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Abstract 85 

We conducted a multi-ancestry genome-wide association study of prostate-specific antigen 86 

(PSA) levels in 296,754 men (211,342 European ancestry; 58,236 African ancestry; 23,546 87 

Hispanic/Latino; 3,630 Asian ancestry; 96.5% of participants were from the Million Veteran 88 

Program). We identified 318 independent genome-wide significant (p≤5e-8) variants, 184 of 89 

which were novel. Most demonstrated evidence of replication in an independent cohort 90 

(n=95,768). Meta-analyzing discovery and replication (n=392,522) identified 447 variants, of 91 

which a further 111 were novel. Out-of-sample variance in PSA explained by our genome-wide 92 

polygenic risk scores ranged from 11.6%-16.6% in European ancestry, 5.5%-9.5% in African 93 

ancestry, 13.5%-18.2% in Hispanic/Latino, and 8.6%-15.3% in Asian ancestry, and decreased 94 

with increasing age. Mid-life genetically-adjusted PSA levels were more strongly associated with 95 

overall and aggressive prostate cancer than unadjusted PSA. Our study highlights how 96 

including proportionally more participants from underrepresented populations improves genetic 97 

prediction of PSA levels, offering potential to personalize prostate cancer screening. 98 
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Introduction 100 

Prostate-specific antigen (PSA) is a protein encoded by the KLK3 gene and secreted by the 101 

prostate gland1–3. PSA levels are often elevated in those with prostate cancer (PCa); however, 102 

elevated levels can also be caused by other factors, such as benign prostatic hyperplasia 103 

(BPH), local inflammation or infection, prostate volume, age, and germline genetics4–8. PSA 104 

screening for PCa was approved by the Food and Drug Administration in 1994, but it is unclear 105 

if the benefits for PCa-specific mortality reduction outweigh the harms from overdiagnosis and 106 

treatment of clinically insignificant disease9–12. Previous work estimates 20-60% of screen-107 

detected PCas are overdiagnoses (i.e., PCa that would not otherwise clinically manifest, or 108 

result in PCa-related death13), other work has suggested that 229 individuals would need to be 109 

invited to screen and 9 would need to be diagnosed to prevent one death14, and the United 110 

States15, Canada16, and the United Kingdom17 recommend against universal population-based 111 

screening. If PSA levels could be adjusted for an individual’s predisposition in the absence of 112 

PCa, the specificity (to reduce overdiagnosis) and sensitivity (to prevent more deaths) of 113 

screening could be improved. 114 

 115 

Twin studies estimate PSA heritability at 40-45%18,19, and genome-wide heritability estimates at 116 

25%-30%20 suggesting that incorporating genetic factors may improve screening. Recent work 117 

from our group based on 85,824 European ancestry and 9,944 non-European ancestry men 118 

found that genetically-adjusted PSA (i.e., the PSA measure inflated or deflated due to an 119 

individual’s genetic variants) most improved the discrimination of PSA screening for aggressive 120 

tumors20. In that work, we identified 128 genome-wide significant variants that explained up to 121 

7% of PSA variation in European ancestry, suggesting that many more PSA loci remain. 122 

Genome-wide polygenic risk scores (PRSs) explained up to 10% in European ancestry; 123 

however, the PRSs were less predictive in other groups, especially African ancestry (1-3%). 124 

Additional variant discovery with larger, more diverse cohorts could provide novel insights into 125 

the genetic architecture of PSA and further improve PCa screening. 126 

 127 

Results 128 

Composition of discovery and replication cohorts 129 

Our discovery population consisted of 296,754 men without PCa from 9 cohorts: 211,342 130 

European ancestry (71.2%), 58,236 African ancestry (19.6%), 23,546 Hispanic/Latino (7.9%), 131 

and 3,630 Asian ancestry (1.2%). None had been included in previous PSA GWASs. We 132 

present genotype platform details in Table S1, demographics in Table S2, and quality control 133 

(QC) metrics in Table S3. The pooled mean age at PSA measurement across the discovery 134 

cohorts was 57.4 (standard deviation [SD]=9.6), and the pooled median PSA was 0.84. The 135 

Million Veteran Program (MVP) comprised 96.5% of the discovery cohort. For replication, we 136 

utilized results from 95,768 independent individuals from previous work20, including 85,824 137 

European ancestry, 3,509 African ancestry, 3,098 Hispanic/Latino, and 3,337 Asian ancestry 138 

individuals (Table S3). Figure 1 summarizes our analytical workflow and describes cohort 139 

ancestry compositions. 140 

 141 

Discovery GWAS analysis of PSA-associated variants 142 
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In our discovery cohorts, we identified 318 independent genome-wide significant variants (264 143 

European, 51 African, 17 Hispanic/Latino, and 2 Asian) in a multi-ancestry analysis of log-144 

transformed PSA levels (Figure 2, Figure S1, Table S4, Table S5) that used multiple reference 145 

panels to account for different ancestries (see Methods). Among them, 184 independent 146 

variants selected by mJAM21 were novel (see Methods). Of the novel variants, 57 replicated at 147 

a Bonferroni level (p<0.05/184=0.00027, same direction of effect on PSA), an additional 80 148 

replicated at p<0.05 (and the same direction), 43 demonstrated the same effect direction (but 149 

p>0.05), and four showed no indication of replication (effect in the opposite direction). On 150 

average, compared to the non-replicated variants, the replicated variants had slightly larger 151 

effect sizes (mean β=0.30 versus 0.27) and were slightly more precise (mean standard 152 

error=0.0039 versus 0.0042).  153 

 154 

Of the 184 variants that were novel in the multi-ancestry analysis, 112 were genome-wide 155 

significant in the European ancestry discovery cohort, eight were genome-wide significant in the 156 

African ancestry cohort, and none were genome-wide significant in Asian or Hispanics/Latino 157 

individuals (likely due to low sample size; Figure S2). Of the eight in African ancestry 158 

individuals, only two variants were frequent enough (see Methods) to be assessed in other 159 

ancestry groups: rs2071041 (ITIH4; βAfrican=0.0237, 95% CI=0.0152-0.0322, pAfrican=4.9e-8) that 160 

was also genome-wide significant in European ancestry individuals (βEuropean=0.0180, 95% 161 

CI=0.0124 to 0.0235, pEuropean=2.6e-10, minor allele frequency (MAF)=23.7%), and rs1203888 162 

(LINC00261; βAfrican=-0.0423, 95% CI=-0.0539 to -0.0307, pAfrican=8.7e-13) that was not 163 

significant in European ancestry individuals (p>.05, MAF=0.8%). The latter variant showed 164 

similar magnitude of effect but was not Bonferroni significant in discovery Hispanic/Latino 165 

individuals (βHispanic/Latino=-0.0748, 95% CI=-0.120 to -0.0297, pHispanic/Latino=0.0012, MAF=3.1%) 166 

and was not significant in discovery Asian ancestry (p>.05, MAF=3.5%) or the replication 167 

cohorts (p>.05) (Table S4). The remaining six African ancestry variants were too rare to be 168 

assessed in European ancestry individuals. The variant rs184476359 (AR, multi-ancestry 169 

discovery β=-0.0590, 95% CI=-0.0774 to -0.0406, p=3.4e-10; replication β=-0.0870, 95% CI=-170 

0.1370 to -0.0371, p=6.3e-4) was common in African ancestry individuals (MAF=17.7%), less 171 

common in Hispanic/Latinos (MAF=1.1%), and not adequately polymorphic to be imputed in 172 

Asian individuals. Three variants in genes that encode PSA (rs76151346, βAfrican=0.0821, 95% 173 

CI=0.0577 to 0.107, pAfrican=4.6e-11, KLK3; rs145428838, βAfrican=0.224, 95% CI=0.165 to 0.284, 174 

pAfrican=1.4e-13, KLK3; rs182464120 βAfrican=-0.213, 95% CI=0.278 to 0.147, pAfrican=2.0e-10, 175 

KLK2) exclusively imputed in African ancestry individuals (all MAF<5%, two <1%) did not exhibit 176 

strong evidence of replication in African ancestry individuals(p>0.05). The remaining two 177 

variants identified in African ancestry (rs7125654, βAfrican=-0.384, 95% CI=-0.0489 to -0.0279, 178 

pAfrican=7.0e-13; rs4542679, βAfrican=0.0422, 95% CI=0.0288 to 0.0557, pAfrican=7.9e-10), were 179 

more common (MAF>5%) but also did not replicate (p>0.05). Further, rs7125654 (TRPC6) was 180 

less common in Latinos, but more common in Asian ancestry, and rs4542679 (RP11-345M22.3) 181 

was less common in Latinos and not adequately polymorphic in Asians. 182 

 183 

We next tested for effect size differences across ancestry groups for the 184 novel variants. 184 

Only one variant, rs12700027 (BRAT1/LFNG, I2=84.8, p=0.00019), demonstrated heterogeneity 185 
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that was Bonferroni-significant (p<0.05/184=0.00027). The variant had a strong discovery effect 186 

in European ancestry individuals (β=0.0327, 95% CI=0.0247 to 0.0407, p=1.2e-15, MAF=0.10), 187 

but was not significant in other groups (African ancestry β=0.0131, 95% CI=-0.0190 to 0.0452, 188 

p=0.42, MAF=0.021; Asian β=-0.176, 95% CI=-0.0203 to 0.0797, p=0.027, MAF=0.021; 189 

Hispanic/Latino β=-0.0102, 95% CI=-0.0326 to 0.0121, p=0.37, MAF=0.120). In our replication 190 

cohort, the variant nominally (i.e., p<0.05) replicated (p=0.0065, β=0.0175, 95% CI=0.00491 to 191 

0.0302; European ancestry p=0.003, β=0.0327, 95% CI=0.0247 to 0.0407) and showed no 192 

statistically significant evidence of differences across ancestry groups (I2=0.0, p=0.44), although 193 

sample sizes for detecting differences were smaller. 194 

 195 

In-silico assessment of potential functional features revealed that 20 of the novel variants 196 

(10.8%) were prostate tissue expression quantitative trait loci (eQTLs), and another 65 (35.3%) 197 

were eQTLs in other tissues (Table S4). Five novel variants were missense and predicted to be 198 

deleterious, with Combined Annotation Dependent Depletion (CADD) scores >20 (Table S4): 199 

rs11556924 in ZC3HC1, which regulates cell division onset; rs74920406 in ELAPOR1, a 200 

transmembrane protein; rs2229774 in RARG, a gene in the hormone receptor family; 201 

rs113993960 (delta508) in CFTR, a causal mutation for cystic fibrosis22; and rs2991716 upstream 202 

of LOC101927871. An additional 11 variants were predicted to have high pathogenicity (CADD 203 

scores >15;Table S4). 204 

 205 

Replication analysis of previously-reported variants in the discovery cohort 206 

When we tested 128 previously identified variants20 in our discovery cohort, 106 (82.8%) 207 

replicated at a genome-wide significance level, an additional 15 replicated (11.7%) at a 208 

Bonferroni level (p<0.05/128=0.00039), an additional 6 replicated at p<0.05 (4.7%), and one 209 

variant flipped effect direction (Table S6). Replication was highest for European ancestry, likely 210 

due to sample size, with 94 variants (73%) reaching genome-wide significance, an additional 22 211 

variants (17.2%) meeting a Bonferroni-corrected level, and 8 (6.3%) additional variants meeting 212 

p<0.05 (Table S6). Replication rates within African ancestry, our next largest group, were lower: 213 

16 (12.5%) were genome-wide significant, 26 others (20.3%) met a Bonferroni level, an 214 

additional 39 (30.5%) had p<0.05, 32 additional (25.0%) were in the same direction, and 15 215 

(11.7%) were in the opposite direction. Estimated rates were similar for Hispanic/Latino and 216 

lowest for Asian populations. Lastly, 16 of the 128 known variants showed heterogeneity across 217 

the four groups (Bonferonni corrected p<0.05/128=0.00039). 218 

 219 

Joint meta-analysis of discovery and replication cohorts 220 

In the multi-ancestry analysis including the discovery and replication cohorts, we identified 447 221 

independent variants (409 European, 56 African, 22 Hispanic/Latino, 6 Asian, including 46 in >1 222 

group; Figure 3, S1; Table S7, S8). Among the 111 variants that were novel even relative to 223 

discovery alone, none showed evidence of ancestry effect size differences 224 

(p>0.05/111=0.00045). Fifty-six (50.4%) of the 111 were genome-wide significant in European 225 

ancestry individuals, but none were genome-wide significant in a non-European ancestry group 226 

(Table S8). Allele frequencies and effect sizes of the novel variants largely followed those 227 

expected by power curves (Figure 4). 228 
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 229 

In the joint meta-analysis, 12 (10.8%) novel variants were prostate tissue eQTLs, and 50 230 

(45.0%) additional were eQTLs for other tissues. Two were missense substitutions (Table S7): 231 

rs1049742 in AOC1 and rs74543584 in MPZL2. Three additional novel variants had CADD 232 

scores>15: rs1978060, an eQTL for TBX1 in prostate tissue; rs339331 an eQTL for FAM162B 233 

in adipose tissue; and rs57580158, an intergenic variant with evidence of conservation. 234 

 235 

Medication sensitivity analysis 236 

The UK Biobank (UKB) had medication information available to conduct a sensitivity analysis to 237 

see whether excluding individuals taking medications that could affect PSA levels (i.e., 5-alpha 238 

reductase inhibitors and testosterone) would impact our results. For PSA-associated variants, 239 

our primary results in the UK Biobank (UKB) were highly correlated (R=0.93, Figure S3) with 240 

the sensitivity analyses, suggesting these medications did not impact our results. 241 

 242 

Out-of-sample PSA variance explained by PRSs 243 

We evaluated different strategies for constructing PRSs for PSA levels first using results from 244 

our discovery cohort (see Methods). For testing these PRSs, four cohorts of men without PCa 245 

were out-of-sample: Kaiser Permanente’s Genetic Epidemiology Research on Adult Health and 246 

Aging (GERA) cohort, the Selenium and Vitamin E Cancer Prevention Trial (SELECT),23 the 247 

Prostate Cancer Prevention Trial (PCPT),24 and All of Us (AOU)25. 248 

 249 

In GERA, PRS318, constructed from the 318 conditionally-independent genome-wide significant 250 

variants in the multi-ancestry meta-analysis, generally had higher variance explained when 251 

using longitudinal measurements, rather than earliest PSA value, with 13.9% (95% CI=13.1%-252 

14.6%) in European ancestry (n=35,322), 13.1% (95% CI=10.6%-15.6%) in Hispanics/Latinos 253 

(n=2,716), 9.3% (95% CI=6.8%-12.0%) in African ancestry (n=1,585), and 9.0% (95% CI=7.0%-254 

11.4%) in East Asian ancestry (n=2,518). The variance explained in the other three cohorts was 255 

~3-6% lower depending on the group (Table S9). 256 

 257 

Expanding to a genome-wide approach, PRS-CSx (PRSCSx-disc; included more than genome-258 

wide significant variants (1,070,230 SNPs; see Methods) and resulted in improved predictive 259 

performance. The variance explained increased to 16.6% (95% CI=15.9%-17.5%) in men of 260 

European ancestry and 18.2% (95% CI=15.4%-20.8%) in Hispanic/Latino men (Figure 5A, 261 

Table S9). The relative increase was largest in East Asian ancestry, with variance explained 262 

reaching 15.3% (95% CI=12.7%-18.1%), and smallest in African ancestry, with variance 263 

explained 8.5% (95% CI=6.1%-11.0%). 264 

 265 

Second, we developed PRSs for PSA using the results from the joint GWAS meta-analysis 266 

(n=392,522), which combined the discovery meta-analysis with previously published results 267 

from Kachuri et al20. These scores were validated in PCPT, SELECT, and AOU, but not GERA, 268 

which was included in the previously published meta-analysis and was therefore not out-of-269 

sample . 270 

 271 
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For the independent genome-wide significant PRSs, PRS318 explained 9.5% (8.8%-10.3%) of 272 

variation in baseline PSA levels in SELECT European ancestry (n=22,173), while PRS447 (from 273 

the 447 conditionally independent genome-wide significant variants identified in the joint meta-274 

analysis) explained 10.9% (10.2%-11.8%) of the variance, which exceeded the 8.5% (95% 275 

CI=7.8%-9.2%) variance explained by PRS128 (from the 128 independent variants described in 276 

our prior GWAS of 95,768 men20). Variance explained in PCPT European ancestry (n=5,725) 277 

was slightly lower.  In AOU European ancestry (n=11,922), variance explained was slightly 278 

higher, with PRS128 explaining 8.6% (95% CI=7.7%-9.6%), PRS318 explaining 9.6% (95% 279 

CI=8.6%-10.6%), and PRS447 explaining 11.3% (95% CI 10.2%-12.4%). We did not observe an 280 

appreciable change in differences across cohorts after removing individuals with BPH, a 281 

condition known to influence PSA levels. However, variance explained was slightly higher in all 282 

populations (<0.5% higher), albeit with overlapping CIs (Table S9). 283 

 284 

Among SELECT African ancestry (n=1,173), PRS128 explained 3.4% (95% CI=1.6%-5.8%), 285 

PRS318 explained 6.5% (95% CI=4.0%-9.5%), and PRS447 explained 7.0% (95% CI=4.5%-286 

10.1%); PRS447 more than doubled variance explained by PRS128. AOU African ancestry 287 

(n=2,471) estimates were 1-2% smaller. 288 

 289 

A genome-wide PRS-CSx (PRSCSx-joint) compared to PRSCSx-disc modestly increased variance 290 

explained by roughly 1-1.5% in European ancestry in PCPT (11.6%, 95% CI=10.0%-13.1%), 291 

SELECT (13.9%, 95% CI=13.1%-14.9%), and AOU (14.7%, 95% CI=13.5%-16.0%). PRSCSx-joint 292 

also improved ~3% upon the previously published PRS from the Kachuri et al.20 paper 293 

estimated here to be 8.6% in PCPT and 10.4% in SELECT for PRS-CSx (PRSCSx-Kachuri, Table 294 

S9). Among men of African ancestry in SELECT, PRSCSx-joint showed no improvement (7.2%, 295 

95% CI=4.6%-10.0%) over PRSCSx-disc, while variance explained in AOU increased by 0.3% 296 

(5.8%, 95% CI=4.1%-7.8%). Notably, PRSCSx-joint yielded a substantial improvement upon the 297 

previously published PRSCSx-Kachuri estimates20 of 1.64% in SELECT, although still under half of 298 

that in European ancestry. 299 

 300 

In SELECT European ancestry individuals, PRS-CSx explained 13.9% of variation, while PRS447 301 

explained 10.9% of the variation. Assuming that variation explained is nested between these 302 

approaches, we estimate 78.4% (=10.9%/13.9%) of PRS-CSx variation may be explained by 303 

PRS447. This is expected since information across the different PRSs overlaps, and the initial 304 

genome-wide significant SNPs from our large-scale GWAS are the most informative for 305 

explaining variation in PSA levels. 306 

 307 

Third, we examined how the variance in PSA levels explained by the PRSs varied by age. 308 

These analyses were performed in GERA to have a large enough sample size in each age 309 

group and used PRSCSx-disc to provide out-of-sample estimates. The estimated variance 310 

explained by the PRSs decreased with increasing age in all GERA ancestry groups, albeit with 311 

somewhat wide confidence intervals (Figure 5B, Table S10). For example, PRSCSx-disc 312 

explained 16.4% (95% CI 14.6%-18.5%) of variation in PSA levels among European ancestry 313 

individuals <50y, and this decreased to 8.7% (95% CI 7.0%-10.5%) for men ≥80y. 314 
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 315 

Finally, for PRSs constructed from genome-wide significant independent variants, the variance 316 

explained when using weights corresponding to effect sizes from the multi-ancestry meta-317 

analysis was almost always equal to or higher than variance explained when using ancestry-318 

specific weights (Table S10). This was observed both for the discovery (PRS318) and joint meta-319 

analysis (PRS447). The few instances where the variance explained was estimated lower almost 320 

always had <1% difference and wide confidence intervals around the estimate (i.e., the smallest 321 

sample sizes likely had unstable estimates). 322 

 323 

Relationship of PSA PRSs with PCa aggressiveness using Gleason score 324 

In GERA, we performed a case-only analysis to examine the association between PSA 325 

PRSCSx,disc (the out-of-sample PRSs with the highest variance explained) and Gleason score. 326 

Results were consistent with previous work that suggested that screening bias decreases the 327 

likelihood of identifying high-grade disease, whereby men with higher PRS values (indicating a 328 

genetic predisposition to higher constitutive PSA levels) are more likely to be biopsied, but less 329 

likely to have high grade disease20; we found that in European ancestry cases, an SD increase 330 

in PRSCSx-disc was inversely associated with Gleason 7 (OR=0.78, 95% CI=0.73-0.84, p=1.2e-331 

13) and ≥8 (OR=0.71, 95% CI=0.64-0.79, p=6.2e-10) compared to Gleason ≤6. Other ancestry 332 

groups had similar estimated ORs, though they were not always statistically significant, likely 333 

owing to sample size (Table S11; e.g., African ancestry Gleason 7 (OR=0.88, 95% CI=0.67-334 

1.17, p=0.39) and ≥8 (OR=0.65, 95% CI=0.43-0.99, p=0.043)). 335 

 336 

Impact of genetically-adjusted PSA on prostate biopsy eligibility 337 

We examined how PRSCSx,disc would have changed biopsy recommendations for cases and 338 

controls, according to age-specific thresholds in GERA (see Methods). In European ancestry 339 

individuals who had negative biopsies (i.e., controls, n=2378), 16.0% with unadjusted PSA 340 

levels that exceeded age-specific thresholds for biopsy were reclassified to ineligible for biopsy. 341 

Among controls with PSA levels that did not indicate biopsy, 2.4% were reclassified to biopsy 342 

eligible, resulting in a control net reclassification improvement (NRI) of 13.6% (95% CI=12.2%-343 

15.0%; Figure 6A, Table S12). In individuals with positive biopsies (i.e., cases; n=2,358), 3.9% 344 

were reclassified to eligible, while 13.1% were reclassified to ineligible, resulting in a case NRI 345 

of -9.2% (95% CI=-10.3% to -8.0%). Of cases who became ineligible, 71.1% had Gleason 346 

scores ≤7, as compared to 56.5% who remained eligible (although we note that some of these 347 

men may have had biopsies for reasons other than their PSA level, such as abnormal digital 348 

rectal exam or strong family history). In African ancestry controls (n=110), 16.0% were 349 

reclassified to ineligible, while 2.4% were reclassified to eligible, resulting in an NRI of 3.6% 350 

(95% CI=0.1% to 7.1%; Figure 6B). In African ancestry cases (n=310), 5.2% were reclassified 351 

to eligible and 6.8% were reclassified to ineligible, resulting in an NRI of -1.6% (95% CI=3.0% to 352 

-0.2%). Other groups are shown in Figure S4 with details in Table S12. We additionally 353 

obtained eight years of additional follow up on the 78 controls in all groups now classified as 354 

eligible; three were later diagnosed with PCa. 355 
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 356 

To assess potential variability in genetic adjustment across PSA levels, we compared measured 357 

versus genetically adjusted PSA levels across a range of values in GERA men. Plotting 358 

measured versus adjusted PSA indicated consistent relative adjustment on the log scale 359 

(Figure S5). For example, at a measured PSA of 2.5, 6.5, and 10.0 ng/ml, the genetically 360 

adjusted PSA’ IQR ranged from 2.6-3.7, 4.6-6.8, and 9.1-12.5, respectively. These results 361 

suggest genetic adjustment is applicable to PSA values <20 displayed in the figure, although 362 

the implications are most profound around values where clinical decisions are made (e.g., near 363 

age-specific PSA thresholds). 364 

 365 

Impact of genetically-adjusted PSA on overall and aggressive PCa 366 

Previous work has suggested that midlife PSA predicts lethal PCa26. In GERA European 367 

ancestry, genetically-adjusted midlife log PSA had a larger estimated magnitude of association 368 

with overall PCa (OR=4.57, 95% CI=4.27-4.88) than measured PSA (OR=4.30, 95% CI=4.04-369 

4.58)), though the CIs overlapped. The difference between associations was even larger for 370 

aggressive disease, with OR=3.92 (95% CI=3.54-4.35) for adjusted vs. OR=3.46 (95% CI=3.15-371 

3.81) for measured, though again CIs overlapped. African ancestry showed similar trends, with 372 

the genetically-adjusted association with PCa OR=5.85 (95% CI=4.73-7.23) vs. measured 373 

OR=4.72 (95% CI=3.56-6.27), and the aggressive genetically-adjusted OR=5.39 (95% CI=3.95-374 

7.35) vs. measured OR=4.72 (3.56-6.27). Estimates in Hispanic/Latino were also similar, but 375 

East Asian ancestry showed no difference (Table S13). Cross-validated AUC estimates also 376 

showed essentially no difference between adjusted and measured PSA, with estimates ranging 377 

from 0.7-0.8 in the different groups (Table S13). 378 

 379 

Associations with previously-reported PCa variants 380 

In our discovery cohort, 20 of our 184 novel PSA-associated variants (10.8%) were genome-381 

wide significantly associated with PCa in the PRACTICAL consortium’s European ancestry 382 

GWAS27 (Tables S4, S6). An additional 19 variants (10.3%) were associated with PCa at a 383 

Bonferroni level (p<0.05/184=0.00027). With correction for bias related to more frequent 384 

screening in men with higher constitutive PSA levels (see Methods)20,28, this count was reduced 385 

to 13 (7.0%) significant at the genome-wide level, and an additional 14 (7.6%) at the Bonferroni-386 

corrected level. Out of the 111 novel PSA-associated variants from the meta-analysis, 8 (7.1%) 387 

were genome-wide significantly associated with PCa, and an additional 11 (9.8%) were 388 

significant at a Bonferroni level (p<0.00045). With bias correction, 5 (4.5%) were genome-wide 389 

significant, and an additional 4 (3.6%) were Bonferroni-significant. 390 

 391 

Associations with previously reported BPH variants 392 

In our discovery cohort, one variant (rs1379553) was genome-wide significantly associated with 393 

BPH out of 137 variants available in a GWAS in UKB European ancestry29. An additional eight 394 

met a Bonferroni level (p<0.05/137=0.00036). Out of the 96 available variants identified from the 395 

meta-analysis, one variant was genome-wide significant (rs627320), and 6 more met a 396 

Bonferroni level (p<0.045/96=0.00052). 397 

 398 
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Associations with urinary symptom variants 399 

In variants identified in our discovery cohort, rs12573077 (p=8.4e-5) met a Bonferroni level 400 

(p<0.05/177=0.00028) for a test for an association with urinary symptoms in the GERA cohort 401 

(Table S4, S6, S14). In variants identified in the joint meta-analysis, none met a Bonferroni level 402 

of significance (p<0.05/110=0.00045). 403 

 404 

PSA variant associations with prostate volume 405 

We found that 31 of the 407 PSA variants tested demonstrated some evidence of an 406 

association with prostate volume in the PASS cohort. rs182464120 on chromosome 19 was 407 

strongly associated (p=2.0e-11), rs12344353 on chromosome 9 was associated at a Bonferroni 408 

level (p=5.3e-5 <0.05/407=0.00012), and 29 other variants were associated at a nominal 409 

significance level (p<0.05) (Table S15). 410 

 411 

Associations with KLK3 plasma pQTL 412 

We annotated the 447 variants from the joint GWAS meta-analysis using recently published 413 

plasma pQTL association results for KLK3 from the UKB Pharma Proteomics Project using the 414 

Olink Explore platform;30 409 had corresponding pQTL associations in the UKB. In European 415 

ancestry individuals (n=46,214), GWAS and KLK3 pQTL effects were highly correlated (R=0.85, 416 

p=3.7e-117) (Figure S6). Eleven variants were associated with relative KLK3 abundance at 417 

p<0.05/409, and, as expected, the strongest two associations were in KLK3 (rs17632542, 418 

rs61752561) (Table S16). Among African ancestry individuals (n=1,065), we observed an 419 

attenuated correlation with effects on KLK3 abundance (R=0.14, p=0.0034), although none of 420 

the individual pQTL associations reached statistical significance. 421 

 422 

Associations with eGenes 423 

In our sc-RNA-seq data analysis, we found that each of the eGenes for PSA-associated variants 424 

is expressed across prostate cells. This is especially true in prostate luminal epithelial cells 425 

(which produce PSA) and is expected if the genes modify PSA levels (Table S17). Figure S7 426 

shows expression of the eQTL genes across multiple prostate tissue cell types, including luminal 427 

cells of the prostate epithelium and its precursor cells (e.g., basal epithelial cells of prostate; 428 

expression sorted by KLK3). Percentile expression of the eQTL-associated genes was significantly 429 

higher in luminal cells than all other prostate cell types (P=0.0006), suggesting these genes are 430 

more active in this cell type than other prostate cells (Figure S8) and supporting the hypothesis 431 

that these eQTL genes are involved in PSA expression. 432 

 433 

Discussion 434 

Our GWAS detected 448 genome-wide significant variants associated with PSA levels, of which 435 

295 were novel (184 in discovery and 111 in a meta-analysis), nearly quadrupling the total 436 

number of associated variants. The variance explained by genome-wide PRSs ranged from 437 

11.6%-16.9% in men of European ancestry, 5.5%-9.5% in men of African ancestry, 13.5%-438 

18.6% in Hispanics/Latinos, and 8.6%-15.3% in the East Asian ancestry group. We also 439 

observed a decline in PRS predictive performance with increasing age, particularly at the oldest 440 

ages. The majority of newly identified variants were uniquely associated with PSA and not PCa. 441 

 442 
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Our discovery cohort included more African ancestry individuals than any prior study of PSA 443 

genetics. Of the eight genome-wide significant variants that were identified in the discovery 444 

phase in African ancestry, only two were sufficiently common to be assessed in European 445 

ancestry. Of those two, the association between rs1203888 (LINC00261) and PSA levels was 446 

unique to the African ancestry population. These eight variants generally failed to meet 447 

Bonferroni significance in our replication cohort, although the sample size was small (3,509 448 

individuals of African ancestry); the variant rs18447639 in the AR gene was closest to 449 

replicating. Androgen receptor (AR) signaling is required for normal prostate development and 450 

function but is hijacked during carcinogenesis.31  Because prostate tumor growth and 451 

progression depend on AR signaling, androgen deprivation therapy remains a frontline 452 

treatment for progressing PCa, and the inhibition of AR activity may delay progression.32 453 

 454 

A total of 10.8% of novel discovery and replication variants were prostate tissue eQTLs, and 455 

another 49.7% were eQTLs in other tissues. In addition, 16 discovery variants and five meta-456 

analysis variants had predicted deleterious regulatory effects. Putative deleterious genes 457 

included: AOC1, which regulates histamine metabolism and sensitivity to non-steroidal anti-458 

inflammatory drugs33,34; MPZL2, which is involved in thymus development and T-cell maturation; 459 

and ZC3HC1, a regulator of cell cycle progression and established susceptibility locus for 460 

coronary artery disease35,36. We also observed an association with PSA levels for the deltaF508 461 

mutation in CFTR that causes cystic fibrosis, which is accompanied by infertility in 97% of 462 

affected males37 and has been linked to obstructive azoospermia (ClinVar38 accession 463 

SCV001860325). We detected another signal with possible links to male fertility, rs372203682 464 

in LMTK2, a gene implicated in spermatogenesis39 that interacts with  AR and inhibits its 465 

transcriptional activity40. 466 

 467 

In SELECT, the variance in PSA levels explained by our independently associated GWAS 468 

variants was ~1% larger than previously explained20 in European and ~3% higher in African 469 

ancestry individuals. The variance explained in SELECT and PCPT was substantially less than 470 

that in GERA, even though we evaluated only variants from our discovery cohort (which did not 471 

include GERA). This may be due in part to the studies’ selection criteria, as individuals in 472 

SELECT and PCPT were required to have PSA≤3 ng/mL23 and ≤4 ng/mL24, respectively, at 473 

baseline. However, in AOU, which did not have this selection criteria, variance explained for 474 

European ancestry men was at most 0.5% higher than SELECT, and thus also lower than 475 

GERA. For African ancestry men in AOU, variance explained was 2-3% lower than in SELECT, 476 

suggesting that differences in performance may be attributed to factors other than preferential 477 

selection for low baseline PSA. We also investigated whether BPH may contribute to variability 478 

in PRSs performance. The estimated variance explained was <0.5% higher when excluding 479 

men with a BPH diagnosis. By BPH, we mean a clinical diagnosis rather than presence of BPH. 480 

Most patients evaluated for potential PCa have evidence of BPH, which can result in elevated 481 

PSA levels41,42. These findings highlight the need to evaluate genetically adjusted PSA in a 482 

wider range of clinical settings, as well as the challenges with curating out-of-sample cohorts 483 

with clinical data sufficient for such evaluations. 484 

 485 
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The performance of PRS constructed using weights derived from the multi-ancestry meta-486 

analysis typically matched or surpassed the performance of PRSs based on ancestry-specific 487 

weights. As expected, genome-wide PRS-CSx generally achieved 1-6% higher explained 488 

variance than the PRSs limited to mJAM genome-wide significant variants. However, the 489 

improvement in performance observed for PRS-CSx was not equal across populations. The 490 

largest increase was observed for Hispanic/Latino men, followed by European ancestry men 491 

(generally similar to Hispanic/Latino men), followed by Asian ancestry men. To our knowledge, 492 

this is the first time out of sample PRS performance was assessed in a Hispanic/Latino 493 

population. Relative to the fine-mapped PRS, the degree of improvement was smallest for 494 

African ancestry. This may be due to a number of factors. First, PRS-CSx uses a single 495 

hyperparameter to couple posterior effect sizes across ancestry groups, which may be 496 

insufficient to capture different correlation structures among populations. Second, HapMap3 497 

variants used by PRS-CSx do not tag genetic variation equally well across ancestries. Fine-498 

mapping PRS methods do not limit to this set of tagging SNPs and may be more likely to 499 

capture population-specific variants. Third, the choice of linkage disequilibrium (LD) reference 500 

panels has slightly different implications for the two PRS approaches. PRS-CSx relies on LD 501 

reference panels for estimating joint SNP effect sizes, while fine-mapping requires LD 502 

information for identifying independent variants from summary statistics. mJAM advances other 503 

fine-mapping approaches by incorporating population-specific LD, which is more accurate than 504 

using a single population as the LD reference21 or only making use of the largest ancestry 505 

group. While PRS-CSx provides more flexibility to accommodate different genetic architectures, 506 

it may be more sensitive to the choice of LD reference panels and mismatches in LD structure 507 

between PRS training and testing populations, especially without a separate dataset for 508 

parameter tuning. 509 

 510 

We found that genetically adjusting PSA levels reduced unnecessary biopsies in controls, albeit 511 

less so than in previous work20 in the same GERA population. It is likely that our previous study 512 

overestimated reclassification in controls because there was partial overlap between the GWAS 513 

meta-analysis used to train the PRS used for adjustment - GERA was included - and the 514 

population in which we undertook genetic adjustment. In the present study, we performed 515 

genetic adjustment using a PRS trained on a large GWAS that did not include GERA. We also 516 

saw an increase in magnitude in genetically-adjusted midlife PSA association with PCa in most 517 

GERA groups, although CIs overlapped for all, and while our previous study20 did not see any 518 

benefit in African ancestry, here we saw an increase. 519 

 520 

Our investigation had several limitations. Relative to prior studies of PSA genetics, the discovery 521 

and replication cohorts included here substantially increased the number of men from diverse 522 

populations. While both were very large (N~300K and ~100K men total), the replication cohorts 523 

had disproportionately smaller African ancestry (discovery N ~58K and replication N ~3.5K) and 524 

Hispanic/Latino populations (N~24K and ~3K). Going forward, our PSA Consortium will continue 525 

to seek new study populations with both genotypic and phenotypic data that represent diverse 526 

participants. Nevertheless, for African ancestry, 43% of variants met a nominal replication 527 

threshold, many more than the 5% that would be expected by chance. We also suspect that we 528 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 20, 2024. ; https://doi.org/10.1101/2023.10.27.23297676doi: medRxiv preprint 

https://www.zotero.org/google-docs/?pef1rK
https://www.zotero.org/google-docs/?J58mX5
https://www.zotero.org/google-docs/?9o8wWz
https://doi.org/10.1101/2023.10.27.23297676


 

   

 

 

   

 

had limited power to detect effect size heterogeneity, especially since variants that exhibited 529 

significant heterogeneity were mostly known variants in strongly associated regions. Another 530 

limitation is that GERA biopsy reclassification may have been specific to Kaiser Permanente 531 

clinical guidelines, as previously discussed20. In addition, while we did our best to restrict 532 

relevant analyses to PCa-free individuals, some individuals likely had undetected PCa43. 533 

However, the number was unlikely to be large enough to materially impact our results because 534 

our study population was relatively young; the average age among men in the MVP (which 535 

comprised a large majority of our discovery study population, N~286K) was 58 years for men of 536 

European ancestry, 52 years for men of African ancestry, and 54 years for Hispanic/Latino men 537 

or Asian ancestry men. Further, the PSA PRSCSx explained increasing variability in PSA levels 538 

for individuals of younger ages. Most novel PSA-associated variants were not associated with 539 

PCa, and those that were may have been due to screening bias, as previously shown20. The 540 

lack of BPH information in most of our cohorts was an additional limitation, but most novel 541 

variants associated with PSA levels were not associated with BPH in others’ work on UKB 542 

European ancestry individuals29, and the variance explained by PRSs in SELECT was affected 543 

by <0.5% in participants with BPH. We were unable to account for prostate volume, a strong 544 

predictor of PSA levels44. Finally, we note that our GWAS and resulting PRSs were developed 545 

for total PSA. Future work should work toward capturing genetic factors that are specific to 546 

constituents of total PSA. 547 

 548 

In summary, we undertook a large-scale, multi-ancestry study with over three times the sample 549 

size of previous work,20 expanded our understanding of the genetic basis of PSA levels and our 550 

potential to improve the accuracy of PSA genetic adjustment across ancestries. Using an 551 

ancestrally diverse study population, we detected hundreds of novel variants associated with 552 

PSA levels that were largely independent of PCa and BPH. These findings explain additional 553 

variation in PSA levels, especially among men of African ancestry, who suffer the highest 554 

morbidity and mortality due to PCa, as well as among Hispanic/Latino men. This highlights the 555 

importance of studying diverse populations to enable novel discoveries and construct PRS that 556 

will perform equally across ancestry groups. Taken together, our work moved us closer to 557 

leveraging genetic information to personalize and substantially improved our understanding of 558 

the genetic basis of PSA levels and of genetic adjustment of PSA levels across individuals of 559 

diverse ancestries. 560 

 561 

Methods 562 

Discovery participants and phenotype measurements  563 

Our primary analyses included 296,754 men from seven cohorts that had not previously been 564 

analyzed in studies of PSA genetics. These are described briefly below; additional details, 565 

including array, ancestry, imputation reference panels, sample sizes, number of variants, and 566 

standard filters applied are described in Tables S1-S3. To ensure participants had a functional 567 

prostate unaffected by surgery or radiation and to exclude individuals at a high risk of 568 

undiagnosed PCa45, participants were restricted to men with no history of PCa or surgical 569 

resections of the prostate, and at least one PSA measurement between 0.01 and 10ng/mL. 570 

Analyses were based on each individual’s earliest recorded PSA level. For descriptive statistics, 571 
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meta-analysis of PSA medians from each cohort was done with the weighted median of 572 

medians method in the R v4.2.346 package metamediation v1.0.047. Sub-populations were 573 

defined by self-identified race/ethnicity and/or genetically-inferred ancestry, depending on the 574 

cohort. 575 

 576 

African American Prostate Consortium (AAPC). The AAPC is comprised of African ancestry 577 

studies with PCa phenotyping.27 578 

 579 

Mount Sinai BioMe® Biobank (BioMe). BioMe is a longitudinal cohort linked to Epic electronic 580 

health records (EHRs)48. Individuals were European ancestry, Hispanic/Latino, and African 581 

ancestry. 582 

 583 

Chicago Multiethnic Prevention and Surveillance Study (COMPASS). COMPASS is a 584 

longitudinal study of Chicagoans with >11,000 participants currently enrolled (82% African 585 

American).49 PSA data has been described previously50.  586 

 587 

Men of African Descent and Carcinoma of the Prostate (MADCaP). MADCaP is a consortium of 588 

epidemiologic studies addressing the high PCa burden in African ancestry men.51,52 589 

 590 

Multiethnic Cohort (MEC). MEC is a prospective cohort study that enrolled >215,000 Hawaii/Los 591 

Angeles residents ages 45-75 years between 1993-1996.53,54 592 

 593 

Million Veteran Program (MVP). MVP is a multi-ancestry cohort recruited nationwide. 594 

Information is obtained from EHRs, including inpatient International Classification of Diseases 595 

(ICD)-9 codes, Current Procedural Terminology (CPT) procedure codes, clinical laboratory 596 

measurements, and reports of diagnostic imaging modalities55. Sub-populations were created 597 

using the harmonized ancestry and race/ethnicity (HARE) method.56 598 

 599 

Southern Community Cohort Study (SCCS). SCCS is a prospective cohort study that recruited 600 

85,000 predominantly African ancestry adults from community health centers in the 601 

southeastern United States. This study included only men of African ancestry.57 602 

 603 

Replication cohorts 604 

Genome-wide significant variants identified in the discovery cohort were tested for replication in 605 

the previous largest GWAS of PSA levels, which included 95,768 men (85,824 European 606 

ancestry, 89.6%)20, using a Bonferroni corrected α level. In addition, previously-identified 607 

genome-wide significant variants 20 were tested for replication in our independent discovery 608 

cohort. Statistical tests throughout were two-sided. 609 

 610 

Additional PRS evaluation cohorts 611 

For our discovery cohort results, we evaluated PSA PRS performance and reclassification in 612 

individuals from the GERA cohort (also in the replication cohort, out-of-sample for the discovery 613 
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cohort (n=35,322; 28,503 European; 2,716 Latino; 2,518 East Asian; and 1,585 African 614 

American)). 615 

 616 

Additional out-of-sample cohorts for (both the discovery analysis and the joint meta-analysis of 617 

discovery and replication) PRS assessment was done in genotyped individuals from the PCPT24 618 

(n=5,725 European) and SELECT23 (n=25,366; 22,173 European; 1,763 African 619 

American/European; 1,173 African American; and 257 East Asian) and All of Us (AOU; 620 

n=17,512; 11,922 European; 2,469 African American; 1,783 other; 1,336 Hispanic/Latino)25, 621 

which have been previously described. Briefly, PCPT and SELECT began as randomized, 622 

placebo-controlled, double-blind clinical trials of finasteride and selenium and vitamin E, 623 

respectively, and both enrolled men ≥55y. Individuals in SELECT and PCPT were required to 624 

have PSA≤3 ng/mL23 and ≤4 ng/mL24, respectively, at baseline. The National Institutes of Health 625 

(NIH) AOU cohort is committed to including groups that have been historically underrepresented 626 

in research25. From AOU, we selected individuals with PSA>0.01 between the ages of 40 and 627 

90, with short-read whole-genome sequencing (WGS) data and no survey or EHR 628 

conditions/observations reflecting a history of PCa. The median PSA measurement we used 629 

was required to be ≤10 ng/mL. PRSs were calculated with the WGS data subset to variants with 630 

population-specific allele frequency ≥1% or a population-specific allele count >100 for any 631 

genetic ancestry. Genetic ancestry was determined using a random forest classifier trained on 632 

the principal component (PC) space of the Human Genome Diversity Project and 1000 633 

Genomes Project (KGP)58. 634 

 635 

Ethical considerations 636 

Informed consent was obtained from all study participants. AAPC was approved by their IRB. 637 

The ethics review board of the Program for the Protection of Human Subjects of Mount Sinai 638 

School of Medicine approved BioMe (#HSD09-00030, #07-0529 0001 02 ME). The University of 639 

Chicago Biological Sciences Division IRB Committee A (#IRB12-1660) approved COMPASS. 640 

Local and national IRBs approved MadCAP. MEC was approved by their IRB. The VA Central 641 

institutional review board (IRB) approved the MVP. The IRBs at Vanderbilt University and 642 

Meharry Medical College approved SCCS. Vanderbilt University Medical Center IRB approved 643 

BioVU. GERA was approved by the Kaiser Permanente Northern California IRB and the 644 

University of California, San Francisco. A local ethics committee approved the Malmo Diet and 645 

Cancer Study (MDCS). The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening 646 

Trial was approved by the IRBs at each participating center and the National Cancer Institute, 647 

and the informed consent document allows data use for cancer and other adult disease 648 

investigations; we used publicly posted summary statistics, for which no IRB is required. The 649 

research was conducted with approved access to UKB data (#14105). 650 

 651 

Genotype quality control and imputation  652 
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Study subjects were genotyped using conventional GWAS arrays (Table S1). Genotypes were 653 

then imputed using imputation servers59, Minimac360, or IMPUTE261. The vast majority of 654 

studies imputed to the KGP phase 3 reference panel62, with one sub-study imputing to KGP 655 

phase 1 just for the X chromosome63 and another imputing to the TOPMed reference panel59. 656 

Since all but two studies (>95% of participants) used genome build 37, welifted over the 657 

assembly of those from build 38 using triple-liftOver64 v133 (2022-05-20), an extension of 658 

LiftOver65 that accounts for regions that are inverted between builds. 659 

 660 

Standard genotype and individual-level QC procedures were implemented in each ancestry 661 

group in each participating study. Specific study protocols are delineated in Table S1, with 662 

additional QC steps and details in Table S2. Unless information was unavailable or a filter did 663 

not make sense for a particular group, variants were retained if their imputation quality score 664 

was ≥0.3, their MAF was ≥0.5% if the sample size was ≥1000 and ≥5% otherwise, their Hardy-665 

Weinberg equilibrium (HWE) was ≥1e-8, they were mapped in build 37, and they had an MAF 666 

difference ≤0.2 compared to KGP populations (full details in Table S3). For the cohorts that 667 

meta-analyzed sub-cohorts (e.g., the three small African ancestry sub-cohorts within the SCCS 668 

African ancestry group; Table S2), we also required that variants be present in all sub-cohorts 669 

(necessary for multi-ancestry analysis method limitations, although this removed only a very 670 

small number of variants, Table S3). Finally, we excluded variants if they were present in only 671 

one study with n<2,000. 672 

 673 

Association analyses 674 

GWAS within each ancestry group in each study were undertaken using linear regression of log 675 

PSA on additive genotypes, and, when using multiple measurements, the long-term average 676 

residual by individual66. The minimum set of covariates included age at PSA measurement and 677 

genetic ancestry PCs. If available, GWAS also adjusted for batch/array, body mass index, and 678 

smoking status (Table S1). Meta-analyses of each ancestry group and across the overall 679 

discovery cohort were conducted using inverse-variance weighted fixed effects models using a 680 

custom patched version of METAL v2011-03-25 that prevents numerical precision loss (lines 681 

633 and 635 of “Main.cpp” modified to the number 15 to output 15 digits precision)67. We also 682 

assessed heterogeneity with Cochran’s Q across the four ancestry groups. 683 

 684 

To identify independently associated genome-wide significant (p≤5e-8) variants with 685 

computational efficiency, we first formed clumps of genome-wide significant variants such that 686 

all clumps were ≥10Mb apart and independent of one another; specifically, the top variant was 687 

chosen, genome-wide significant variants ≤10Mb from any variant in the clump were added to 688 

the clump, the process was iterated until a final clump was formed, and then the process was 689 

repeated to form more clumps (i.e., clumps were created such that there was no additional 690 
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genome-wide significant variant ≤10Mb). Within each clump, we used mJAM v2022-08-0521, 691 

which uses population-specific LD reference panels for each contributing cohort and ancestry 692 

group to model the correlation among variants, with an r2<0.01 threshold in all ancestry groups. 693 

Genotypes utilizing the appropriate GERA cohort group (European, Hispanic/Latino, African 694 

American, and East Asian) served as references68. 695 

 696 

To maximize discovery efforts, we combined our discovery cohort (n=296,754) with our 697 

replication cohort (n=95,768), for a total of 392,522 individuals. 698 

 699 

Associations were considered novel if they had low LD from all previously-reported variants20. 700 

Specifically, we required r2<0.01 in all four ancestry groups, again using GERA as LD reference. 701 

 702 

Annotation 703 

Variants were annotated using FUMA69. We first prioritized genes that included a significant 704 

prostate eQTL from GTeX v8 (www.gtexportal.org). We then prioritized other significant eQTLs 705 

and finally by closest gene. Deleteriousness of mutations was determined by CADD scores; a 706 

recommended cutoff to identify potentially pathogenic variants of scores ≥15 has been 707 

suggested (the median of splice site changes and non-synonymous variants from CADD v1.0; 708 

corresponds to the top 3.2% of variants)70. Gene functions were characterized with RefSeq71. 709 

Circos plots were generated using Circos v0.69-672. 710 

 711 

Medication sensitivity analysis 712 

Some of our study participants may have taken medications that can affect PSA levels. In 713 

particular, 5-alpha reductase inhibitors and testosterone can impact PSA levels73,74. We 714 

assessed the use of these medications among 26,669 men of European ancestry in the UKB 715 

with at least one PSA measurement. Men with a prescription for at least one of the two 716 

medications prior to PSA measurement were considered users. Ten percent of the men were 717 

prescribed 5-alpha reductase inhibitors and 0.56% testosterone. We also controlled for potential 718 

confounding by alpha blocker use. 719 

 720 

Out-of-sample PRS variance explained 721 

We calculated PRSs to assess the overall PSA variance explained by genetics, and to adjust 722 

PSA measurements for PSA genetics. All PRS results are shown only in independent cohorts 723 

(i.e., training dataset completely independent of testing dataset), such that assessments of 724 

performance are unbiased. Nonparametric bootstrap percentile CIs for variance explained were 725 

calculated using 1000 replicates. 726 

 727 

We used two sets of individuals to construct the PRSs. First, we constructed PRSs from our 728 

discovery cohorts to allow assessment in GERA, PCPT, SELECT, and AoU. Second, we 729 

constructed PRSs from the meta-analysis of discovery and replication cohorts (which included 730 

GERA), with assessment in PCPT, SELECT, and AoU only. For GERA we included results 731 
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using first and multiple measurements; for PCPT and SELECT we include results using the first 732 

measurement. 733 

 734 

We also used two sets of variants to calculate the PRSs in each of the two sets of individuals. 735 

We first utilized the independent genome-wide significant variants discovered in our analyses 736 

(one for discovery and one for the meta-analysis of discovery and replication). Second, we 737 

constructed a genome-wide score using PRS-CSx v2023-08-1075, which was implemented 738 

utilizing GWAS summary statistics, the 1,287,078 HapMap3 variants as an LD reference that 739 

had an imputation quality >0.9 in SELECT, using a global shrinkage parameter of ϕ=0.0001 740 

(which performed well in our previous work20), and variants with imputation quality ≥0.9. Since 741 

PRS-CSx only considers autosomes, independent genome-wide significant X chromosome 742 

variants were included (and produced a negligible increase in performance). The final scores 743 

were calculated by summing the effect size times the (probabilistic) number of alleles at each 744 

locus with PLINK v2.00a3.7LM76. 745 

 746 

We also assessed the variance explained by the discovery PRS-CSx  within age intervals in 747 

GERA; we looked only in GERA to have an out-of-sample estimate from discovery and a large 748 

enough sample size at each age. An individual could be in multiple bins, but using just the first 749 

measurement of that individual per age bin. 750 

 751 

Fur PSA for PCa screening in GERA 752 

We adjusted PSA levels as has been described previously20. Briefly, PSA values for individual i 753 

were adjusted by PSAi
adj = PSAi / ai, where ai is a personalized adjustment factor derived from 754 

our PRS, as: ai = exp(PRSi) / exp(mean(PRS)). Here we estimated the mean(PRS) value within 755 

each group in the GERA cohort. We then evaluated the potential utility to alter biopsy referrals 756 

using age-specific PSA thresholds used within the Kaiser system (40-49y=2.5, 50-59y=3.5, 60-757 

69=4.5, and 70-79=6.5 ng/ml77), evaluating net reclassification in cases and controls20. 758 

 759 

We also tested for associations of our PSAadj with Gleason score (≤6, 7, and ≥8) using 760 

multinomial logistic regression with the R package nnet v7.3.1878. 761 

 762 

To assess whether there was variability in PSA adjustment across PSA levels, we first binned 763 

PSA values (with smaller ranges in lower values where there was more data). Within each bin, 764 

we computed PSA - PSAadjusted, and then computed the median and IQR of these values. The 765 

median and IQR were then plotted at the center point of each bin by adding them to the identity 766 

line. 767 

 768 

Impact of genetically-adjusted midlife PSA on overall and aggressive PCa prediction 769 

We next investigated the impact of genetically adjusting PSA on the prediction of overall and 770 

aggressive PCa in the GERA cohort (3540 cases [1,028 aggressive, Gleason ≥7], 21,702 771 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 20, 2024. ; https://doi.org/10.1101/2023.10.27.23297676doi: medRxiv preprint 

https://www.zotero.org/google-docs/?GZMGU0
https://www.zotero.org/google-docs/?kMa5AZ
https://www.zotero.org/google-docs/?6gTQsh
https://www.zotero.org/google-docs/?lqUJ80
https://www.zotero.org/google-docs/?zgFjmO
https://www.zotero.org/google-docs/?Ln1QoK
https://www.zotero.org/google-docs/?KYegWH
https://doi.org/10.1101/2023.10.27.23297676


 

   

 

 

   

 

controls). We constructed a midlife PSA26 based on each participant's median PSA between 50-772 

60y, with cases restricted to measurements ≥1y before diagnosis. Genetic PSA adjustment was 773 

performed as in the previous section. Associations between PSA or genetically adjusted log 774 

PSA and PCa risk were assessed using logistic regression for overall PCa cases vs controls 775 

and for aggressive cases vs. controls, adjusting for covariates in Table S1. AUC was estimated 776 

using 10-fold repeated cross-validation (10 repeats) with caret v6.0.9079. 777 

 778 

Bias-corrected PCa estimates 779 

PCa associations in individuals with European ancestry in the PRACTICAL consortium27 were 780 

adjusted for screening bias28, using estimates previously derived20: β’Cancer = βCancer - bβPSA, 781 

SE’Cancer=(SECancer
2 + b2SEPSA

2 + SEb
2βPSA + SEb

2SEPSA
2), where SE is the standard error, and 782 

estimates were b=1.144, and SEb=2.909e-4. 783 

 784 

Associations with urinary symptom variants 785 

We evaluated whether the novel PSA variants were associated with urinary symptoms in the 786 

GERA cohort. Individuals in this cohort completed the first 6 (of 7) questions from the American 787 

Urological Association Symptom Index (AUA-SI)80 with 5-point Likert scale responses. The 788 

questions asked about incomplete emptying, frequency, intermittency, urgency, weak stream, 789 

and straining (Table S13). The one missing question from the AUA-SI regarded nocturia. We 790 

calculated total scores as the sum of the questions, giving each individual a value ranging from 791 

6-30. The score was dichotomized at <7, ≥7 to differentiate men with little or no BPH 792 

(N=12,846) from those with moderate or severe BPH (N=15,480). We then assessed the 793 

association between the PSA variants and the urinary symptom score. 794 

 795 

Prostate volume analysis 796 

We evaluated associations between PSA variants and prostate volume in patients on active 797 

surveillance (AS) enrolled in the Canary Prostate Active Surveillance Study (PASS). Between 798 

2008-2017, PASS prospectively enrolled 1455 patients with clinically localized PCa (cT1-cT2 799 

and Gleason Grade 1-2) to undergo AS at one of 10 national sites81. Prostate volume was 800 

measured at diagnosis, with a median measurement of 43.0cc (IQR=31.0-57.5). The median 801 

age at diagnosis was 63 years (IQR=58-67), and 85% of the PASS cohort self-reported as 802 

European ancestry. Genotyping was conducted in 1,220 participants82. We assessed potential 803 

associations between the 407 PSA variants that we successfully imputed in PASS and prostate 804 

volume using mixed models with fixed effects for genetic variants, age at diagnosis, and 10 805 

PCs, and a random effect for a genetic relationship matrix. 806 

 807 

Associations with eGenes 808 
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We used single cell RNA sequencing (scRNA-seq) data to assess whether the eGenes for PSA-809 

associated variants (Table S7) are expressed in secretory prostate cell types, particularly 810 

luminal epithelial cells, more so than other prostate cell types. For these analyses, we used data 811 

from the Chan Zuckerberg Cell by Gene census v2023-12-1583. 812 

 813 

Data availability 814 

Summary statistics (from the discovery analysis and the final meta-analysis) will be made 815 

available in the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/downloads/summary-816 

statistics). PRS weights (PRS318, PRS447, PRSCSx,disc, PRSCSx,joint) will be made available in the 817 

PGS catalog (https://www.pgscatalog.org/). To protect individuals’ privacy, complete GERA data 818 

are available upon approved applications to the Kaiser Permanente Research Bank Portal 819 

(https://researchbank.kaiserpermanente.org/for-researchers). UKB data are available in the 820 

UKB cloud-based Research Analysis Platform (https://www.ukbiobank.ac.uk). GTEx data were 821 

obtained from the GTEx portal (www.gtexportal.org) and can be obtained from dbGaP 822 

Accession phs000424.v8.p2. 823 

 824 

Code availability 825 

Genome-wide association analysis were conducted using PLINK v2.0a3.7LM (http://www.cog-826 

genomics.org/plink/2.0/). Meta-analysis were conducted with a custom-patched METAL v2011-827 

03-25 (https://genome.sph.umich.edu/wiki/METAL_Documentation) that prevents numerical 828 

precision loss (lines 633 and 635 of “Main.cpp” modified to the number 15 to output 15 digits 829 

precision”), and with MJAM v2022-08-05 (https://github.com/USCbiostats/hJAM/R). Imputation 830 

was done via imputation servers (https://imputationserver.sph.umich.edu, 831 

https://imputation.biodatacatalyst.nhlbi.nih.gov), Minimac3 832 

(https://genome.sph.umich.edu/wiki/Minimac3), and IMPUTE2 833 

(https://mathgen.stats.ox.ac.uk/impute/impute_v2.html). Analysis were also conducted in R, 834 

including v4.2.0 (https://cran.r-project.org/). FUMA was used for annotation 835 

(https://fuma.ctglab.nl). Circos plots were generated using Circos v0.69-6 836 

(https://fuma.ctglab.nl). The genome-wide PRS was conducted with PRS-CSx v2023-08-10 837 

(https://github.com/getian107/PRScsx). 838 
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Figures and Tables 890 

Figure 1. Flowchart describing the Precision PSA project analysis workflow and ancestry 891 

compositions of the discovery, replication, and joint meta-analysis cohorts. The discovery 892 

GWAS analysis revealed 318 genome-wide significant (p<5e-8) SNPs associated with PSA 893 

levels, of which 184 were novel. The joint analysis (consisting of the discovery and replication 894 

cohorts) revealed 447 genome-wide significant SNPs associated with PSA levels, of which an 895 

additional 111 were novel. Both discovery and joint GWAS results were used to develop PRSs 896 

for PSA, which were then evaluated in GERA (when out-of-sample), PCPT, and SELECT. 897 

 898 
 899 
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Figure 2. Circos plot showing PSA GWAS significant variants by chromosome from the 901 

discovery cohort. Concentric tracks are colored based on results from individual ancestries, 902 

with gray indicating results from the overall discovery meta-analysis. The top 100,000 GWAS 903 

SNPs (with the smallest p-values) per ancestry are shown as points; larger circled points 904 

indicate the 318 genome-wide significant variants (p<5e-8; 184 of which were novel) from the 905 

overall discovery analysis in all ancestries. SNP density in 10Mbp bins from the overall analysis 906 

is shown as a heatmap above the overall track. The outermost ring displays genes associated 907 

with novel discovery PSA SNPs.   908 
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Figure 3. Manhattan plot showing results from the joint multi-ancestry meta-analysis of 912 

the discovery (n=296,754) and replication (n=95,768) studies. Only genome-wide significant 913 

associations (p<5e-8) are plotted. The joint analysis detected 447 independent genome-wide 914 

significant PSA-associated SNPs. These included 111 novel variants that were conditionally 915 

independent from previous findings and the discovery only analyses in each study alone ( 916 

indicated by the circles). Gene labels are given for variants with CADD>15 and/or variants that 917 

are prostate tissue eQTLs.  918 
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Figure 4. Plot of the relationship between minor allele frequency and estimated effect 922 

sizes for PSA GWAS significant variants. Each point represents one of the 447 independent 923 

genome-wide significant SNPs identified in our mJAM multi-ancestry GWAS joint meta-analysis. 924 

The SNP effect sizes are expressed in ln(PSA) per minor allele. The curves indicate the 925 

hypothetical detectable SNP effect sizes for a given minor allele frequency, assuming statistical 926 

power of 80%, α=5e-8 (genome-wide significant), and the sample size of each of our 927 

populations here (297,166 European ancestry, N=61,745 African ancestry, 6,967 Asian 928 

ancestry, 26,644 Hispanic). 929 
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Figure 5. Variance in PSA levels explained by PRSs. We constructed PRSs for PSA from our 933 

discovery cohorts to allow assessment in GERA and our PRS validation cohorts (PCPT and 934 

SELECT). We also constructed PRSs from the joint meta-analysis of discovery and replication 935 

cohorts, with assessment in our validation cohorts. The PRSs were based on the multi-ancestry 936 

identified conditionally independent genome-wide significant variants using mJAM and on a 937 

multi-ancestry genome-wide score using PRS-CSx. The genome-wide score generally 938 

performed better than the genome-wide significant score. The variance explained by genome-939 

wide PRSs (A) was up to 16.9% in Europeans, 18.6% in Hispanics/Latinos, 9.5% in Africans, 940 

and 15.3% in East Asians, and (B) decreased as age increased.  941 
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Figure 6. Biopsy reclassification with genetically-adjusted PSA. PSA levels were adjusted 945 

using the PRS-CSx estimate from the out-of-sample discovery cohort, assessed in GERA using 946 

age-specific cutoffs in (A) Europeans and (B) African Americans (see Methods). GERA Latinos 947 

and East Asians are shown in Figure S3. 948 
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