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Abstract 

Alzheimer’s disease (AD) patients have varying responses to AD drugs and there may be no single 

treatment for all AD patients. Trial after trial shows that identifying non-responsive and responsive 

subgroups and their corresponding moderators will provide better insights into subject selection and 

interpretation in future clinical trials. We aim to extensively investigate pre-treatment features that 

moderate treatment effect of Galantamine, Bapineuzumab, and Semagacestat from completed trial data. 

We obtained individual-level patient data from ten randomized clinical trials. Six Galantamine trials and 

two Bapineuzumab trials were from Yale University Open Data Access Project and two Semagacestat 

trials were from the Center for Global Clinical Research Data. We included a total of 10,948 subjects. The 

trials were conducted worldwide from 2001 to 2012. We estimated treatment effect using causal forest 

modeling on each trial. Finally, we identified important pre-treatment features that determine treatment 

efficacy and identified responsive or nonresponsive subgroups. As a result, patient’s pre-treatment 

conditions that determined the treatment efficacy of Galantamine differed by dementia stages, but we 

consistently observed that non-responders in Galantamine trials had lower BMI (25 vs 28, P < .001) and 

increased ages (74 vs 68, P < .001). Responders in Bapineuzumab and Semagacestat trials had lower Aβ42 

levels (6.41 vs 6.53 pg/ml, P < .001) and smaller whole brain volumes (983.13 vs 1052.78 ml, P < .001). 

6 ‘positive’ treatment trials had subsets of patients who had, in fact, not responded. 4 “negative” treatment 

trials had subsets of patients who had, in fact, responded. This study suggests that analyzing heterogeneity 

in treatment effects in “positive” or “negative” trials may be a very powerful tool for identifying distinct 

subgroups that are responsive to treatments, which may significantly benefit future clinical trial design 

and interpretation. 

 

Introduction 

The current understanding and treatment approach towards Alzheimer's disease (AD) presents 

substantial challenges, especially in the context of differential responses to medication between 
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patients. Responsiveness (high efficacy) or non-responsiveness (low efficacy) to AD treatment 

might be related to certain moderators. A previous study indicated that one-third of AD patients 

do not respond to pharmacological treatment.1 Different moderators, such as sex or gender,2 the 

presence of comorbid illness,3 and long-term administration of other medications (e.g., 

antihypertensives),3 might contribute to different responses of AD patients to treatments. 

Because a one-size-fits-all treatment is not likely to be available for AD in the near future, 

identifying non-responsive or responsive subgroups and their corresponding moderators will 

provide better insights into subject selection in future clinical trials. 

 

Identifying patient subgroups with differential responses to treatment requires counterfactual 

analysis, which compares the outcomes of patients who actually received the treatment (factual 

outcome) with the outcomes when the same patients would not have received the treatment 

(counterfactual outcome), and vice versa.4,5 Counterfactual outcomes are never observed. To 

estimate the average treatment effect (ATE), the traditional approach takes the difference of 

potential outcomes between the randomized (or computationally debiased) treatment and placebo 

arms.6 To estimate heterogeneous treatment effect (HTE), earlier studies stratify the samples by 

prespecified variables and test the statistical significance of differences in arms.7 

 

It is also common practice to try to identify subsets of responsive patients in Phase II clinical 

trials to determine enrollment criteria for the associated Phase III trial. Many Phase III trials 

following positive Phase II subgroups, however, have shown negative outcomes, including 

tarenflurbil, bapineuzumab, solanezumab, and ELND005.8–11 Therefore, identifying subgroups 

with differential responses may be beyond the scope of the ad-hoc analyses of a few manually 
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selected variables in individual trials, considering the complexity of AD.12–16 Several recent HTE 

estimation models based on machine learning have flexibly incorporated high-dimensional 

features space in randomized data. Among them, tree-based HTE estimation models recursively 

partition subjects in randomized trials to maximize the separation in the subject’s HTE.17,18 The 

model’s ability to account for nonlinearity in pre-treatment features and interpretability 

motivated us to leverage this approach to estimate HTE and obtain important features that 

moderate the treatment effect size. 

 

The goal of this study was to identify important pre-treatment features that define subgroups 

within randomized clinical trials with positive or negative treatment efficacy. For trials with 

positive efficacy (e.g., Galantamine), we focused on identifying nonresponsive subgroups who 

are less likely to benefit from the drug in order to not expose those patients to drugs to which 

they are unlikely to respond.  For trials with neutral efficacy (e.g., Bapineuzumab, Semagacestat), 

we focused on identifying responsive subgroups that might be amenable to targeted trials. 
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Methods 

Study population 

Table 1. Summary of ten randomized clinical trials  
Data 
storage 
(sponsor
) 

of 
tria
l 

Trial 
reference 
number 
(source) 

Duratio
n of 
study ( 
year)   

Medication 
tested 

Patients 
(Medication/
dosage/N) 

Inclusion 
criteria 

Primary 
outcome 
measures 

Features 
(Demo 
/Neuro 
/Imaging 
/Lab) 

Galantamine 
YODA 
(J&J) 

1 NCT0021659
41 

2003-
2007 

24 mg/day 
  

Gal 211, 
Pbo 204 

MMSE  
5-12  

SIB, MDS-
ADL 

● 
▲▲▲ 

 2 NCT0067962
742 

2008-
2012 

24 mg/day Gal 920, 
Pbo 919 

MMSE 10-26 MMSE ● 
▲ 

 3-1 
3-2 

NCT0025321
443 

2001-
2002 

CR 24 mg/day, 
IR 24 mg/day 

Gal 320 (CR), 
Gal 324 (IR), 
Pbo 322 

MMSE 10-24 ADAS-cog11,  ●● 
▲▲▲▲ 

 4-1 
4-2 
4-3 

GALUSA104

4 
 8 mg/day, 

16 mg/day, 
24 mg/day  

Gal 144 (8), 
Gal 282 (16), 
Gal 274 (24), 
Pbo 289 

MMSE 10-22  ADAS-cog11 ●● 
▲▲▲▲ 

 5 NCT0023657
445 

2001-
2003 

24 mg/day Gal 496, 
Pbo 498 

CDR = 0.5 
(MCI) 

ADAS-cog11, 
CDR 

●● 
▲▲ 
∎ 

 6 NCT0023643
145 

2001-
2003 

24 mg/day Gal 498, 
Pbo 511  

CDR = 0.5 
(MCI) 

ADAS-cog11, 
CDR 

●● 
▲▲ 

Bapineuzumab 

 7-1 
7-2 

NCT0057413
2 (ApoE4 
noncarrier)46  

2007-
2012 

0.5 mg/kg,  
1.0 mg/kg 

Bap 305 (0.5), 
Bap 313 (1.0), 
Pbo 486 

MMSE 16-26 
(mild-to-
moderate) 

ADAS-cog11, 
DAD 

● 
▲▲▲▲

▲ 
∎∎∎ 
�� 

 8 NCT0057505
5 (ApoE4 
carrier)47 

2007-
2012 

0.5 mg/kg Bap 673, 
Pbo 448 

MMSE 16-26 
(mild-to-
moderate) 

ADAS-cog11, 
DAD  

●● 
▲▲▲▲

▲ 
∎∎∎  
�� 

Semagacestat 
Vivli 
(Eli&Lil
ly) 
  

9-1 
9-2 

NCT0059456
848 

2008-
2011 

100 mg/day, 
140 mg/day 

Sem 484 
(100),  
Sem 498 
(140), 
Pbo 486 

MMSE 16-26 
(mild-to-
moderate) 

ADAS-cog11, 
ADL  

●●● 
▲▲▲▲ 
∎∎  
� 
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10 NCT0076241
149 

2008-
2011 

140  mg/day Sem 509 
Pbo 534 

MMSE 16-26 
(mild-to-
moderate) 

ADAS-cog11, 
ADL 

●●● 
▲▲▲▲ 
∎∎  
� 

Baseline: ● Demographics, ● BMI, ● APOE4 
Neuropsychological tests: ▲ ADAS-cog, ▲ CDR-SB, ▲ MMSE, ▲NPI, ▲ADL, ▲DAD, ▲SIB 
Imaging: ∎MRI, ∎Pib-PET SUVR, ∎FDG-PET SUVR 
Lab: �Amyloid-beta, �P-tau 
Abbreviation: Medications and dosage: Gal: Galantamine, Bap: Bapineuzumab, Seg: Semagacestat, Pbo: Placebo, 
CR: Controlled-release, IR: immediate-release. Features: ADAS-cog: Alzheimer's Disease Assessment Scale –
Cognitive subscale, ADL: Activities of Daily Living, APOE4: Apolipoprotein E4, CDR-SB: Clinical Dementia 
Rating-Sum of Boxes, DAD: Disability Assessment in Dementia, MMSE: Mini-Mental State Examination, NPI: 
Neuropsychiatric Inventory, SIB: Severe Impairment Battery, MRI: Magnetic Resonance Imaging, Pib-PET SUVR: 
Pittsburgh Compound B - Positron Emission Tomography Standard Uptake Value Ratio, FDG-PET SUVR: 18F-
fluorodeoxyglucose PET SUVR, p-tau: phosphorylated tau 
 

We obtained individual-level patient data from ten randomized clinical trials (RCTs) on AD 

drugs from the Yale University Open Data Access Project (YODA, http://yoda.yale.edu/) and 

Center for Global Clinical Research Data (Vivli, https://vivli.org/). We summarized the ten 

RCTs in Table 1. The datasets consist of six Galantamine trials for patients with mild to severe 

AD, two Bapineuzumab trials for mild to moderate AD, with or without ApoE4, and two 

Semagacestat trials for mild to moderate AD without depression. The Galantamine and 

Bapineuzumab trials were from YODA and the Semagacestat trials were from Vivli. The 

primary results of these studies have been previously published.9,19–22 Galantamine improved 

cognitive function but did not significantly enhance overall daily activities. In contrast, both 

Bapineuzumab and Semagacestat showed neutral efficacy in improving cognitive function, and 

patients receiving high doses of Semagacestat showed worse outcomes. 

 

Outcome measurement 

The ten RCTs use different sets of outcome measurements to evaluate cognitive function or 

activities of daily living. The outcomes were assessed before treatment (baseline) and after 

treatment (endpoint). The ten RCTs also have different study durations. The Alzheimer's Disease 
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Assessment Scale –Cognitive subscale (ADAS-cog) was the primary outcome measure in most 

RCTs (eight out of ten studies) (Table 1). Our study focused on the most common outcome 

measurements, which included ADAS-cog, Severe Impairment Battery (SIB), and Mini-Mental 

State Examination (MMSE), to ensure comparability between trials. Although they measure 

cognitive function with different tasks, they are developed to evaluate the cognitive function of 

AD (or prodromal AD) patients, making it possible for us to compare the efficacy across 

different trials. 

 

Features 

We included a comprehensive set of pre-treatment features to identify features that moderate the 

treatment effect (moderator). The features include demographic variables, dependencies, 

neuropsychological tests, Cerebrospinal Fluid Phospho (CSF) biomarkers, and brain imaging. 

The availability of such features varied by trial (Table 1).  These features may moderate the 

treatment effects. Previous studies have shown that patient demographics, such as age and 

ethnicity, can impact cognitive function in AD patients.23,24 Dependency tests included Activities 

of Daily Living (ADL) and Disability Assessment For Dementia (DAD). Cognitive tests such as 

the Clinical Dementia Rating-Sum of Boxes (CDR) and MMSE have commonly been used to 

evaluate AD patients' cognitive function.25 CSF Biomarkers such as amyloid-beta (Aβ) level and 

phosphorylated tau (p-tau) have been shown to be useful in detecting AD pathology and 

predicting cognitive decline.26 Imaging studies have shown that regional brain volume changes 

are associated with cognitive decline and amyloid-beta burden.27,28 We scaled the regional brain 

volume (i.e., hippocampal volume and ventricular volume) by whole brain volume as a 

representation of the proportion of the brain. We also included Pittsburgh Compound B (PiB) - 
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Positron Emission Tomography Standard Uptake Value Ratio (PET SUVR) and 18F-

fluorodeoxyglucose (FDG) - PET SUVR as imaging features. 

 

Missing value imputation 

In our study, missing values exist in the imaging features (e.g., whole brain volume, 

hippocampus volume, ventricular volume, PiB-PET SUVR, and FDG-PET SUVR) and lab test 

features (e.g., Aβ42, Aβ40, and p-tau), with missing rates ranging from 48% to 93%. We dropped 

missing variables with a missing rate larger than 90%. Other features had missing rates under 

10%. To overcome such severe missing rates, we imputed missing values with multiple 

imputations by chained equations (MICE)29. MICE is a valid method to iteratively impute 

missing values in each variable using regression models that take into account the relationships 

between those variables and other observed variables. This process is repeated multiple times, 

with each iteration improving the imputations by incorporating information from the imputed 

values of other variables. The final imputed dataset is created by combining the results from 

multiple imputations, which produce a set of plausible values that account for the uncertainty in 

the imputed values. 

 

Causal forest 

We leveraged causal forest30 to estimate conditional average treatment effect (CATE), identified 

potential moderators that affect the efficacy, and used the moderators to define responders (for 

neutral trial) and non-responders (for positive trial). Compared to other causal inference 

methods31, causal forests recursively partition the subjects, thus accounting for the non-linear 

relationships between features and treatment effect size. The causal forest model is an ensemble 

of causal trees, where causal trees recursively partition subjects into small subgroups, like 
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classical decision trees, but to maximize the distribution divergence of treatment effects across 

leaf nodes. The technical details on potential outcome framework, causal forest modeling, and 

training process were depicted in the Supplement Text. 

 

Important features 

We assessed feature importance across all trees in the forest based on their relative position in a 

tree and influence on CATE. We calculated the feature importance by jointly considering the 

location of the feature used in a tree and the times that the features selected as the splitting 

criteria when growing a tree, which is 

��������	
��� � ∑������/��
���/�∑���1/�

�, 

here � is the depth of the tree, ���  is the total number of splits of the variable ��  at depth �, � is 

an index of features included in the algorithm, and ��  is the total number of splits at depth � 

over every tree in the forest. In addition, to visually investigate the impact and direction of 

important features as potential moderators on the CATE, we plot the relationships between the 

top important features and the estimated CATE. We estimated the CATE here from the trained 

causal forest for each feature value while keeping all the other covariates at the median value. 

 

Responder and non-responder identification 

Traditionally, the responders or non-responders refer to the individuals who have estimated 

individual treatment effect below zero or above zero. In this study, we presented subgroups of 

responders or non-responders by selecting leaf nodes in causal trees in the causal forest, where 

the patients in the subgroups share similar estimated treatment effects and similar pre-treatment 

features.  We focused on leaf nodes that involved important features that we identified. The leaf 
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node is defined as a series of splitting rules and its CATE. In the galantamine trials, which had 

positive efficacy, we identified nonresponder subgroups. For bapineuzumab and Semagacestat 

trials, which had negative outcomes, we identified responder subgroups who may have benefitted 

from the drugs. The higher value of outcome measurement (e.g., ADAS-cog11) means severe 

cognitive dysfunction, and SIB and MMSE were negated to make the favorable outcome in the 

same direction as ADAS-cog11. Thus, negative treatment effects indicate beneficial treatment 

effects. In addition, we tested the important features' mean difference between subgroups with 

ITE above or below zero to validate the observed patterns using a two-sample t-test. 

 

Evaluation 

To evaluate whether the causal forest accurately estimated the CATE, we applied the treatment 

heterogeneity test by analyzing the “best linear predictor” 32,33. In the test, we fitted the estimated 

CATE as a linear function of out-of-bag causal forest estimates. The function has two synthetic 

regressors: mean forest prediction accounts for the average of out-of-bag CATE estimates with a 

coefficient �, and differential forest prediction measures the quality of the estimates of treatment 

heterogeneity on out-of-bag data, with a coefficient β33. The coefficients α and β allow us to 

evaluate the performance of our estimates. If α = 1, then the average prediction produced by the 

forest is correct. Meanwhile, if β = 1, then the forest predictions adequately capture the 

underlying heterogeneity. For tests with β close to 0 or negative, the test between above and 

below the median of the overall range of the CATE provides us with qualitative insights about 

the strength of heterogeneity.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.27.23297685doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.27.23297685
http://creativecommons.org/licenses/by-nc-nd/4.0/


RESULTS 

Our study included six Galantamine trials, two Bapineuzumab trials, and two Semagacestat trials. 

Trial details can be found in Table 1. 

 

Non-responders vs. Responders 

[Figure 1. Estimated CATE across ten trials] 

We built causal forests on ten trials and characterized responders and non-responders. The 

estimated CATE for patients (Figure 1) in Trial 1 to 4 were all below 0, indicating that patients 

were all responders when looking into individualized CATE. It is worth mentioning that we can 

still find non-responsive subgroups with positive estimated CATE by extracting splitting rules 

from causal trees. To simplify, the estimated CATE refers to the subgroup CATE. Table 2 

summarizes the important features from causal forests and characteristics of non-responders (in 

Galantamine trials) or responders (in Bapineuzumab and Semagacestat trials) obtained from 

causal trees, to identify common patterns in non-responders or responders across trials. In the 

following, we will discuss the findings by drug. 

Table 2. Characteristics of non-responsive and responsive subgroups using the causal forest.  

Sample of 
trial 

Primary 
outcome 

Mean 
Age 

Medication Important features Selected characteristics extract 
from trees 

Galantamine  Non-responsive subgroup 

Severe 
AD 

1 SIB*  83 24 mg/day BMI, NPI, ADL 24<=BMI<27，NPI<24 

Mild to 
moderate 
AD 

2 MMSE*  73 24 mg/day BMI, DAD, age BMI>=26, DAD<54 

3-1 
 
3-2 

ADAS-
cog/11  

76 CR 24 mg/day Age, BMI, NPI Age>=77，BMI>=22, 2<=NPI<7,  

IR 24 mg/day BMI, MMSE, 
age 

BMI<20 or BMI>=28, NPI<4 

4-1 ADAS- 77 8 mg/day ADL, BMI, age ADL>=46, BMI>=25, Age>=76 
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4-2 
 
4-3 

cog/11  16 mg/day BMI, age, MMSE BMI<20 

24 mg/day  Age, MMSE, 
ADL 

Age>=82, ADL>=40, 5<=NPI<19 

MCI 5 ADAS-
cog/MCI 

70 24 mg/day RHV, ADL，

WBV 

aRight HV>=0.0022, ADL>=42, 
WBV<899 

6 ADAS-
cog/MCI  

 24 mg/day Age, ADL, BMI Age<81, ADL>=56, BMI>=25 

Bapineuzumab Responsive subgroup 

Mild 
to 
moder
ate AD 
 

7-1 ADAS-
cog/11  

63 0.5 mg/kg WBV，PTAU, 
DAD 

bWBV<1051 ml, DAD<66 

7-2   1.0 mg/kg Aβ42, VV, Aβ40 Aβ42<6.9, aVV<0.046 

8 ADAS-
cog/11  

62 0.5 mg/kg Aβ42, Aβ40, right 
HV 

Aβ40<9, aright HV>=0.0024 

Semagacestat Responsive subgroup 

Mild 
to 
moder
ate AD 
 

9-1 ADAS-
cog/11  

73 100 mg/day Age, WBV, right 
HV 

Age<78, bWBV<1114ml, aright 
HV>=0.0021  

9-2   140 mg/day WBV, right HV, 
BMI 

bWBV<1044 ml, aright 
HV>=0.0022, BMI<24 

10 ADAS-
cog/11  

73 140 mg/day Right HV, WBV, 
age 

aRight HV<0.0022, bWBV<1026 
ml, BMI<25 

Abbreviation: WBV: Whole Brain Volume, VV: Ventricular volume, HV: Hippocampal Volume 
aVentricular volume, left hippocampal volume, and right hippocampal volume were scaled by whole brain volume.  
b1 mL = 0.03 fl oz 
 

BMI was a recurring important feature across the different stages of dementia and different trials. 

Among severe AD patients, non-responders typically had a BMI between 24 and 27 and NPI 

total scores below 24. In contrast, non-responders in the mild to moderate AD patients in trials 2-

4 presented with various characteristics. Commonly observed were individuals who were 

overweight (BMI>=25), had higher ADL total scores (>=46; range from 0 to 78, with a lower 

score indicating greater severity), and relatively lower NPI total scores range (e.g., [2,7), (0,4), 

and [5,19); range from 0 to 144, with a higher score indicating greater severity). We also 
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observed that the underweight (BMI<20) group did not respond to the Galantamine in trials 3 

and 4. 

 

Brain volume metrics were also pivotal factors influencing treatment response. In trial 5, MCI 

non-responders tended to have increased right hippocampal volume (>=0.0022) and reduced 

whole-brain volume (<900 ml). For MCI patients in trial 6, non-responders were overweight 

(BMI>=25) and younger (age<81). Both non-responder subgroups in trials 5 and 6 had higher 

ADL total scores (<=42). We further investigated the distinction in selected features between 

patients with responsive and non-responsive subgroups (eTable 1 in the Supplement). Since only 

trials 5 and 6 show heterogenous ITE, we only focused on the feature distinction in these trials. 

In trial 5, we can observe the significant feature distinction in whole brain volume (1092.54 vs. 

1060.67 ml, P < .001) and right hippocampal volume (2.43e-3 vs. 2.79e-3, P < .001). In trial 6, 

we can observe the significant feature distinction in age (74 vs. 68, P < .001), ADL total scores 

(48 vs. 53, P < .001), and BMI (25 vs. 28, P < .001). 

 

Across Bapineuzumab trials, mild to moderate AD patients who responded favorably to the 

treatment exhibited lower Aβ42 (<6.9) levels in trial 7 with high-dose treatment and lower Aβ40 

(<9) levels in trial 8. Both Aβ42 (6.41 vs. 6.53 pg/ml, P < .001) and Aβ40 (8.64 vs. 8.95 pg/ml, P 

< .001) are significantly different between subgroups with negative ITE and positive ITE. In 

addition, the responsiveness was influenced by brain volume metrics in each trial. These features 

were also significantly different in negative and positive ITE subgroups. In trial 7, responders 

had smaller whole brain volume (<1051 ml; 983.13 vs. 1052.78 ml, P < .001) with low-dose 

treatment and smaller ventricular volume (<0.046; 0.045 vs. 0.056, P < .001) with high-dose 
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treatment. In trial 8, responders had larger right hippocampus volume (>=0.0024, 2.28e-3 vs. 

2.13e-3, P < .001). 

 

In the Semagacestat trials, the whole brain volume and right hippocampal volume were 

consistently observed in the characteristics of responders. In trial 9, responders in two treatment 

groups typically exhibited smaller whole brain volume (<1114ml or <1044 ml) and larger right 

hippocampal volume (>=0.0022). There was a significant difference in whole brain volume 

between negative and positive responsive subgroups (low-dose group: 1062.25 vs. 992.07 ml, P 

< .001; high-dose group: 1014.41 vs. 1037.06, P = .003). The right hippocampal volume only 

showed differences in the low-dose group (1.87e-3 vs. 1.64e-3, P < .001). In contrast, in trial 10, 

responders had smaller whole brain volume (<1044 ml, 967.53 vs 1057.65, P < .001) and smaller 

right hippocampal volume (<0.0022, 1.73e-3 vs. 1.70e-3, P = 0.02). Demographic characteristics 

also played a significant role. Responders in trial 9 treated with low-dose tended to be younger 

(age<78; 69 vs. 78, P < .001), and responders in trial 10 maintained a BMI within the normal 

range (BMI<25; 24 vs. 25, P < .001). 

 

Relationship between CATE and moderators 

[Figure 2. Relationship between CATE and moderators (one moderator vs. CATE)] 

We further investigated the potential moderators affecting the CATE estimation by analyzing the 

impact of single feature alterations on the CATE. Graphical depictions of the relationships 

between prominent features and the estimated CATE were provided in Figure 2. 

 

We focused on features presenting in characteristics of responders within Galantamine trials 5 

and 6. Of particular interest in trial 5, there are negative correlations between the CATE and 
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variables such as BMI (<30), ADL total scores (<40), and whole brain volume (<1100 ml). 

Conversely, a positive correlation was observed between the CATE and variables such as age 

(>70) and the right hippocampal volume. In trial 6, the associations of CATE with age and ADL 

total scores (>40) were reversed. 

 

We then shifted to areas manifesting negative estimated CATE in Bapineuzumab and 

Semagacestat trials. A consistent trend was observed in Bapineuzumab trials: ventricular volume 

(<0.05) positively associated with the CATE. Additionally, the whole brain volume (<1100ml, in 

trials 7-1 and 7-2), Aβ42 (>6, in trials 7-1, 7-2, and 8), and Aβ40 (in trials 7-2 and 8) had positive 

associations with the CATE, a negative association with the CATE was observed for right 

hippocampal volume (trial 8), Aβ42 (<6, in trials 7-1 and 7-2). In Semagacestat trials 9-1 and 9-2, 

we observed that age and BMI were positively associated with the CATE. The whole brain 

volume (<1100 ml) and right hippocampal volume (>0.0015) were negatively associated with the 

CATE. In trial 10, the relationship between CATE and moderators was fluctuant. The BMI (<25) 

and right hippocampal volume (<0.0015) were negatively associated with CATE, whereas BMI 

(>25), right hippocampal volume (>0.002), and whole brain volume were positively associated 

with CATE. 

 

Evaluation 

Table 3. Coefficients of heterogeneity test  

of 
trial 

Mean forest 
prediction α  

Differential forest 
prediction β 

CATE in Lower 
ITE region 
(<median) 

CATE in Higher 
ITE region 
(>median) 95% CI  

1 1.03 *** -1.11 -11.71 1.87 13.58 (8.84, 18.34) 

2 1.00** -0.21 -1.40 0.29 1.69 (1.00, 2.38) 

3-1 1.02 *** -1.29 -5.44 0.41 5.85 (3.67, 8.03) 
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3-2 1.01 *** -0.18 -6.63 0.48 7.11 (4.94, 9.29) 

4-1 0.88 * -0.09 -4.47 1.80 6.27 (3.46, 9.08) 
4-2 1.01 *** 0.27 -6.96 0.45 7.41 (5.37, 9.46) 
4-3 1.03 *** 0.47 -6.34 0.22 6.56 (4.39, 8.73) 
5 

0.84 -0.42 -3.47 3.68 7.15 (5.93, 8.37) 

6 
1.06 0.19 3.29 -3.05 6.34 (4.62, 8.06) 

7-1 1.05 -0.73 -7.19 6.98 14.17 (11.96, 16.37) 

7-2 0.60 0.85 -6.34 6.34 12.68 (9.77, 15.58) 

8 0.98 0.52 6.93 6.76 13.69 (11.41, 15.96) 

9-1 1.25 -1.32 -5.63 5.47 11.10 (9.16, 13.04) 
9-2 1.20 -2.88 -6.74 9.8 12.98 (10.40, 15.56) 
10 

1.15 -0.16 -4.92 4.72 9.63 (7.66, 11.62) 

Significance codes with p-value: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘’. The values of α and β for each trial are 
listed in the table, with different significance codes indicating the level of significance. Negative CATE indicates 
benefit. 

 

We evaluated whether the causal forest accurately estimated CATE and captured the 

heterogeneity by first comparing subgroups with lower and higher estimated CATE and then 

using the treatment heterogeneity test. In our setting, patients below the median of the overall 

range of CATE are likely to benefit from treatment, while those above the median had no 

response or negative responses to treatments. In addition, we demonstrated that the estimated 

CATE in the lower and higher regions are separated, indicating that the causal forests captured 

the heterogeneity of treatment effects (see eTable 1 in the Supplement). We also observed that 

the trials had varying values of α and β, with some trials showing high significance levels or 

having values close to 1. For the trials where β had negative values, we also checked the 

estimated CATE at lower quantile (Q1) and higher quantile (Q3) (See Table 2 and Table 3). The 

tables suggested that the causal forest estimates performed reasonably well in estimating the 

CATE in the trials analyzed. 
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DISCUSSION 

This study aimed to identify important pre-treatment features that moderate treatment effects and 

thus define subgroups with different treatment effects in Alzheimer's disease clinical trials. We 

used causal forest modeling on individual-level patient data from ten randomized clinical trials to 

estimate CATE, characterize responders and non-responders, and identify potential moderators. 

The characteristics of non-responders and responders varied considerably across the trials and 

disease severity stages. This variability suggests that a complex interplay of multiple factors, 

including BMI, age, amyloid burden, and brain atrophy, might influence responsiveness to 

Galantamine, Bapineuzumab, and Semagacestat. These findings are valuable as they can help 

tailor treatment strategies for specific subpopulations within existing developed drugs, thereby 

reducing costs and reducing exposure to those unlikely to respond. Our method may be a 

promising tool to inform future clinical trial designs. 

 

Specifically, overweight patients across all dementia stages showed no response to the 

Galantamine treatment. These heavier persons may have a different metabolism that is related to 

different responses to treatment. This finding aligns with prior research suggesting a potential 

link between a higher BMI and reduced reaction to certain AD treatments due to inflammation 

and vascular issues.34 In contrast, we noted that underweight patients with mild to moderate AD 

at baseline also showed no response to the treatment. The exact mechanism connecting BMI and 

treatment efficacy remains unclear; it could involve synergistic effects with the patient's 

dementia status, cognitive scales, and neuropsychological features at baseline. Intriguingly, our 

results revealed that older, mild to moderate AD patients and younger MCI patients did not 

respond to Galantamine. This may be attributed to how Galantamine works. Galantamine 

enhances the levels of a specific natural substance in the brain required for memory and thought, 
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potentially improving cognitive abilities or decelerating their decline in individuals with AD.35 

Furthermore, it assists in maintaining ADL performance in AD patients.36 Therefore, patients 

with superior cognitive abilities, greater independence, and possibly younger age may not reap 

significant benefits from Galantamine treatment. 

 

Clinical trials for Bapineuzumab and Semagacestat were halted due to low efficacy.9,19 However, 

our analysis reveals specific subpopulations of mild to moderate AD patients, identified by 

distinct Aβ levels and hippocampal volume, who might have responded positively to the 

treatment. In the Bapineuzumab trials, responders consistently exhibited lower Aβ levels. As a 

humanized anti-Aβ monoclonal antibody, Bapineuzumab has shown its ability to modify Aβ 

accumulation.9 This may account for lower baseline Aβ levels being more likely to achieve 

complete amyloid clearance, which helps maintain or improve primary outcomes. Our findings 

suggest that a subpopulation bearing a lesser amyloid plaque burden is potentially more receptive 

to Bapineuzumab. In the Semagacestat trials, responders had larger right hippocampal volume 

and more brain atrophy (smaller whole brain volume) at baseline. This asymmetry in 

hippocampal volume influencing treatment response is intriguing and suggests that further 

research into this is important. The underlying mechanism might be tied to the lateralization of 

brain function and the disease's differential impact on brain hemispheres.37  

 

ApoE genotype didn’t show up in the top important features in our analysis due to the tree-based 

model favoring continuous variables in node splitting. However, so far, we have been learning 

that ApoE is an important biological factor affecting AD progression as well as AD treatment 

efficacy.38 Lecanemab, a recently approved therapy for adult AD patients, demonstrates efficacy 
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predominantly among ApoE4 carriers benefit from Lecanemab. 39 Similarly, only ApoE4 carries 

responded to Solanezumab treatment.40 Thus, there is a precedent for subsets of AD patients 

responding differently to treatments. Given this, it is worth employing our methodology to 

identify responsive subgroups within these promising clinical trials.  

 

Limitation 

Several limitations to our study should be considered when interpreting the results. In contrast to 

traditional hypothesis testing approaches that pre-specify potential moderators based on 

biological knowledge, our data-driven strategy may produce moderator combinations without a 

biological basis, leading to spurious results. Due to the variance term in the splitting criterion, 

tree-based approaches like the causal forest tend to favor continuous variables for node splitting. 

Thus, important discrete variables may need to be addressed. Finally, we did not consider 

differences in follow-up period length when investigating treatment effects; we assume the 

treatment effect is independent of the follow-up period.  
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Figure1. Estimated CATE across ten trials 
                                                                                                                                                                                           

   

 

  

                         

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2023. ; https://doi.org/10.1101/2023.10.27.23297685doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.27.23297685
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Relationship between CATE and moderators (one moderator vs. CATE) 
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Note: The numbered figures indicated the specific trials and medication dosages which were aligned with the trial 
numbering we assigned in Table 1.  
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