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Abstract 

Alzheimer’s disease (AD) is currently defined at the research level by the aggregation of 

amyloid-b (Ab) and tau proteins in brain.  While biofluid biomarkers are available to measure Ab 

and tau pathology, few biomarkers are available to measure the complex pathophysiology that 

is associated with these two cardinal neuropathologies.  Here we describe the proteomic 

landscape of cerebrospinal fluid (CSF) changes associated with Ab and tau pathology in 300 

individuals as assessed by two different proteomic technologies—tandem mass tag (TMT) mass 

spectrometry and SomaScan.  Harmonization and integration of both data types allowed for 

generation of a robust protein co-expression network consisting of 34 modules derived from 

5242 protein measurements, including disease-relevant modules associated with autophagy, 

ubiquitination, endocytosis, and glycolysis.  Three modules strongly associated with the 

apolipoprotein E e4 (APOE e4) AD risk genotype mapped to oxidant detoxification, mitogen 

associated protein kinase (MAPK) signaling, neddylation, and mitochondrial biology, and 

overlapped with a previously described lipoprotein module in serum.  Neddylation and oxidant 

detoxification/MAPK signaling modules had a negative association with APOE e4 whereas the 

mitochondrion module had a positive association with APOE e4.  The directions of association 

were consistent between CSF and blood in two independent longitudinal cohorts, and altered 

levels of all three modules in blood were associated with dementia over 20 years prior to 

diagnosis.  Dual-proteomic platform analysis of CSF samples from an AD phase 2 clinical trial of 

atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module—the 

network module most strongly correlated to cognitive function—were reduced by ATX treatment.  

Individuals who had more severe glycolytic changes at baseline responded better to ATX.  

Clustering of individuals based on their CSF proteomic network profiles revealed ten groups that 

did not cleanly stratify by Ab and tau status, underscoring the heterogeneity of pathological 

changes not fully reflected by Ab and tau.  AD biofluid proteomics holds promise for the 
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development of biomarkers that reflect diverse pathologies for use in clinical trials and precision 

medicine.  
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Introduction 

Alzheimer’s disease (AD) is a growing public health problem with few effective treatments.  AD 

therapeutic development has traditionally focused on two proteins that define the disease at the 

neuropathological level—amyloid-b (Ab) and microtubule associated protein tau (MAPT, or 

tau)(1).  However, it has become increasingly appreciated that AD represents a complex 

neurological disorder with many other pathological changes not readily observable by classical 

neuropathological examination, including alterations in proteostasis, synaptic and neuronal 

signaling, endocytic trafficking, mitochondrial function, and energy metabolism, among others(2-

4).  Examining how these pathological changes evolve over the course of the disease and are 

related to one another and to Ab and tau pathology remains a challenge in the absence of tools 

to interrogate these brain processes in individuals during life. 

 

Cerebrospinal fluid (CSF) is the most proximate biofluid to brain in which to assess normal and 

abnormal brain physiology.  Proteomic analysis of AD CSF to assess disease-associated 

changes has most commonly been performed using unbiased mass spectrometry-based 

approaches and has led to a common set of robust changes observed across multiple studies(3, 

5-9).  More recently, antibody-based proximity extension assay (Olink) and modified nucleic acid 

aptamer (SomaScan) targeted assay platforms have been used to characterize AD CSF 

proteomic changes(10-15).  However, relatively few studies have examined how proteomic 

measurements compare across these platforms in AD.  A recent study by our group analyzed 

AD CSF by tandem mass tag mass spectrometry (TMT-MS), Olink, and SomaScan platforms in 

36 individuals and found proteomic changes common and unique to each platform(10).  

Integration of these different proteomic data types allowed for deep profiling of CSF samples 

beyond that afforded by any one platform, and for technical assessment of protein 

measurements common to more than one platform.  Such deep profiling is important for 
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capturing biological changes related to AD, some of which may be observable by proteomic 

analysis of cadaveric AD brain tissue, and many of which are not observable by traditional 

neuropathological examination.  The ability to assess the response of different pathological 

alterations in AD beyond Ab and tau levels to pharmacologic and non-pharmacologic 

therapeutic interventions at various stages of disease is critical to broadening and advancing the 

treatment landscape for AD.  Also important is the ability to measure which pathological 

alterations are present in any given patient in the preclinical or symptomatic phases of the 

disease, regardless of Ab and tau pathological burden, for effective personalized therapeutic 

approaches to disease modification. 

 

In an effort to advance our AD biomarker toolkit to assess the heterogenous pathology of AD, 

here we measure greater than 4,500 unique protein gene products after application of quality 

control criteria in control and AD CSF using TMT-MS and SomaScan in 300 individuals, and 

analyze the resulting harmonized data with protein co-expression to generate a highly robust 

CSF network that reveals significant changes in autophagy, ubiquitination, synaptic vesicle, 

glycolysis, redox, and endocytosis pathways, among others, in AD.  We identify three co-

expression modules whose levels are strongly influenced by the apolipoprotein E e4 (APOE e4) 

genotype—the strongest genetic risk factor for late-onset AD—and assess the relationship of 

blood levels of these modules with AD risk.  Towards clinical application of our findings, we 

demonstrate that a recent AD phase II clinical trial of atomoxetine—a promising disease-

modifying medication which blocks reuptake of norepinephrine in brain and is currently 

approved by the FDA for treatment of attention deficit hyperactivity disorder—showed mitigation 

of pathologic brain glycolytic metabolic alterations as identified in our AD CSF proteomic 

network.  We observe that patients with more severe alterations in our proteomic glycolytic 

biomarker panel at baseline have a larger response in this panel with ATX treatment.  Finally, by 
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using key features of the CSF proteome network to cluster control and AD participants, we find 

that many participants who would meet criteria as controls based on CSF Ab and tau levels in 

fact appear more similar to those that meet criteria for AD based on CSF proteome features.  

Conversely, many participants who meet criteria for AD by Ab and tau levels appear more 

similar to controls at the proteome level, illustrating the value of comprehensive proteomic 

analysis of AD biofluids for the realization of precision medicine approaches in AD. 

 

Results 

Cross-Platform Comparison of TMT-MS and SomaScan Protein Measurements in CSF 

The general scheme of our study is shown in Figure 1.  We analyzed CSF from 140 control and 

160 AD participants by TMT-MS and SomaScan proteomic approaches (Supplementary 

Tables 1, 2).  TMT-MS is a direct measurement of protein abundance, whereas SomaScan is 

an indirect affinity-based measurement.  The two proteomic technologies therefore provide a 

complementary measure of the CSF proteome with certain advantages and disadvantages, as 

previously described(10).  AD was determined based on the NIA research definition using the 

CSF total tau to Ab ratio(16-18), with the threshold ratio for AD derived empirically from a 

Gaussian mixture model analysis of all participants from our center.  TMT-MS was performed in 

multiple batches with multiple fractions per batch to increase depth of proteome coverage, but 

without depletion of highly abundant proteins to avoid potential bias introduced by protein 

depletion(10).  SomaScan modified aptamer-based measurements included 7,596 assays, of 

which 7,288 targeted human proteins that were used in the analysis.  We applied stringent 

quality control (QC) and pre-processing measures to SomaScan and TMT-MS data prior to 

analysis.  Background signal variance was removed in the SomaScan data, and batch effects 

were removed from the TMT-MS data (Supplementary Figure 1A, B).  Because CSF is 

collected by lumbar puncture, the possibility exists for blood contamination introduced during 
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sampling.  While blood contamination was not observable in our samples by visual inspection, 

we observed a subtle signal of blood contamination by proteomic inspection in a minority of 

samples in both TMT-MS and SomaScan datasets (Supplementary Figure 1C).  Although the 

effects on the data were small, we nevertheless removed this variance from both TMT-MS and 

SomaScan datasets prior to analysis (Supplementary Figure 1D, E).  SomaScan is designed 

for analysis of blood, and we have previously shown that many aptamer signals are at or near 

noise-level when applied to analysis of CSF(10).  We removed SomaScan assays from 

consideration that did not meet our limit of detection (LOD) criteria (i.e., at least three standard 

deviations above background noise-level), and filtered additional low-signal assays based on an 

empirical signal-to-noise (S:N) correlation threshold with TMT-MS measurements (Supp Figure 

2A, B) as previously described(10).  This approach assumes that low signal measurements in 

SomaScan that do not correlate well with TMT-MS measurements of the same protein are 

unlikely to be robust protein measurements, and therefore removing these measurements up to 

a certain S:N threshold to maximize correlation with TMT-MS measurements enriches for true 

signals.  These QC steps resulted in a final count of 4,098 (56%) assays used in the analyses 

out of the original 7,288 human SomaScan assays available.  We validated our QC approach by 

comparing the overall fraction of assays discarded based on our QC criteria versus the number 

of assays on the same SomaScan platform that have been shown to have signals in CSF 

affected by genetic variation (i.e., that have a protein quantitative trait locus, or pQTL)(19) 

(Supplementary Figure 2C).  88% of SomaScan aptamers with CSF pQTLs were retained 

after the LOD and S:N filtering QC steps, demonstrating that our SomaScan aptamer QC 

approach retained biologically meaningful assays while discarding most low S:N assays.  We 

also directly tested the proportion of CSF pQTLs in our cohort that were in the retained versus 

discarded aptamer pools (Supplementary Figure 2D, Supplementary Table 3).  We identified 

only 1 protein with pQTLs out of 2,854 proteins tested in the discarded pool (0.04%), and 152 

proteins with pQTLs out of 3,863 proteins tested in the retained pool (3.9%), further validating 
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our QC approach. In a final QC step, we removed proteins with missing measurements in 

greater than 75% of the 300 CSF samples, ensuring remaining measurements were sufficiently 

present in both AD and control cases for statistical analyses (Supplementary Figure 2E, F).  

Therefore, the final number of unique proteins (or gene symbols) retained for analysis was 

3,649 for SomaScan and 2,195 for TMT-MS, with a total of 4,576 unique proteins measured 

between the two platforms (Figure 2A).  TMT-MS preferentially measured complement proteins 

and immunoglobulins, whereas SomaScan preferentially measured nuclear proteins 

(Supplementary Figure 3A).  Median correlation between measurements common to the two 

platforms was 0.59, with a broad distribution of correlation values (Figure 2B, Supplementary 

Table 4, Extended Data).  The median correlation was not significantly different when 

analyzing only proteins that were differentially abundant in AD (Supplementary Figure 3B).  

Some AD-relevant proteins such as chitotriosidase-1 (CHIT1), neurogranin (NRGN), and 

SPARC-related modular calcium-binding protein 1 (SMOC1) correlated well across platforms 

(Figure 2C), while others such as amyloid-b precursor protein (APP), apolipoprotein E (APOE), 

and chitinase-3-like protein 1 (CHI3L1, also known as YKL-40) correlated poorly (Figure 2D).  

The use of an orthogonal direct measurement platform such as TMT-MS allowed for the 

interpretation of SomaScan protein measurements in which multiple aptamers target the same 

protein, such as Parkinson disease protein 7 (PARK7) and a-1-antichymotrypsin (SERPINA3) 

(Figure 2E).  Differential abundance analysis on both proteomic datasets demonstrated a 

similar number of increased proteins in AD, with an overlap of approximately 21 percent 

between the platforms (Figure 2F, G; Supplementary Tables 5 and 6) due to differences in 

coverage and statistical significance.  More proteins were observed to be decreased in the 

SomaScan data (Figure 2G).  Strength and statistical significance of differential abundance did 

not always correlate perfectly with significance of correlation between the platforms, as 

illustrated by protein complement C3 where the aptamer with the best correlation to the TMT-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.29.23297651doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.29.23297651
http://creativecommons.org/licenses/by-nc-nd/4.0/


MS measurement was not the most significantly differentially abundant SOMAmer to this protein 

in the SomaScan data (Figure 2H).  Both platforms covered a similar percentage of proteins 

from a previously reported AD brain co-expression network (Supplementary Figure 4A)(2).  In 

summary, we were able to measure greater than 4,500 proteins in CSF by two orthogonal 

proteomic approaches across 300 AD and control individuals, and after thorough QC, compare 

the measurements within subject between platforms.  These analyses demonstrated the unique 

and common attributes of each platform for assessing disease-relevant protein changes in AD 

CSF, and the utility of using multiple platforms for robust assessment of potential AD 

biomarkers. 

 

Integration of Proteomic Measurements to Identify Pathological Alterations in AD CSF 

We leveraged proteomic measurements from TMT-MS and SomaScan to construct a protein 

co-expression network of AD CSF from a total of 5,242 protein assays between the two 

platforms (Figure 3A, Supplementary Tables 7 and 8, Extended Data).  Co-expression 

analysis aims to cluster proteins into groups (or “modules”) that are related to one another 

based on their common variation across individuals.  These protein modules can represent 

various biological processes, pathways, and cell types.  As we have previously demonstrated, 

co-expression allows for the integration of protein measurements across different platforms, as 

different measurements of the same protein will cluster within the same modules if the 

measurements are correlated(10).  Our AD co-expression network consisted of 34 modules, 

most of which contained measurements from both platforms (Supplementary Figure 4B).  

Most modules were significantly correlated to at least one endophenotype of AD such as CSF 

levels of total tau (tTau), tau phosphorylated at residue 181 (pTau181), and Ab1–42 as measured 

by enzyme-linked immunosorbent assay (ELISA).  The module most strongly correlated to CSF 

tTau levels was M4 Autophagy/Ubiquitination, which contained MAPT itself as measured by 
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TMT-MS (Figure 3B).  Other modules strongly correlated to tTau were M12 

Endocytosis/Ubiquitin binding and M17 Synaptic vesicle/SNAP-SNARE complex.  The module 

most strongly correlated to CSF Ab1–42 level was M20 Glycolysis/Redox homeostasis.  M20 was 

also the module most strongly correlated to cognitive function (as assessed by the Montreal 

Cognitive Assessment, or MoCA) in the network (r=–0.64, p=1.1e–35), and was defined primarily 

by TMT-MS measurements.  The M2 Complement/Coagulation module was the most highly 

preserved module to a previously described brain network, reflecting shared co-expression of 

complement biology between compartments.  Strikingly, the network revealed three modules 

that were highly correlated to the number of APOE e4 alleles present in the participants and 

each module was defined only by SomaScan measurements—M26 Neddylation, M33 Oxidant 

detoxification/Mitogen activated protein kinase (MAPK) signaling, and M34 Mitochondrion 

(Figure 4).  Neddylation is a protein post-translation modification in which the ubiquitin-like 

protein NEDD8 is added to protein substrates, and is overactivated in many human cancers(20-

22).  Levels of M26 Neddylation and M33 Oxidant detoxification/MAPK signaling were 

significantly decreased in AD CSF and negatively correlated with increasing number of APOE 

e4 alleles (Figure 4A-D).  Both were modestly correlated with cognitive function (M33 r=0.23, 

p=8.0e–5; M26 r=0.33, p=8.4e–9) and Ab1–42 level (M33 r=0.44, p=1.3e–15; M26 r=0.38, p=1.4e–

11).  M33 Oxidant detoxification/MAPK signaling was not strongly correlated with CSF tTau or 

pTau181 levels, but levels of M26 Neddylation were significantly negatively correlated with CSF 

tTau and pTau181 levels (tTau r=–0.45, p=2e–16; pTau181 r=–0.43, p=1.7e–14).  M34 

Mitochondrion was strongly increased in AD and with APOE e4, with modest correlations to 

cognitive function, tTau and pTau181, and Ab1–42 (Figure 4E, F).  None of these APOE-related 

modules were well defined in our previously described TMT-MS AD brain network as assessed 

by overrepresentation and module preservation analyses (Figure 3A)(2).  Notably, a MAPK 

signaling module previously described in brain was strongly related to AD pathology and 
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cognitive decline, yet was increased in AD in opposite direction to the M33 Oxidant 

detoxification/MAPK signaling module in CSF(2).  In similar discordant fashion, mitochondrial 

modules in brain are consistently decreased in AD(2, 3, 7), opposite of that observed with M34 

Mitochondrion in CSF.  Interestingly, while M26 Neddylation was not preserved at the level of 

co-expression in brain, the first principal component of protein expression of this module (or 

module eigenprotein) was decreased in both CSF and brain (Figure 3A), showing concordance 

in direction of change between compartments for this set of proteins. 

 

We validated the association of these three CSF modules with APOE e4 by performing a 

module quantitative trait locus (mQTL) analysis(2).  We observed a strong association of the 

APOE single nucleotide polymorphism (SNP) rs429358 that partially defines the APOE e4 

genotype with levels of M26, M33, and M34 (Table 1).  These associations remained significant 

after adjustment for potential population stratification using a genomic control (GC) correction 

approach(23).  In addition to the APOE e4 associations, we observed significant associations 

after GC correction with SNPs near Pre-B-cell leukemia transcription factor 3 (PBX3) for the 

M32 L1CAM/Axon development module, CYFIP-related Rac1 interactor A (CYRIA) for the M9 

Ambiguous module, and Ras guanyl-releasing protein 3 (RASGRP3) for the M20 

Glycolysis/Redox homeostasis module, suggesting that these modules were also affected by 

genetic variation (Table 1).  In summary, we were able to leverage both proteomic platforms to 

construct an AD CSF co-expression network that revealed multiple pathological changes 

beyond Ab and tau dyshomeostasis, including changes under control of the APOE e4 genotype. 

 

AD CSF Network Overlap with Blood Network Highlights Conservation of APOE-Related 

Modules Between Compartments 
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We assessed whether the three CSF modules influenced by the APOE e4 genotype (M26, M33, 

and M34) were also represented in blood.  To do so, we used a serum network generated from 

greater than 4,100 proteins measured by SomaScan in over 5,400 Icelandic individuals(24), and 

performed overrepresentation analysis across the networks (Figure 5, Supplementary Table 

9).  We found that most CSF modules had significant overlap with at least one serum module, 

but that only about half of serum modules had significant overlap with CSF modules.  CSF M26, 

M33, and M34 overlapped with serum M11, with CSF M33 having particularly strong overlap 

with serum M11.  Serum M11 has previously been shown to be a lipoprotein module that is 

genetically regulated by APOE, suggesting that the genetic regulation of this serum module 

overlapped with the genetic regulation of the APOE-regulated modules in CSF.  CSF modules 

related to synaptic and neuronal biology (M32 L1CAM/Axon Development, M17 Synaptic 

Vesicle/SNAP-SNARE Complex, M3 Neuron Development, M15 Neurexin/Synaptic Membrane, 

M24 Axolemma/Semaphorin Complex, and M11 Axonogenesis) also overlapped with serum 

modules related to similar biology (M27 Axon Development/Semaphorin Complex and M26 

Neuron Development/Ephrin Signaling), suggesting that neuronal biology as captured by CSF 

co-expression is also partly reflected in serum in an independent cohort. 

 

Levels of M33 Oxidant Detoxification/MAPK Signaling and M34 Mitochondrion Modules in Blood 

are Associated with Incident Dementia at Least 21 Years Prior to Diagnosis 

Given the overlap of M26, M33, and M34 with blood, we next determined whether levels of 

these CSF APOE-related modules were also associated with APOE e4 in blood.  We calculated 

a synthetic eigenprotein (or first principal component) for 32 out of 34 CSF modules in serum 

using SomaScan protein measurements in 5,457 Icelanders from the AGES-Reykjavik cohort, a 

prospective population-based study (Supplementary Tables 10 and 11)(25).  We then tested 

for association of these modules with APOE e4 in serum.  We found all three CSF APOE e4 
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modules were associated with APOE e4 in serum in the same directions observed in CSF, with 

M33 and M34 particularly strongly associated (Table 2).  Because AGES-Reykjavik is a 

longitudinal study with median follow-up of 12.8 years, we also tested whether levels of these 

three modules were associated with incident AD.  M33 and M34 were associated with both 

prevalent and incident AD, with the association consistent with the directionality of relationship 

with APOE e4 and dependent upon exclusion of APOE from the model (Table 3).  These 

associations remained significant after a permutation test for randomization of protein module 

membership.  We observed weaker association with incident AD for two other modules—M5 

Wnt-Frizzled Signaling/Protein Transport and M31 Actin Cytoskeleton—although neither module 

was strongly associated with AD in CSF.  We also tested associations of CSF module synthetic 

eigenproteins calculated in plasma with APOE e4 and incident dementia in the Atherosclerosis 

Risk in Communities (ARIC) study (N=11,596), a multi-center longitudinal study of 

cardiovascular health that includes cognitive assessment(26) (Supplementary Table 12).  M26 

Neddylation, M33 Oxidant detoxification/MAPK signaling, and M34 Mitochondrion modules were 

found to have consistent associations with APOE e4 in ARIC (Table 2). At a mean follow-up of 

21 years we observed plasma levels of all three modules were associated with incident 

dementia in a model adjusted for cardiovascular risk factors given the nature of the ARIC 

cohort, with the association dependent upon APOE (Table 3).  The associations were weaker 

but remained significant in a model that did not adjust for cardiovascular risk factors 

(Supplementary Table 13).  In summary, the protein co-expression modules M26 Neddylation, 

M33 Oxidant detoxification/MAPK signaling, and M34 Mitochondrion observed in CSF that 

strongly correlated to APOE e4 were also associated with APOE e4 in blood in the same 

direction of change, and changes in the blood levels of these modules were associated with the 

development of AD or dementia up to 21 years later. 
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AD CSF Network Module Levels are Influenced by Treatment with Atomoxetine 

Protein co-expression modules derived from proteomic analysis of CSF can provide insight into 

different aspects of AD pathophysiology, but whether they can be responsive to therapeutic 

intervention and potentially serve as biomarkers in clinical trials and clinical practice is unknown.  

To address this question, we analyzed CSF from a recently described phase 2 clinical trial of 

the norepinephrine reuptake inhibitor atomoxetine (ATX) in individuals with mild cognitive 

impairment (MCI) due to AD(27).  Norepinephrine tone in brain is decreased in AD through 

dysfunction of the locus coeruleus, one of the first brain structures affected in AD(28, 29). 

Increasing brain norepinephrine levels has positive effects in preclinical AD models(30), and 

was shown to have a beneficial effect on CSF tTau and pTau181 levels and brain metabolic 

function as assessed by [¹⁸F]fluorodeoxyglucose positron emission tomography (FDG-PET) 

after 6 months of ATX treatment in the phase 2 clinical trial.  The trial had a cross-over design 

with a run-in placebo arm and an ATX washout arm.  We analyzed the CSF proteomes of each 

participant with TMT-MS and SomaScan before and after treatment with ATX and generated a 

ratio of the ATX-treated sample to the within-subject placebo or baseline sample.  We compared 

this within-subject ATX ratio to a within-subject placebo to baseline ratio to gauge treatment 

effects due to ATX (Figure 6A).  We observed four modules that were significantly influenced 

by ATX treatment in the trial cohort:  M20 Glycolysis/Redox homeostasis, M21 extracelllular 

matrix (ECM)/Vasculature, M14 Translation, and M16 Ambiguous (Supplementary Table 14, 

Extended Data).  Given the strong association of M20 Glycolysis/Redox homeostasis with AD 

endophenotypes and the plausible connection of M21 ECM/vasculature to potential effects on 

vasculature physiology with norepinephrine, we focused further analyses on these two modules.  

The M20 Glycolysis/Redox homeostasis module eigenprotein, representing n=65 protein 

measurements, was strongly elevated in AD (Figure 6B).  Levels of M20 were significantly 

reduced in the clinical trial after 6 months of ATX treatment (Figure 6C).  Individuals with higher 

CSF levels of M20 prior to treatment with ATX generally showed a larger decrease in M20 
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levels after ATX treatment (Figure 6D).  One individual had very high levels of M20 at baseline 

and responded strongly to ATX; however, the correlation remained significant when using a 

correlation measure, bicor, that is insensitive to outliers.  The M21 ECM/Vasculature module 

was also elevated in the AD network, but in contrast to M20, ATX treatment led to an increase in 

the levels of this module (Figure 6E, F).  Pre-treatment levels of M21 were not correlated with 

an ATX treatment response (Figure 6G).  In an exploratory analysis, we assessed whether we 

might be able to improve prediction of M20 treatment response beyond that afforded by 

baseline M20 levels with a ratio of proteins that were individually correlated with M20 response 

(Supplementary Figure 5).  After a combinatorial search for correlation predictors 

(Supplementary Figure 5A), we found that a ratio of summed normalized abundance of four 

proteins positively correlated to M20 response (UBE2L3, ubiquitin-conjugating enzyme E2 L3; 

CLIC1, chloride intracellular channel protein 1; BST1, ADP-ribosyl cyclase/cyclic ADP-ribose 

hydrolase 2; and FBP1, fructose-1,6-bisphosphatase 1) divided by a summed normalized 

abundance of four negatively correlated to M20 response (IL9, interleukin-9; BPIFA2, BPI fold-

containing family A member 2; TXNDC5, thioredoxin domain-containing protein 5; and 

B4GALT1, beta-1,4-galactosyltransferase 1) increased the prediction correlation to –0.86 

(Supplementary Figure 5B).  As expected, all eight proteins comprising the ratio varied 

significantly by M20 response (Supplementary Figure 5C), although none of these proteins 

was present within M20.  In summary, we observed that panels of CSF proteins defined by their 

co-expression and representing different biological processes affected in AD changed with ATX 

treatment—a potential disease-modifying medication for AD—and in the case of M20, this 

response could partially be predicted by baseline M20 levels or an M20-responsive protein ratio. 

 

Clustering Participants on their CSF Proteomes Identifies Pathological Heterogeneity Not 

Reflected by Ab and Tau 
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We identified many CSF network modules that were correlated to CSF Ab and tau levels and 

were increased in AD as defined by CSF Ab and tau levels.  To what extent participants were 

similar or dissimilar in their CSF proteomic network profile and how such similarity was related 

to their disease classification based on Ab and tau and response to ATX was unclear.  To 

address this question, we identified the top ten proteins by correlation to the module 

eigenprotein (i.e., hub proteins) for each network module and used these proteins to cluster 

participants into groups based on their similarity across these proteins with the same clustering 

algorithm used to define the protein modules (Figure 7A).  This clustering approach yielded ten 

different groups of participants based on their CSF AD proteomic network features (Figure 7B).  

The ten groups could be further grouped into three general hierarchical clusters (or 

superclusters) based on the similarity of their CSF proteomes.  The ten groups could also be 

identified using a separate data dimensionality reduction technique called uniform manifold 

approximation and projection (UMAP), although the separation of participant groups was not as 

distinct as the separation of protein groups with UMAP (Supplementary Figure 6A, B).  Out of 

the ten groups, only one group (group 10) had uniform membership based on Ab and tau 

diagnostic criteria.  Groups 3 and 6 were most closely related to group 10 but differed in key 

proteome features such as higher levels of neuronal modules M8 Semaphorin signaling, M15 

Neurexin/Synaptic membrane, M24 Axolemma/Semaphorin complex, and M11 Axonogenesis.  

Group 6 was different from groups 3 and 10 in the same supercluster based on higher levels of 

APOE-related modules M33 Oxidant detoxification/MAPK signaling and M26 Neddylation and 

lower levels of M34 Mitochondrion.  Groups 1, 2, and 7 were related in the same supercluster 

and also contained a mixture of AD and control cases based on Ab and tau criteria, but differed 

in many key CSF proteome features including lower levels of the neuronal modules mentioned 

above, lower levels of M4 Autophagy/Ubiquitination, and higher levels of M2 

Complement/Coagulation.  The third supercluster comprised of groups 4, 5, 8, and 9 contained 
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two groups with nearly all control cases as defined by Ab and tau (groups 4 and 5), but also a 

group that had a high proportion of AD cases (group 8).  One feature that distinguished this 

“AD-like” group from the other “control-like” groups in the supercluster was elevated levels of the 

M20 Glycolysis/Redox homeostasis module.  To test whether membership in any of the data-

driven participant clusters might be associated with the M20 response to ATX treatment, we 

divided the 34 AD participants that were treated with ATX into tertiles based on the degree of 

post-ATX reduction in M20 Glycolysis/Redox homeostasis levels, and projected their baseline 

(i.e., prior to ATX treatment) proteomes onto the groups using UMAP (Supplementary Figure 

6C).  To simplify the analysis and visualization, we considered only groups that had minimal 

representation of AD-like cases, which excluded groups 4, 5, and 9.  Multi-dimension proteome 

feature projection showed that none of the ATX tertiles cleanly projected to a group, suggesting 

that the clustering of participants by CSF proteomic features did not identify a category of 

individuals who could be predicted to respond to ATX based on their baseline CSF proteome.  

In summary, we identified 10 groups of participants related by similarity in their CSF proteomes.  

Although the best responders to ATX treatment did not cluster within one of the groups, the 

clustering suggested that CSF proteome features significantly varied within AD and control 

diagnostic classifications defined by Ab and tau levels. 

 

Discussion 

In this study we used multi-platform proteomics in AD CSF to identify and measure pathological 

processes other than Ab and tau dyshomeostasis associated with AD.  Three co-expression 

clusters (or modules) of proteins associated with oxidant detoxification/MAPK signaling, 

neddylation, and mitochondrial biology were strongly associated with the APOE e4 AD risk 

genotype, and altered blood levels of these modules were associated with the development of 

dementia up to 21 years later.  We demonstrated that treatment with atomoxetine in the MCI 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.29.23297651doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.29.23297651
http://creativecommons.org/licenses/by-nc-nd/4.0/


stage of AD reduced pathological elevation in the M20 Glycolysis/Redox homeostasis module in 

CSF, suggesting that unbiased data-driven techniques can be used to develop biomarkers that 

reflect different treatment-responsive AD pathophysiologies.  Using CSF proteomic network 

features, we defined 10 different groups of participants that did not cleanly separate according 

to a CSF total tau to Ab ratio classification, highlighting the utility of multi-dimensional 

techniques for assessment of disease state or type.  Refinement of such an approach will likely 

enable advancement of precision medicine therapeutic approaches for AD. 

 

Our CSF AD network generated from 300 participants showed a high degree of overlap with a 

previous pilot AD CSF network generated from 36 participants in which we also included a 

smaller number of protein measurements from the Olink platform, illustrating the robustness of 

the network approach to define AD pathophysiology in AD CSF.  Here the more highly powered 

network allowed us to observe modules related to APOE e4 that were absent in the pilot 

network.  These modules were composed exclusively of SomaScan measurements.  It is 

possible that these modules could be captured by MS or Olink approaches with sufficient depth 

of coverage.  Indeed, mitochondrial biology in the AD CSF proteome has previously been 

captured by extensive pre-fractionation and TMT-MS analysis(31), but such an approach is not 

feasible for analysis of large cohorts.  The M20 Glycolysis/Redox homeostasis module was the 

module most strongly correlated to cognitive function in the network and was composed of 

mostly TMT-MS measurements.  As proteomic technologies advance in coverage depth and 

throughput, additional AD pathophysiology will undoubtedly be revealed in CSF.  A multi-

platform analytical approach is therefore useful to leverage the benefits provided by any single 

platform, as well as to increase robustness of study findings. 
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The M4 Autophagy/Ubiquitination module was the module most strongly correlated to AD 

biomarkers in the network, with a correlation of r=0.86 to tTau, suggesting that the proteostasis 

signature in CSF is strongly associated with tau pathology.  Although we did not have tau-PET 

measures for these participants, it is possible that this signature is correlated with tau 

neurofibrillary tangle (NFT) levels in brain.  Future studies that include tau-PET as a trait will be 

informative for assessing which CSF modules are most strongly correlated to this hallmark AD 

pathophysiology.  Interestingly, M4 contained proteins that were recently observed to be 

changed in autosomal dominant AD (ADAD) CSF 20 to 30 years prior to the onset of cognitive 

symptoms, including SPARC-related modular calcium-binding protein 1 (SMOC1), 14-3-3 

protein zeta (YWHAZ),14-3-3 protein gamma (YWHAG), and pyruvate kinase PKM (PKM)(32).  

Elevation in SMOC1 levels occurred concomitantly with the formation of Ab plaques and prior to 

elevations in pTau or Ab PET markers.  Markers of proteostatic stress response were also 

elevated early in the ADAD study.  While longitudinal data in CSF were not available in the 

present study, the findings in ADAD suggest that an alteration in proteostasis—either through 

an increased compensatory response or failure of the response—is an early observable AD 

pathological change in CSF that may precede NFT formation. 

 

Direction of change in CSF modules with development of AD is not always consistent with the 

direction of change for the analogous modules in brain.  While disease-related modules such as 

M20 Glycolysis/Redox homeostasis and M11 Axonogenesis are increased and decreased, 

respectively, in CSF concordant with previously observed changes in glycolysis and neuronal 

biology in AD brain(2, 3), other modules such as M2 Complement/Coagulation, M17 Synaptic 

vesicle/SNAP-SNARE complex, M33 Oxidant detoxification/MAPK signaling and M34 

Mitochondrion show opposite direction of change compared to brain.  These findings suggest 

that protein biomarkers for AD pathological processes may depend on the compartment in 
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which they are measured, as previously suggested(10).  In the case of the complement module 

which is highly conserved across compartments, levels are elevated in both blood and brain but 

decreased in CSF, perhaps suggesting deposition of complement in brain tissue with 

subsequent reduced levels in CSF analogous to the behavior of Ab1–42. 

 

We observed three CSF modules that were highly correlated to APOE e4—M26 Neddylation, 

M33 Oxidant detoxification/MAPK signaling, and M34 Mitochondrion.  M34 Mitochondrion was 

strongly positively correlated to APOE e4 and demonstrated increased levels in AD CSF, 

whereas the other two modules were negatively correlated to APOE e4 and demonstrated 

decreased levels in AD CSF.  The associations with APOE e4 were also present in the same 

direction when these modules were analyzed in blood in two different cohorts.  Furthermore, 

altered levels of these modules in blood were associated with risk of developing AD dementia 

over two decades prior to diagnosis.  Whether these modules represent systemic changes 

observable in both blood and CSF that influence brain health, or whether they are markers of 

primary brain pathophysiology that develops decades prior to symptom onset is unclear.  It has 

previously been shown that APOE e4 is associated with reduced brain metabolic function in 

early and midlife(33, 34).  APOE e4 fragments have also been shown to be inhibitors of 

mitochondrial function in neurons(35, 36).  These observations potentially suggest a brain-

derived origin of the M34 Mitochondrion signature.  Neddylation is a process closely related to 

ubiquitination through conjugation of the ubiquitin-like protein NEDD8 to proteins via E3 ligases, 

and has been shown to be involved in proteostasis and maintaining synaptic integrity(20, 37).  

Multiple intracellular protein aggregates and inclusion bodies observed in different 

neurodegenerative diseaseas are neddylated(21), which could support a primary brain origin for 

the M26 neddylation module.  However, changes in neddylation could also reflect a general 

systemic failure in proteostasis.  Recently, changes in blood levels of proteins such as 
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growth/differentiation factor 15 (GDF15) that have no known expression in brain have been 

associated with all-cause dementia up to 25 years later(38), highlighting the possibility that the 

APOE e4-associated modules observed in this study may simply reflect a systemic process 

observable in both blood and CSF that influences AD risk.  Additional studies that clarify the 

tissue source and time-resolved effects of the observed APOE e4-associated modules are 

needed. 

 

We leveraged our AD CSF network to interrogate the effects of atomoxetine treatment on the 

AD CSF proteome.  We found significant drug treatment effects at the module level, including 

reduction in the M20 Glycolysis/Redox homeostasis module.  This module showed the strongest 

correlation to cognitive function in our study.  While a significant cognitive benefit was not 

observed in the short phase 2 clinical trial of ATX, this observation is consistent with other 

beneficial outcomes observed in the trial such as reduced CSF levels of tTau and pTau(27).  

Notably, M20 was correlated to both tTau and pTau levels in our network.  This type of data-

driven approach to biomarker development for different AD pathophysiologies may be a 

promising way to understand drug treatment effects on other pathways beyond Ab and tau.   

 

In an effort towards developing precision-medicine approaches that leverage patient-specific 

proteomic information, we explored the ability to predict response to ATX treatment at three 

different levels:  individual protein, module, and network cluster.  At the individual protein level, 

the strongest baseline measurement correlation to M20 treatment response was with Ubiquitin-

conjugating enzyme E2 L3 (UBE2L3) with a correlation of r=–0.6.  This was slightly better than 

module level prediction, where baseline levels of M20 correlated with treatment response at r=–

0.44.  We were able to identify a combination of 8 proteins that could increase this correlation to 

r=–0.86.  While this discovery approach to protein biomarker combination may suffer from 
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overdetermination due to the large number of proteins tested and the small number of patients 

in the clinical trial, further validation could be obtained in future phase 3 trials of ATX.  Because 

none of the 8 proteins was a member of the M20 module, we decided to use the entire CSF 

network to potentially identify a category of patient who might best respond to ATX treatment 

considering reduction in M20 levels as the outcome measure.  We identified 10 different 

potential groups of participants through clustering on AD CSF network features, and although 

none of these groups clearly captured those who best responded to ATX, this type of approach 

may be a way to identify responders to other treatments for AD and for other neurodegenerative 

diseases.   

 

Recent studies have used TMT-MS proteomics in CSF to subtype patients into three or five 

groups(39, 40).  In these studies, AD was defined on the basis of CSF Ab levels only and 

proteins that were differentially expressed in the AD group were used to cluster subjects within 

the AD defined group using non-negative matrix factorization.  In our study we used the CSF 

tTau/Ab1–42 ratio to classify participants into control and AD groups regardless of cognitive 

status, and included control participants in the unbiased clustering approach using WGCNA on 

the top ten hub proteins from each CSF network module.  We found that the ten groups of 

participants did not cleanly stratify on AD and control diagnoses using Ab and tau, suggesting 

that disease classification or staging based on the CSF proteome captures more heterogeneity 

than these classical markers.  The supercluster consisting of groups 3, 6, and 10 had a similar 

proteomic profile consistent with what might be considered “classic” AD with low Ab and high 

tTau and pTau, and cognitive impairment.  While all three groups had similar elevations in M4 

Autophagy/Ubiquitination and M17 Synaptic vesicle/SNAP-SNARE complex modules, the 

groups were resolved largely based on APOE e4-related module levels and a lack of increase in 

some neuronal modules in group 10 (M8 semaphorin signaling, M15 neurexin/synaptic 
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membrane, M24 axolemma/semaphorin complex, and M11 axonogenesis).  Fascinatingly, 

control participants in group 6 had a similar proteome profile to the AD participants but with 

generally higher levels of Ab, lower levels of tTau and pTau, and lower levels of M20 

Glycolysis/Redox homeostasis, suggesting a potential “resilient” phenotype or an early disease 

stage in which observable disease changes occur before significant changes in Ab and tau.  

Another supercluster consisting of groups 1, 2, and 7 contained a mix of AD and control 

participants with group 1 demonstrating low M4 Autophagy/Ubiquitination levels and low 

neuronal markers, yet elevated M2 Complement/Coagulation and M13 Immunoglobulin modules 

perhaps suggesting increased blood-brain barrier permeability and/or inflammation.  Groups 2 

and 7 demonstrated similar elevations in M21 ECM/Vasculature, M31 Actin cytoskeleton, M25 

Ambiguous, and M29 Cadherin/Cytoskeleton, reflecting a general elevation in structural 

proteins.  The disease phenotype this profile represents is unclear but may be related to a 

proposed subtype of AD related to changes in choroid plexus biology(39).  The type of analysis 

presented here clearly illustrates the heterogeneity of CSF proteomic changes that do not 

necessarily correlate with Ab and tau levels.  Future work on longitudinal datasets will be 

required to resolve to what extent these profiles reflect disease subtypes versus disease stage. 

 

In summary, multidimensional profiling of the AD CSF proteome as illustrated in this study is a 

promising approach to further our understanding of AD pathophysiology and develop 

biomarkers for this varied pathophysiology.  Such an approach holds promise to advance 

precision medicine approaches for AD. 
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Methods 

Participants and Case Classification 

All CSF samples used in this study were collected under the auspices of the Emory Goizueta 

Alzheimer’s Disease Research Center (ADRC) and Emory Healthy Brain Study (EHBS).  The 

cohort consisted of 140 healthy controls and 160 patients with AD as defined by the NIA 

research framework(16).  Basic demographic data were obtained from the Goizueta ADRC and 

EHBS.  Control and AD participants received standardized cognitive assessments in the Emory 

Cognitive Neurology Clinic, Goizueta ADRC, or EHBS.  CSF was collected and banked 

according to the 2014 National Institute on Aging best practice guidelines for Alzheimer’s 

Disease Centers (https://alz.washington.edu/BiospecimenTaskForce.html).  CSF samples were 

subjected to ELISA Ab1–42, total tau, and pTau181 analysis by the INNO-BIA AlzBio3 Luminex 

Assay(41).  ELISA values were used to support diagnostic classification based on established 

AD biomarker cutoff criteria(42, 43).  We derived a cutoff tTau/Ab1–42 ratio of 0.182 as the 

classification threshold for AD based on a Gaussian mixture model analysis of all research 

participants analyzed on the AlzBio3 platform at our center.  The ratio of 0.182 best separated 

the two distinct populations observed for this ratio as measured by the AlzBio3 assay.  APOE 

genotype was determined by extracting DNA from the plasma buffy using the GenePure kit 

(Qiagen) following the manufacturer’s recommended protocol, then determining the rs7412 and 

rs429358 genotypes using either an Affymetrix Precision Medicine Array (Affymetrix) or TaqMan 

assays (ThermoFisher Scientific C_904973_10 and C_3084793_20).  APOE genotype was 

confirmed by assessing the APOE proteotype in all samples.  For any samples that were 

discrepant between genotype and proteotype, the proteotype was used.  All samples were 

analyzed by both TMT-MS and SomaScan 7k platform assays.  All Emory research participants 

provided informed consent under protocols approved by the Institutional Review Board at Emory 

University.  Case metadata are provided in Supplementary Table 1. 
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Quantification of Proteins by SomaLogic SomaScan Modified Aptamers 

 

Proteins were quantified by SomaScan as previously described(44-46).  Aliquots of CSF and 

plasma from each subject were sent to SomaLogic (SomaLogic, Boulder, CO) for analysis using 

the modified aptamer SomaScan assay (v4.1).  All samples passed quality control measures 

and were randomized by SomaLogic prior to analysis on single plates.  Results were reported 

as relative fluorescence units (RFUs) for relative quantification of protein abundance.  

 

CSF Protein Preparation and Digestion for Tandem Mass Tag Mass Spectrometry (TMT-MS) 

Analysis 

 

Equal volumes (50 µL of each sample) of CSF were digested with lysyl endopeptidase (LysC, 

Wako 125-05061) and trypsin (ThermoFisher Scientific 90058).  Briefly, each sample was 

reduced and alkylated with 1 µL of 0.5 M tris-2(-carboxyethyl)-phosphine (TCEP) and 5 µL of 

0.4 M chloroacetamide (CAA) at 90°C for 10 min, followed by water bath sonication for 5 min. 

The same volume of 8 M urea buffer [56 µL, 8 M urea in 10 mM Tris, 100 mM NaH2PO4 (pH 

8.5)] was added to each sample after cooling the samples to room temperature, along with LysC 

(2.5 µg).  After overnight digestion, 336 µL of 50 mM ammonium bicarbonate (ABC) was added 

to each sample to dilute the urea concentration to 1 M, along with trypsin (5 µg).  After 12 hours, 

the trypsin digestion was stopped by adding final concentration of 1% formic acid (FA) and 0.1% 

trifluoroacetic acid (TFA). 

 

Isobaric TMT Peptide Labeling 
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Before TMT labeling, the digested peptides were desalted using 30 mg HLB columns (Waters).  

Briefly, the columns were activated with 1 mL of methanol, then equilibrated with 2 × 1 mL 0.1% 

TFA.  The acidified samples were loaded following by washing with 2 × 1 mL 0.1% TFA.  Elution 

was performed with 2 × 0.5 mL 50% acetonitrile.  To normalize protein quantification across 

batches, global internal standard (GIS) samples were generated for each sample set by 

combining 100 µL aliquots from each sample elution.  All individual samples and GIS pooled 

standards were dried by speed vacuum (Labconco).  The TMT 16-plex kit (ThermoFisher 

Scientific, A44520, lot number VH311511) was used for labeling, which divided CSF sample 

sets into 22 TMT batches with 13 or 14 samples plus 2 GIS in each batch.  The sample and 

channel distribution are provided in Supplementary Table 1.  5 mg of each channel reagent 

was dissolved in 200 µL anhydrous acetonitrile.  Each CSF peptide sample was resuspended in 

50 µL of 100 mM TEAB buffer, and 10 µL of TMT reagent solution was subsequently added.  

The labeling was stopped after 1 h with 3 µL of 5% hydroxylamine for CSF and the peptide 

solutions were then combined according to the batch arrangement.  The combined TMT 

samples were desalted with 100 mg of Sep-Pak C18 columns.  The elutions were dried under 

speed vacuum. 

 

 

High-pH Off-line Fractionation 

 

Dried samples were re-suspended in high pH loading buffer (0.07% vol/vol NH4OH, 0.045% 

vol/vol FA, 2% vol/vol ACN) and loaded onto a Water’s BEH column (2.1 mm x 150 mm with 1.7 

µm particles).  A Vanquish UPLC system (ThermoFisher Scientific) was used to carry out the 

fractionation. Solvent A consisted of 0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA, and 2% 

(vol/vol) ACN; solvent B consisted of 0.0175% (vol/vol) NH4OH, 0.01125% (vol/vol) FA, and 
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90% (vol/vol) ACN.  The sample elution was performed over a 25 min gradient with a flow rate 

of 0.6 mL/min with a gradient from 0 to 50% solvent B.  A total of 96 individual equal volume 

fractions were collected across the gradient.  Fractions were concatenated to 48 and dried to 

completeness using vacuum centrifugation. 

 

TMT Mass Spectrometry 

 

All fractions (~1µg) were loaded and eluted using a EasyNLC 1200 (ThermoFisher Scientific) on 

an in-house packed 25 cm, 100 µm internal diameter (i.d.) capillary column with 1.9 µm 

Reprosil-Pur C18 beads (Dr. Maisch, Ammerbuch, Germany) over a 35 min gradient from 1% to 

99% buffer B (80 ACN with 0.1% FA).  Mass spectrometry was performed with a high-field 

asymmetric waveform ion mobility spectrometry (FAIMS) Pro-equipped Orbitrap Lumos 

(ThermoFisher Scientific) in positive ion mode using data-dependent acquisition with 1 s top 

speed cycles.  Each cycle consisted of one full MS scan followed by as many MS/MS events 

that could fit within the given 2 s cycle time limit.  MS scans were collected at a resolution of 

120,000 (410-1600 m/z range, 4x105 AGC, 50 ms maximum ion injection time, FAIMS 

compensation voltage of –45 and –65).  All higher energy collision-induced dissociation (HCD) 

MS/MS spectra were acquired at a resolution of 50,000 (0.7 m/z isolation width, 35% collision 

energy, 200% normalized AGC target, 86 ms maximum ion time).  Dynamic exclusion was set 

to exclude previously sequenced peaks for 30 s within a 10-ppm isolation window. 

 

Database Searches and Protein Quantification 

 

All raw files were searched using Proteome Discoverer (version 2.4.1.15, ThermoFisher 

Scientific) with Sequest HT.  The spectra were searched against a human UniProt database 
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downloaded April 2015 (90,411 target sequences).  Search parameters included 10 ppm 

precursor mass window, 0.05 Da product mass window, dynamic modifications methionine 

(+15.995 Da), deamidated asparagine and glutamine (+0.984 Da), phosphorylated serine, 

threonine and tyrosine (+79.966 Da), and static modifications for carbamidomethyl cysteines 

(+57.021 Da) and N-terminal and lysine-tagged TMT (+304.207 Da depending on the dataset).  

Percolator was used to filter peptide spectral matches (PSMs) to 1% FDR. Peptides were 

grouped using strict parsimony and only razor and unique peptides were used for protein level 

quantitation.  Reporter ions were quantified from MS2 scans using an integration tolerance of 20 

ppm with the most confident centroid setting.  Only unique and razor (i.e., parsimonious) 

peptides were considered for quantification. 

 

Protein Abundance Data Processing 

SomaLogic SomaScan Assay 

The SomaScan .adat file containing relative fluorescence unit (RFU) abundances for the 344 

samples including 300 experimental CSF samples, 12 blank buffer (background or noise 

measurements), calibrator, and QC samples was loaded using the SomaDataIO package v3.1.0 

in R v4.0.2.  Multidimensional scaling (MDS) indicated that background measures were different 

in one of the four plates, contributing to noise and increasing the threshold for limit of detection 

(LODs).  We stabilized background measurements which were in excess across the triplicate 

measures of higher noise in PLT11726 buffer signals by subtraction of the difference of medians 

between the median buffer signals of background measurements in the three plates with lower 

background signal and the median background measurement in the plate with higher 

background signal.  LOD was then calculated as the median stabilized background 

measurement plus three standard deviations (SDs) of all background measurements.  After this 

subtraction, 6,024 assays had at least 25% of values above LOD, whereas only 4,307 assays 

were above LOD before noise stabilization.  Sample measurements in this assay subset that 
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were below LOD were retained but considered as missing values for downstream analyses 

except where noted. 

 

Next, buffer measurements were used to calculate signal-to-noise (S:N) ratios for unnormalized  

RFU abundance data.  S:N ratios were calculated by subtracting the within-assay median buffer 

signal from the unlogged assay signal (RFU), then dividing by the median buffer signal.  We 

performed two-dimensional MDS on the SomaScan data matrix rows (assays) for all assays 

with a median maximum S:N (maximum of either control or AD median S:N) above 10.  We 

noted two distinct clusters of cases.  Differential protein abundance between the two clusters of 

cases as calculated by t test indicated that nine blood gene product proteins (HBA1, hemoglobin 

subunit alpha; HBB, hemoglobin subunit beta; HBG1, hemoglobin subunit gamma-1; FGA, 

fibrinogen alpha chain; FGB, fibrinogen beta chain; FGG, fibrinogen gamma chain; HP, 

haptoglobin; CAT, catalase; CA1, carbonic anhydrase 1) were the most differentially abundant 

between the two clusters, suggesting blood contamination.  Prior to addressing blood 

contamination, SomaScan samples were checked for status as sample network connectivity 

outliers by calculating Z.ku (sample connectivity z score) from an adjacency matrix calculation 

using the available log2 protein abundance matrix.  Briefly, a normalized adjacency calculation 

on this matrix was performed using the Weighted Correlation Network Analysis (WGCNA) 

(v1.72-1) bicor function with pairwise complete observations only, squared, multiplied by 0.5 and 

added to 0.5.  Then, sample connectivity (ku) was calculated using the WGCNA 

fundamentalNetworkConcepts function, followed by z-transformation before checking Z.ku for 

outlier status below –3.0 z score units (>3 SD below the mean ku).  Four samples with Z.ku 

more than 3 SD below the mean were thereby removed; these are indicated in Supplementary 

Table 1.  We then proceeded to calculate the first principal component of the nine-protein blood 

signature using calculation of a synthetic WGCNA eigenprotein, and performed nonparametric 

bootstrap regression of this signature blood eigenprotein.  Following regression, we confirmed 
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that the differences between samples in the prior two clusters were ablated as viewed by PCA, 

MDS, and histograms of a recalculated blood signature. 

 

Because SomaScan CSF data had low signal, a second-pass filter step was applied to remove 

assays that did not meet an empirically-derived S:N threshold.  This threshold was determined 

by correlating SomaScan assays with TMT-MS assays at varying S:N cutoff values (0, 0.15, 

0.25, 0.3, 0.35, 0.4, 0.45, 0.50, 0.625, 0.75, 1, 2, 4, and 8), and selecting the S:N value (0.3) 

that maximized median Pearson correlation with proteins measured in common between 

SomaScan and TMT-MS.  After application of first- and second-pass filters and removal of 

control aptamers, 4098 CSF human SomaScan assays were retained for subsequent analyses. 

 

TMT-MS 

Only proteins that were identified and summarized as high confidence (<1% FDR) by Proteome 

Discoverer (PD) were used for analysis.  The 3,870 UniProt protein identifier accessions 

provided by PD were further annotated with Hugo Gene Nomenclature Committee (HGNC) 

official gene symbols.  TMT reporter intensities (abundances) that had not undergone 

normalization by PD were used for analysis to preserve inherent protein abundance differences 

between control and AD subjects.  Batch correction was performed by dividing abundances for 

each protein within each batch by the GIS.  GIS measurements were then removed, and 

proteins with more than 75 percent (n > 225/300) missing values were excluded from 

consideration.  The number of remaining protein isoforms after missing value control was 2334. 

 

The nine blood-associated proteins which separated samples in SomaScan data prior to 

regression were checked in the resulting TMT-MS protein log2 relative abundance matrix by 

two-dimensional MDS.  Separation (77 high, 223 low blood signature) was found, and further 

refined as a five-protein subset signature in the MS data (HP, HBB, HBG1, CAT, and CA1). To 
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harmonize cases with the SomaScan data, TMT-MS samples matching the four SomaScan 

outliers detected by low connectivity Z scores as noted above were likewise removed from 

consideration prior to correction of blood contamination.  The first principal component of the 

five-protein signature was then regressed using nonparametric bootstrap regression as 

performed in the SomaScan data.  MDS following regression found no further clustering of 

sample subsets. 

 

 

Proteome Coverage Overlap, Ontology Enrichment, and Missing Data Analysis 

 

Unique gene symbols measured in each platform were counted, and overlap was visualized 

using the venneuler R package (v1.1-0) venneuler function.  Visualization of overlap of 

differentially expressed proteins between the two platforms used the same function.  Enrichment 

of gene ontologies (GO) in different Venn categories was calculated as a Fisher exact test p 

value transformed to z score using GOparallel (https://www.github.com/edammer/GOparallel).  

GOparallel implements piano R package functions and downloads monthly updated gene sets 

curated by the Bader Lab (at https://baderlab.org/GeneSets as described in Reimand et al. 

(47)), and produces visualizations of the output.  The same procedure was used to determine 

ontology enrichment for network modules (Extended Data).  Regarding missing data 

(Supplementary Figure 2), SomaScan assays included assay measurements below LOD for 

the network analysis, but these values were censored as missing for differential abundance 

determination (volcano analysis).  Missing data in 2334 TMT-MS isoforms was considered at 

the level of batch, as all measurements within a batch result from the same MS/MS 

fragmentation.  All 2334 isoforms were subject to volcano analysis, but no isoforms with any 

missing data were considered in the 1144 isoforms of TMT-MS data merged with 4098 

SOMAScan assays for network analysis. 
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Protein Abundance Correlation Analysis 

 

Proteins measured in common between the two platforms within the same biofluid were 

correlated across all samples using the corAndPvalue function in the WGCNA R package 

(v1.72-1) (Supplementary Table 4, Extended Data).  In the case of multiple SomaScan assays 

for the same protein, the assay with the identical UniProt protein accession, or secondarily, a 

SOMAmer measuring an identical gene product, was selected.  When multiple cross-platform 

UniProt accession or gene symbol matches occurred, the SOMAmer with the highest correlation 

was selected.  We constructed a population histogram of all Pearson correlations for distinct 

gene products or UniProt accessions (representing distinct protein isoforms) and identified the 

median rho for each population of paired measurements between the two platforms. 

 

 

Differential Expression Analysis 

 

Differences between AD and control were assessed on the log2(abundance) measurements 

over all proteins after data processing as described above, which included signal cleanup, 

filtering on missingness, and, in the case of SomaScan CSF data, control of excessively low 

S:N assays.  SomaScan assay values below LOD were considered as missing.  Volcano plots 

and the underlying stats were calculated using a custom in house script 

(https://www.github.com/edammer/parANOVA) and plotted as volcanoes via the plotly (v4.9.2.1) 

R package function ggplotly.  Individual volcano points were colored by membership in the 44 

brain network modules described in Johnson et al.(2).  A stacked circular barplot depicting total 
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protein coverage in brain by module and coverage of differentially expressed proteins in each 

platform was rendered using the R package ggplot2. 

 

 

Harmonization of Platform Protein Abundance Prior to Network Analysis 

 

TMT-MS ion counts in neat CSF with no missing values across the 22 TMT batches (n=1,144), 

and SomaScan RFUs (n=4,098 assays), totaling 5,242 assays in CSF, were assembled for 296 

case samples measured on both platforms.  Only truly missing values were considered as 

unavailable; values below LOD were retained, although assays removed due to S:N filtering 

were excluded.  Data were transposed prior to removal of platform-specific effects as a batch 

effect using the TAMPOR algorithm.  Proteins were considered as samples (columns) and 

samples as rows for the two-way table median polish of ratio using TAMPOR.  Common 

proteins measured across both platforms were used as the GIS (n=452) to calculate the central 

tendency of data within and across platforms used for the denominators in the TAMPOR 

algorithm, as previously described(48).  Normalized data used in subsequent network analyses 

was of the form log2(abundance/central tendency) of the common proteins in all platforms.  No 

protein assay had any missing values. 

 

 

Protein Co-Expression Network Analysis 

 

A CSF proteome network was constructed using the harmonized protein abundances.  The 

Weighted Correlation Network Analysis (WGCNA) algorithm (v1.72-1) was used for network 

generation.  No outliers were detected using the WGCNA sample network connectivity outlier 

algorithm.  The WGCNA blockwiseModules function was run on the CSF harmonized 
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abundances with the following parameters: power=14, deepSplit=4, minModuleSize=10, 

mergeCutHeight=0.07, TOMdenom=”mean”, bicor correlation, signed network type, PAM 

staging and PAM respects dendro as TRUE, and a maxBlockSize larger than the total number 

of protein assays.  Module memberships were then iteratively reassigned to enforce kME table 

consistency, as previously described(2).  The resulting network assignments were visualized as 

modules using the iGraph(v1.4.1) package using a custom implementation available as the 

buildIgraphs function at https://www.github.com/edammer/netOps.  Module eigenprotein 

correlations and significance were visualized in circular heatmaps using the circlize(v0.4.15), 

dendextend(v1.17.1), and dendsort(0.3.4) R packages.  Synthetic eigenproteins for brain and 

CSF networks were calculated as previously described(2) leveraging the top 20 percent of hubs 

and a minimum overlap of four proteins.  For synthetic eigenproteins translated either from brain 

or into brain, the existing data for 8,619 proteins underlying the brain network were mapped to 

labels in the CSF network using a mapping rubric to cross-reference protein labels. Specifically, 

(1) an exact UniProt ID match to that in labels of the form Symbol|UniprotID|platform took 

precedence for labels with MS as the platform, followed by (2) symbol matches with MS as the 

platform.  This was followed by (3) an exact UniProt ID to a SomaScan row, followed by (4) a 

symbol match with SomaScan as the platform.  In this way, unmatched proteins across any pair 

of networks were minimized. 

 

 

Network Preservation 

 

Pairwise, directional preservation between CSF and plasma, plasma and CSF, and brain to 

each of the biofluid networks and vice versa was performed using the WGCNA (v1.72-1) 

modulePreservation function with 500 permutations after harmonizing protein assay labels as 

described above.  The same 4-point rubric described above was used for matching (relabeling) 
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brain network member labels before performing module preservation.  Zsummary composite z 

score for 8 underlying network parameters was calculated and visualized by circular heatmap as 

significance (–log10(Benjamini-Hochberg adjusted p values), corresponding to the Zsummary 

scores obtained. 

 

 

Cell Type Marker Enrichment Analyses 

 

Cell type-specific enriched marker gene symbol lists were used as previously published to 

perform a Fisher’s exact one-tailed test for enrichment(2).  Benjamini-Hochberg correction was 

applied to all resulting p values. 

 

 

Network Module Overlap Comparison 

 

Overrepresentation analysis (ORA) was performed to find gene product overlap significance of 

modules in the current two-platform network with those of the 38-module CSF network 

published previously using three platforms(10), and with a 44-module brain network(2).  Two-

tailed hypergeometric overlap was used to obtain significance (p) for each module pair across 

networks.  P was further FDR-corrected using the Benjamini-Hochberg method and considered 

as –log(FDR).  External SomaScan data (4,137 human protein targets on a custom platform) for 

a serum network were obtained from Emilsson et al.(24).  Data on serum network module 

membership of gene products was used to perform ORA as above for determining overlap with 

CSF network modules.  These measures of overlap significance were visualized using a custom 

in house script, or with our circular network visualization script.  Serum network module 
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ontologies were assigned in consistent fashion with the CSF network module ontologies based 

on GO analysis. 

 

 

Association Analyses in the AGES-Reykjavik Cohort 

 

The Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study cohort is a single-center 

prospective population-based study of deeply phenotyped subjects (n=5,764, mean age 

76.6 ± 5.6 years) and survivors of the 40-year-long prospective Reykjavik study, an 

epidemiologic study to understand aging in the context of gene/environment interaction by 

focusing on four biologic systems: vascular, neurocognitive (including sensory), 

musculoskeletal, and body composition/metabolism(25). Alzheimer’s diagnosis at AGES-

Reykjavik baseline and a 5-year follow-up visit was carried out using a three-step procedure as 

previously described(49). The follow-up time was up to 16.9 years, with the last individual being 

diagnosed with AD 16 years from baseline. The AGES study was approved by the NBC in 

Iceland (approval number VSN-00-063), the National Institute on Aging Intramural Institutional 

Review Board, and the Data Protection Authority in Iceland.  

 

The proteomic measurements in AGES have been described in detail elsewhere(50) and were 

available for 5,457 participants. Briefly, a custom version of the SomaScan platform (Novartis 

V3-5K) was applied based on the slow-off rate modified aptamer (SOMAmer) protein profiling 

technology including 4,782 SOMAmers that bind to 4,137 human proteins. Serum was prepared 

using a standardized protocol(51) from blood samples collected after an overnight fast and 

stored in 0.5 mL aliquots at –80°C. Serum samples that had not been previously thawed were 

used for the protein measurements. All samples were run as a single set at SomaLogic Inc. 
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(Boulder, CO, US). All SOMAmers that passed quality control had median intra-assay and inter-

assay coefficient of variation (CV) < 5% or equivalent to reported variability.  

 

Protein measurement data were centered, scaled and Box-Cox transformed, and extreme 

outliers excluded as previously described(50). Synthetic CSF protein modules were calculated 

in serum protein data using the moduleEigengenes function from the WGCNA R package(52). 

The synthetic CSF protein modules were limited to the top 20% proteins in each module ranked 

by kME value except for the two smallest modules (M33 and M34) for which a cutoff of kME >= 

0.8 was used. The associations of the synthetic CSF protein modules in serum with prevalent 

(n=167) and incident (n=655) AD were examined via logistic regression and Cox proportional-

hazards model, respectively. All models included adjustment for age and sex, and a secondary 

model additionally included APOE e4 allele count. Individuals with prevalent non-AD dementia 

(n=163) were excluded from all analyses, and those with prevalent AD were excluded when 

testing for associations with incident AD. Empirical p values were calculated based on results 

obtained by 1,000 permutations of protein module membership.  

 

 

Association Analyses in the ARIC Cohort 

The Atherosclerosis Risk in Communities (ARIC) cohort is a community-based study that 

enrolled 15,792 participants between 1987 and 1989 from Jackson MS; the northwestern 

suburbs of Minneapolis, MN; Forsyth County, NC; and Washington County, MD.  Participants 

were initially evaluated every three years in-person.  Plasma proteomic data in this study were 

from ARIC visit 2 (N=11,596).  Institutional review boards approved the study protocols at each 

participating center.  Additional details on the ARIC cohort, dementia ascertainment, and the 

SomaScan proteomic measurements in ARIC are described elsewhere(26, 38).  A total of 5,284 

SOMAmers were used in the analysis.  Association analyses in plasma were conducted in the 
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same fashion as the analyses in serum in AGES.  Association of incident dementia with module 

plasma eigenproteins was performed using Cox regression models.  Three models were tested: 

a model unadjusted for covariates; a model adjusting for demographic variables (baseline age, 

sex, and race-center); and a model adjusting for demographic variables (baseline age, sex, 

race-center, education), cardiovascular risk factors (body mass index, diabetes, hypertension, 

smoking status), and kidney function (eGFR-creatinine).  Adjusted models were also tested with 

and without APOE included in the models.  P values were adjusted using a false discovery rate 

procedure.  Empirical p values were also calculated based on results obtained by 1,000 

permutations of protein module membership. 

 

 

Sample-based Network (sWGCNA) for Sample Clustering/Classification 

 

A sample network classifying the 296 CSF samples into ten modules was constructed using 

WGCNA (v1.72-1).  The WGCNA blockwiseModules function was run on the top ten protein 

assay hubs of 33 out of the 34 modules in the joint SomaScan-MS CSF protein network, as 

ranked by intramodule kME (bicor calculation).  Due to its large and non-specific nature, module 

1 was excluded from the calculation.  Samples were assigned to ten modules using the 

following blockwiseModules function parameters: power=8, deepSplit=2, minModuleSize=10, 

mergeCutHeight=0.07, TOMdenom=”mean”, bicor correlation, signed network type, PAM 

staging and PAM respects dendro as TRUE, and a maxBlockSize larger than the total number 

of samples.  Module memberships were then iteratively reassigned to enforce kME table 

consistency, as previously described(2).  Sample modules and their organization of top ten 

protein assay hubs from the prior protein network were then visualized as a heatmap using the 

ComplexHeatmap package (v2.14.0) pheatmap function, clustering hierarchically using 

correlation distance only within sample modules. 
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UMAP Visualization of Independently Clustered Samples 

 

Python v3.10 was leveraged by the R reticulate package (v1.28) to run UMAP to visualize the 

similarity of samples in two-dimensional manifold space.  Samples were represented by the Z-

transformed top 10 hub proteins of the same 33 (of 34) protein network modules used for the 

sample-based network generated using WGCNA as described above.  Thus, input was a 330 x 

296 matrix.  The ExtraTreesClassifier from sklearn.tree was trained on 70 percent of the data, 

with n_estimators=80, 8 min_samples_leaf, max_features=’auto’, bootstrap=True, and 

class_weight=’balanced’, and generated leaves to which samples were assigned.  These were 

embedded in low-dimensional space by the UMAP function using a hamming metric.  Later, the 

same process was repeated with only AD samples from AD sample-containing sWGCNA 

clusters, adding in the Z-transformed abundance profiles for the same hub proteins in the 

atomoxetine (ATX) drug trial dataset, and restricting from the 330 top 10 hubs of the modules 

considered the 315 proteins available in both the ATX and 296-sample cohort. 

 

 

Atomoxetine Dataset Integration 

 

CSF samples collected longitudinally from patients enrolled in a drug repurposing trial of 

atomoxetine (ATX) for mild cognitive impairment due to Alzheimer’s disease were sequenced 

and quantified for proteins both by TMT-MS as previously described(27) and SomaScan 7k 

modalities.  Data pre-processing for both TMT-MS and SomaScan ATX datasets was conducted 

in the same fashion as described above.  Briefly, TMT data were batch corrected, and both MS 

and SomaScan data were regressed to remove blood contamination in a subset of samples. 
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Then, the SomaScan data were double-filtered both for maximum values below LOD (<75%, or 

at least 22/87 values above LOD), and for S:N achieving the most improved cross-platform 

correlation with a minimum of protein assays removed, which for the ATX dataset was a ratio of 

0.45 (noise-subtracted signal mean) to 1.  The filtering resulted in a two-pass filtered SomaScan 

matrix of 4,721 x 87 (assays x samples), and the TMT-MS data with missingness controlled to 

<75% was a matrix of 2,286 x 87.  These data were combined, with any TMT-MS isoforms 

missing measurements (N=999) removed, and the remaining 6,008 assays plus isoform 

measurements were harmonized using transposed TAMPOR as described above leveraging 

531 common proteins measured on both platforms with no missing values as a placeholder for 

TAMPOR-required global internal standard measures. 

 

Following harmonization of the two-platform ATX dataset, the following calculations were 

performed: (1) response within patient, calculated as log2(drug-treated/baseline or placebo) 

(N=34) and log2(placebo/baseline) (N=18) where the protein abundance matrix was determined 

for all 6008 proteins or assays in the no-missing harmonized data; and (2) synthetic 

eigenproteins based on the top 20 percent of kME (bicor)-defined hubs of the 34-module 

network build on the 296-sample cohort with a minimum of four modules members for (a) the full 

width data of 87 samples, and (b) for the log2(ratio) (N=34+18) drug and placebo response 

matrix (6,008 x 52) resulting from calculation (1) (Extended Data). 

 

 

M20 ATX Drug Response Predictor Using Multiprotein Ratios from Drug-naïve CSF 

 

The synthetic eigenprotein for longitudinal baseline-subtracted M20 response to 6 months of 

drug treatment was calculated as described in the above section, calculation (2)(b), for the 34 

patients who completed the trial.  The response in one patient (ATX-001-046) was the only 
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outlier more than 4.5 SD from the mean response of the M20 synthetic eigenprotein, and this 

individual’s samples were not considered in further analyses.  The remaining 33 M20 response 

values constituted the target for prediction.  To identify M20 response predictors, a matrix of 

candidate multiprotein predictors was assembled as follows:  eighteen placebo samples without 

washout effect due to the crossover study design in the ATX cohort and the remainder of the 33 

non-outlier naïve samples preceeding drug treatment—deriving from baseline samples—served 

as paired drug-naïve samples for the 33 baseline-subtracted samples.  Their two-platform 

harmonized log2(abundance) matrix for all available MS plus SomaScan measures (N=6,008), 

and 32 synthetic eigenproteins successfully calculated in these naïve samples from the 34 

eigenproteins as template, was subjected to samplewise subtraction of the median 

log2(abundance) of each sample’s 6,040 (N=6,008+32) values. Then, the matrix was subjected 

to a scaling normalization by multiplying all values in each column (sample) by a scale factor S, 

such that the sum of the squares of the values in each column becomes 1.0. This operation 

ensures that the data is scaled appropriately and is essential for subsequent analysis and 

follows the preparation of abundance matrix data for unweighted multifactor predictor signature 

calculations described previously(53, 54). Subsequently, scaled log2-transformed data was 

unlogged by exponentiating the values (raising 2 to the power of each value), resulting in high-

precision, unlogged, scaled normalized values for all protein and synthetic eigenprotein 

measurements that could contribute to predictors calculated based on these data.  

Forty predictor candidate individual proteins were selected from the top 20 positive and top 20 

negative correlates using bicor between the harmonized pre-scaled 6,008 proteins plus 32 

synthetic eigenproteins and the M20 response.  Then positive correlates were used as 

numerator factors and negative correlates as denominator factors in the assembly of ratios of up 

to 4 summed numerators divided by up to 4 summed denominators. Every 1:1, 2:2, and 3:3 

combination ratio was calculated, and a random 10% of all possible 4:4 combination ratios were 

calculated for a total of 3.66 million ratios representing candidate predictors. The top 
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multiprotein predictor ratio was identified by correlation using bicor, sorting all 3.66 million rho 

values. 

 

 

SomaScan SOMAmer Overlap with CSF Protein Quantitative Trait Loci (pQTLs) 

 

Overlap of SomaScan-measured CSF pQTLs as previously described(19) with human 

SOMAmers after each QC step was counted and visualized using the venneuler R package 

(v1.1-0) venneuler function. 

 

 

 

Module Quantitative Trait Loci (mQTL) Analysis 

 

Participants were genotyped using the Affymetrix Precision Medicine Array. Quality control of 

genotypes was performed using Plink v1.90(55). We excluded samples with genotype missing 

rate >10% and variants meeting any of the following criteria: genotype missing rate >10%, minor 

allele frequency <5%, Hardy-Weinberg equilibrium p value < 1 x 10!". Genotypes were imputed 

to the 1000 Genome Project Phase 3 (56) using the Michigan Imputation Server (57) with mixed 

population parameter. SNPs with imputation 𝑅# > 0.3 were retained for analysis. To identify 

genetic variants associated with a protein co-expression module, we modeled the first 

eigenprotein of the protein module as a function of genotype, adjusting for sex, age, and cognitive 

diagnosis using a univariate linear mixed model (GEMMA (58)). To control for false positives due 

to population stratification or other factors, we performed genomic control adjustment of p 

values(23). Variants associated with a module at an adjusted genome-wide significance (p 

<5 × 10!$) were categorized as either cis- or trans- protein module quantitative trait locus 
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(modQTL). cis-mod-QTL was defined as a SNP within 1 megabase of any of the genes in the 

corresponding module; otherwise, they were categorized as trans-mod-QTLs.   

 

 

CSF pQTL Analysis by Platform 

 

To ensure the homogeneity of the study population, only individuals of European ancestry were 

included in this analysis. Cryptic relatedness was checked and none was identified. To infer 

potentially hidden confounding variables, we performed surrogate variable analysis using the 

sva package in R (59). We regressed out the effects of age, sex, and cognitive diagnosis from 

the proteomic profile before using it for surrogate variable analysis. For each dataset, we 

determined the number of surrogate variables (SVs) using the sva() function. To identify cis-

pQTLs in each dataset (TMT, SOMA_Retained and SOMA_Discarded) for 242 European 

individuals, we used linear regression implemented by PLINK2 (55). Sex, age, cognitive 

diagnosis, first 10 genetic principal components and SVs (specifically 7 SVs for TMT profiles; 19 

SVs for SOMA_Retained, and 6 SVs for SOMA_Discarded) as covariates for each dataset 

separately. We used a 500kb window upstream and downstream of the gene for QTL analysis. 

Multiple testing was adjusted with false discovery rate (FDR).  Sites with FDR < 0.05 were 

considered significant.  

 

 

Other Statistics 

 

All statistical analyses were performed in R (v4.0.2).  Boxplots represent the median, 25th, and 

75th percentile extremes; thus, hinges of a box represent the interquartile range of the two 
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middle quartiles of data within a group.  The farthest data points up to 1.5 times the interquartile 

range away from box hinges define the extent of whiskers (error bars).  Correlations were 

performed using the biweight midcorrelation function as implemented in the WGCNA R package 

or Pearson correlation.  Comparisons between two groups were performed by two-tailed t test. 

Comparisons among three or more groups were performed with Kruskal-Wallis nonparametric 

ANOVA or standard ANOVA with Tukey post hoc pairwise comparison of significance.  P values 

were adjusted for multiple comparisons by false discovery rate (FDR) correction according to 

the Benjamini-Hochberg method where indicated.  Z score conversion of normalized protein 

data and normalized protein eigenproteins or synthetic eigenproteins were calculated as fold of 

standard deviation from the mean. 
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SNP CHR BP A1 

Nearest 
Coding Gene 

to SNP BETA P value Module mod-QTL 

Significant 
after GC 

Correction* 

rs429358 19 45411941 C APOE -0.07 1.0E-52 
M33 Oxidant Detoxification/MAPK 

Signaling trans yes 
rs429358 19 45411941 C APOE -0.05 1.3E-27 M26 Neddylation trans yes 

rs10819083 9 128660207 C PBX3 -0.03 1.1E-08 M32 L1CAM/Axon Development trans yes 
rs13409992 2 16575331 T CYRIA -0.05 1.4E-08 M9 Ambiguous trans yes 
rs429358 19 45411941 C APOE 0.07 7.0E-64 M34 Mitochondrion trans yes 
rs6442288 3 11847081 T TAMM41 0.05 4.5E-08 M13 Immunoglobulins trans no 

rs539717210 7 23347402 A MALSU1 0.06 4.8E-08 M16 Ambiguous trans no 
rs11745580 5 149378425 T TIGD6 0.04 2.9E-08 M27 Nucleosome trans no 
rs2887087 2 33695073 T RASGRP3 0.02 3.5E-09 M20 Glycolysis/Redox Homeostasis trans yes 
rs736334 22 51139178 T SHANK3 0.03 2.8E-08 M25 Ambiguous trans No 

 

Table 1. CSF Module Quantitative Trait Loci.  SNP, single nucleotide polymorphism; CHR, chromosome; BP, base pair; A1, allele; 

mod-QTL, module quantitative trait locus; GC, genomic control.  *”Yes” indicates genome-wide significant level at p<5 x 10-8 
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 AGES-Reykjavik ARIC 
Module Beta SE P Beta SE P 

M34 Mitochondrion 0.86 0.03 3.7E-232 0.71 0.02 1.5E-283 

M33 Oxidant Detoxification/MAPK Signaling -0.88 0.02 3.6E-272 -0.84 0.02 ~0 

M26 Neddylation -0.10 0.03 2.7E-04 -0.63 0.02 4.7E-217 
 

Table 2. Association of CSF APOE e4 module synthetic eigenproteins in blood with APOE e4 in the AGES-Reykjavik and 

ARIC cohorts.  SE, standard error. 
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 Incident AD (AGES) or Dementia (ARIC) Prevalent AD 
Module Model HR Lower CI Upper CI P emp P OR Lower CI Upper CI P emp P 

AGES-Reykjavik (N=5,457)            

M34 Mitochondrion No APOE 1.23 1.14 1.32 1.8E-07 <1.0 E-03 1.25 1.07 1.46 4.0E-03 0.021 

M34 Mitochondrion APOE 1.05 0.96 1.14 0.31 0.58 1.00 0.84 1.19 0.99 0.99 

M33 Oxidant Detoxification/MAPK Signaling No APOE 0.81 0.75 0.88 2.6E-07 3.0E-03 0.70 0.60 0.82 6.2E-06 1.0E-03 

M33 Oxidant Detoxification/MAPK Signaling APOE 1.01 0.92 1.11 0.86 0.94 0.89 0.74 1.08 0.24 0.38 

M5 Wnt-Frizzled Signaling/Protein Transport No APOE 0.86 0.79 0.93 2.0E-04 0.03 1.04 0.88 1.22 0.64 0.67 

M5 Wnt-Frizzled Signaling/Protein Transport APOE 0.87 0.80 0.95 1.1E-03 0.03 1.09 0.92 1.29 0.33 0.61 

M31 Actin Cytoskeleton No APOE 0.85 0.78 0.92 5.9E-05 0.02 0.90 0.77 1.06 0.20 0.27 

M31 Actin Cytoskeleton APOE 0.89 0.82 0.97 6.8E-03 0.12 0.95 0.80 1.12 0.53 0.69 

            

ARIC (N=11,596)        

M33 Oxidant Detoxification/MAPK Signaling No APOE 0.88 0.84 0.92 2.1E-09 <1.0 E-03      

M33 Oxidant Detoxification/MAPK Signaling APOE 0.99 0.95 1.04 0.67 0.85      

M26 Neddylation No APOE 0.89 0.85 0.93 3.0E-07 4.0E-03      

M26 Neddylation APOE 0.98 0.94 1.03 0.43 0.71      

M34 Mitochondrion No APOE 1.10 1.06 1.14 2.1E-06 5.0E-03      

M34 Mitochondrion APOE 0.99 0.95 1.04 0.75 0.88      

M18 Ambiguous No APOE 1.10 1.05 1.16 9.0E-05 0.03      

M18 Ambiguous APOE 1.12 1.06 1.17 8.4E-06 0.02      

            

            

 
Table 3.  Association of CSF module synthetic eigenproteins in serum with incident and prevalent AD in the AGES-

Reykjavik cohort and in plasma with incident dementia in the ARIC cohort.  In AGES-Reykjavik incident AD (n=655) was 

determined a median of 13 years after baseline measurement.  In ARIC, incident dementia (n=2270) was determined a mean of 21 

years after baseline measurement.  Further information on the cohorts is provided in Supplementary Tables 10 and 12.  

Associations were performed with and without inclusion of APOE in the model.  In AGES-Reykjavik, the model was adjusted for age 
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and sex.  In ARIC, the model was adjusted for demographic variables, cardiovascular risk factors, and kidney function.  Empirical p 

values were calculated after module membership permutation. 
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Figure 1.  Study Overview.  Cerebrospinal fluid (CSF) was sampled from 140 controls and 160 

AD participants as defined by their CSF tTau/Ab1–42 ratio.  CSF proteomes for each person were 

obtained by tandem mass tag mass spectrometry (TMT-MS) and SomaScan 7000 assays.  

After data quality control and cross-platform comparison, data from both platforms were 

integrated to generate an AD CSF protein co-expression network.  Genetic influence on the 

network was assessed by module quantitative trait locus analysis (modQTL).  The network was 

compared to a blood network as described in Emilsson et al.(24), and association of CSF 

module proteins in blood with risk of AD was assessed in the AGES-Reykjavik and ARIC 

studies.  The CSF AD network was used to assess the effect of pharmacologic intervention with 

atomoxetine on disease-relevant pathophysiology.  Finally, key hub proteins from across the 

network were used to cluster participants into groups based on similarity in their CSF proteomic 

features regardless of their CSF Ab and tTau status.  
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Figure 2.  Cross-Platform Proteomic Comparisons.  (A) Overlap of unique proteins 

measured by TMT-MS and SomaScan in CSF across 300 individuals after quality control 

filtering in both platforms.  Numbers represent counts of gene symbols.  Only unique gene 

symbol overlap was considered.  (B) Distribution of within-subject correlation of protein 

measurements shared between platforms.  Measurements were required to have a minimum of 

74 total observations and 3 measurements per diagnostic group in each platform (n=1274).  The 

vertical red line indicates the median correlation.  (C-E) Illustration of AD-relevant proteins that 

are strongly correlated between platforms (C), poorly correlated between platforms (D), and 

variably correlated depending on the SOMAmer used for correlation (E).  (F) Differential 

abundance of proteins in AD as measured by SomaScan (left) and MS (right).  Proteins 

increased in AD are located in the upper right quadrant.  (G) Overlap of significantly increased 

(top) or decreased (bottom) proteins in each platform.  (H) The six different SOMAmers for C3 

protein highlighted in the SomaScan differential abundance volcano plot shown in panel (F) 

(left), and correlation to the MS C3 measurement for each SOMAmer (right).  Significance of 

differential abundance was determined at p<0.05.  Correlations were performed using Pearson 

correlation with Student’s test for significance.  APOE, apolipoprotein E; APP, amyloid-b 

precursor protein; C3, complement C3; CHI3L1, chitinase-3-like protein 1; CHIT1, 

chitotriosidase-1; GAP43, neuromodulin; HEPACAM, hepatic and glial cell adhesion molecule; 

NRGN, neurogranin; PARK7, Parkinson disease protein 7; rel. abund., relative abundance; 

RFU, relative fluorescence units; SERPINA3, a-1-antichymotrypsin; SMOC1, SPARC-related 

modular calcium-binding protein 1.  
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Figure 3.  Multi-Platform AD CSF Protein Co-Expression Network.  (A) A protein co-

expression network of 5242 protein assays from SomaScan and TMT-MS platforms measured 

across 296 individuals after outlier removal identified 34 co-expression modules capturing 

different biological processes (outer ring).  The module eigenprotein, or first principal component 

of module expression, was correlated with AD endophenotypes including CSF levels of total tau 

(tTau), tau phosphorylated at residue 181 (pTau181), amyloid-b 1-42 levels (Ab1–42), tTau/Ab1–42 

ratio, and Montreal Cognitive Assessment (MoCA, higher scores reflect better cognitive 

function).  Module eigenproteins were also correlated with age, sex, and number of APOE e4 

alleles (APOE e4 dose).  Correlations were considered significant at an absolute value of 

approximately r=0.1 (p=0.05, dashed lines in legend).  Modules were tested for preservation in a 

previous CSF network generated on 36 individuals(10) (CSF36) by overrepresentation analysis 

(ORA) and network preservation statistics (preservation), as well as an AD brain network(2) 

(brain ORA, brain preservation).  Green shading indicates preservation at varying degrees of 

significance.  Module eigenproteins were tested for significant change in AD (AD-CT EP), 

significant change in AD in the CSF36 network (CSF36 synth EP), and significant change in AD 

in the brain network (brain synth EP).  Color shading indicates direction and level of significance 

(blue=decreased in AD, green=increased in AD, gray=not calculated).  Modules were also 

tested for overlap of protein membership with brain cell type specific protein markers for 

neurons, oligodendrocytes (oligo), astrocytes, microglia, and endothelia.  Color shading 

indicates degree of significant overlap.  L1CAM, neuronal cell adhesion molecule L1; ECM, 

extracellular matrix.  (B) The top 100 proteins by intramodule correlation for the M4 

Autophagy/Ubiquitination module.  Larger circles represent stronger correlation, with the largest 

circles representing module “hub” proteins.  Proteins are outlined by the proteomic platform by 

which they were measured.  (C) M4 module eigenprotein levels in AD compared to controls, and 

correlation with AD endophenotypes.  Correlations were performed with bicor.  Differences 
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between groups were assessed by t test or one-way ANOVA.  For overlap and preservation 

tests, see Methods.  
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Figure 4.  CSF AD Network Modules Correlated with APOE e4 Dose.  (A-F) Protein module 

membership, eigenprotein levels in control and AD, and correlation with number of APOE e4 

alleles and AD endophenotypes for M26 Neddylation (A, B), M33 Oxidant detoxification/MAPK 

signaling (C, D), and M34 Mitochondrion (E, F).  Correlations were performed with bicor.  

Differences between groups were assessed by t test and adjusted for age and sex.  
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Figure 5.  Overlap of CSF AD Network With Blood Network.  CSF AD network modules were 

tested for overlap with serum network modules previously described in Emilsson et al.(24)  CSF 

M33 Oxidant detoxification/MAPK signaling, M26 Neddylation, and M34 Mitochondrion modules 

significantly overlapped with the serum M11 Lipoprotein module (red box).  Many other CSF 

modules overlapped with serum M27 Axon development/Semaphorin complex and M26 Neuron 

development/Ephrin signaling modules (blue box).  Significance of overlap was determined 

using overrepresentation analysis and Fisher exact test with Benjamini-Hochberg correction.  

Red indicates overrepresentation, blue indicates underrepresentation.  
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Figure 6.  AD CSF Network Modules Influenced by Treatment with Atomoxetine.  (A) 

Scheme for atomoxetine (ATX) trial design.  All participants had MCI due to AD and baseline 

CSF sampling.  One arm (n=20) was treated initially with ATX for 6 months, then moved to a 

washout phase, while the other arm (n=19) was treated initially with placebo for 6 months and 

then moved to ATX treatment.  The total trial length was 12 months, with CSF sampling at 

baseline, 6 months, and 12 months.  After dropout, a total of 34 ATX samples were compared to 

18 ATX-naïve samples, using ratios to baseline or placebo to assess within-subject treatment 
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effects.  The ATX washout samples were not analyzed.  (B) M20 Glycolysis/Redox Homeostasis 

eigenprotein levels in control and AD groups in the CSF AD network demonstrating increased 

M20 levels in AD.  (C) M20 levels after ATX treatment compared to ATX-naïve samples in the 

ATX trial cohort.  (D) Correlation of M20 response to ATX treatment with baseline or placebo 

levels of M20.  (E) M21 ECM/vasculature eigenprotein levels in control and AD groups in the 

CSF AD network demonstrating increased M21 levels in AD.  (F) M21 levels after ATX 

treatment compared to ATX-naïve samples in the ATX trial cohort.  (G) Correlation of M21 

response to ATX treatment with baseline or placebo levels of M21.  ATX treatment effects for all 

CSF network modules are provided in Supplementary Table 14 and Extended Data.  

Differences between groups were assessed by t test.  Correlations were performed using bicor 

and Pearson test.  
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Figure 7.  Grouping Individuals Based on CSF AD Proteome Network Features.  (A) 

Scheme for defining groups of people based on their proteomes.  CSF protein levels were 

measured by SomaScan and TMT-MS and used to construct a protein co-expression network.  

The top ten hub proteins from each module were then used to cluster individuals using the 

same hierarchical clustering algorithm used to construct the protein co-expression network, 

defining groups of people based on similarity across CSF network hub proteins.  (B) z scored 

relative protein abundance heatmap of the top ten hub proteins in each CSF network module, 

with individuals (n=296) grouped into ten clusters based on the similarity across hub proteins.  

Figures at the top represent each group, with underlines highlighting the three superclusters.  

Individuals are shaded based on the number of AD cases within the group as defined by CSF 

Ab and tau levels.  In addition to diagnostic category, measures of APOE e4 allele number (e4 

Dose; 0, 1, or 2), APOE risk (–1, e2/3; 0, e3/3, 1, e3/4; 2, e4/4), Montreal Cognitive Assessment 

(MoCA, higher scores indicate better cognitive function), CSF pTau181, CSF tTau, and CSF 

Ab1–42 are provided for each participant.  
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Supplementary Figure 1.  Correction of Batch Effects and Nuisance Variance.  (A) Multi-

dimensional scaling (MDS) analysis of the SomaScan data including experimental samples, 

buffer samples, calibrator samples, and QC samples (N=344 samples, 7596 assays).  Plates 

with significantly different background buffer signal are circled in red (left).  MDS analysis of 

SomaScan data after median buffer background signal difference correction in the outlier plates 

(right).  (B) MDS analysis of TMT-MS data before batch correction (left) and after batch 

correction using the global internal standard (right).  (C) MDS analysis of SomaScan data 
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filtering on only high signal-to-noise (S:N greater than 10 after background subtraction, n=1119) 

proteins and coloring samples by diagnostic status (left), the plate on which they were analyzed 

(middle), or the Emory study from which they were obtained (right).  (D) MDS analysis of 

SomaScan data for a 9-blood protein signature (top) or all proteins with S:N greater than 10 

(bottom) before (left) and after (right) regression of the data on the 9-blood protein eigenprotein.  

(E) MDS analysis of TMT-MS data for a 5-blood protein signature (top) or all proteins (bottom) 

before (left) and after (right) regression of the data on the 5-blood protein eigenprotein.  
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Supplementary Figure 2.  Signal-to-Noise and Missingness Control.  (A-C) Signal-to-noise 

(S:N) filtering.  (A) Correlation distributions between SomaScan and TMT-MS at different S:N 

thresholds applied to the SomaScan data.  The number of proteins used for correlation are 

provided in each plot, with a threshold of at least 75 observations required for correlation.  The 

red vertical line indicates the median correlation.  (B) Median correlation across different S:N 

thresholds applied to the SomaScan data.  The vertical dashed lines indicate S:N thresholds of 

0.3, 0.35, and 0.45.  (C) Overlap of CSF protein quantitative trait loci (pQTLs) with SOMAmers 

at different levels of filtering.  1722 out of 1961 SOMAmers with pQTLs (88%) were retained 

after filtering the data on limit of detection (LOD) and S:N greater than 0.3, which resulted in the 

removal of 44% of the SomaScan assays from further analyses.  If multiple SOMAmers to the 

same gene symbol had pQTLs, only one SOMAmer was counted in the analysis.  (D) Number 

of CSF proteins with pQTLs by platform.  For SomaScan, counts are separated by SOMAmers 

that were retained versus discarded after filtering on LOD and S:N thresholds.  The percentage 

of pQTLs out of the total number of proteins tested in each group is provided.  For TMT-MS, 

only proteins with no missing values were considered in the analysis.  Further information is 

provided in Supplementary Table 3.  (E, F) Missingness control.  (E) The number of protein 

assays at different levels of missingness in SomaScan (left) and TMT-MS (right) across 300 

CSF samples.  The number of SomaScan assays at different levels of missingness is given for 

filtering only on LOD (Pass 1) and filtering on both LOD and S:N thresholds (Pass 2).  (F) The 

percent of assays removed in SomaScan and TMT-MS data when controlling for missingness at 

50% (left) and 75% (right).  
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Supplementary Figure 3.  Ontology Analysis and Cross-Platform Correlation.  (A) 

Ontology analysis corresponding to the Venn diagram in Figure 2A.  The vertical red line 

indicates significant enrichment at a z score of 1.96.  Broad MSIG.C2, Broad Institute Molecular 

Signatures C2 database.  (B) Cross-platform correlation after filtering for significantly 
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differentially abundant proteins in either TMT-MS or SomaScan platforms.  The horizontal 

dashed red line indicated the median correlation without filtering on differentially abundant 

proteins in either platform.  The median correlation did not significantly increase when filtering 

on differentially abundant proteins in TMT-MS prior to correlation (TMT-MS.SomaScan) or in 

SomaScan prior to correlation (SomaScan.TMT-MS).  
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Supplementary Figure 4.  AD Brain Network Module Coverage and Network Module 

Platform Composition.  (A) Module percent coverage of a previously described AD brain 

protein network(2) by SomaScan and TMT-MS platforms, including coverage of proteins that 

show significant changes in abundance in AD within each module.  (B) Percent of assays in 

each CSF network module from SomaScan or TMT-MS measurements.  
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Supplementary Figure 5.  Prediction of ATX Response Using a Protein Ratio.  (A) Possible 

combinations of a four-protein ratio in ATX naïve individuals in which the numerator contained 

four proteins positively correlated with M20 response and the denominator contained four 
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proteins negatively correlated with M20 response were tested for correlation with the 

log2(ATX/naïve) M20 synthetic eigenprotein.  Distribution of correlations with M20 response is 

shown.  Red vertical line indicates the median correlation.  (B) Correlation for the ratio able to 

best predict M20 response (n=34).  One outlier is excluded from visualization.  UBE2L3, 

ubiquitin-conjugating enzyme E2 L3; CLIC1, chloride intracellular channel protein 1; BST1, 

ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 2; FBP1, fructose-1,6-bisphosphatase 1; IL9, 

interleukin-9; BPIFA2, BPI fold-containing family A member 2; TXNDC5, thioredoxin domain-

containing protein 5; B4GALT1, beta-1,4-galactosyltransferase 1.  (C) Variance partition on the 

M20 response illustrating that all the proteins in the ratio had strong covariance with the 

log2(ATX/naïve) M20 synthetic eigenprotein (M20 response; blue, positive correlation; red, 

negative correlation; MS, mass spectrometry measurement).  
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Supplementary Figure 6.  Multi-dimensional Data Reduction of Proteins and People.  (A) 

The top ten hub proteins from each network module were visualized in two-dimensional space 
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across participants by uniform manifold approximation and projection (UMAP).  Points are 

colored by network module as defined by the weighted co-expression network algorithm 

(WGCNA) used to construct the co-expression network.  (B) Participants were visualized in two-

dimensional space across the top ten hub proteins from each network module by UMAP.  

Participants are colored based on their group as defined by WGCNA.  (C) UMAP visualization of 

the ten participant groups as defined by WGCNA.  Groups 4, 5, and 9 are excluded for clarity.  

The baseline CSF proteomes of individuals treated with ATX were divided into tertiles based on 

degree of ATX response and projected onto the groups.  Green and magenta polygons highlight 

groups related in the hierarchical clustering network. 
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