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12 Abstract
13
14 This study tests the feasibility of estimating some time-domain heart rate variability indices (the 

15 standard deviation of the RR time series, SDNN, and the standard deviation of the differentiated 

16 RR time series, or RMSSD) from smoothed and rounded to the nearest beat per minute heart 

17 period time series using shallow neural networks. These time series are often stored in wearable 

18 devices instead of the beat-to-beat RR time series. Because the algorithm for obtaining the 

19 recorded mean heart rate in wearable devices is often not disclosed, this study test different 

20 hypothetic sampling strategies and smoothers. Sixteen features extracted from 5 minute smoothed 

21 heart period time series were employed to train, validate, and test shallow neural networks in 

22 order to provide estimates of the SDNN and RMSSD indices from freely available public 

23 databases RR time series. The results show that, using the proposed features, the median relative 

24 error (averaged for each database) in the SDNN ranges from 2% to 14% depending on the 

25 smoothness, sampling strategy, and database. The RMSSD is harder to estimate, and its median 

26 relative error ranges from 6% to 32%. The proposed methodology can be easily extended to other 

27 averaged heart rate time series, HRV indices and supervised learning algorithms

28 Introduction
29

30 Heart rate variability (HRV) helps to assess the status of the autonomic nervous system (ANS) 

31 [1] and has been used for the last decades as a tool to quantify risk in a wide variety of both 

32 cardiac and non-cardiac disorders [2]. HRV reflects physiological variation in the duration of 

33 intervals between consecutive beats originating from the sinus node [1]. Over the years, several 

34 indices for characterizing the dynamic physiological variation of beat-to-beat heart periods have 

35 been proposed and used in different scenarios. Some of these indices have become measurement 

36 standards [3]. HRV indices can be classified as time-domain, spectral-domain, or non-linear 

37 dynamic indices, and their use depends on the target physiological system, condition, or stressor 

38 of interest. 
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39    The definition of each HRV index is based on the characterization of a time series of consecutive 

40 heartbeat periods. This time series is known as the RR time series (when the period between 

41 heartbeats is assessed by using an electrocardiogram (ECG) and a proper QRS detector) or as the 

42 inter-beat interval (IBI) time series (when assessed by other physiological signals that are 

43 triggered by heart contraction such as finger or wrist photoplethysmography (PPG)). Whatever 

44 the IBI or the RR time series is employed, the importance of an accurate estimation of each sample 

45 of the series has been stressed elsewhere [3], [4]. Accordingly, accurate HRV index determination 

46 is often obtained in controlled environments while restraining movements and/or using 

47 uncomfortable instrumentation to avoid heartbeat misdetections. 

48    In recent years, with the development of technology, smart wearable devices have been 

49 developed rapidly in various fields such as health care and health monitoring [5]. In the health 

50 care field, wearable devices  as portable electronic medical devices are  used to perceive, record, 

51 analyze, regulate, and intervene in physiological process to maintain health. Moreover, they can 

52 be utilized to treat diseases with the support of various technologies for identification, sensing, 

53 connecting, and storing in physical servers or in the cloud a large amount of information that is 

54 relevant of the subject treatment.  Therefore, wearables can be used as ambulatory systems 

55 providing  detailed and individual information about health status. Heart rate (HR) is one of the 

56 most often measured parameters while monitoring vital signs, especially in most mobile health 

57 (m-Health) applications employing wearable devices [6]. HR assessment  represents a routine 

58 part of any complete medical examination due to the heart’s essential role in an individual’s 

59 health. Therefore, HR measurement is becoming a part of the regular people  lifestyle assessment. 

60 Many electronic devices such as smartwatches, exercise equipment, and smartphones are 

61 becoming able to measure this parameter accurately. Although measuring HR in wearables is not 

62 as accurate as the classical ECG methods, it has become a very popular tool for consumers. Some 

63 recent wrist-worn wearables, such as the Apple Watch Series 4 to 8, and Samsung Galaxy Watch 

64 4 are monitoring HR with ECG single-lead electrodes, and are approved as medical devices in 

65 some countries. However, this technology is still limited as users have to sit with their watch 
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66 wearing a wristband resting on a flat surface and by putting a finger from the hand opposite to the 

67 watch for 30 s to close the circuit. In recent years, the demand for using PPG sensors to monitor 

68 HR has increased due to its simple function, high flexibility, and portability [7]. Despite PPG-

69 based methods are more user-friendly and convenient, ECG-based methods are more precise. One 

70 of the most challenging problems with wearables is that they are vulnerable to motion artifacts. 

71 In recent years, signal processing techniques such as machine learning approaches, have been 

72 successful to reduce the impact of motion artifacts and estimate HR properly [8], [9]. HR 

73 estimation from artifact-induced signals has been studied using different techniques such as Fast 

74 Fourier Transform (FFT), Adaptive Filtering, Independent Component Analysis (ICA), 

75 frequency-domain ICA, Empirical Mode Decomposition (EMD), wavelet denoising methods, 

76 spectral subtraction, and Kalman Filtering[10]. After applying these techniques, most wearables 

77 provide estimates of heart rate (but no direct assessment of beat-to-beat changes in heart rate) that 

78 update at intervals that depend on the design of the device. Each of the reported values of heart 

79 rate is the output of an (often not-disclosed) algorithm that summarizes, probably by smoothing, 

80 the RR/IBI time series for a certain number of consecutive beats. This generally unknown 

81 algorithm acts as a filter that reduces the impact of misdetections while providing meaningful 

82 heart rate values.

83    Owing to the ubiquity of wearables and their inability to directly estimate the RR or IBI time 

84 series, it is interesting to check whether some of the short-term HRV indices obtained from the 

85 RR or IBI time series can be estimated from the smoothed HR time series provided by wearables. 

86 This work starts with the estimation of two of the most commonly employed short-term HRV 

87 indices: the standard deviation of the RR/IBI time series (known as the SDNN) and the standard 

88 deviation of the differentiated RR/IBI time series (generally referred to as the RMSSD). Both 

89 indices were among the recommended short-term time-domain HRV indices. While SDNN 

90 reflects all the cyclic components responsible for variability during the recording period, RMSSD 

91 estimates high-frequency variations in the heart rate [3]. Because SDNN and RMSSD are directly 

92 computed from the time series of intervals between consecutive heartbeats, the prediction of both 
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93 indices employs the reciprocal of the smoothed HR time series, which we refer to as the smoothed 

94 heart period time series (sHP).

95    Hence, the aim of this study is to test the feasibility of estimating the classical HRV short-term 

96 SDNN and RMSSD indices from the sHP time series, where each point of the sHP is obtained by 

97 smoothing the RR or IBI intervals during a certain interval. The presented methodology can be 

98 easily adapted to any sHP measuring system provided that the algorithm to compute the sHP from 

99 the IBI or RR time series is known. Moreover, the methodology can be easily expanded to other 

100 HRV indices such as spectral indices.

101

102 Materials and methods
103
104 In this work, we attempt to estimate the SDNN and RMSSD indices that quantify the original 

105 RR/IBI intervals from the sHP time series. The estimation of SDNN and RMSSD uses the features 

106 of the corresponding sHP time series feeding an artificial neural network (ANN), whose 

107 characteristics depend on the smoothing algorithm applied to the original RR/IBI intervals. The 

108 recording duration for each time series was approximately 5 min. Fig 1 shows the methodology 

109 that we followed and described in this section.

110

111 Fig 1. General structure of the proposed methodology.

112

113    First, most wearables that measure HR internally measure the heart period (HP) by smoothing 

114 the inter-beat intervals of the subject under measurement using an internal algorithm. As shown 

115 in Fig 1, during an observational time (5 min in this work), a total of N inter-beat intervals were 

116 detected and processed, and an sHP time series with M samples (very often M<N) was obtained. 

117 Because the processing procedure is not generally disclosed in commercial devices, this work 

118 presents the results for some tentative smoothing algorithms. Most devices record the evolution 
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119 of the sHP over time. These time series are characterized in this work using simple statistical 

120 indices to obtain a total of k features for each sHP time series during the observational time. These 

121 features are fed to an ANN with k inputs and one output that provides an estimation for either the 

122 SDNN or RMSSD of the original RR/IBI time series. The ANN depends on the smoothing 

123 algorithm, selected features, and intended index to be estimated.

124    To test the accuracy of the SDNN and RMSSD estimates that can be obtained from actual 

125 recordings, we used the following methodology:

126 1.- A large number of RR time series with durations longer than 5 min were obtained from 

127 available free ECG databases or annotations. These databases and the RR time-series procurement 

128 are described in Section 2.1.

129 2.- The selected time series was split into non-overlapping sections with durations between 4.5 

130 and 5 minutes. Avoiding overlap among split sections guarantees that the training, test, and 

131 validation sets for ANN fitting contain information corresponding to different feature realizations. 

132 Almost each employed RR time series section had a duration very close to 5 min; however, if the 

133 last non-overlapping section associated with the recording of a subject lasted more than 4.5 

134 minutes, it was also included in the analysis. For each section, the sHP time series is computed 

135 using the proposed smoothing algorithm. The splitting and smoothing algorithm proposals are 

136 presented in Section 2.2.

137 3.- A total of 16 features have been employed to characterize each sHP time series. The features 

138 are described in section 2.3

139 4. For each smoothing algorithm and target index (SDNN or RMSSD), an ANN was trained and 

140 tested. The structure of the ANN, learning procedure, and validation and testing stages are 

141 presented in section 2.4 as well as the statistics employed to quantify the differences between the 

142 estimated indices and the indices obtained from the original RR/IBI time series.

143 Databases description and RR time series procurement
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144 Three databases available at the Physionet site [11] were used in this study. All three databases 

145 contained at least one channel of raw ECG on healthy volunteers, measured for at least 8 min. 

146    The Autonomic Aging database [12] contains at least one channel of ECG measured at rest 

147 during an average of 19 min (ranging from 8 min to 45 min) of 1121 healthy volunteers with ages 

148 ranging from 18 to 92 years. The ECG signal was sampled at 1 kHz. Some of the database 

149 recordings had two ECG channels. For detection, the first ECG channel (ECG1) was employed; 

150 however, the second channel was used when the quality of ECG1 was qualified as very poor by 

151 visual inspection and the second channel offered a significantly better quality. For all volunteers, 

152 the RR time series was obtained using the QRS detector included in the Kubios HRV Premium 

153 (3.5.0), which interpolates the input signal to obtain an equivalent sampling frequency of 2 kHz 

154 [13]. After QRS detection, an automatic artifact correction utility embedded in the same software 

155 [14] was employed to obtain the final RR time series. Noise segments detected by software using 

156 a medium automatic detector were visually inspected. If the signal was considered noisy because 

157 of the presence of short-duration arrhythmia, the segment was corrected using an automatic 

158 artifact correction algorithm. In case of noise caused by very poor ECG quality, manual correction 

159 of the beats was attempted. Only recordings with considerably poor quality or persistent 

160 arrhythmia were excluded from the analysis. These rejected recordings correspond to subjects 

161 0167, 0186, 0244, 0299, 0300, 0304, 0321, 0332, 0365, 0373, 0400, 0428, 0554, 0581, 0604, 

162 0634, 0649, 0653, 0686, 0753, 0767, 0895, 0935 and 1011. Some short segments of the detected 

163 RR time series were deemed as noise by the Kubios software and were assigned a Not a Number 

164 value in the corresponding output file. These segments were cropped prior to analysis. Finally, 

165 1097 RR time series were included in the study.  

166    The Fantasia Database [15] contains ECG recordings of 40 healthy subjects measured while 

167 watching Disney’s Fantasia movie. The ECG signal was sampled at 250 Hz. The ages of the 

168 subjects ranged from 21 to 85 years.  RR time series detection follows the same methodology as 

169 in the Autonomic Aging database; therefore, the signal is interpolated to have an equivalent 

170 sampling frequency of 2 kHz. Recording f2o08 was rejected because of the persistence of 
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171 arrhythmia, while recording f2y10 was rejected because the signal was lost during some long 

172 segments of the recording. In total, 38 RR time series were included in this study.

173    The Normal Sinus Rhythm RR Interval Database [11] contains beat annotation files for 54 long-

174 term ambulatory ECG recordings of subjects with normal sinus rhythm while performing their 

175 normal activities. The original ECG recordings from which annotations were obtained had a 

176 sampling frequency of 128 Hz. Hence, the RR time series of this database has a lower time 

177 resolution than that of the other databases. The ages of the subjects ranged from 28 to 76 years. 

178 After reading the annotations with software available on the PhysioNet web (using the “rdann” 

179 function and Matlab© [16]), the raw RR time series were obtained by differentiating the location 

180 of the annotations. Then, the corrected RR time series was obtained using the Kubios HRV 

181 Premium (3.5.0) software using the automatic correction algorithm. The automatic noise detection 

182 was set to a medium level, and zones that were classified as noise were cropped and not considered 

183 for analysis. The nsr024 recording was rejected for the analysis because it showed too many 

184 ectopic beats. Accordingly, 53 RR time series were included in this study.

185    The RR time series of the three databases and their corresponding time vectors from the 

186 beginning of each recording are available in this public repository.

187

188 Smoothed Heart Period time series definitions

189 Each recording in the repository consisted of two vectors: a vector t containing timestamps and 

190 their corresponding RR intervals. Each timestamp was obtained as the arithmetic mean of two 

191 consecutive QRS locations, and the corresponding RR interval was obtained as the difference 

192 between them. A general smoothing algorithm looks for the samples in the RR time series that 

193 start at timestamp tmin and end at timestamp tmax and computes a number reflecting the central 

194 tendency of the selected RR samples. Updating the values of tmin and tmax produces different 
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195 central-tendency numbers. Therefore, a smoothed heart period time series (sHP) was obtained by 

196 changing the values of the start and finish times.

197    Here, for each RR time series in the repository, the sHP time series is generated using an 

198 iterative procedure with initial values of tmin(0) = 0 s and tmax(0) = T and these values are updated 

199 for each iteration as tmin(i+1) = tmin(i)+Δt and tmax(i+1) = tmax(i)+Δt. In each iteration, the central 

200 tendency of the samples in the RR time series with associated timestamps between tmin and tmax is 

201 computed, and the corresponding measurement timestamp is determined as tsHP(i)=(tmin(i)+ 

202 tmax(i))/2. In this study, to assess the influence of the smoothing procedure, two combinations of 

203 T and Δt (that will referred to as the sampling strategies) were employed:

204 SS1 or sampling strategy #1: T= 10 s, Δt = 1 s

205 SS2 or sampling strategy #2: T= 30 s, Δt = 5 s

206    We also employed four central tendency measures to characterize the selected RR time intervals 

207 to define the sHP time series: 

208 CTM1 or central tendency measure #1: The arithmetic mean of the RR time intervals starting at 

209 tmin and ending at tmax

210 CTM2 or central tendency measure #2: The median of the RR time intervals starting at tmin and 

211 ending at tmax. This is a robust measure against outliers in the RR time series. 

212 CTM3 or central tendency measure #3: This central tendency mimics when employing averaged 

213 heart rate time series from commercial devices that are normally quantified as integers in beats 

214 per minute (bpm). If the RR time series is in milliseconds,

215 𝐶𝑇𝑀3 =
60000
[60000

𝐶𝑇𝑀1
] (1)

216 CTM4 or central tendency measure #4: As in the case of CTM3, but using the median instead of 

217 the arithmetic mean to perform the rounding:
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218 𝐶𝑇𝑀4 =
60000
[60000

𝐶𝑇𝑀2
] (2)

219    Fig 2 shows an example of how the sHP time series was obtained using SS1 and CTM1. Note 

220 that, although the RR time series is an unevenly sampled time series, the sHP time series is evenly 

221 sampled when using the proposed sampling strategies. 

222

223 Fig 2. Example of computation of sHP using the sampling strategy #1 (window length T= 10 

224 s and sliding step Δt =1 s) and central tendency measure #1 (arithmetic mean) for the subject 

225 1107 of the Autonomic Aging database. The upper panel shows the details of the computation 

226 of the central tendency in a short segment of the recording. The red asterisks show the RR time 

227 intervals used for the computation of the sHP for the window starting at 450 s and ending at 460s 

228 while the blue circles show the RR time intervals used for the next iteration (starting at 451 s and 

229 ending at 461 s). The dashed and dotted lines show the time intervals for smoothing and the 

230 corresponding arithmetic means. The red and blue crosses reflect the two arithmetic means 

231 located at the center value of the measurement interval (455 s for the first interval, 456 s for the 

232 next interval). The lower panel shows the RR time series (blue) and the corresponding sHP (red) 

233 after iteratively applying the sampling strategy #1 and computing the central tendency measure 

234 #1 through the whole recording.

235

236 Target computation, sHP segmentation and feature extraction

237 SDNN and RMSSD should be computed for approximately the same recording length. In the 

238 short-term HRV analysis, this was approximately 5 min. Nevertheless, the RR time series in the 

239 repository ranged from 8 min to more than 24 h. Hence, it is necessary to partition the RR time 

240 series obtaining an approximately 5 minutes long time series and compute the short-term HRV 

241 time indices from them. SDNN and RMSSD were the target indices in this study. In parallel, the 

242 segments of the sHP time series that originate from the partitioned RR time series must be 
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243 identified. Selected features from these sHP segments will feed the designed machine-learning 

244 algorithms to estimate the corresponding target HRV time indices. This procedure was performed 

245 as follows.  

246 1. Initially, an observational window is located between tstart=0 s and tend= 300 s. 

247 2. The samples of the RR time series that have corresponding t timestamps inside the 

248 interval [tstart, tend] are used to compute SDNN and RMSSD, as explained in [3]. 

249 3. An sHPs time series is cropped from the sHP time series by identifying the samples that 

250 satisfy their corresponding tsHP timestamps and are included inside the interval [tstart,tend]. 

251 4. The selected features that will be described next are extracted from the sHPs. Hence, for 

252 each SDNN or RMSSD index, a set of features characterizing the sHPs is available.

253 5. The observation window was displaced by 300 s. If i represents the number of iterations,  

254 tstart(i+1)=tstart(i)+300 s and tend(i+1)= tend(i)+300 s

255 6. While tend(i+1) is lower than the total recording time (maximum of the t time series), Steps 

256 2, 3, 4, and 5 are repeated.

257 7. If tstart(i+1) is lower than the total recording time, then tend(i+1) is not

258 a. If tend(i+1)- tstart(i+1)≥270 s, repeat one last time the steps 2,3,4 and 5, and the procedure 

259 stops.

260 b. If tend(i+1)- tstart(i+1)<270 s, the procedure stops.

261    Fig 3 shows an example of the procedure using the same recording as the lower panel of Fig 2. 

262 In the second iteration, time series with timestamps between 300 and 600 s were selected. The 

263 section of the RR time series is employed to compute the SDNN and RMSSD, whereas the section 

264 of the sHP time series is employed for feature extraction.

265
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266 Fig 3. Example of RR index target computation and sHP segmentation for the subject 1107 

267 of the Autonomic Aging database. The upper panel shows the observational window for the 

268 second iteration (i=2) starting at 300 s and ending at 600 s as well as the RR and sHP time series. 

269 The left lower panel shows the section of the RR time series that correspond to the observational 

270 window as well as the values of the target indices (SDNN and RMSSD). The right lower panel 

271 shows the section of the sHP that will be further quantified using some selected features.

272

273 Prior to feature extraction, three auxiliary time series are derived from the sHPs:

274 a. The differentiation of the sHPs defined as:

275 𝑑𝑠𝐷𝑃𝑠(𝑖) = 𝑠𝐻𝑃𝑠(𝑖 + 1) ― 𝑠𝐻𝑃𝑠(𝑖 + 1)  ∀𝑖 ∈ [1,𝑁 ― 1]     (3)

276 b. The second order differentiation of the sHPs defined as:

277 𝑑𝑑𝑠𝐷𝑃𝑠(𝑖) = 𝑑𝑠𝐻𝑃𝑠(𝑖 + 1) ― 𝑑𝑠𝐻𝑃𝑠(𝑖 + 1)  ∀𝑖[1,𝑁 ― 2] (4)

278 c. The third order differentiation of the sHPs defined as:

279 𝑑𝑑𝑑𝑠𝐷𝑃𝑠(𝑖) = 𝑑𝑑𝑠𝐻𝑃𝑠(𝑖 + 1) ― 𝑑𝑑𝑠𝐻𝑃𝑠(𝑖 + 1)  ∀𝑖 ∈ [1,𝑁 ―3]                 (5)

280 d. The cumulated sum of the sHPs after mean removal defined as

281 𝑐𝑠𝐻𝑃𝑠(𝑖) = ∑𝑖
𝑗=1 (𝑠𝐻𝑃𝑠(𝑗) ― 1

𝑁
· ∑𝑁

𝑘=1 𝑠𝐻𝑃𝑠(𝑘))     (6)

282 where N is the number of samples in sHPs. In this study, we obtained 16 features corresponding 

283 to the mean value of the sHPs and the sample standard deviation, skewness, and kurtosis of sHPs, 

284 dsHPs, ddsHPs, dddsHPs and csHPs. Fig 4 shows an example of Figs 2 and 3 showing four of the 

285 time series (dddsHPs is not shown for the sake of simplicity) and the corresponding values of the 

286 features.

287

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 28, 2023. ; https://doi.org/10.1101/2023.10.27.23297692doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.27.23297692
http://creativecommons.org/licenses/by/4.0/


13

288 FIG 4. Example of feature extraction for the second segmentation of the sHP time series of 

289 the subject 1107 of the Autonomic Aging database. The panels show different time series and 

290 their corresponding features.

291

292 In summary, each RR time series and sHP time series were segmented in sections with a duration 

293 of approximately 5 min ( at least 270 s). Each segment of the RR time series was used to compute 

294 the corresponding SDNN and RMSSD indices. These values will be employed later to train and test 

295 a machine learning algorithm. By contrast, each segment of the sHP defines four auxiliary time 

296 series, and three features are obtained from each time series (including the original sHP segment). 

297 These features and the mean value of the sHP will be the inputs of the machine-learning algorithm, 

298 as shown in Fig 1. The functions developed for MATLAB © that use an arbitrary input RR time 

299 series and their corresponding timestamp time series, generate the sHP using one of the described 

300 sampling strategies and one of the proposed central tendency measures, perform the segmentation, 

301 and compute the target indices, which are also available in the public repository. MATLAB files 

302 containing the target values and different 16 features for all recordings using the two sampling 

303 strategies and four central tendency measures are also available at the repository.

304

305 ANN fitting and testing

306 In this study, shallow ANNs [17] (with only one hidden neuron layer) were employed to provide 

307 estimates of SDNN and RMSSD from the 16 features previously described. The ANNs were 

308 trained using the Bayesian regularization backpropagation method [18] to obtain estimates that 

309 generalize well. We used shallow instead of deep ANNs to simplify the tailoring of the 

310 architecture of the ANNs because the number of hidden neurons is not known a priori. 

311 Consequently, several sizes of the hidden neuron layer were tested to choose the size that provides 

312 a low error in the estimation while still providing a general solution to the problem. The Deep 
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313 Learning Toolbox of Matlab® was employed to define, train, validate, test, and evaluate the 

314 generalization using the estimation errors of the ANNs.

315    The size of the hidden neuron layer is a parameter that must be fixed before the start of 

316 supervised learning. Because this size may impact overfitting of the model[19], we tested the 

317 performance of models with different hidden neuron layer sizes using a subset of subjects, 

318 features, and targets from the pool of recordings of the previously described databases. Hence, 

319 before starting the learning procedure for any of the ANNs, the features and targets corresponding 

320 to approximately half of the subjects in each database were kept for further performance testing. 

321 This set of information is referred to as the keeping set, while the set employed for the learning 

322 of the ANN is referred to as the learning set. The MATLAB ® code and the permutation for 

323 assigning the subjects to the keeping or learning sets are available at the repository. The same 

324 permutation was employed for all the sampling strategies, smoothing algorithms, and target 

325 indices (either SDNN or RMSSD); therefore, every ANN in this work learned using the same 

326 information. Finally, the learning set batch size was 9317 (obtained from 9317 sections of sHP 

327 time series of durations around 5 min) while the batch size was 9798. The batch size was different 

328 for the two sets because the lengths of the recordings were different among the subjects.

329    For the optimization of the hidden neuron layer size, for every sampling strategy and central 

330 tendency measure, we tested hidden neuron layer sizes ranging from 1 to 20. Each model learned 

331 using a training set that contained all the batches (features and targets) of approximately 50% of 

332 the subjects for each database of the learning set, a validation set that contained batches of 

333 approximately 25% of the learning set, and a testing set with the remnants of the learning set. A 

334 random permutation allocated each subject of the learning set to the training, validation, or testing 

335 sets every time a new model for the ANN was fitted. The learning algorithm used the mean 

336 squared error (MSE) between the target and ANN output to fit the model. The hidden neurons 

337 made a weighted sum at their inputs and obtained their output using the hyperbolic tangent 

338 sigmoid transfer function to accelerate convergence[20]. The code for training, testing, and 

339 validating the ANNs using the training set is available in the repository.
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340    Errors in the estimation may not be normally distributed (in fact, visual inspection of targets 

341 and estimations in some cases show that they correspond to heavy-tailed distributions). Therefore, 

342 for the choice of the hidden neuron layer size, the interquartile range of the errors after fitting the 

343 model was employed as a figure of merit. The interquartile range when applying the model to the 

344 learning set (IQRlearning) will be considered as a quantifier of the goodness of fit, and when 

345 applying the model to the keeping set (IQRkeeping) will be considered as a quantifier of the 

346 generalizability of the model. Moreover, the interquartile range of the errors when applying the 

347 model to the pooling of both sets (IQRall subjects) will be considered to optimize the hidden neuron 

348 layer size.

349    For each hidden neuron layer size, we repeated the fitting of the model a number of times equal 

350 to the rounding of 300 divided by the hidden neuron layer size, and the IQRlearning, IQRkeeping and 

351 IQRall subjects for the realizations, and kept the model with the lowest IQRall subjects. We determined 

352 the final size of the hidden neuron layer by inspecting the evolution of the IQRall subjects with 

353 increasing sizes.

354    After selecting the hidden neuron layer size, the ANN with the best performance (measured 

355 once again by IQRall subjects) after 100 completely new fittings was selected as the best ANN for 

356 the estimation of the target indices. In total, 16 ANN were obtained (also available at the 

357 repository and specified as the Deep Learning Toolbox of Matlab® net variables) corresponding 

358 to the combinations of the two target indices, four central tendency measures, and two sampling 

359 strategies. IQRlearning, IQRkeeping and IQRall subjects for each ANN were obtained.

360    Because errors in the estimation of the indices (the estimation error is computed as the difference 

361 between the target index and its corresponding estimation obtained from the output of the ANN) 

362 are not normally distributed (and in some cases, some outliers may be present), the difference 

363 between the 97.5 th and 2.5 th percentiles of the estimation error and the median of the absolute 

364 value of the estimation error were also computed for each ANN. Finally, the odds that the absolute 

365 or relative estimation errors were lower than a certain threshold were computed for a certain range 
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366 of thresholds, and the mean values of the odds were obtained for each case. The obtained odds 

367 curves and mean odds curve values provide a convenient way to compare the impact of the target 

368 index, central tendency measure, and sampling strategy on the performance of different ANN.  

369 The MATLAB ® code for all these characterizations is also available in the repository. 

370 Results

371 Fig 5 shows the evolution of the IQRall subjects against the hidden neuron layer size for the different 

372 sampling strategies (SS), central tendency measures (CTM), and target index. The ordinate axes 

373 have different scales to observe for each target and SS, which is a reasonable choice for the hidden 

374 neuron layer size. First, the IQRall subjects were lower when estimating SDNN from a device using 

375 the SS with a lower smoothing of the data (#1). The worst case occurs when estimating the 

376 RMSSD with a large smoothing of data (SS #2). The results were best when using the arithmetic 

377 mean for smoothing the data (CTM #1) and worst when using the rounded median (CTM #4). Fig 

378 5 also shows that the IQRall subjects for a hidden neuron layer size of 10 are comparable to those 

379 obtained for larger sizes; therefore, it is not necessary to use an ANN with a larger number of 

380 neurons. Hence, the remaining results apply to a shallow ANN with 10 neurons in the hidden 

381 neuron layer (in this case, selected from the best performance ANN in 100 fittings for each type 

382 of target, CTM, and SS). 

383

384 Fig 5. Change of IQRall subjects with the hidden neuron layer size for the two targets (SDNN 

385 for the upper panels and RMSSD for the lower panels) and the two sampling strategies 

386 (smoothing window of 10 seconds with an update each second for the left panels and 

387 smoothing window of 30 seconds with an update every 5 seconds for the right panels) using 

388 the 4 analyzed central tendency measures (CTM).

389

390  
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391  

392 Table 1 lists the IQRlearning, IQRkeeping and IQRall subjects for the different optimized ANN. These 

393 results mirror those presented in Fig 5 for a hidden neuron-layer size of 10. Fig 6 shows plots of 

394 the value of the target HRV index against the estimation error (difference between this index and 

395 the estimated index) to show the agreement of the estimation provided by the ANN. The best and 

396 worst cases for each index are provided. The difference in levels of agreement (dLoA) estimated 

397 as the difference between the 97.5% and 2.5% percentiles of the estimation error, as well as the 

398 median of the absolute value of the estimation error (MAE) for all CTM and SS combinations, 

399 are shown in Table 2. The results in Fig 6 and Table 2 use the pooled data of the learning and 

400 keeping sets (19115 different targets).

401 Fig 6. Some agreement plots for the SDNN and RMSSD indices using the best performance 

402 ANN and the pooled data of the learning and keeping sets. The upper panels show the 

403 estimation error for the best case (CTM #1 and SS #1) while the lower panels show the worst case 

404 (CTM #4 and SS #2). 

405 Table 1.  Interquartile range of the estimation errors for each target index, central tendency 

406 measure (CTM) and sampling strategy (SS) assessed using only the learning set (IQRlearning), 

407 the keeping set (IQRkeeping) or pooling both sets (IQRall subjects)

Target index: SDNN
CTM #1 #2 #3 #4 #1 #2 #3 #4

SS #1 #1 #1 #1 #2 #2 #2 #2
IQRlearning 

(ms)
1.77 3.29 2.68 3.56 4.94 7.77 6.72 8.23

IQRkeeping 
(ms)

1.91 3.62 2.77 4.03 5.40 8.30 7.18 9.03

IQRall 

subjects 
(ms)

1.84 3.46 2.73 3.79 5.17 8.05 6.94 8.59

Target index: RMSSD
CTM #1 #2 #3 #4 #1 #2 #3 #4

SS #1 #1 #1 #1 #2 #2 #2 #2
IQRlearning 

(ms)
3.26 6.10 5.71 6.31 9.05 9.98 9.88 10.2

IQRkeeping 
(ms)

3.66 6.90 5.92 7.04 10.2 11.6 11.3 11.7

IQRall 

subjects 
(ms)

3.47 6.48 5.82 6.65 9.60 10.8 10.6 11.0

408

409
410
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411 Table 2. Difference in the levels of agreement (dLoA) and median absolute error (MAE) 

Target index: SDNN
CTM #1 #2 #3 #4 #1 #2 #3 #4

SS #1 #1 #1 #1 #2 #2 #2 #2
dLoA 
(ms)

9.88 18.2 12.5 18.4 30.6 35.5 36.2 37.1

MAE 
(ms)

0.93 1.73 1.36 1.92 2.66 4.00 3.55 4.28

Target index: RMSSD
CTM #1 #2 #3 #4 #1 #2 #3 #4

SS #1 #1 #1 #1 #2 #2 #2 #2
dLoA 
(ms)

15.8 31.8 25.6 33.9 66.2 68.1 72.1 69.2

MAE 
(ms)

1.72 3.39 2.92 3.41 5.15 5.54 5.82 5.73

412 dLoA is estimated as the difference between the 97.5 and 2.5 percentiles of the estimation error 

413 and median absolute error (MAE) is estimated as the median of the absolute value of the 

414 estimation error. Results are disclosed for all the combinations of the central tendency measure 

415 (CTM) and sampling strategies (SS) for the two analyzed targets (SDNN and RMSSD).

416

417    As seen in Fig 6, sometimes the estimation provided by the ANN shows poor agreement with 

418 the target value even for the best-case scenario (CTM #1 and SS #1). Nevertheless, the agreement 

419 is better than that suggested by the plots, as shown in Table 2. For CTM #1 and SS #1, when 

420 estimating SDNN, the estimation error is lower than 9.88 ms in 95% of the cases and lower than 

421 0.93 ms for half the cases. Using the same CTM and SS, when estimating the RMSDD, the 

422 estimation error is lower than 15.8 ms for 95% of the cases and lower than 1.72 ms for half of the 

423 cases. Because of the presence of outliers and, to better characterize the agreement between 

424 estimates and target indices, the odds of having an absolute value of the estimation error lower 

425 than a fixed threshold and the odds of having an absolute value of the relative estimation error 

426 (normalized by the target value of the index) lower than a fixed percentage were computed for 

427 each evaluated target index, CTM, and SS. For the absolute value of the estimation errors 

428 thresholds from 0 to 100 ms have been considered in steps of 0.01 ms to obtain the odds curve. 

429 For the absolute value of the relative estimation error, thresholds from 0% to 100% were 

430 employed in steps of 0.01%. Odds curves were computed separately for the learning and keeping 

431 sets. Fig 7 shows the results for the best and worst cases, as shown in Fig 6. Table 3 quantifies 

432 the odds curves for all combinations of the CTM, SS, and target indices using the arithmetic mean 
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433 of the odds. An ideal estimation with no estimation error would provide a mean of the odds curve 

434 equal to one; hence, the lower the mean odds value, the poorer the estimation. 

435

436 Table 3. Mean of the Odds curve 

Mean of the odds curve for target index SDNN

C
TM

#1 #2 #3 #4 #1 #2 #3 #4

SS

#1 #1 #1 #1 #2 #2 #2 #2

LA
 0.99 0.97 0.98 0.97 0.96 0.94 0.95 0.94

K
A

0.98 0.96 0.98 0.97 0.95 0.94 0.94 0.93

LR
 0.97 0.94 0.95 0.94 0.91 0.88 0.88 0.87

K
R

0.96 0.93 0.95 0.93 0.91 0.87 0.88 0.86

Mean of the odds curve for target index RMSSD

C
TM

#1 #2 #3 #4 #1 #2 #3 #4

SS

#1 #1 #1 #1 #2 #2 #2 #2

LA
 0.98 0.95 0.96 0.95 0.92 0.91 0.91 0.91

K
A

0.97 0.94 0.95 0.94 0.90 0.89 0.89 0.89

LR
 0.91 0.83 0.85 0.82 0.73 0.71 0.70 0.70

K
R

0.90 0.81 0.83 0.80 0.69 0.67 0.66 0.66

437 This table considers thresholds in the estimation of the absolute error between 0 to 100 ms (A) or 

438 in the relative estimation error between 0 to 100% (R) for the different target indices, central 

439 tendency measures (CTM) and sampling strategies (SS). Results are reported separately for the 

440 learning (L) and Keeping (K) sets (i.e. KA is the mean of the odds curve for the absolute 

441 estimation error for the keeping set)

442

443 Fig 7. Some Odds curves for the SDNN and RMSSD indices using the best performance 

444 ANN reported for the learning and keeping sets. The upper panels show the curves for the best 
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445 case (CTM #1 and sampling strategy #1) when measuring the absolute estimation error while the 

446 lower panels show the worst case (CTM #4 and sampling strategy #2) for the relative estimation 

447 error. For example, when using CTM #4 and SS #2 and estimating SDNN, the odds that the 

448 relative estimation error is lower than 10% is around 50% for both sets. When using CTM #1 and 

449 SS #1 and estimating RMSSD, the odds that the absolute estimation error is lower than 10 ms is 

450 around 95% for the keeping set and 97% for the learning set.

451

452

453 Discussion

454 The results show that it is feasible to estimate the SDNN or RMSSD using the features of sHP 

455 time series and shallow ANN. Moreover, they are reasonable: the estimation of RMSSD is worse 

456 than that of SDNN because it reflects high-frequency components that are filtered by the 

457 smoothing procedure. Furthermore, the larger the smoothing of the data (window length), the 

458 larger are the estimation errors for both indices. Nevertheless, the solutions obtained for the 

459 estimation of the indices were far from optimal. First, a shallow ANN was not the best choice. As 

460 seen in the estimation of RMSSD when using central tendency measure #4 and sampling strategy 

461 #2 in Fig 6, the neural network is more prone to provide positive errors with increasing RMSSD 

462 values, thus providing lower estimates of the index. In these scenarios, a deep-learning ANN can 

463 provide better results. Moreover, while accepting a shallow ANN as a feasible solution, the results 

464 always consider the same set of 16 features, which are basic statistical measurements (the first 

465 four statistical moments) applied to the sHP, successive differentiation of this time series, and the 

466 cumulative sum (after mean removal) of the time series. A different set of features can provide 

467 better results, even when using a lower number of features. Further work could be devoted to the 

468 search of sets of features that reduce the estimation errors, especially for cases with higher errors, 

469 such as when using a large smoothing (i.e., SS #2) for the estimation of RMSSD.

470
471
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472    Regarding the employed feature set, some of the features could be irrelevant for building the 

473 estimates. To identify irrelevant features, the importance of each feature was tested for each 

474 combination of target, CTM, and SS using the increase in the error of the estimation when each of 

475 the input features suffers a random permutation [21], creating a mismatch between the feature and 

476 its corresponding target. As in the selection of the best neural network, we used the interquartile 

477 range of the estimation error by pooling the learning and keeping sets. The importance of feature j 

478 has been assessed by computing

479

480        𝐼𝑚𝑝(𝑗) = 1
𝑁·∑𝑁

𝑖=1
𝐼𝑄𝑅𝑝𝑒𝑟𝑚(𝑖)
𝐼𝑄𝑅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

·100    (7)

481 where IQRperm(i) is the IQRall subjects using the i-th random permutation of the input feature j (the 

482 remaining features are kept in the original order) and IQRoriginal is the IQRall subjects without making 

483 any permutation on the input features. N is the number of times the feature j is permutated. Fig 8 

484 shows bar plots of the feature importance for SDNN and RMSSD when using CTM #1 and #2 and 

485 SS #1 and #2 for N=100. Table 4 shows, for each target, CTM and SS, which are the most important 

486 features, and the list of features that have an importance higher than 300% (N = 100). Code for 

487 feature importance is also available at the repository. As shown in Fig 8, for a short smoothing 

488 window (SS #1) and simple smoothing algorithm (CTM #1), some features are prominent with 

489 respect to the others. Nevertheless, as the smoothing window length increases (SS #2) and some 

490 rounding and artifact rejection techniques enter the smoothing algorithm (CTM #4), the differences 

491 in importance among the features severely decrease. Table 4 shows that for SDNN estimation, the 

492 most important feature is, depending on the CTM and SS, the standard deviation of the sHPs time 

493 series, or the standard deviation of ddsHPs. Other relevant features are the standard deviation of 

494 dsHPs, standard deviation of dddsHPs and mean value of sHPs. For RMSSD estimation, the most 

495 important feature is the standard deviation of ddsHPs or the standard deviation of dddsHPs. Another 

496 important feature is the standard deviation of dsHPs. It makes sense that, for the estimation of 

497 indices based on the standard deviation of RR or the standard deviation of the first differentiation 
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498 of RR, the most important features are the standard deviation of differentiated versions of sHPs. 

499 Nevertheless, the importance of the features decreased when changing from SS #1 to SS #2. This 

500 suggests that the algorithm for estimating the indices for SS #2 is more complex because there is no 

501 small set of features that can be considered important, and any of the features can provide useful 

502 information to build the estimates. In summary, it seems that the use of the standard deviation of 

503 differentiated versions of the sHPs time series probes is useful for the estimation of SDNN and 

504 RMSSD for short smoothing periods, where errors in the estimation are generally low (as seen in 

505 Tables 1 to 3). Nevertheless, errors in the estimation increased when SS #2 was employed. In these 

506 cases, other features can probably improve the estimation of indices.

507 TABLE 4. Most relevant results for the feature importance analysis using random 

508 permutations. 

Target Index: SDNN
CTM #1 #2 #3 #4 #1 #2 #3 #4

SS #1 #1 #1 #1 #2 #2 #2 #2
MIF {4} {2} {4} {4} {2} {2} {2} {2}

Max IF 
(%)

4163 840 1552 2870 363 320 351 295

Features 
with 

IF>300%

{2}
{3}
{4}
{5}

{2}
{4}
{5}

{1}
{2}

{3} {4}
{5}

{2}
{3}
{4}
{5}

{2} {5} {2} {2} {0}

Target Index: RMSSD
CTM #1 #2 #3 #4 #1 #2 #3 #4

SS #1 #1 #1 #1 #2 #2 #2 #2
MIF {4} {4} {4} {4} {5} {5} {5} {4}

Max IF 
(%)

1219 1236 1701 1616 410 268 276 183

Features 
with 

IF>300%

{4}
{5}

{3} 
{4} 
{5}

{3} {4}
{5}

{3} {4}
{5}

{4}
{5}

{0} {0} {0}

509 MIF: Most important feature, Max IF: Importance for the most important feature, IF: Importance 

510 of each feature. Each feature is coded by an integer number corresponding to the order in Fig 8: 

511 {1} is the mean of sHPs, {2} is the standard deviation (SD) of sHPs, {11} is the skewness of the 

512 csHPs time series, {15} is the kurtosis of the dddsHPs time series, etc. {0} is employed when 

513 none of the features is important enough (IF is lower than 300% for all the features)

514

515 Fig 8. Feature importance for some selected combinations of target, CTM and SS. The two 

516 upper panels provide the feature importance when using CTM #1 and SS #1 for SDNN and 
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517 RMSSD while the two lower panels provide the feature importance for CTM #4 and SS #2 for 

518 SDNN and RMSSD.

519

520 The main results of this work have dealt with an ANN with a hidden neuron layer size of 10 

521 neurons, which is not a very large number, when using 16 input features. The number of input 

522 features was fixed from the beginning of the ANN design. If a reduced set of features is employed 

523 (i.e., only using the standard deviation of differentiated versions of sHPs) the size of the hidden 

524 neuron layer can be changed by either enlarging or stretching. A joint optimization of the number 

525 of input features, hidden neuron layer size, and proper selection of features could improve the 

526 estimation of the indices, and will be the purpose of future research.

527    To train the ANN, the Bayesian regularization backpropagation method was used for the sake 

528 of generalizability. As seen in Tables 1 and 3 and in Fig 7, the performance of the ANNs is slightly 

529 worse in the keeping than in the learning sets. Because the differences in IQR or in the mean of 

530 the odds curve are small, we can consider that the estimates could generalize well for a completely 

531 new set of input features coming from a new heart rate-measuring device. Nevertheless, to obtain 

532 good estimations, the ANN must be tailored to the underlying device algorithm for heart rate (or 

533 heart period) estimation. In this study, four different smoothers (CTM) and two different 

534 smoothing procedures (SS) were used that can be present in some wearable devices. The 

535 methodology can be applied to other algorithms if manufacturers disclose them.

536    This study employed three different public ECG or beat annotation databases to generate the 

537 targets and features. The Autonomic aging database and the Fantasia database were measured 

538 while the subjects were at rest, while the normal sinus rhythm RR database corresponded to 

539 ambulatory measurements. Although the number of different subjects was overwhelmingly larger 

540 for the first database, the number of analyzed 5-minute segments was larger for the normal sinus 

541 rhythm RR database (14363 segments from a total of 19115 analyzed segments). Hence, we can 

542 consider that most of the features employed for the learning and keeping sets correspond to 
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543 ambulatory measurements. This affects the performance of the ANNs for each database. Table 5 

544 shows the median of the estimation error and the median of the relative estimation error for 

545 different CTM, SS, and target indices for the three databases. The median values among databases 

546 using the Kruskal-Wallis test showed very significant differences (p<0.001) for all CMT, SS, and 

547 target indices, except for the relative estimation error of RMSSD while using CTM #4 and SS #1. 

548 This is a foreseeable result, because most of the information provided to the learning algorithm 

549 comes from this database. However, worse results correspond to the Autonomic Aging database. 

550 This could be attributed to the large number of different subjects in the database and the wide age 

551 range. Hence, the training of the ANNs for future development of SDNN and RMSSD estimators 

552 should also be performed using a sample of the population with characteristics as close as possible 

553 to the subjects the algorithm is intended to be applied. 

554 TABLE 5. Median values of estimation errors using the best ANNs disclosed by database, 

555 target index, CTM and SS. 

Target Index: SDNN
CTM #1 #2 #3 #4 #1 #2 #3 #4

SS #1 #1 #1 #1 #2 #2 #2 #2
EA 
(ms)

1.47 3.12 2.11 3.04 4.49 6.11 6.01 6.39

EF 
(ms)

0.91 2.24 1.98 2.36 3.77 5.02 6.04 6.54

EN 
(ms)

0.84 1.51 1.20 1.74 2.31 3.58 3.07 3.82

RA 
(%)

3.07 6.87 4.36 6.39 9.65 12.8 13.3 13.8

RF (%) 1.88 4.57 3.51 4.74 7.89 9.45 10.9 12.2

RN 
(%)

1.99 3.60 2.76 4.05 5.57 8.47 7.12 8.93

Target Index: RMSSD
CTM #1 #2 #3 #4 #1 #2 #3 #4

SS #1 #1 #1 #1 #2 #2 #2 #2
EA 
(ms)

2.39 4.77 4.38 5.25 9.86 10.4 11.0 10.9

EF 
(ms)

1.91 4.38 4.25 4.84 8.63 8.89 11.0 10.7

EN 
(ms)

1.60 3.10 2.60 3.00 4.37 4.76 4.88 4.79

RA 
(%)

6.37 13.6 11.2 14.9 28.9 30.4 31.9 31.9

RF (%) 5.67 13.3 11.4 15.6 27.8 26.6 30.4 31.7

RN 
(%)

7.58 14.8 12.4 14.7 21.9 23.3 24.4 23.6
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556 EA, EF and EN are the estimation error for the Autonomic aging, Fantasia and Normal sinus 

557 rhythm RR databases respectively. RA, RF and RN refers to the relative estimation error for the 

558 Autonomic aging, Fantasia and Normal sinus rhythm RR databases respectively.

559

560    All RR time series, features, and targets are available in the repository. Hence, the use of other 

561 machine-learning approaches or smoothing algorithms for these data is welcomed. 

562

563 Conclusions

564 This work shows the feasibility of estimating SDNN and RMSSD HRV indices by extracting 

565 features from the heart rate (or heart period) time series once a smoothing algorithm has transformed 

566 the RR or IBI intervals into a smoother version. The extracted features were fed into a properly 

567 fitted ANN to estimate the aforementioned indices. The weights and biases of the ANNs depend on 

568 the index to be estimated and the smoothing algorithm. Because the smoothing algorithm made by 

569 a particular device is generally not disclosed, this study has proposed eight different procedures 

570 based on four different central tendency measures and two different sampling strategies. The results 

571 show that RMSSD is harder to estimate than SDNN, and the estimation error increases with 

572 smoothing of the RR or IBI time series. Moreover, this depends on the database. Further research 

573 on the proposal of new features, their choice, and redesigning of the ANN structure can provide 

574 results with lower estimation errors.  
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