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Abstract

Mendelian randomization is a popular method for causal inference with observational data that
uses genetic variants as instrumental variables. Similarly to a randomized trial, a standard Mendelian
randomization analysis estimates the population-averaged effect of an exposure on an outcome. Di-
viding the population into subgroups can reveal effect heterogeneity to inform who would most benefit
from intervention on the exposure. However, as covariates are measured post-”randomization”, naive
stratification typically induces collider bias in stratum-specific estimates. We extend a previously pro-
posed stratification method (the ”doubly-ranked method”) to form strata based on a single covariate,
and introduce a data-adaptive random forest method to calculate stratum-specific estimates that are
robust to collider bias based on a high-dimensional covariate set. We also propose measures to assess
heterogeneity between stratum-specific estimates (to understand whether estimates are more variable
than expected due to chance alone) and variable importance (to identify the key drivers of effect het-
erogeneity). We show that the effect of body mass index (BMI) on lung function is heterogeneous,
depending most strongly on hip circumference and weight. While for most individuals, the predicted
effect of increasing BMI on lung function is negative, it is positive for some individuals and strongly
negative for others.
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Introduction

Mendelian randomization uses genetic variants as instrumental variables to investigate the causal effect of

a modifiable exposure on a health outcome [18]. Randomness in the allocation of genetic variants from

parent to offspring can be exploited in a natural experiment, analogous to a randomized controlled trial

[43]. Under Mendel’s laws of segregation and independent assortment, between-sibling genetic associations

should be unaffected by confounding, and so genetic variants should only be associated with traits that they

affect. Under the further assumption that any causal pathway from the genetic variants to the outcome

passes via an intermediate exposure, a genetic association with the outcome is indicative of a causal effect

of the exposure on the outcome [19]. Empirical investigations have suggested that genetic variants behave

similarly to randomization at a population level for large well-mixed populations [44, 49], meaning that

Mendelian randomization can be used to make reliable causal inferences even in population-based datasets.

Randomized trials typically estimate an average causal effect, representing the effect of varying the

exposure averaged across all individuals in the population [1]. However, it may be that the effect of

the exposure on the outcome differs amongst individuals in the population. This is often addressed by

performing stratified analyses: dividing the population into subgroups and estimating separate effects in

each subgroup [53]. However, care is required, as stratification on a variable that is a common effect of

two variables (known as a collider) leads to a correlation between those two variables within the strata,

even if they are uncorrelated in the population as a whole [16]. Hence, while random allocation in a trial

should be independent of all potential competing risk factors in the overall trial population measured

at baseline, stratification on a variable that is an effect of randomization can lead to associations with

competing risk factors, and hence to bias in subgroup estimates (known as collider bias). In trials, a sharp

division is made between stratification on a pre-randomization or baseline covariate, versus stratification

on a post-randomization covariate; the latter have been called “improper” subgroup analyses, as they are

at risk of collider bias [55]. However, in Mendelian randomization, as the “randomization” event occurs at

an individual’s conception, all covariates (except for those not subject to the effects of genetic variation,

such as age, sex, and measures of ancestry) are post-randomization covariates.

Previous methodological investigations have shown that stratification on a covariate can lead to bias in

Mendelian randomization estimates [14, 23], and potentially misleading results due to stratification have

been observed in applied analyses [10]. Two approaches have been proposed for stratification that avoid

collider bias: the residual method [17] and the doubly-ranked method [50]. The residual method first

calculates the residual from regression of the covariate on the genetic variants, and stratifies based on the

residual values of the covariate. The doubly-ranked method first divides the population into pre-strata

based on levels of the genetic variants, and then forms strata by picking individuals from each pre-stratum

based on levels of the exposure. The residual method assumes that the effect of the genetic variants on

the exposure is linear and homogeneous in the population [41], whereas the doubly-ranked method makes
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a weaker ‘rank-preserving assumption’: that the genetic variants do not affect the ranking of participants

according to their levels of the exposure. In the context of non-linear Mendelian randomization, where we

form strata based on levels of the exposure, the doubly-ranked method has been shown to be less sensitive

to variation in the effect of the genetic variants on the exposure compared to the residual method [11].

In this paper, we extend the doubly-ranked method to consider stratification on a covariate, and

introduce a data-adaptive random forest method that allows feasible and efficient investigation of stratum-

specific Mendelian randomization estimates based on a high-dimensional set of covariates. We demonstrate

the utility of this method in a simulation study, and an applied analysis into the effect of body mass index

(BMI) on lung function. We show that the effect of BMI on lung function varies strongly, with negative

estimates for most individuals in the population, but positive estimates for others. We conclude by

discussing the relevance of these investigations for the design of clinical trials. The code for implementing

the effect heterogeneity analysis in MR is available at https://github.com/HDTian/RFQT.

Results

Random forest of Q trees method

We assume a single dataset with individual-level data on an exposure, an outcome, a genetic instrument,

and a high-dimensional set of candidate covariates, some of which may be effect modifiers. A Q tree

is formed by recursively dividing the population into groups (Figure 1). At each node, we form two

strata based on each covariate in turn, calculate stratum-specific Mendelian randomization estimates, and

choose the covariate that gives rise to the greatest value of the Q statistic, a measure of heterogeneity

amongst the stratum-specific estimates. We then divide into two nodes based on the stratification value

of that covariate. We stop when any one of the stopping rules is met. We then calculate Mendelian

randomization estimates in the terminal nodes using the ratio method. The causal interpretation of the

Mendelian randomization estimate is the total effect of the exposure on the outcome at the values of the

covariates that we stratify on, averaged across individuals in that stratum.

To reduce the variance of the estimator, increase stability, and smooth decision boundaries [9, 39], we

aggregate information from multiple de-correlated trees using a random forest of Q trees method (Figure

2). We divide the original dataset into a training subset and a testing subset. We then take multiple

bootstrap samples of the training subset. For each bootstrap sample, we calculate a Q tree as described

above, except that we only consider 40% of the candidate covariates at each node; this reduces correlation

between separate trees. We then obtain estimates for each individual in the training and testing subsets

for each tree, and average these estimates across the trees. We also calculate variable importance measures

for each covariate on out-of-bag individuals (i.e. those in the training subset who were not selected into

the bootstrap sample) averaged across trees. and perform a permutation test on estimates for individuals
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Training Set

Stratum 1 Stratum 2

Sub-stratum 1 Sub-stratum 2

Determine the 

splitting covariate 𝑴𝟏

Determine the 

splitting covariate 𝑴𝟐

Determine the 

splitting covariate 𝑴𝟑

…                             …

Lower 𝑀1 Upper 𝑀1

Lower 𝑀2 Upper 𝑀2

Lower 𝑀3 Upper 𝑀3 STOP if any stopping 

rule is triggered

Figure 1: Schematic diagram illustrating the process of constructing a single Q tree. At each node, the
covariate with the greatest value of the Q statistic is selected. The same covariate is allowed to be selected
multiple times at downstream nodes. In each split, two nodes are formed according to the values of the
covariate selected. The lower/upper M refers to the residual values in the lower/upper quantile region
when using the residual method, or the lower/upper M samples in each pre-stratum when using the
doubly-ranked method. The node will stop splitting when it meets any one of the stopping rules: (i) the
split will cause the node size to be less than 1000, (ii) the Q-statistic value of the chosen covariate is
less than 3.84 (the 95th percentile of a chi-squared distribution with one degree of freedom), or (iii) the
maximum tree depth for the node is larger than 5.
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Simulation Data

Training Set Testing Set

Set 1 Set NB… …

Bootstrapping

Random Forest of Q Trees

Build Q-tree
Obtain the OOB Errors 

and Variable Importance

Effect Prediction, MSE Calculation, and Further Investigation

Figure 2: Schematic diagram illustrating the process of constructing a random forest of Q trees. OOB:
Out-of-Bag. NB : The number of bootstrap samples and Q trees.

in the training subset to assess whether variability in estimates is greater than would be expected due to

chance alone. Further details are provided in the Methods.

Simulation study

We perform a simulation study to assess the performance of our methods. We consider three scenarios in

which the true causal effect of the exposure on the outcome varies in the population (see Methods). In

Scenario A, the effect varies based on covariates that are not colliders. In Scenario B, the effect varies

based on covariates, some of which are colliders. In Scenario C, the effect varies based on covariates that

are colliders in a complex and heterogeneous way. We compare three methods for forming strata: naive

stratification on covariates, the residual method, and the doubly-ranked method, and two methods for

constructing estimates: a single Q tree and the random forest of Q trees approach. We also compare

results with no stratification. In total, seven methods are compared across the three scenarios. For

each method, we calculate the mean squared error (MSE) of the individual-level estimates with varying

levels of effect heterogeneity. The effect estimates are compared with effect values calculated from the

data-generating model. We also calculate variable importance measures, and assess whether the true

effect modifiers are correctly identified. We calculate variable importance measures in two ways: first, by

comparing changes in MSE obtained from effects calculated using the data-generating model; and second,

based on changes in the predicted effect estimates. The second approach reflects typical practice outside

of a simulation setting, where the true effects are unknown.

Results in Figure 3 show that the stratification methods performed similarly in Scenario A, as the

covariates are not colliders, and so are independent of the instrument. The random forest approach

outperformed the single tree and no stratification approaches. In Scenario B, random forests implementing
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Figure 3: Results of the simulation study showing mean squared error (MSE) of estimates with weak
modification (strength of modification = 0.0) up to strong modification (strength of modification = 0.5).
Top panel: Scenario A (all effect modifiers are non-colliders); middle panel: Scenario B (some effect
modifiers are colliders); bottom panel: Scenario C (effect modifiers are colliders and influence the causal
effect in a complex way). The black line represents results with no stratification. In each scenario, data
are independently simulated 100 times, and the MSE represents the median value across simulations..

the residual and doubly-ranked stratification methods performed best, as the assumptions are satisfied for

both methods. In Scenario C, the random forest implementing the doubly-ranked stratification method

performed best at most levels of effect heterogeneity, particularly when the heterogeneity strength is strong.

The doubly-ranked method with random forest correctly identified the true effect modifiers, whether

variable importance measures were calculated using the true effects or not (Supplementary Figure S1).

A scatterplot of the predicted effects against the true effects showed a strong correlation (Supplementary

Figure S2).

Stratified estimates for effect of body mass index on lung function

We considered data on 167,121 unrelated male participants of European ancestries from UK Biobank, a

population-based cohort study of UK residents ages 40-69 at recruitment [47], who passed quality control

checks as previously described [2]. Our exposure was BMI, measured at study entry. Our outcome was
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Figure 4: Histogram of the predicted effects of BMI on lung function from the random forest of Q trees
approach using doubly-ranked stratification. Estimates represent the change in lung function (litres) per
1 kg/m2 higher genetically-predicted BMI.

forced expiratory volume in 1 second (FEV1), also measured at study entry. Individuals were allowed up to

three attempts to breathe into a spirometer; the largest recorded value was taken as the measure of FEV1.

We considered 28 candidate covariates, including the exposure itself as a covariate (Supplementary Table

S1). Our genetic instrument was taken as a weighted score based on 94 uncorrelated genetic variants

previously shown to be associated with BMI at a genome-wide level of significance (p < 5 × 10−8) in

the Genetic Investigation of ANthropometric Traits (GIANT) consortium, before the inclusion of UK

Biobank in the consortium [29]. The score explained around 2% of the variability in BMI in UK Biobank

participants. We took two-thirds of participants as the training subset, and one-third as the testing subset,

and obtained estimates using the random forest approach and the doubly-ranked stratification method,

averaging over 200 Q trees for bootstrapped samples of the training set. All estimates represent change in

FEV1 measured in litres per 1 kg/m2 increase in genetically-predicted BMI.

A histogram of the individual-participant estimates is shown as Figure 4. We see that the distribution

of estimates is positively-skewed, with most individuals having a negative estimate (i.e. higher BMI reduces

lung function). Some individuals have a slight positive estimate (i.e. higher BMI increases lung function),

and some individuals have a more negative estimate. There was strong evidence indicating that estimates

were more variable than would be expected due to chance alone (p < 0.001, Supplementary Figure S3).

Variable importance scores for the 28 covariates are shown in Supplementary Figure S4. The covariates

with the highest scores were diastolic blood pressure, hip circumference, monocyte count and weight. In

contrast, height was one of the lowest ranking covariates. For eight of these covariates, we divided the

full dataset into tenths based on that covariate using the doubly-ranked method, and calculated stratum-

specific Mendelian randomization estimates within each tenth of the population. Estimates are illustrated

in Figure 5.

We see that stratum-specific estimates for low values of hip circumference are compatible with the

null, whereas estimates for greater values of hip circumference are negative, with some statistical evidence
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for heterogeneity in estimates (p = 0.006). This suggests that, for strata of the population with narrow

hip circumference, BMI has a neutral average effect on lung function; but for strata of the population

with wider hip circumference, increases in BMI lead to reduced lung function. A similar pattern was

observed for weight and BMI. Trend tests indicated some evidence for a negative trend in estimates for

hip circumference (p = 0.00001), weight (p = 0.002), and BMI (p = 0.006). In contrast, for height, there

was no evidence of heterogeneity in estimates across strata, with negative point estimates in all strata

(although confidence intervals overlapped the null for most strata).

More complex stratification patterns can be illustrated by plotting a decision tree. The decision tree

fitting the covariate information and the predicted effects is depicted in Figure 6. The primary splitting

variables for the main node are hip circumference and diastolic blood pressure, which aligns with the

variable importance analysis.

Discussion

In this paper, we have presented a non-parametric stratification method for Mendelian randomization

based on a single covariate, the doubly-ranked method. We have then incorporated the stratification

method into a data-adaptive approach that provides stratified estimates across a high-dimensional set of

covariates. We have demonstrated the validity of our method in a simulation study, and implemented the

method to show heterogeneity in the effect of BMI on lung function. We have also developed measures

to assess variable importance, and to assess whether variability in individual estimates is stronger than

would be expected due to chance alone.

Our applied analysis provides intriguing insights into the effect of BMI on lung function. A previous

Mendelian randomization investigation demonstrated negative effects of BMI on FEV1, as well as other

measures of lung function, and a positive effect on risk of asthma [40]. Another investigation found negative

Mendelian randomization estimates of BMI on FEV1 that attenuated with older age [35]. We were able to

show evidence that the effect of BMI on FEV1 is decreasing in BMI, but that it depends more strongly on

hip circumference and weight, and less strongly on height. Taking these results at face value, this indicates

that BMI has a neutral average effect on lung function in narrowly-built individuals, but a negative average

effect in more broadly-built individuals. This is plausible, as the lung function of a slimmer individual

may benefit from additional mass which increases physical lung capacity. However, lung function is likely

to be impaired by additional mass for a plumper individual, particularly if the additional mass represents

fat mass rather than muscle mass.

More generally, our method could have applications for understanding disease aetiology, particularly

for the effects of complex traits that have competing effects on an outcome. There are also potential

applications in terms of public health, to identify groups of the population who would benefit from an

intervention, and precision medicine, to identify individuals who would benefit from a specific treatment.
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Figure 5: Stratum-specific estimates (error bars represent 95% confidence intervals) for the effect of BMI
on lung function in deciles of the population stratified on covariates using the doubly-ranked method. The
Q statistic is a measure of heterogeneity in the stratum-specific estimates.
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Figure 6: Decision tree illustrating the strata constructed by the random forest method, and the splitting
criterion at each node. Values in boxes represent the average predicted treatment effect for individuals in
the given node, and the proportion of the overall testing subset in that node.
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The latter is most relevant to drug-target Mendelian randomization, where the exposure represents a target

for pharmacological intervention [22, 13]. While ultimate arbiter of causation is the randomized trial, trials

are expensive and slow to run. Our investigation can help guide trial design to focus on recruiting the most

relevant population subgroups. Additionally, results of subgroup analyses in randomized trials are often

controversial. Given the number of possible subgroup analyses that could be chosen, subgroup analyses

can be subject to selective reporting and multiple testing [31]. Our method could be used to validate

findings from subgroup analyses of randomized trials.

While the approach for stratification that we present has some novel aspects, it is a development of

established techniques. Classification and regression trees, similar to the Q tree considered here, are a staple

method of machine learning [24], and random forest of interaction trees have been considered previously for

investigating effect heterogeneity in clinical trials [45, 46] and in Mendelian randomization [54]. Tree-based

methods for causal inference, such as causal trees or causal forests, have been developed for observational

studies [3, 52]. These methods typically assume the unconfoundedness condition [36], which means that

all confounders are measured. In situations where confounding is a concern, instrumental variable (IV)

methods can provide a natural solution. Recently, a forest for IV regression has also been discussed [4].

However, when dealing with complex scenarios where some effect modifiers may be downstream effects of

the exposure, the current causal (or IV regression) tree and forest methods may not adequately address

collider bias and could produce severe estimation bias, particularly if the variables used for splitting in

the tree are either colliders or mediators between the exposure and the outcome [26]. The Q tree that we

present is conceptually identical with other tree-based methods, but differs in its implementation as it is

based on a Q statistic. The Q statistic allows a more flexible comparison of stratum-specific estimates, for

example, to account for variability in the genetic effect on the exposure, as well as differential precision

in stratum-specific estimates. The measures of variable importance and the permutation test that we

developed in this work based on Q statistics performed well in the context of our examples.

Whereas the performance of most machine learning algorithms can be assessed directly in a testing

subset, individual-level causal effects cannot be known outside of a simulation setting. This is in contrast

to a typical prediction problem, where we can compare the predicted values of the outcome to its observed

values. As the individual-level causal effects cannot be observed, we cannot know how well the random

forest approach performs in a real-data example, as we do not know the ground truth. This means that

hyperparameters, such as the minimum size of terminal node, cannot be optimally tuned to a particular

applied dataset. However, in the simulation study, the variable importance measures were able to identify

the key effect modifiers even without knowledge of the true effects.

There are several methodological limitations to this work. First, we create a random forest, averaging

over trees that divided the population based on different covariates. While this approach will generally

result in improved performance when the causal effect of the exposure depends on several covariates, it will
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perform less well if there is only one true effect modifier compared with a simpler approach stratifying on

that covariate. Second, in calculating Mendelian randomization estimates, we make several assumptions

in terms of linearity and homogeneity (or monotonicity) within strata. As Mendelian randomization

estimates represent the impact of a lifelong shift in the distribution of an exposure [20], we generally

do not encourage an overly literal interpretation of Mendelian randomization estimates as causal effects

that are achievable in practice [12]. Additionally, Mendelian randomization estimates may depend on the

specification of the Q tree, the causal interpretation of the Mendelian randomization estimate depends

on the choice of stratifying covariates. We assume that the relative magnitude of different Mendelian

randomization estimates in subgroups is indicative of the relative magnitude of the effect of intervention

on the exposure in the same subgroups in practice. Third, all the covariates that we have considered are

continuous variables. While the doubly-ranked method can be used for a discrete covariate, caution should

be taken, particularly when dividing into a large number of strata if the covariate takes a small number

of values. Fourthly, the doubly-ranked method makes the rank-preserving assumption, which cannot be

tested empirically. Finally, as with all Mendelian randomization investigations, results are dependent on

the validity of the genetic variants as instrumental variables.

There are also limitations to the applied analysis. As with most cohorts, UK Biobank is known to

suffer from selection bias, the magnitude of which depends on the age of participants [21]. UK Biobank

participants of working age are more likely to be affluent, early retirees, and so the stratification on age

at recruitment is likely to reflect differences in socio-economic status in addition to age. Some individuals

were not able to blow into the spirometer, or were not able to provide a reliable measure, and so have been

excluded from the analysis; this could also lead to selection bias. In order to avoid variability in estimates

due to sex-based differences in the distribution of BMI and other anthropometric traits, we restricted

analyses to include men only. Additionally, to avoid population stratification, we restricted analyses to

individuals of European ancestries. This means our results may not be generalizable to other population

groups.

In summary, our data-adaptive method can investigate effect heterogeneity in the effect of an exposure

on an outcome in a Mendelian randomization framework. This can provide important insights into disease

aetiology, and into finding groups of individuals who would most benefit from intervention on the exposure.
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DAG X-M relationship M -Y relationship M interpretation Comments

𝒁 𝑿 𝒀

𝑼

𝑴

X →M M → Y collider and mediator Possible a modifier
X →M M ← Y collider Not a modifier
X ←M M → Y confounder Possible a modifier
X ←M M ← Y N/A Ill-defined acylic graph
X →M M ↮ Y collider Not a modifier
X ←M M ↮ Y not collider/confounder Not a modifier
X ↮ M M → Y not collider/confounder Possible a modifier
X ↮ M M ← Y collider Not a modifier
X ↮ M M ↮ Y not collider/confounder Not a modifier

Table 1: Possible effect heterogeneity scenarios. The left panel is a directed acyclic graph (DAG) where
Z,X, Y, U represent the instrument, the exposure, the outcome, and the unmeasured confounders, respec-
tively. M is a variable to be considered. The DAG has different possible scenarios, each of which has
different arrow directions (or no arrow, denoted by ↮) for the X-M and M -Y relationship.

Methods

Modelling assumptions and estimands

Our focus lies on effect estimation conditional on covariate information. These effects are also referred to

as conditional average treatment effects (CATE):

βm,δ =
E(Y (X + δ)− Y (X)|M(X) = m)

δ
for δ ̸= 0 (1)

where Y (x) represents the potential outcome with the exposure level x (following the potential out-

come framework [33, 37]), X is the continuous exposure (for binary exposure, we define βm = E(Y (1) −

Y (0)|M(X) = m) accordingly), and M is the high-dimensional covariate [3, 52]. The average causal

effect could be modified by the covariate level m, and hence the CATE given M(X) = m is possibly

heterogeneous. A non-linear causal effect is a special example of heterogeneous effect where the exposure

level itself acts as an effect modifier.

The general model is expressed as a DAG in the left panel of Table 1. It is required that Z is a

valid instrument, which means that when M → Y exists, there is no direct causal path from Z to M .

Additionally, a path Z →M indicates that M is a collider, regardless of the specific relationship between

X and M . If the covariate M is either a collider or a mediator, stratifying naively on M will violate the

exchangeability assumption, resulting in a biased CATE estimator.

It is important to note that the observed covariates, M , are not necessarily the true effect modifiers

that demonstrate the heterogeneity of CATE. This is because some covariates may be correlated with

unmeasured true effect modifiers. However, the observed covariates are still valuable if the objective is to

predict the individual effect given its covariate information.

13
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Collider robust stratification

Collider bias is widespread in the analysis of observational data and is challenging to causal inference

[34, 32]. Some typical sources of collider bias include: (i) selection bias occurring when selection into a

study sample depends on a collider [25]; (ii) survivor bias occurring when survival depends on a collider

[6, 42]; and (iii) in an instrumental variable analysis, conditioning on the exposure directly [28], as the

exposure is a function of the instrument and confounders, and hence a collider. Collider bias can also

occur in an instrumental variable analysis when stratifying on a covariate, if the covariate is a function

of the instrument and confounders. As the exposure is a function of the instrument and confounders,

any covariate causally downstream of the exposure will be a collider. Even if the instrumental variable

assumptions are satisfied for the population as a whole, they are typically invalid within strata of the

population defined by a collider [14, 23].

The residual stratification method derives the counterfactual value of a covariate M in a parametric

model. The method assumes that the structural equation for the covariate is linear and homogeneous in

the instrument Z: M = M(0) + αZ, where the counterfactual variable M(0) can be estimated by taking

the residuals from regression of M on Z. We then form strata based on these residual values M(0). As

M(0) is not a function of the instrument Z, it is typically not a collider even if M is a collider [17].

The doubly-ranked method is a nonparametric stratification method that relaxes the assumptions of

the residual method. The method has previously been described for stratifying on the exposure, in an

approach known as non-linear Mendelian randomization [50]; we here adapt the method to stratify on a

covariate. We assume that the sample size is N = 10×K, and the number of strata desired is two. The

method is performed by the following steps:

(1) Rank individuals according to their value of the instrument, and form K pre-strata of size 10 by

stratifying on the instrument. Ties are broken at random.

(2) Rank individuals within each pre-stratum based on their value of the covariate.

(3) Form the two strata by selecting the individuals with the same covariate rank range from each pre-

stratum; such that stratum 1 contains the individuals with the lower 5 values of the covariate from

each pre-stratum and stratum 2 contains the individuals with the higher 5 covariate values from each

pre-stratum.

This method stratifies the population using information on a covariate under a rank preserving as-

sumption. We assume that each individual’s counterfactual values of the covariate have the same rank

ordering for different values of the instrument. This assumption is illustrated for a dichotomous instrument

(Z = 0, 1) in Figure 7. The black line illustrates the distribution of the covariate for those with Z = 0, and

the blue line illustrates the distribution of the covariate for those with Z = 1. For instance, we consider

an individual with Z = 0 and covariate value equal to the 10th percentile of the covariate distribution for

14
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Figure 7: Diagram illustrating the rank preserving assumption for a dichotomous instrumental variable
Z with counterfactual covariate distributions M(0) (the black group) and M(1) (the blue group). The
dashed arrow represents the one-to-one mapping from the counterfactual covariate value with Z = 0 to
the counterfactual covariate value with Z = 1.

those with Z = 0. If this individual instead had Z = 1, we assume that their value of the covariate would

be at the 10th percentile of the covariate distribution for those with Z = 1. The linear and homogeneous

model required by the residual method is a special case of this assumption. We refer to an individual’s

quantile in the relevant covariate distribution as their rank index. The rank index defines the potential

values of the covariate at different values of the instrument (all but one of which will be counterfactual).

The first step of the doubly-ranked method divides the population into pre-strata, such that individuals

in the same pre-stratum have similar values of the instrument, and so ordering by the covariate within

the pre-stratum approximates the rank index of individuals. By selecting individuals according to their

rank in the pre-strata, we obtain strata with different average levels of the covariate, but a wide range of

values of the instrument. As the rank index is not a function of the instrument, this stratification will not

induce collider bias.

Assessing heterogeneity in stratum-specific estimates

Having constructed strata using the residual or doubly-ranked method, we evaluate a measure of hetero-

geneity across the stratum-specific Mendelian randomization estimates. We calculate the association of

the genetic instrument with the exposure in stratum k as β̂Xk with standard error σXk, and the asso-

ciation of the genetic instrument with the outcome in stratum k as β̂Y k with standard error σY k. The

stratum-specific causal estimates are obtained using the ratio method as θ̂k = β̂Y k

β̂Xk
. Cochran’s Q statistic

can be obtained as [15]

Q =
K∑

k=1

(β̂Y k − θ̂ β̂Xk)
2

σ2
Y k + θ̂2σ2

Xk

. (2)

where θ̂ is the inverse-variance weighted average of the stratum-specific estimates. Under the null hy-

pothesis that the stratum-specific estimates are all targeting the same parameter, the Q statistic should

have a χ2
K−1 distribution, where K is the number of strata. A higher Q value gives stronger evidence of
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heterogeneity between stratum-specific estimates, therefore indicating greater effect modification by the

covariate used for stratification. Note that the Q statistic can be understood as a component of the profile

log-likelihood considering the uncertainty of the estimated instrument-exposure association and is robust

to weak instruments [7, 56], which is important as weak instruments may be common within strata, due

to the reduced sample size.

Building a single Q tree

As the covariate information for many applications is high-dimensional, stratification on all covariates may

be infeasible, and data-adaptive methods may be preferable to stratification on a small number of selected

covariates. As a simple but powerful method, the Q tree method can help to build strata considering

multiple covariates in an agnostic way. When utilizing tree or random forest methods, it is crucial to define

the rules for recursive partitioning that can effectively detect and emphasize the heterogeneity related to

the specific aspect of interest in the study [4]. In this context, we leverage the collider-robust partitioning

approach to avoid collider bias in IV analysis. Additionally, we incorporate the Q heterogeneity statistics,

which have been widely employed to assess heterogeneity in MR studies. Starting with the initial node

containing all participants to be stratified, a Q tree is constructed by the following steps:

1. Determine the splitting covariate. We form two strata for the present node based on each

candidate covariate using a stratification method. The splitting covariate M for the present node

and the splitting proportion are chosen to give the greatest Q statistic value.

2. Split based on the candidate covariate. Two child nodes are built based on the selected splitting

covariate M and splitting proportion. We then either return to step 1 to split each child node, or

stop if the stopping rule is met.

The stopping rule is either: (1) the greatest Q statistic value is less than 3.84 (the 95th percentile of a

chi-squared statistic with one degree of freedom); (2) the size of the child node is less than 1,000; or (3)

the single node depth is larger than 5. We consider three possible splitting proportions, expressed as the

ratio of the sub-node sizes: namely, 3 : 7, 5 : 5, and 7 : 3. The end nodes are the strata for Mendelian

randomization analysis. Note that the same splitting covariate may be selected multiple times. Such an

algorithm is quite similar to the simple yet powerful tree method CART (Classification And Regression

Tree), but the splitting and stopping rules in our algorithm are based on Q statistic; therefore we call it a

Q tree.

Once we have built a Q tree, it can be used to predict causal effects for individuals in the testing subset.

This is completed by passing this individual down the fitted Q tree. At each branch, the individual will

go to the sub-strata of which the mean values of M∗ is closer to this individual’s M∗ value, where M∗ is

the chosen splitting covariate for that node. Specifically, the decision rule can compare the value of M∗
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to the boundary value

n1M̄
∗
1 + n2M̄

∗
2

n1 + n2
(3)

where n1 and n2 are the sample size of the lower and upper sub-node, respectively; M̄∗
1 and M̄∗

2 are the

corresponding mean values of the chosen covariate in the sub-nodes. Once this individual reaches the end

node, the predicted treatment value is the stratum-specific Mendelian randomization estimate for that

stratum.

An important concept in tree-based estimation is honesty. In honest estimation, separate subsets of

the training data are used to construct the tree and evaluate the node estimates [3, 26]. Honesty leads to

favorable properties in terms of convergence and inference [3, 52]. However, honest estimation may not be

suitable for our Q tree. This is because when constructing sub-groups within the estimation data based

on a tree, decision rules typically involve covariate stratification, which can introduce collider bias and

lead to biased leaf-specific estimators for the estimation data. Therefore, we use the subgroups generated

by the doubly-ranked stratification, where the IV assumptions hold and collider bias is avoided, to obtain

the leaf-specific estimates. For this reason, we only consider a limited number of splitting proportions for

each covariate, to avoid overfitting within the training subset.

Building a random forest of Q trees

The random forest is a bootstrap aggregating (bagging) method for reducing an estimator’s variance by

aggregating multiple de-correlated trees [8, 24]. To construct a random forest of Q trees (RFQT), we first

take NB bootstrap samples of the training subset, where NB is the size of the forest. For each bootstrapped

dataset, we build a Q tree as introduced before, but at each split, only a random set of covariates are

considered as candidate covariates for that node. In the simulation study and applied example, we consider

40% of covariates at each division. The RFQT estimate for any individual is the average predicted value

from all the Q trees. The final forest size NB is chosen such that the OOB error and the test error

(if applicable) of the RFQT are stable as the number of trees increases (see Supplementary Figure S5).

Unlike most supervised learning problems, the real data in our context do not have relevant labels (i.e.

individual-level causal effects), which means the tuning parameters such as NB and the proportion of

covariates considered at each division cannot be directly determined by the OOB or testing subset error.

The forest size NB for the real data fitting is therefore chosen such that individual predicted effects are

converged.

Variable importance

Variable importance (VI) measures which covariates contribute to the predictive accuracy of effect esti-

mates. VI is an example of a cost-of-exclusion approach and can be well-compatible with tree and random

forest models [27]. The VI measurement in a RFQT is obtained by OOB samples from each Q tree boot-

17

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.28.23297706doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.28.23297706
http://creativecommons.org/licenses/by/4.0/


strap by the algorithm 1, which is similar to that previously proposed for an interaction tree [45]. In a sim-

Algorithm 1 Computing Variable Importance (VI) Measure of RFQT

NB ← number of Q trees in RFQT
M ← number of covariates
Vm ← 0 for m = 1, . . . ,M
X ← training set
for i = 1, . . . , NB do

Generate boostrap sample Bi, and obtain OOB sample BOOB
i ←X −Bi

Qi ← Build the Q tree according to Bi ▷ See Figure 1 for building Q tree
Ai ← Obtain the prediction accuracy (see main text) for BOOB

i using Qi

for m = 1, . . . ,M do
BOOB,m

i ← permute the m-th covariate of BOOB
i

Am
i ← obtain the prediction accuracy for BOOB,m

i using Qi

D(Am
i , Ai)← record the the change of accuracy

Update Vm ← Vm +D(Am
i , Ai)

end for
end for
The VI measurement for the m-th covariate is Vm/NB

ulation study, the prediction accuracy can be the MSE of the individual-level effect estimates. The change

of accuracy can be the difference between the MSE before and after the permutation. With real data, the

change of accuracy is replaced by the change in effect estimates for the OOB samples after permuting the

covariate, compared with using the unpermuted sample. That is, D(Am
i , Ai) =

∑nOOB

j (θ̂mj − θ̂j)
2/nOOB

for the m-th covariate where θ̂mj and θ̂j are the j-th individual effect estimates by using the Q tree Qi with

the OOB samples BOOB,m
i and BOOB

i , respectively; and nOOB is the number of OOB samples. More

important variables in both the simulation and real application should contribute to a greater change of

accuracy.

Permutation test of heterogeneity

We propose two nonparametric permutation test statistics for assessing effect heterogeneity of predicted

estimates in the training dataset, accounting for uncertainty from the RFQT algorithm. The null hy-

pothesis is that all the candidate covariates considered do not modify the treatment effect, and so the

individual-level predicted causal effects are not more variable than would be expected due to chance alone.

We randomly permute the candidate covariates in the training subset to mimic the null scenario. For

each permutation, we build the RFQT for the permuted sample and derive the test statistics S1, which is

similar to that proposed in a previous paper [54],

S1 =
1

NB

NB∑
i=1

Ki∑
k=1

ni,k

n

(
θ̂i,k −

Ki∑
k=1

ni,k

n
θ̂i,k

)2

(4)
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and S2, which considers variability in the instrument–exposure association estimates:

S2 =
1

NB

NB∑
i=1

Ki∑
k=1

(β̂Y,i,k − θ̂iβ̂X,i,k)
2

σ2
Y,i,k + θ̂2i σ

2
X,i,k

(5)

where NB is the number of Q trees, n is the training sample size, ni,k is the size of the k-th end node

(strata) in the i-th Q tree that satisfies
∑Ki

k=1 ni,k = n, Ki is the number of end strata for the i-th Q

tree, θ̂i,k is the MR estimate for the k-th end strata in the i-th Q tree, β̂X,i,k and β̂Y,i,k are the estimated

instrument-exposure and instrument-outcome association respectively for the k-th strata of the i-th Q

tree. σX,i,k and σY,i,k are their corresponding standard errors. θ̂i is the inverse-variance weighted average

of the stratum-specific estimates for the i-th Q tree. The larger value of S gives stronger evidence to reject

the null hypothesis. Compared with S1, S2 is more robust to extreme values caused by weak instruments

as it allows for the variability in the instrument–exposure association estimates.

For each permutation test statistic, we derive the an empirical p-value, which is the proportion of

permuted datasets having a larger value of the test statistic than that from the original data, to decide if

the candidate covariates as a whole modify the treatment effect.

Reducing variability in stratum-specific estimates

One notable characteristic of the doubly-ranked method is that the stratification results can exhibit high

variability due to the ranking process. This high variability can be mitigated by employing resampling

procedures, such as random forest, which can help stabilize the results. However, when using a one-time

doubly-ranked stratification approach, this variability may impact the results. To address this issue and

obtain more stable stratum-specific estimates, we utilize a resampling procedure similar to Rubin’s rules

[38, 30] to reduce the variability and improves the stability of the estimated stratum-specific effects.

Given a dataset for fitting, we employ a multiple sampling approach where we randomly exclude 10

individuals in each iteration. This random omission sufficiently alters the individual rank information,

consequently affecting the stratification results. Let’s denote the total number of sampling times as S.

In each sampling iteration, we obtain the stratum-specific estimates: {β̂Xk,i, σ̂Xk,i, β̂Y k,i, σ̂Y k,i, M̄k,i; k =

1, . . . ,K} for the sampling time i = 1, 2, . . . , S, where M̄k,i represents the average covariate value for

the k-th stratum in the i-th sampling time. We obtain the pooled point estimator for the k-th stratum

instrument-outcome association

β̂P
Y k =

1

S

S∑
i=1

β̂Y k,i (6)

and its 95% confidence interval, (LY k, RY k):

(LY k, RY k) =

(
β̂P
Y k − tvk,α=0.05

√
UY k + (1 +

1

S
)BY k , β̂

P
Y k + tvk,α=0.05

√
UY k + (1 +

1

S
)BY k

)
(7)
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where tvk,α=0.05 represents the 0.975 quantile point of the t distribution with vk degrees of freedom,

vk = (S − 1)(1 + UY k

(1+S−1)BY k
)2, UY k = 1

S

∑S
i=1 σ̂

2
Y k,i, and BY k = 1

S−1

∑S
i=1(β̂Y k,i − β̂P

Y k)
2. We can also

obtain similar pooled estimates for the instrument-exposure associations. Therefore, we have the stratum-

specific pooled MR estimates as β̂P
Y k/β̂

P
Xk with the 95% confidence interval (LY k/β̂

P
Xk, RY k/β̂

P
Xk). The

corresponding covariate value on the x-axis is 1
S

∑S
i=1 M̄k,i. We therefore calculate the Q statistic with

the pooled estimates as

QP =
K∑

k=1

(β̂P
Y k − θ̂ β̂P

Xk)
2

[UY k + (1 + S−1)BY k] + θ̂2[UXk + (1 + S−1)BXk]
. (8)

where θ̂ is the inverse-variance weighted average of the stratum-specific pooled estimates. We also test

the trend association of the pooled stratum-specific estimates against the stratum-specific covariate values

via meta-analytic mixed-effects models, where the stratum-specific covariate values are considered as the

moderator explaining the heterogeneity [5]. The test can be implemented using the R package metafor

[51].

Simulation study

To compare the performance of the stratification methods, as well as the RFQT method, we conduct a

simulation study considering the following data-generating model, where the individual index has been

omitted for notational brevity,

X = 0.5Z + 0.5
20∑
j=1

Uj + ϵX (9)

Mj = bjX + Uj j = 1, 2, . . . , 20 (10)

Y =

0.5 +

5∑
j=1

γjMj

X + 0.5

20∑
j=1

Uj + ϵY (11)

where Z, X, {Uj}, {Mj} and Y are the instrument, the exposure, unmeasured confounders, the candidate

covariates, and the outcome, respectively. Z ∼ N (0, 12), Uj
i.i.d∼ N (0, 12); ϵX , ϵY ∼ N (0, 12); {bj} are

the effects of the exposure on each candidate covariate; {γj} are the modifier effects by each candidate

covariate and γj
i.i.d∼ N (γ, 0.12) for j = 1, . . . , 5, and γj = 0 otherwise. That is, the first five covariates

are effect modifiers. We call γ the strength of modification. Note that even for γ = 0, there is weak effect

modification.

We consider three scenarios for the effects of the exposure on the candidate covariates

A: bj = 0, j = 1, 2, 3, . . . , 20

B: bj = 0.5 when j = 2, 4, 6, . . . , 20 and 0 otherwise

C: bj = 0.1 + 0.5Uj , j = 1, 2, . . . , 20
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In Scenario A, all the candidate covariates are not colliders. In Scenario B, half of the covariates are collid-

ers, as they are common effects of the exposure and the unmeasured confounders. Scenario C corresponds

to a more complex case in which the effects on the candidate covariates are modified by the unmeasured

confounders, so both of the the assumptions requied by the residual method and the rank preserving as-

sumption are violated. The simulation scenarios can be expressed by the DAG in Supplementary Figure

S6.

When calculating the mean squared error of predicted estimates, we compare the individual-level pre-

dicted estimates to the controlled direct effects of the exposure for an individual’s values of the covariates:

this is 0.5 +
∑5

j=1 γjMj . This is for computational reasons: it is simpler to calculate than the total ef-

fect of the exposure (which is the quantity targeted by the Mendelian randomization estimates), but the

quantities should be close in practice.

Applied example: body mass index on lung function

In order to implement RFQT in a real application, we took data on 167,121 male individuals from UK

Biobank (Supplementary Figure S7). A weighted gene score comprising 94 uncorrelated (pairwise r2 <

0.01) single nucleotide polymorphisms (SNPs) was used as an instrumental variable. These SNPs have

previously been shown to be associated with BMI at a genome-wide level of statistical significance [29].

This genome-wide association study did not include UK Biobank participants, thus avoiding bias due to

winner’s curse [48]. Weights for the gene score were obtained from UK Biobank participants. We took

BMI as the exposure of interest and FEV1 as the outcome of interest. We used 27 other distinct variables

and the exposure itself (to consider a potential non-linear pattern) as candidate covariates.

We took two-thirds of individuals as the training subset and the remaining one-third of individuals as

the testing subset. For the RFQT method, we chose the number of trees to be 200, as it was found that

100-200 trees was sufficient for converged predicted values. We use similar hyperparameters for RFQT as

in the simulation study; that is, an end node size of 1,000, a maximum tree depth 5, and a threshold Q

value of 3.84 for the stopping rules. For each node in each tree, a random subset of 11 variables (i.e. around

40%) were considered as candidate splitting covariates. We used the doubly-ranked stratification method.

Variable importance measurements were recorded for all the covariates. We applied the permutation

test for the permutation test statistics S1 and S2 by permuting covariate information for the training

subset 1000 times. The empirical p-values were 0.058 (95% CI: 0.045, 0.074) for S1 and < 0.001 (95%

CI: 0.000, 0.003) for S2. The confidence intervals are derived by the logistic regression model and the

rule of three, respectively. The test result suggests that S2 was a more discriminating measure of effect

heterogeneity in this example.

21

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.28.23297706doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.28.23297706
http://creativecommons.org/licenses/by/4.0/


Availability of data and materials

The individual-level data underlying the applied example presented in the study is not publicly available

due to privacy policies. However, it can be accessed by researchers through an application to UK Biobank

(https://www.ukbiobank.ac.uk). The fitted data used for generating the results in both the simulation

and applied example are provided at https://github.com/HDTian/RFQT/tree/main/Data.

R-code for the simulation study and real application (R version ⩾ 4.2.2, MIT license) is available

at https://github.com/HDTian/RFQT. The illustration codes are provided on https://github.com/

HDTian/RFQT/tree/main/illustration_sim_real, which allows the reader to reproduce all results and

adapt the presented methodology to their own research.
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Supplementary Materials

Supplementary Table

Abbreviation Meaning
hip Hip circumference
wt Weight
dbp Diastolic blood pressure
waist Waist circumference
monos Monocyte count
leuc Leucocyte count
vitcap Vital capacity
bmi.1 Body mass index
pef Peak expiratory flow
whtr Waist to height ratio
sbp Systolic blood pressure
neutros Neutrocyte count
urianac Urinary sodium
whr Waist to hip ratio
uriamac Urinary microalbumin
handgpr Hand grip strength – right
eosins Eosinophil count
hemcrit Haematocrit
lymphs Lymphocyte count
uriakc Urinary potassium
pulse Pulse rate
ages Age at survey
handgpl Hand grip strength – left
uriacc Urinary creatinine
ht Height
platelet Platelet count
rbc Red blood cell count
hemglob Haemoglobin

Supplementary Table S1: Abbreviations of the variables considered in the UK Biobank application ex-
ample. As body mass index is the exposure, stratifying on body mass index is equivalent to a non-linear
Mendelian randomization analysis.
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Supplementary Figure
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Supplementary Figure S1: Variable importance (VI) measurements for the doubly-ranked method with
random forest. Left panels: VI measurements calculated using individual effect labels (that is, the true
individual effects), based on changes in mean squared error. Right panel: VI measurements calculated
without individual effect labels, based on changes in estimates. The top, middle, and bottom results
correspond to a single randomly chosen simulated dataset under scenario A, B, and C with the strength
of modification 0.5, respectively. The true effect modifiers are M1-M5.
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Supplementary Figure S2: Scatterplot displaying the predicted effects and true effect values for 1000
randomly selected individuals from the testing set for the doubly-ranked method with random forest.
The top, middle, and bottom plots correspond to a single randomly chosen simulated dataset under the
simulation scenarios A, B, and C with a strength of modification of 0.5, respectively.
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Supplementary Figure S3: The kernel smoothed density of the under-null samples of the permutation test
statistics S1 (left) and S2 (right) with 1000 permutations. The statistic values for the unpermuted data
are shown by the red lines. The bandwidth is decided by Silverman’s rule of thumb.
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Supplementary Figure S4: Variable importance measures in the UK Biobank example for 28 candidate
covariates.
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Supplementary Figure S5: Left panel: the mean squared error (MSE) of the OOB samples (red curve) and
testing subset samples (blue curve) with increasing numbers of Q trees for the simulation study. Right
panel: the predicted values of four randomly selected samples of the testing subset with increasing numbers
of Q trees for the simulation study. OOB: out-of-bag.
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Supplementary Figure S6: Directed acyclic graph (DAG) demonstrating the variable relationships in
simulation. Z,X, Y, Uj ,Mj represents the instrument, the exposure, the outcome, the j-th confounders
and the j-th covariate. bj represents the effect of the exposure on the j-th covariate, and γj represents the
modification effect of the j-th covariate on the direct effect of the exposure on the outcome.
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Supplementary Figure S7: Diagram demonstrating analysis flow for the UK Biobank data. IV: instrumen-
tal variable. RFQT: random forest of Q trees. VI: variable importance.
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