60(5):465-9. 349
- 11. Kordonouri O, Maguire AM, Knip M, Schober E, Lorini R, Holl RW, et al. 350
- Other complications and associated conditions with diabetes in children and 351
- adolescents. Pediatr Diabetes. 2009;10 Suppl 12:204-10. 352
- 12. Greenland S. An introduction to instrumental variables for epidemiologists. 353
- Int J Epidemiol. 2000;29(4):722-9. 354
- 13. Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian 355
- randomization studies. Int J Epidemiol. 2011;40(3):755-64. 356
- 14. Burgess S, Thompson SG. Interpreting findings from Mendelian 357

medRxiv preprint doi: https://doi.org/10.1101/2023.10.30.23297752; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

- 358 randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377-89.
- 359 15. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in
- 360 Mendelian Randomization with Some Invalid Instruments Using a Weighted
- 361 Median Estimator. Genet Epidemiol. 2016;40(4):304-14.
- 362 16. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson
- 363 J. A framework for the investigation of pleiotropy in two-sample summary data
- 364 Mendelian randomization. Stat Med. 2017;36(11):1783-802.
- 365 17. Nikolakopoulou A, Mavridis D, Salanti G. How to interpret meta-analysis
- 366 models: fixed effect and random effects meta-analyses. Evid Based Ment Health.
- **367 2014;17(2):64**.
- 368 18. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal
- 369 pleiotropy in causal relationships inferred from Mendelian randomization
 370 between complex traits and diseases. Nat Genet. 2018;50(5):693-8.
- 371 19. Paaby AB, Rockman MV. The many faces of pleiotropy. Trends Genet.
 372 2013;29(2):66-73.
- 20. Kang P, Zhang WG, Ji ZH, Shao ZJ, Li CY. Association between vitiligo and
 relevant components of metabolic syndrome: a systematic review and metaanalysis. J Dtsch Dermatol Ges. 2022;20(5):629-41.
- 376 21. Yuan S, Merino J, Larsson SC. Causal factors underlying diabetes risk
- 377 informed by Mendelian randomisation analysis: evidence, opportunities and
- 378 challenges. Diabetologia. 2023;66(5):800-12.
- 379 22. Possidente C, Fanelli G, Serretti A, Fabbri C. Clinical insights into the cross-

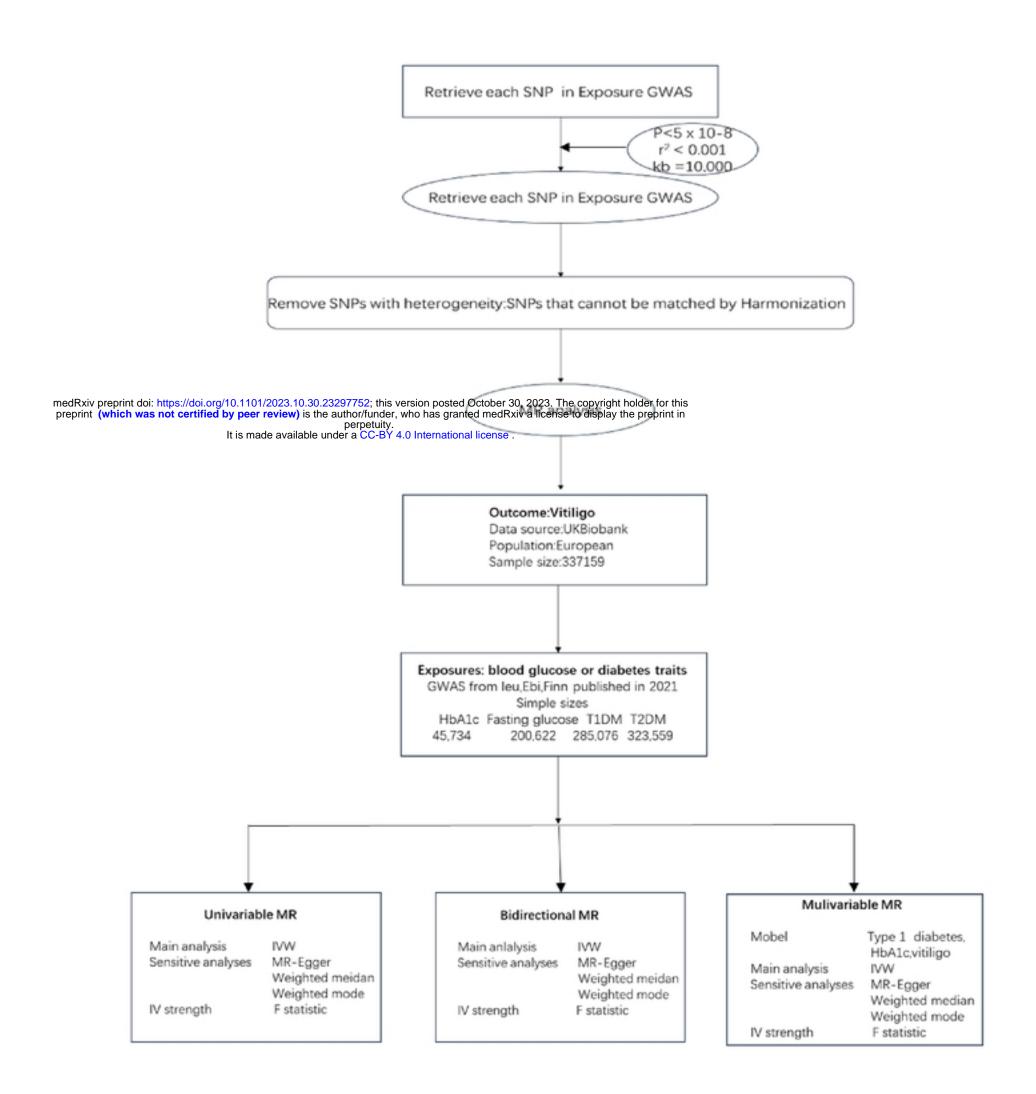
medRxiv preprint doi: https://doi.org/10.1101/2023.10.30.23297752; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .

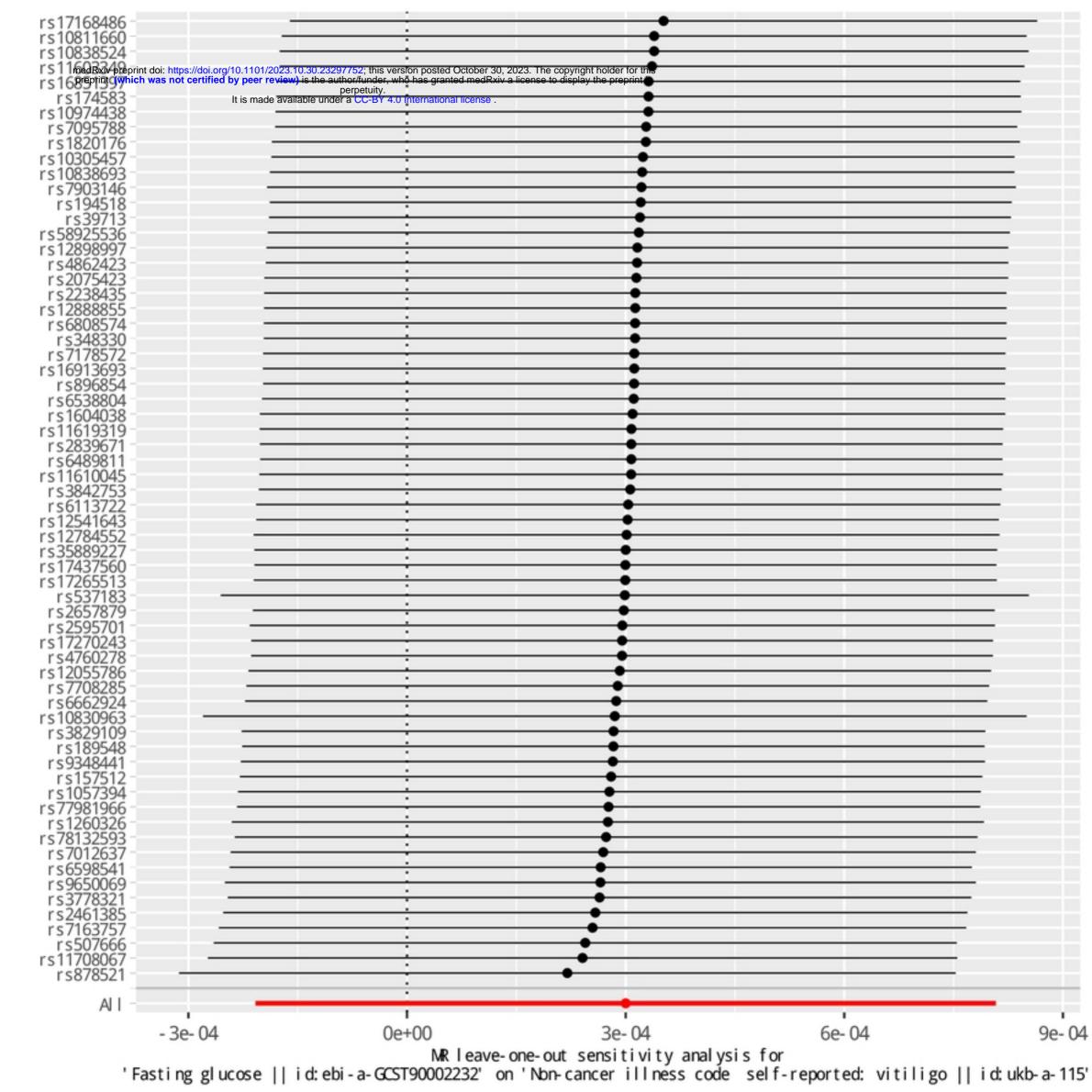
380	link between mood disorders and type 2 diabetes: A review of longitudinal studies
381	and Mendelian randomisation analyses. Neurosci Biobehav Rev. 2023;152:105298
382	23. Lai YC, Yew YW, Kennedy C, Schwartz RA. Vitiligo and depression: a
383	systematic review and meta-analysis of observational studies. Br J Dermatol.
384	2017;177(3):708-18.
385	24. Yue Y, Tang Y, Tang J, Shi J, Zhu T, Huang J, et al. Maternal infection during

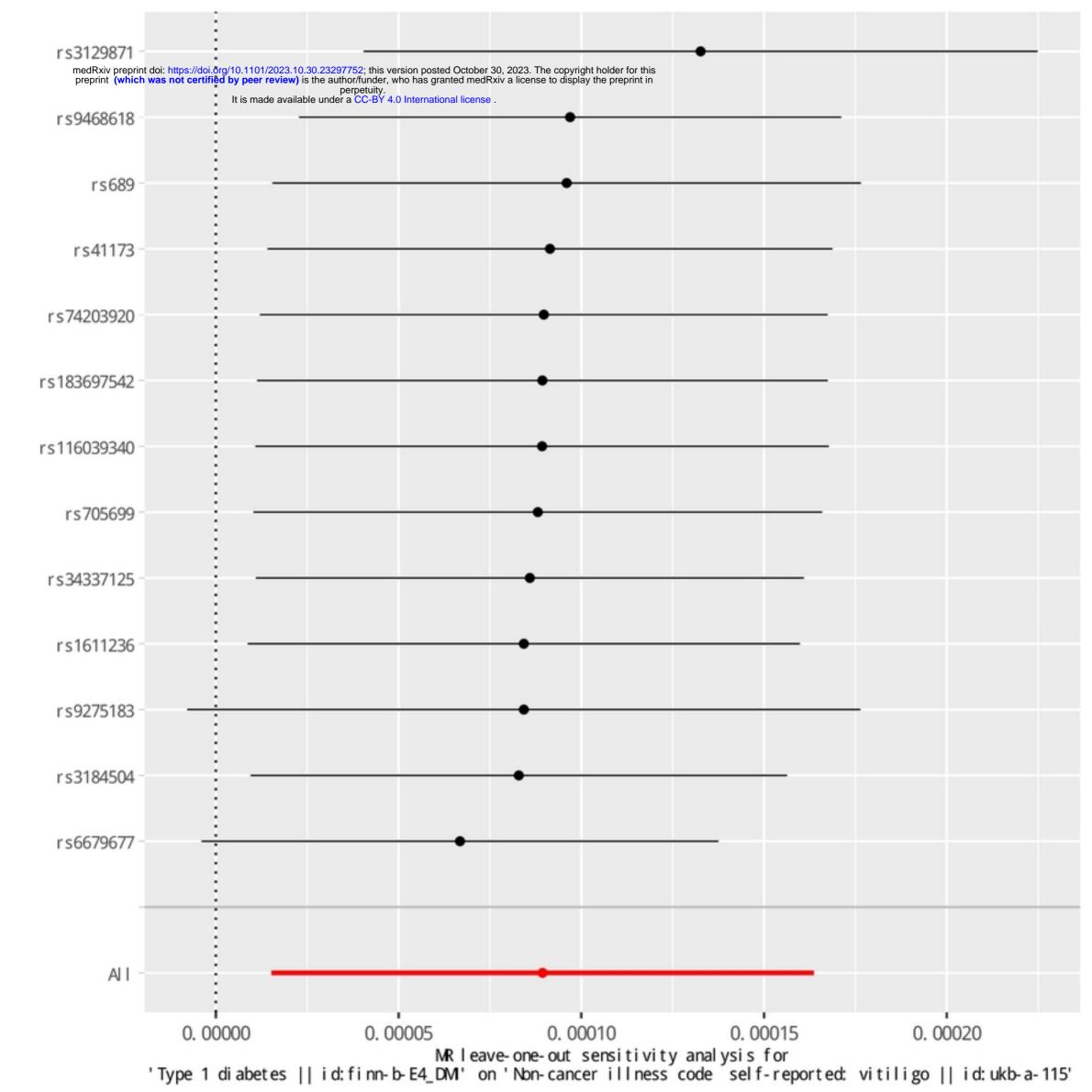
- 386 pregnancy and type 1 diabetes mellitus in offspring: a systematic review and meta-
- 387 analysis. Epidemiol Infect. 2018;146(16):2131-8.
- 388 25. Felton JL, Conway H, Bonami RH. B Quiet: Autoantigen-Specific Strategies
- 389 to Silence Raucous B Lymphocytes and Halt Cross-Talk with T Cells in Type 1
- **390** Diabetes. Biomedicines. 2021;9(1).
- 391 26. Krischer JP, Lynch KF, Schatz DA, Ilonen J, Lernmark Å, Hagopian WA, et
- al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk
- 393 children: the TEDDY study. Diabetologia. 2015;58(5):980-7.
- 394 27. Oling V, Reijonen H, Simell O, Knip M, Ilonen J. Autoantigen-specific
- 395 memory CD4+ T cells are prevalent early in progression to Type 1 diabetes. Cell
- 396 Immunol. 2012;273(2):133-9.
- 397 28. Roep BO, Peakman M. Antigen targets of type 1 diabetes autoimmunity. Cold
- 398 Spring Harb Perspect Med. 2012;2(4):a007781.
- 399 29. Frisoli ML, Essien K, Harris JE. Vitiligo: Mechanisms of Pathogenesis and
- 400 Treatment. Annu Rev Immunol. 2020;38:621-48.
- 401 **30.** Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su MW, et al.

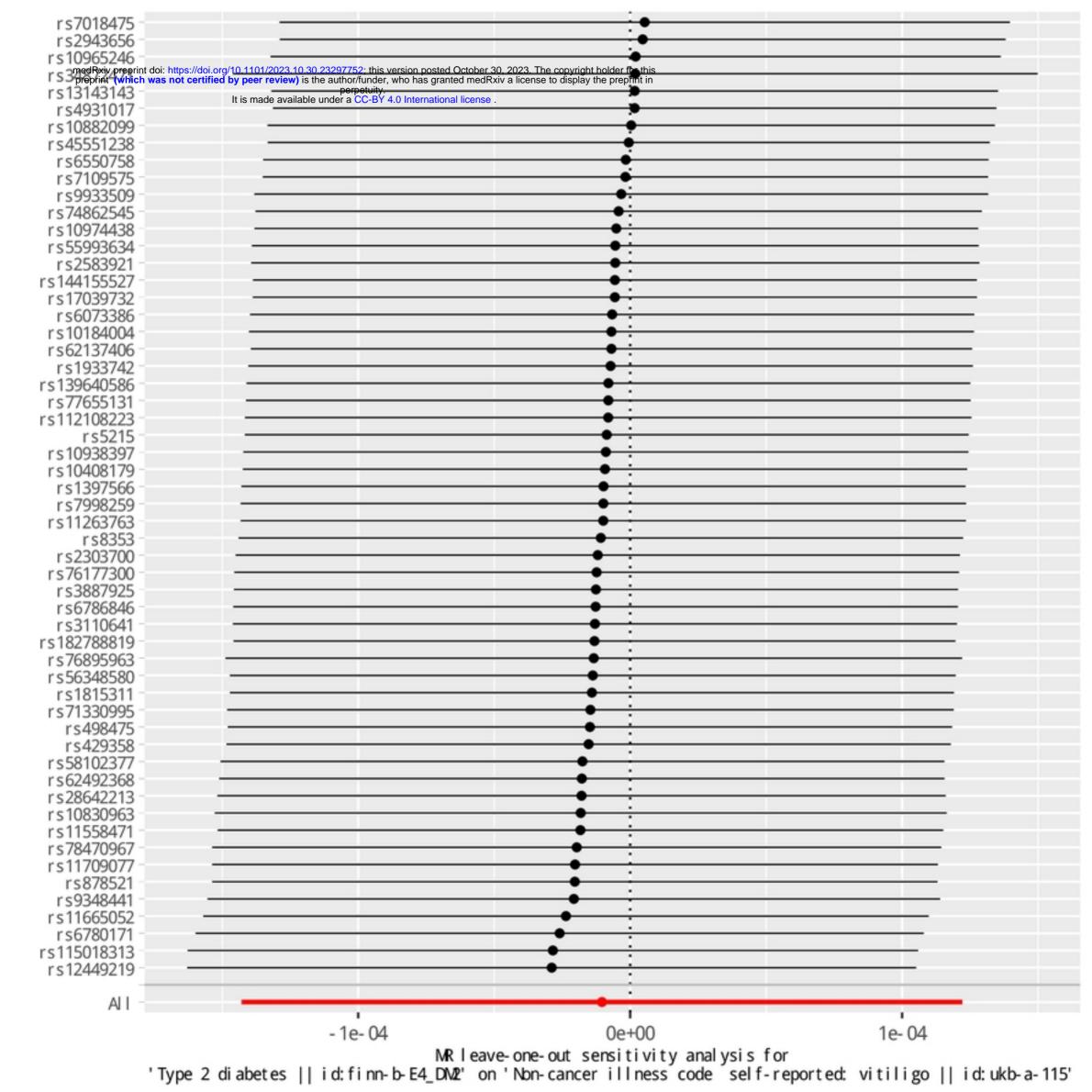
medRxiv preprint doi: https://doi.org/10.1101/2023.10.30.23297752; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

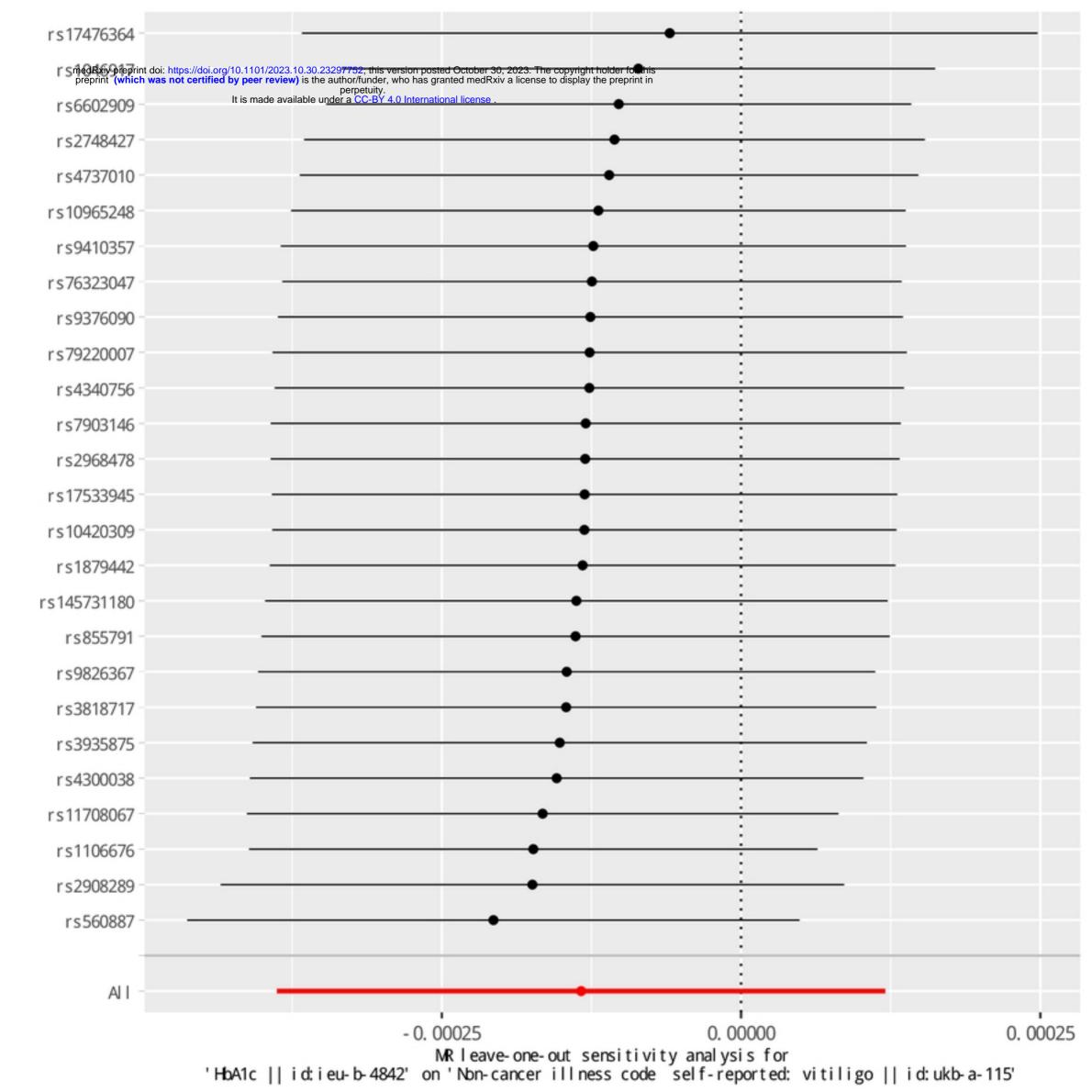
- 402 CXCL10 is critical for the progression and maintenance of depigmentation in a 403 mouse model of vitiligo. Sci Transl Med. 2014;6(223):223ra23.
- 404 31. Richmond JM, Masterjohn E, Chu R, Tedstone J, Youd ME, Harris JE.
- 405 CXCR3 Depleting Antibodies Prevent and Reverse Vitiligo in Mice. J Invest
- 406 **Dermatol. 2017;137(4):982-5.**
- 407 32. Edwards J, Wilmott JS, Madore J, Gide TN, Quek C, Tasker A, et al. CD103(+)
- 408 Tumor-Resident CD8(+) T Cells Are Associated with Improved Survival in
- 409 Immunotherapy-Naïve Melanoma Patients and Expand Significantly During
- 410 Anti-PD-1 Treatment. Clin Cancer Res. 2018;24(13):3036-45.
- 411 33. Gould IM, Gray RS, Urbaniak SJ, Elton RA, Duncan LJ. Vitiligo in diabetes
- 412 mellitus. Br J Dermatol. 1985;113(2):153-5.
- 413 34. Ibrahim S, El-Tahlawi S, Mogawer RM, El Ansary M, Esmat S, El-Hawary
- 414 M. Different vitiligo characteristics as predictors of increased risk of metabolic
- 415 syndrome and insulin resistance: A case-control study. J Cosmet Dermatol.
- 416 2022;21(12):7170-7.


417 Supporting information.


- 418 S1 Fig. Study design and workflow.
- 419 S2-S5 Fig. MR leave-one-out sensitivity analysis.
- 420 S6-S9 Fig. Reverse MR leave-one-out sensitivity analysis.
- 421 S1 Table.Data Source
- 422 S2 Table.Genetic variants that were used as instruments for diabetes traits and
 423 blood sugar traits
- 424 S3 Table.Unltivariate mendelian randomisation results of causal efects between
- 425 Type 1 diabetes and vitiligo ($p < 5 \times 10-8$)
- 426 S4 Table. Mendelian randomisation results of causal effects between blood
- 427 glucose characteristics ,diabetes mellitus and vitiligo.
- 428 S5 Table.Multivariate mendelian randomisation results of causal efects between
- 429 Type 1 diabetes, glycated haemoglobin and vitiligo ($p < 5 \times 10-8$)


medRxiv preprint doi: https://doi.org/10.1101/2023.10.30.23297752; this version posted October 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license .




- S6 Table.Reverse mendelian randomisation results of causal efects between 430
- vitiligo and Type 1 diabetes, Type 2 diabetes, glycated haemoglobin, fasting blood 431
- glucose ($p < 5 \times 10-8$) 432

