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ABSTRACT 

Background: Low back pain (LBP) is one of the most frequently occurring musculoskeletal disorders, 

and factors such as lifestyle as well as individual characteristics are associated with LBP. The purpose 

of this study was to develop and compare efficient low back pain prediction models using easily 

obtainable demographic and lifestyle factors. 

Methods: Data from adult men and women aged 50 years or older collected from the Korean National 

Health and Nutrition Examination Survey (KNHANES) were used. The dataset included 22 predictor 

variables, including demographic, physical activity, occupational, and lifestyle factors. Four machine 

learning algorithms, including XGBoost, LGBM, CatBoost, and RandomForest, were used to develop 

predictive models.  

Results: All models achieved an accuracy greater than 0.8, with the LGBM model outperforming the 

others with an accuracy of 0.830. The CatBoost model had the highest sensitivity (0.804), while the 

LGBM model showed the highest specificity (0.884) and F1-Score (0.821). Feature importance 

analysis revealed that EQ-5D was the most critical variable across all models.  

Conclusion: In this study, an efficient LBP prediction model was developed using easily accessible 

variables. Using this model, it may be helpful to identify the risk of LBP in advance or establish 

prevention strategies in subjects who have difficulty accessing medical facilities. 
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INTRODUCTION 

Low back pain (LBP) is one of the most common musculoskeletal disorders experienced by adult 

men and women in most countries (1). It is estimated that up to 80% of the population will experience 

LBP at least once in their lifetime (2). LBP is prevalent and a leading cause of years lived with 

disability (YLD) (1). The Global Burden of Disease (GBD), Injuries and Risk Factors study estimated 

the age-standardized rate of YLD due to LBP to be 832 per 100,000 people, and the number of people 

suffering from LBP worldwide is expected to increase from 619 million in 2020 to 843 million in 

2050 (1). The reported socioeconomic cost of LBP in the United States, estimates ranged from 

US$18.5 billion to US$28.2 billion (3). 

LBP has been shown to be complexly related to uncontrollable factors such as age and gender and 

controllable factors such as obesity, physical activity, and lifestyle patterns (1,4). In the GBD study, 

the incidence rate of LBP in women was 19% higher than that in men, and LBP increased with age, 

reaching a peak between the ages of 80 and 89 (1,5). In particular, it has been reported that in the case 

of elderly people, the severity of pain becomes more severe as age increases, and the likelihood of 

developing chronic LBP is high (6). These changes are reported to occur due to physical changes due 

to aging (spinal degeneration, spinal disease, physical inactivity) (6). Controllable factors contributing 

to 38.8% of YLD due to LBP included occupational factors, smoking, and BMI (1). Occupation-

related physical activities such as vibration, lifting, bending, and twisting have been reported as 

potential risk factors for LBP (7). Current smokers reported a higher incidence of LBP in the past 

month and were particularly associated with chronic LBP and severe LBP (8). People who smoked but 

quit smoking had a higher prevalence of LBP than those who had never smoked, but it was lower than 

those who were currently smoking (8). Overweight and obesity have been reported to increase the 

incidence and severity of LBP in the past 12 months (9). 

Machine learning is a technology in which a computer analyzes data consisting of various variables 

and learns patterns of relationships between them to build a predictive model based on a large amount 

of data (10). Recently, research has been actively conducted to develop machine learning models 
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based on variables related to LBP, such as an individual's physical, lifestyle, and environmental 

factors (11,12). In these studies, machine learning models for LBP were developed to predict the 

presence or absence of LBP, analyze risk factors, and predict the patient's pain level or prognosis (11–

14). In addition, a machine learning model that predicts LBP by analyzing changes in brain structure 

with computer vision technology that processes images or a model that predicts the classification of 

LBP high-risk and low-risk groups by analyzing changes in specific movement patterns with sensors 

capable of measuring three-dimensional motions was developed, and a model that predicts LBP by 

interpreting medical reports on diagnostic images with natural language processing technology was 

even developed (15–18). 

Variable selection and prediction performance are important factors that determine the efficiency 

and usefulness of a machine learning model (10). Correct variable selection and optimization helps 

improve model accuracy and reduce unnecessary complexity, which is very important for prediction 

and decision-making using machine learning (10). From this perspective, the ease of acquiring 

variables will also be an important factor in building efficient and practical machine learning models 

(10,19). In other words, it is important to build an efficient model to increase prediction performance 

while being easy to acquire variables and incurring low cost (10,19). However, high-performance 

machine learning models for LBP have used not easy-to-acquire variables that require medical 

diagnostic equipment and expert measurement, whereas LBP models made with simple measurement 

variables have a problem of poor predictive performance (11,15,16,18). Studies that built LBP 

prediction models by analyzing data collected in the form of magnetic resonance imaging (MRI), 

computed tomography (CT), and 3D images using computer vision technology all showed high 

accuracy of 0.8 or higher (15). However, in a study by Lamichhane et al. (2021), the accuracy was 

shown to be 0.745, when a predictive model was made of morphological changes in cerebral cortical 

thickness (CT) and resting-state functional connectivity (rsFC) as a potential brain biomarker for LBP 

(18). Also, Shim et al. (2021) studied a risk factor prediction model for chronic LBP using patient 

demographic variables, comorbidities variables, psychological variables, lifestyle variables, health 

indicator variables, but a total of 26 predictor variables were used in building the final model of the 
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study and the accuracy was relatively low at 0.717 (11). 

Therefore, the purpose of this study was as follows. First, the goal was to develop an efficient LBP 

prediction model that could achieve high performance based on variables that are easy to obtain. In 

developing a high-performance model, demographic and lifestyle factors were used as variables that 

were easy to measure, and various algorithms were used to develop models and compare their 

performance. The second was to analyze which variables might be related as risk factors for 

predicting LBP. The importance of variables in the optimized models was analyzed to determine 

which variables were most important in predicting LBP. 
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METHODS 

Data Collection 

The flowchart of this study for the development of LBP prediction machine learning model is 

shown in Figure 1. In this study, datasets from the 5th and 6th Korean National Health and Nutrition 

Survey (KNHANES) conducted by the Korea Centers for Disease Control and Prevention from 2010 

to 2015 were used. The subjects of this study were all over 50 years of age, and 4,228 people who had 

LBP for more than 30 days within the last 3 months were assigned to the LBP group, and 13,987 were 

assigned to the painless control group. In the dataset, a total of 22 predictor variables were selected, 

including demographic variables such as age, gender, height, and weight, physical activity variables 

such as vigorous physical activity, strength training, and walking days, occupational variables such as 

occupation type and average working hours, and lifestyle variables such as smoking, housing type, 

and health-related quality of life (Table 1). 

 

 

Figure 1. Flowchart of the study 

 

Dataset (LBP: 4,228, Control: 13,987)

Data pre-processing (outliers, over and undersampling, scaling)

Feature selection (RFECV)

Modeling (XGBoost, LightGBM, CatBoost, RandomForest)

Hyperparameter optimization modeling

Model evaluation

Permutation Importance

Hyper-parameter tuning (Optuna)
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Table 1. Description of variables 

Variables Description LBP (4,228) Control (13,987) 
age Age 66.25�9.60 61.56�9.68 

sex Gender Male:1080 
Female:3148 

Male:6730 
Female:7257 

HE_ht Height 155.97�8.57 160.60�8.63 

HE_wt Weight 59.13�10.12 62.05�10.26 

HE_wc Waist circumference 83.79�9.48 83.14�9.02 

HE_BMI BMI 24.26�3.39 23.99�3.06 

HE_obe Obesity Underweight:127 
Normal:2528 
Obesity:1573 

Underweight:359 
Normal:8763 
Obesity:4865 

BO1_1 Weight change over 1 year No change: 2889 
Derease:752 
Increase:587 

No change: 10369 
Decrease:1982 
Increase:1636 

BO1 Subjective body shape recognition very skinny:374 
Slightly skinny:523 

Normal:1665 
slightly obese:1270 

very obese:396 

very skinny:742 
Slightly skinny:1743 

Normal:6135 
slightly obese:4524 

very obese:843 
LQ4_00 Functional limitation Yes:1309 

No:2919 
Yes:1301 
No:12686 

EQ5D Health-related quality of life 0.80�0.20 0.94�0.11 

BE3_11 Vigorous physical activity days per 
week 

1.03�1.22 1.14�1.34 

BE3_21 Moderate physical activity days per 
week 

1.17�1.46 1.24�1.51 

BE3_31 Walking days per week 4.38�2.80 4.82�2.65 

BE5_1 Strength training days per week 1.47�1.27 1.86�1.61 

BE5_2 Stretching exercise days per week 2.57�2.01 2.89�2.04 

occp Occupation type Manager:116 
office worker:68 

sale:354 
Agriculture:570 
assembly:184 

simple labor:481 
inoccupation:2455 

Manager:1037 
office worker:621 

sale:1615 
Agriculture:1433 
assembly:1420 

simple labor:1627 
inoccupation:6234 

EC_wht_
23 

Average working hours per week 18.53�24.72 25.93�25.97 

BD1_11 Frequency of drinking per week 2.02�1.89 2.65�1.96 

BP8 Average sleep time per day 6.41�1.68 6.67�1.44 

BS3_2 Average amount of smoking per 
day 

1.70�5.44 2.64�6.83 

live_t Housing type House:2411 
Apartment:1305 
Row house:190 

Multiflex house:207 
Etc:115 

House:6109 
Apartment:5999 
Row house:866 

Multiflex house:702 
Etc:311 
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Data Pre-processing 

To process the imbalance data between groups, this study applied RandomUnderSampler, which 

randomly reduces the size of the dataset, and synthetic minority oversampling technique (SMOTE), 

which randomly increases the size of the dataset, and matched the ratio between groups to 1:1. 

Outliers were detected and processed by the IQR (Interquartile Range) method. A value less than Q1 - 

1.5 * IQR was converted to that value, and a value greater than Q3 + 1.5 * IQR was also converted to 

that value. Numerical variables were scaled with StandardScaler to make the mean zero and the 

standard deviation one. Categorical variables were converted to LabelEncoder function. After the pre-

processing process, the data were divided into training and test sets at a 9:1 ratio for model training 

and performance evaluation. 

 

Feature selection 

Recursive Feature Elimination with Cross-Validation (RFECV) was used as a feature selection 

technique (20). RFECV is used to remove unnecessary variables that degrade the performance of the 

model. RFECV finds the optimal feature set for each model through an iterative process (20). 

 

Model Training and Hyper-parameter Tuning 

In this study, each model was developed using three boosting algorithms and one bagging algorithm. 

The algorithms used were XGBoost, which provides fast learning speed and high accuracy; LGBM, 

which provides the fastest processing speed for large datasets; CatBoost, which shows high 

performance in categorical data processing; and RandomForest, which combines the results of 

multiple decision trees. Models were constructed with variables selected by each algorithm and 

RFECV technique (Table 2). The models for each algorithm were tuned using the Optuna library, a 

tool for hyperparameter optimization. Through this, each model automatically searches for optimal 
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hyperparameters and adjusts them to maximize model performance. After adjusting the 

hyperparameters using Optuna, the final models were trained with Stratified K-fold cross-validation 

(CV) using training set data to set the CV to 5. 

 

Table 2. RFECV Variable Selection and Scores 

Model Selected variables Score 
XGB 'sex', 'live_t', 'LQ4_00', 'EQ5D', 'BO1_1', 'BE3_21' 0.827 

LGBM ALL 0.828 

CatBoost ALL 0.828 

Random Forest ALL 0.830 

 

Model evaluation 

The evaluation of model performance used test set data that was not used in the model training 

process to prevent overfitting and objectively evaluate performance. The evaluation of the model was 

performed based on the Confusion Matrix of the test set for each model. These evaluations include 

Accuracy, Sensitivity, Specificity, and F1-Score. The performance of each model was 

comprehensively evaluated and compared through the indicators. The feature importance for each 

trained model was evaluated by permutation importance, which relatively reflected the effect of each 

variable on the performance of the model. 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.29.23297737doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.29.23297737
http://creativecommons.org/licenses/by-nd/4.0/


RESULTS 

Feature selection 

The variables selected in the model for each algorithm and the accuracy when training the model 

with those variables are presented in Table 2. Compared to other algorithms, the model of the 

XGBoost algorithm showed the highest training accuracy when constructing a model with the fewest 

six variables. All other algorithm models showed the highest training accuracy when constructing a 

model using all 22 variables.  

 

Model performance 

The hyperparameters and training scores of each algorithm optimized using the Optuna library are 

shown in Table 3. The confusion matrix of each model using the test set is shown in Figure 2, and the 

evaluation performances are shown in Table 4. The overall accuracy of the LGBM model of 0.830 

was the highest. In addition, the LGBM model had the highest specificity and F-1 score of 0.884 and 

0.821, respectively. However, the CatBoost model with a sensitivity of 0.804 was the highest. The 

RandomForest model showed the lowest accuracy and specificity of 0.818 and 0.834 respectively, 

while the XGBoost model showed the lowest sensitivity and F-1 score of 0.775 and 0.812, 

respectively. 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.29.23297737doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.29.23297737
http://creativecommons.org/licenses/by-nd/4.0/


Table 3. Optuna Model Hyperparameters and Scores 

Model Hyper-parameter Score 
XGB 'n_estimators': 146 

'max_depth': 5 
'learning_rate': 0.279 

'subsample': 0.441 
'colsample_bytree': 0.684 

0.834 
 

LGBM 'num_leaves': 42 
'max_depth': 49 

'learning_rate': 0.038 
'min_child_samples': 20 

'subsample': 0.888 
'colsample_bytree': 0.383 

0.837 

CatBoost 'iterations': 153 
'depth': 12 

'learning_rate': 0.145 
'l2_leaf_reg': 0.256 

0.843 

RandomForest 'n_estimators': 47, 
'max_depth': 43 

'max_features': 'log2' 
‘min_samples_split’:2 
‘min_samples_leaf’:1 

0.842 
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(a) (b) 

  
(c) (d) 

Figure 2. Confusion matrix: XGBoost (a), LGBM (b), CatBoost (c), RandomForest (d) 

 

Table 4. Test data performance of optimized models 

Model Accuracy Sensitivity Specificity F-1 Score 
XGB 0.821 0.775 0.866 0.812 

LGBM 0.830 0.777 0.884 0.821 

Random Forest 0.818 0.801 0.834 0.815 

CatBoost 0.824 0.804 0.845 0.821 

 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.29.23297737doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.29.23297737
http://creativecommons.org/licenses/by-nd/4.0/


Feature importance 

The importance of each variable in each model is presented in Figure 3. In all models, the most 

important variable in the composition of the models was EQ-5D. In the RandomForest and LGBM 

model, demographic data such as age, height, weight, BMI, and waist circumference were highly 

ranked as important variables in constructing the model. In contrast, the Catboost model showed 

relatively high variable importance for lifestyle pattern variables such as sleep time, housing type, 

frequency of drinking, walking days per week, and stretching days per week. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3. Feature importance: XGBoost (a), LGBM (b), CatBoost (c), RandomForest (d) 
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DISCUSSION 

The purpose of this study was to develop an efficient LBP prediction model with high performance 

based on easily acquired demographic, physical-related, and lifestyle pattern data. In addition, it was 

to identify variables related to LBP through the feature importance in the predictive models. LBP 

prediction models were developed by applying various boosting and bagging algorithms and 

technologies for optimizing performance. In constructing each optimized model, a minimum of 6 to a 

maximum of 22 variables were used as variables. The accuracy of the models developed in this study 

all exceeded 0.8. In terms of overall performance, accuracy, the LGBM model was the best, and in 

terms of sensitivity, the CatBoost model was the best. The most important variable in constructing all 

models was EQ-5D. 

Prior to this study, Shim et al. (2021) developed and compared a machine learning model to predict 

LBP, which used 26 variables, including comorbid diseases, psychological factors, and health 

indicator variables, as well as demographic and lifestyle variables, and the performance of machine 

learning models ranged from 0.656 to 0.716 (11). In this study, unlike their model, a model was 

developed in which the number of variables was reduced to 6 or 22, excluding variables that were 

difficult to obtain, which should be measured by medical diagnostic equipment or measured by 

experts, and the performance of the model was 0.818 to 0.830. The model of this study could have 

been improved over the model of the previous study based on the following reasons. First, the 

difference in performance would have occurred due to the difference in the amount of data. In the 

previous study, the model was developed with data of 6,119 people over two years, and in this study, 

the model was developed with data of 18,215 people over six years. Larger datasets are more likely to 

reflect the representativeness of the subjects (21). The more data is used to develop the model, the 

more likely it is not overfitting, but the lack of data can lead to overfitting and inaccurate 

generalization (21). In addition, complex patterns and interrelationships may appear more clearly on 

larger datasets (21). The second is probably due to the difference in the number and selection of 

variables. As variables increase, so does the complexity of the model. Using complex models for 
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higher-dimensional data can make the model unstable and reduce the ability to generalize (22). 

Increasing dimensions as the number of variables increases creates a curse of dimensions where space 

becomes larger and rarer, and more data is needed to develop the model (22). In addition, high 

correlations between variables can lead to multicollinearity, which makes the model's stability and 

interpretation difficult (22). When it comes to the characteristics of variable, the model's performance 

can be degraded if important variables are not selected, or unnecessary variables are used in the model 

(22). In this study, a smaller number of variables were used to develop the model, and RFECV 

techniques were applied to control the number of variables to prevent the exclusion of important 

variables or the inclusion of unnecessary variables in the model. Third, it is probably due to an 

imbalance between the number of LBP data and the number of non-LBP data. If the number of 

samples in one data is significantly smaller than that of the others, the model will be skewed to data 

with more samples, resulting in insufficient learning of patterns in minority data and limited 

predictive performance (23). The model in this study, developed with medical data where the data 

imbalance problem occurs primarily, solved the data imbalance with techniques such as SMOTE and 

RandomUnderSampler to avoid the above and problems. For these reasons, the model in this study 

would have performed better compared to the previous study. 

Nevertheless, in addition to this study, models with higher performance in lumbar-related diseases 

or LBP predictions have been developed. When using variables acquired by imaging equipment such 

as MRI or 3D scanning devices that require expert measurement rather than the type of variables used 

in the predictive model developed in this study, it was possible to create a model for predicting lumbar 

spine-related diseases that showed excellent performance or to further improve the performance of the 

model for predicting LBP (24–26). Adankon et al. (2012) developed a model to classify the type of 

scoliosis with a support vector machine algorithm based on data acquired by a non-invasive 3D scan 

method, and the classification accuracy of the model was 0.95 (24). Based on MRI data of the lumbar 

spine, Ruiz et al. (2015) developed a model that extracts disk shape features and detects contour 

abnormalities with the Gradient Vector Flow algorithm, and the model showed accuracy of 0.90 or 

more (25). Ketola et al. (2021) developed a model to predict LBP by applying texture analysis to the 
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two lowest lumbar discs (L4-L5 and L5-S1) on T2-weighted MRI (26). The accuracy of the developed 

model was 0.83, the specificity was 0.83, and the sensitivity was 0.82 (26). Compared with the model 

of this study, the accuracy was similar, and the specificity was slightly lower, but the sensitivity was 

slightly higher. As a result of the above studies, models developed with variables measured by 

medical diagnostic equipment or experts showed stable high performance. It is meaningful that these 

models elicit high performance based on a small number of variables. Nevertheless, it may be 

considered a disadvantage that these variables require measurement by medical diagnostic equipment 

or experts. The models constructed in this study do not require medical diagnostic equipment or 

expert skills in measuring those variables, even though many kinds of variables are required. This 

point will be highly utilized in predicting or managing LBP in the elderly population or people living 

in areas with poor access to health care. 

A Model has also been developed to identify variables representing differences in texture features 

in MRI images between subjects with or without LBP, rather than LBP prediction models (27). This 

model was built not to predict LBP, but to identify variables that simply represent high feature 

importance (27). From this point of view, the risk factors related to LBP could be identified through 

the feature importance of the predictive model constructed in this study. The most important variable 

in the development of the model for this study was EQ-5D. EQ-5D is a tool that comprehensively 

represents physical activity, lifestyle patterns, and psychological factors to evaluate health-related 

quality of life with a total of 5 items including mobility, self-care, user activity, pain/discomfort, and 

anxiety/depression. (28). This highlights the relationship between the multidimensional nature of LBP 

and the general health and quality of life of individuals. In RandomForest and LGBM models, 

demographic variables such as age, height, weight, BMI, and waist circumference have been shown as 

very important predictors. These findings are consistent with previous studies suggesting that age and 

body composition may be a risk factor for LBP in relation to changes in spinal health and 

musculoskeletal disorders (1). On the other hand, the CatBoost model placed relative importance on 

lifestyle variables including sleep time, housing type, frequency of drinking, walking days per week 

and stretching days per week. This suggests that aspects such as sleep quality, physical activity, and 
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living environment may affect an individual's sensitivity to LBP. For example, improper sleep, 

sedentary behavior, or poor living conditions can contribute to musculoskeletal problems. Differences 

in varying importance between models imply that LBP predictions benefit from an integrated 

approach. Demographic factors provide insight into the physical aspects of LBP risk, while lifestyle 

patterns provide a broader perspective, covering behavioral and environmental impacts. Therefore, a 

comprehensive LBP prediction model should consider both health-related quality of life and various 

personal characteristics. These findings have practical implications for healthcare practitioners. They 

suggest that strategies for preventing and managing LBP should be tailored to individuals based on 

their unique profiles. Personalized approaches that consider health-related quality of life, demographic 

factors, and lifestyle choices may be more effective at reducing the burden of LBP.  

The study has several limitations. First, this study is based on data from the National Health and 

Nutrition Survey of Korea (KNHANES), and the study subjects were limited to adults over 50 years 

of age. Therefore, it may be difficult to apply generalizations of results and models to populations of 

different age groups or countries. Second, because this study built a model using easily obtainable 

variables, other important variables used in diagnosing LBP or variables obtained through medical 

diagnostic tools were not included in the model, which may result in lower accuracy compared to 

other models. Third, methods such as SMOTE and RandomUnderSampler have been used to address 

data imbalance between the LBP and control groups, but these methods do not always yield ideal 

predictive results when evaluated with real-world different data. Fourth, this study considered various 

variables to predict LBP, but other variables such as posture and movement, which are the direct cause 

of LBP, or variables that interact with them should also be considered. Fifth, the algorithms used in 

this study are efficient at improving predictive performance, but their complexity makes it difficult to 

interpret the causal relationship of variables. Future studies will require the use of representative data 

from various age groups and countries. In addition to the variables used in this study, models with 

different types of data and variables can be considered for combining medical diagnostic data 

variables or for a deep understanding of the causes of LBP. This could improve the predictive 

accuracy of the model and help to better understand the causes of future LBP. In addition to the 
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sampling techniques currently used, models could be developed as more effective sampling 

techniques to address medical data imbalances. Finally, future research should be developed as an 

algorithm that can reduce the complexity of the model and better interpret causal relationships 

between variables. This will be more intuitive and descriptive for healthcare practitioners and patients 

to understand and trust model results.  

 

CONCLUSION 

In this study, an efficient LBP prediction model with an accuracy of over 0.8 was developed 

through various boosting and bagging algorithms utilizing easily measurable demographic, physical, 

and lifestyle variables. The performance of these models showed that the EQ-5D variable, which 

encompasses physical activity, lifestyle, and psychological factors, was the most important variable in 

all models, reflecting the multifaceted nature of LBP. This study provides an efficient machine 

learning model development approach as an adjunctive tool for LBP prediction and management and 

may provide valuable insights to healthcare practitioners aiming to develop personalized strategies to 

alleviate the burden of LBP. 
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