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ABSTRACT 
 

Predictive models have been able to foresee outbreaks of mosquito-borne diseases such as 
malaria and map Ebola outbreaks1. This has allowed health organizations to plan the amount of 
resources and the number of healthcare workers needed more effectively, on top of finding out 
other useful data such as the locations most vulnerable to the disease and the demographics most 
affected. It can therefore be assumed that predictive analytics can reduce the amount of 
economic and non-economic burden caused by other epidemics as well, with COVID-19 being 
an obvious example. 

 
  

                                                       
1 Meisa Salaita, “10 Ways We'Re Using Data to Fight Disease,” HowStuffWorks, August 20, 2020, 
https://science.howstuffworks.com/life/genetic/10-ways-were-using-data-fight-disease.htm. 
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To explore the use of predictive analytics in disease forecasting and in COVID-19 specifically, I 
decided to test the accuracy of a differentiation-based regression model on data provided by the 
Ontario Data Catalogue2 and then compare its performance to other methods of calculating 
regression. To make the prediction more personal, I decided to use data pertaining to the closest 
Ontario Health region to me, which is Central Ontario. The original set of data provided the daily 
number of hospitalizations since the beginning of the virus outbreak, however the data belonging 
to the year 2020 was discarded due to the assumption that the overwhelming surge to hospitals at 
the beginning of the pandemic would skew the data and hence the regression model. The reduced 
raw set of data covers COVID-19 cases in the hospital from January 1, 2021 to December 31, 
2022, where the date is the independent variable, and the number of hospitalizations is the 
dependent variable. It can be found in Appendix A. To clearly display the data spanning two 
years on a single table, the number of hospitalizations for each ten days in the data were put into 
one group, and to process the data, a numerical value was assigned to each ten-day group, so 
January 1, 2021 to January 10, 2021 was assigned 1, January 11 to January 20 was assigned 2, 
etc. Since there are 730 days in two years, there ended up being 73 groups of 10 days in total. 
The new data table can be seen in Appendix B. 
 
The scatterplot showing the number of hospitalizations due to COVID-19 in the years 2021 and 
2022 and their corresponding ten-day groups is shown in Graph 1. 
 

 
Graph 1: Time series plot showing the number of COVID-19 hospitalizations in 2021 and 2022 in groups of 10 days 

                                                       
2 “COVID-19 Cases in Hospital and ICU, by Ontario Health (OH) Region - Ontario Data Catalogue,” n.d., 
https://data.ontario.ca/dataset/covid-19-cases-in-hospital-and-icu-by-ontario-health-region. 
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By only looking at the scatterplot, we notice certain outliers within the data. Outliers can 
negatively impact the accuracy of a regression model, so their elimination would be beneficial. 
Since the independent variable of the data is groups of ten days, a unit of time, the data can be 
categorized as a time series and the above scatterplot can be considered a time series plot. This 
makes us able to use methods typically utilized for single-variable data, such as the interquartile 
range, quartile values, and the lower and upper inner fences of the number of hospitalizations to 
calculate the outliers, because it is impossible for the x or time values that are consistently 
increasing by 1 group or 10 days to produce outliers on their own3. 
 
The lower and upper inner fences of the dataset can be used to find the set’s outliers, with any 
value that lies beyond these two points being an outlier. Since the formulae for the lower and 
upper fences are, respectively: 
 

����� ����� ���	� 
 �� � 1.5��� 
 
Where Q3 is Quartile 3 and IQR is the interquartile range. 
 

����� ����� ���	� 
 �� � 1.5��� 
 
Where Q1 is Quartile 1 and IQR is the interquartile range. 
 
And the formula for interquartile range or IQR is: 
 

��� 
 �� � �� 
 
Where IQR is the interquartile range, Q1 is Quartile 1 and Q3 is Quartile 3. 
 
The values for Quartiles 1 and 3 need to be calculated. For the quartile values to be determined, 
the number of hospitalizations for each group of 10 days were placed in an increasing order and 
assigned term numbers based on their place in the newly ordered list, as shown in Appendix C. 
The formula for calculating the term number for the value of Quartile 1 is, 
 

� � 1
4  

 
Where n is the number of terms, which in this case is 73. 
 
Substituting n = 73 into this formula, we get: 
 

�73� � 1
4  

 


 18.5 
 

                                                       
3 Mark LeBoeuf, “Time Series Outlier Detection,” The Code Forest, July 29, 2017, 
https://thecodeforest.github.io/post/time_series_outlier_detection.html. 
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Since there is no 18.5th term, the mean of the values of the 18th and 19th terms, which are 
obtained from Appendix C, is used to determine Q1. 
 

�� 
 1285 � 1296
2  

 

�� 
 1290.5 
 
The time values of Quartile 3 can be calculated using a similar formula, 
 

3�� � 1�
4  

 
Where n is the number of terms. 
 
Substituting n = 73 once again, 
 

3 �73� � 1!
4  

 


 55.5 
 
Again, since there is no 55.5th term, the mean of the 55th and 56th terms’ values from Appendix C 
is used to calculate Q3. 
 

�� 
 3900 � 3914
2  

 

�� 
 3907 
 
Having calculated Quartiles 1 and 3, the values can be substituted into the previously stated 
formula for interquartile range, 
 

��� 
 3907 � 1290.5 
 

��� 
 2616.5 
 
The interquartile range, along with Q1 and Q3, can then be used to find the upper inner fence, as 
shown below, 
 

����� ����� ���	� 
 3907 � 1.5�2616.5� 
 

����� ����� ���	� 
 7831.75 
 
And similarly, the lower inner fence, 
 

����� ����� ���	� 
 1290.5 � 1.5�2616.5� 
 

����� ����� ���	� 
 �2634.5 
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Since the lower inner fence was calculated to be a negative number, and the number of 
hospitalizations cannot be negative, it can be concluded that there are no y values in the time 
series that are outliers due to being too small. 
 
The upper inner fence, however, provides a limit for how large the values for the number of 
hospitalizations can be without skewing the data and therefore the regression model that will be 
produced. The following groups and their corresponding values for number of hospitalizations 
were taken from Appendix B and noted as outliers on the basis of being larger than the upper 
inner fence, 7831.75: 
 
Table 1: Outliers determined based on the upper inner fence value of 7831.75 

Group 11 12 38 39 40 

Number of 
Hospitalizations 

8033 8654 9586 11749 8538 

 
The outliers were removed from the dataset and replaced with the means of the two values before 
and after each of them in Appendix B, to stop them from impacting the accuracy of the 
regression, as shown in the following table: 
 
Table 2: Outliers replaced by the mean of the inlier values nearest to them 

Group 11 12 38 39 40 

New Number of 
Hospitalizations 

6055.5 6055.5 4143 4143 4143 

 
The data excluding the outliers and instead including their newly assigned values, which will be 
used for the regression model, is shown in Appendix D. The graph visualizing the new data on 
the same scale can be seen below. 
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Graph 2: Time series plot showing the number of COVID-19 hospitalizations in 2021-2022 in groups of 10 days, without outliers 

After having removed the outliers from the data, we have a dataset that would produce a more 
reliable regression model. There however needs to be a method of checking the accuracy of the 
regression model, which is where Test Train Split will be used. Test Train Split is a model 
validation procedure that checks the accuracy of a regression model’s performance on new data 
through interpolation and the data already available4. The Split refers to the split of the data into 
Train, which is 80% of the total data and will be used to calculate the regression equation, and 
Test, which is the remaining 20% and will be used to test the accuracy of the regression model. 
Since 80% of 73, the total number of data points, is 58.4 and not a whole number, it is rounded to 
58. Similarly, 20% of 73, 14.6, is rounded to 15. The fifteen numbers that will only be used to 
test for the accuracy of and not to come up with the regression equation were randomized using a 
Java program I coded myself, linked in Appendix E. The program randomly printed the x values 
that can be seen in Table 3 with their corresponding y values: 
 
Table 3: Fifteen randomly generated values making up the Test split, in increasing order of time 

Time (x) 
Number of 

Hospitalizations (y) 
Time (x) 

Number of 
Hospitalizations (y) 

5 3232 46 1912 

8 2723 51 2947 

17 1296 56 2656 

                                                       
4 Michael Galarnyk, “Understanding Train Test Split,” Built In, July 28, 2022, https://builtin.com/data-science/train-
test-split. 
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26 1302 64 2971 

30 812 69 3190 

35 766 71 2841 

37 3675 72 3153 

43 1677 
 
The final version of the processed data, excluding the outliers and only containing the Train split, 
can be seen in Appendix F. 
 
To come up with the most accurate regression equation for this data, we can use the concept of 
the loss or cost function. The loss function is a measure of how badly a regression model can 
estimate the relationship between x and y, and it can be written using sigma notation, signifying 
summation5. The way the loss function measures the performance of the model is by calculating 
the distance between the expected versus real value of y at x, with x and y being the group and 
number of hospitalization values recorded in Appendix F. The loss function for linear regression 
is written as: 
 

" 
 #�$� � $%���
�

���

 

 
Where S is the loss function, $%� is the expected ith value of y, and $�  is the actual ith value of y. 
 
The difference between the expected and actual value of y is squared to avoid negative error 
values. This issue could also be avoided via finding the absolute value of the difference, however 
that would make the function indifferentiable at some points, which would make us unable to 
minimize the error using derivatives. Squaring the error also further penalizes the regression 
model for making errors, as it would make a small error, like one by 20 units, appear as 400 
instead. 
 
Now, the goal is to find the regression model that achieves the lowest possible amount of loss. 
To do this, we need to identify the unknown coefficients and constants in the equation of a linear 
regression model, which is: 
 

$% 
 &' � ( 
 
Where a is the slope of the regression model, or the coefficient of x, and b is the y-intercept, or 
the constant. 
 
Substituting the equation of the regression model into the loss function, we get: 
 

                                                       
5 Conor Mack, “Machine Learning Fundamentals (I): Cost Functions and Gradient Descent,” Medium, April 4, 
2021, https://towardsdatascience.com/machine-learning-fundamentals-via-linear-regression-41a5d11f5220. 
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" 
 # $� � �&'� � (�!�
�

���

 

 

" 
 #�$� � &'� � (��
�

���

 

 
To find the values of a and b that would minimize the amount of loss, we need to partially 
differentiate the loss function with respect to the two unknowns. We can start with b, using the 
chain rule, 
 

)"
)( 
 # 2�$� � &'� � (���1�

�

���

 

 
To minimize the value of b and to find the “critical numbers” of the loss function with respect to 
b, we set the partial derivative to 0 and isolate for b: 
 

0 
 # 2�$� � &'� � (���1�
�

���

 

 

0 
 #�$� � &'� � (�
�

���

 

 
Breaking the summation up and factoring out a, 
 

0 
 # $�
�

���

� # &'�
�

���

� # (
�

���

 

 

0 
 # $�
�

���

� & # '�
�

���

� # (
�

���

 

 
Solving for ∑ (�

���
 with respect to n, 

 

0 
 # $�
�

���

� & # '�
�

���

� �( 

 
Adding both sides by nb, 
 

�( 
 # $�
�

���

� & # '�
�

���

 

 
Dividing both sides by n, 
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( 
 ∑ $��

���
� & ∑ '��

���

�  

 
Looking at the resulting equation closely, we notice that the summation of y values divided by n, 
which is the number of terms, is equal to the mean of y values, or $+. The same can be said for the 
summation of x values divided by n, which is equal to ',. 
 
Substituting in $+ and ',, we get, 
 

( 
 $+� � &',�  
 
We will leave b for now, and partially differentiate the loss function with respect to a this time: 
 

)"
)& 
 # 2�$� � &'� � (���'��

�

���

 

 

0 
 # 2�$� � &'� � (���'��
�

���

 

 

0 
 #�'�$� � &'�� � ('��
�

���

 

 
Substituting in ( 
 $+� � &',�, 
 

0 
 # '�$� � &'�� � �$+ � &',�'�!
�

���

 

 

0 
 #�'�$� � &'�� � &','� �
�

���

$+'�� 

Isolating a, 
 

0 
 #�'�$� � $+'��
�

���

� #�&','� � &'���
�

���

 

 

0 
 #�'�$� � $+'��
�

���

� & #�'�� � ','��
�

���

 

 

& 
 ∑ �'�$� � $+'���

���

∑ �'�� � ','���

���

 

 
Having found the equations for both a and b, the means of the x and y values from Appendix F 
were found to solve for a and b, using the following formula, 
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$+ 
 ∑ '��

���

�  
 

$+ 
 165143
58  

 

$+ 
 2847.293103 
 

', 
 ∑ '��

���

�  
 

', 
 2071
58  

 

', 
 35.70689655 
 
The mean values and the values for x and y obtained from Appendix F were substituted into a. 
 
� �

��1��5664�
 �2847.293103��1�� � ��2��6520� 
 �2847.293103��2�� � �� ��70��2969�
 �2847.293103��70�� � ��73��2899� 
 �2847.293103��73��

��1�� 
 �35.70689655��1�� � ��2�� 
 �35.70689655��2�� � �� ��70�� 
 �35.70689655��70�� � ��73�� 
 �35.70689655��73��
 

 

& - �8.9988 
 
a was rounded to five significant digits. Substituting a into the equation of b, 
 

( 
 2847.293103 � ��8.9988��35.70689655� 
 

( - 3168.6 
 
b was also rounded to five significant digits. Substituting the values of a and b into the equation 
for line of best fit, 
 

$% 
 �8.9988' � 3168.6 
 
Having found the equation of the linear regression model, we can graph the time series plot 
representing the data along with the regression. The fifteen Test values are also on the graph, 
represented by a different shade of grey to signify that they did not influence the regression line. 
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Graph 3: Time series plot showing the number of COVID-19 hospitalizations in 2021-2022 in groups of 10 days, including the 

linear regression model, separated into the Test and Train splits 

Visually, the regression seems to pass through some of the Test points and be far away from 
others. The difference between the actual Test points versus the ones predicted by the regression 
can be found by subtracting the number of hospitalizations of each Test point by the value 
obtained when substituting their time values into the regression equation and taking the absolute 
value of the difference. A sample calculation of this is shown below for the first Test point at 
' 
  5, 
 

|3232 �  �8.9988�5� � 3168.6!| 
 


 108.394 
 
The sum of the differences can then be divided by 15, the total number of Test points, to find the 
Mean Absolute Error of the regression model6. This process is shown in Table 4. 
 

                                                       
6 Jason Brownlee, “Train-Test Split for Evaluating Machine Learning Algorithms,” Machine Learning Mastery, 
August 26, 2020, https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms/. 
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Table 4: Test Train Split calculations to determine the Mean Absolute Error and evaluate the accuracy of the regression model 

Time (x) 
Actual Number of 
Hospitalizations 

(y) 

Expected Number 
of Hospitalizations 

($%) 

Absolute Error 
(Difference between 
Actual and Expected 

Test Values) 

Mean 
Absolute 

Error 

5 3232 3123.606 108.394 

867.0314 

8 2723 3096.6096 373.6096 
17 1296 3015.6204 1719.6204 
26 1302 2934.6312 1632.6312 
30 812 2898.636 2086.636 
35 766 2853.642 2087.642 
37 3675 2835.6444 839.3556 
43 1677 2781.6516 1104.6516 
46 1912 2754.6552 842.6552 
51 2947 2709.6612 237.3388 
56 2656 2664.6672 8.6672 
64 2971 2592.6768 378.3232 
69 3190 2547.6828 642.3172 
71 2841 2529.6852 311.3148 
72 3153 2520.6864 632.3136 
 
A Mean Absolute Error of 867.0314 is high for a dataset with numbers that range from 309 to 
6630, hinting at the regression model not being a good fit for the data. This result led to me 
looking back at my process and attempting to identify limitations that caused the calculated 
regression model to not be well representative of the data. 
 
The main limitation I found was the shape of the regression model. The loss function I optimized 
minimized the inaccuracy of a linear regression model, but data pertaining to a pandemic may 
not have a linear trend as the rate of the drop in the number of hospitalizations decreases 
overtime as the total number of cases decreases. Data of such nature can be represented by a 
logarithmic or polynomial regression model. As an extension, the accuracy of the calculated 
linear regression model versus logarithmic and polynomial regression models can be compared 
via the R2 value or the coefficient of determination. The R2 value is a value from 0 to 1, with 0 
being the least accurate and 1 being the most accurate, that is calculated based on the ratio of the 
residual sum of squares, which measures the deviation between the actual data and the data 
predicted by the regression model, to the total sum of squares, which is the deviation between the 
actual data and the mean7. The formula for the R2 value, therefore, is: 
 

                                                       
7 Wallstreetmojo Team, “Residual Sum of Squares,” WallStreetMojo, June 18, 2022, 
https://www.wallstreetmojo.com/residual-sum-of-squares/. 
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�� 
 1 � �""
/"" 

 
Where RSS is the residual sum of squares and TSS is the total sum of squares. 
 
It is important to note that the accuracy of linear regression is typically not measured using the 
R2 value and is instead determined based on the r value, or the correlation coefficient. However, 
for the sake of comparing a linear regression model with non-linear models, the R2 value will be 
used. 
 
Below is a graph containing the same data as Graph 3, but instead with a logarithmic regression 
curve and its R2 value generated via Excel. 
 

 
Graph 4: Time series plot showing the number of COVID-19 hospitalizations in 2021-2022 in groups of 10 days, including a 

logarithmic regression model, separated into the Test and Train splits 

The R2 value of the linear regression drawn in Graph 3 was calculated to be 0.011, again via 
Excel. The R2 value of the logarithmic regression model seen on Graph 4, 0.1115, is around ten 
times greater than 0.011, confirming that my identification of the biggest limitation being the 
shape was correct and showing that a logarithmic regression would fit the data better. 
 
The polynomial regression model and its R2 value were also found using Excel and can be seen 
in the graph below. 
 

y = -639.2ln(x) + 4946.1

R² = 0.1115
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Graph 5: Time series plot showing the number of COVID-19 hospitalizations in 2021-2022 in groups of 10 days, including a 

polynomial regression model, separated into the Test and Train splits 

The R2 value of the polynomial regression model, 0.4114, is even higher, being around four 
times greater than that of the logarithmic regression model and around forty times greater than 
that of the linear model. This proves that the shape of the model was in fact the issue with the 
lack of inaccuracy shown by Test Train Split in Table 4. 
 
It is important to deduce the reason for the linear regression model’s inaccuracy to answer my 
original research question: can differentiation-based regressive models provide accurate disease 
forecasting? The answer is not no, because the limitation was confirmed to be the linear model’s 
shape and not the method by which its equation was found. Since differentiation was used to 
minimize the error calculated by the loss function, we can be certain that the derived linear 
equation was the best possible linear model for the data. So, as an even further extension, if 
differentiation-based regression was applied to non-linear regression, it could absolutely be used 
to forecast the progression of diseases such as COVID-19. 
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Appendix A: Raw data from January 1, 2021 to December 31, 2022, obtained from the Ontario 
Data Catalogue 
 
Date Number of 

Hospitalizations Date Number of 
Hospitalizations Date Number of 

Hospitalizations Date 
Number of 
Hospitalizations Date 

Number of 
Hospitalizations 

2021-01-01 517 2021-03-04 250 2021-05-05 705 2021-07-06 30 2021-09-06 134 
2021-01-02 503 2021-03-05 249 2021-05-06 661 2021-07-07 30 2021-09-07 134 
2021-01-03 534 2021-03-06 233 2021-05-07 632 2021-07-08 32 2021-09-08 137 
2021-01-04 542 2021-03-07 237 2021-05-08 592 2021-07-09 36 2021-09-09 132 
2021-01-05 562 2021-03-08 245 2021-05-09 566 2021-07-10 33 2021-09-10 141 
2021-01-06 598 2021-03-09 257 2021-05-10 552 2021-07-11 31 2021-09-11 129 
2021-01-07 595 2021-03-10 256 2021-05-11 586 2021-07-12 34 2021-09-12 126 
2021-01-08 592 2021-03-11 255 2021-05-12 524 2021-07-13 37 2021-09-13 119 
2021-01-09 603 2021-03-12 255 2021-05-13 530 2021-07-14 33 2021-09-14 128 
2021-01-10 618 2021-03-13 264 2021-05-14 528 2021-07-15 33 2021-09-15 124 
2021-01-11 636 2021-03-14 261 2021-05-15 512 2021-07-16 33 2021-09-16 136 
2021-01-12 700 2021-03-15 273 2021-05-16 518 2021-07-17 26 2021-09-17 130 
2021-01-13 671 2021-03-16 271 2021-05-17 530 2021-07-18 22 2021-09-18 116 
2021-01-14 664 2021-03-17 272 2021-05-18 524 2021-07-19 27 2021-09-19 105 
2021-01-15 665 2021-03-18 270 2021-05-19 506 2021-07-20 29 2021-09-20 101 
2021-01-16 647 2021-03-19 278 2021-05-20 477 2021-07-21 30 2021-09-21 107 
2021-01-17 624 2021-03-20 285 2021-05-21 469 2021-07-22 25 2021-09-22 101 
2021-01-18 633 2021-03-21 294 2021-05-22 442 2021-07-23 37 2021-09-23 104 
2021-01-19 641 2021-03-22 317 2021-05-23 411 2021-07-24 35 2021-09-24 105 
2021-01-20 639 2021-03-23 334 2021-05-24 410 2021-07-25 33 2021-09-25 112 
2021-01-21 573 2021-03-24 343 2021-05-25 423 2021-07-26 35 2021-09-26 103 
2021-01-22 564 2021-03-25 334 2021-05-26 406 2021-07-27 37 2021-09-27 103 
2021-01-23 566 2021-03-26 345 2021-05-27 397 2021-07-28 33 2021-09-28 102 
2021-01-24 548 2021-03-27 374 2021-05-28 379 2021-07-29 30 2021-09-29 92 
2021-01-25 537 2021-03-28 375 2021-05-29 327 2021-07-30 31 2021-09-30 89 
2021-01-26 550 2021-03-29 392 2021-05-30 315 2021-07-31 28 2021-10-01 82 
2021-01-27 512 2021-03-30 431 2021-05-31 304 2021-08-01 30 2021-10-02 79 
2021-01-28 493 2021-03-31 467 2021-06-01 292 2021-08-02 27 2021-10-03 79 
2021-01-29 469 2021-04-01 469 2021-06-02 278 2021-08-03 30 2021-10-04 80 
2021-01-30 466 2021-04-02 467 2021-06-03 270 2021-08-04 27 2021-10-05 91 
2021-01-31 453 2021-04-03 483 2021-06-04 245 2021-08-05 38 2021-10-06 98 
2021-02-01 449 2021-04-04 522 2021-06-05 225 2021-08-06 43 2021-10-07 92 
2021-02-02 462 2021-04-05 555 2021-06-06 213 2021-08-07 56 2021-10-08 93 
2021-02-03 366 2021-04-06 580 2021-06-07 211 2021-08-08 31 2021-10-09 91 
2021-02-04 424 2021-04-07 581 2021-06-08 220 2021-08-09 41 2021-10-10 103 
2021-02-05 399 2021-04-08 587 2021-06-09 199 2021-08-10 34 2021-10-11 87 
2021-02-06 399 2021-04-09 607 2021-06-10 188 2021-08-11 39 2021-10-12 86 
2021-02-07 370 2021-04-10 630 2021-06-11 177 2021-08-12 39 2021-10-13 71 
2021-02-08 374 2021-04-11 649 2021-06-12 164 2021-08-13 41 2021-10-14 79 
2021-02-09 385 2021-04-12 688 2021-06-13 147 2021-08-14 42 2021-10-15 93 
2021-02-10 367 2021-04-13 734 2021-06-14 152 2021-08-15 48 2021-10-16 80 
2021-02-11 370 2021-04-14 745 2021-06-15 111 2021-08-16 45 2021-10-17 83 
2021-02-12 343 2021-04-15 787 2021-06-16 104 2021-08-17 47 2021-10-18 71 
2021-02-13 325 2021-04-16 809 2021-06-17 100 2021-08-18 48 2021-10-19 86 
2021-02-14 296 2021-04-17 834 2021-06-18 85 2021-08-19 49 2021-10-20 85 
2021-02-15 329 2021-04-18 874 2021-06-19 68 2021-08-20 59 2021-10-21 87 
2021-02-16 323 2021-04-19 939 2021-06-20 63 2021-08-21 66 2021-10-22 88 
2021-02-17 266 2021-04-20 974 2021-06-21 63 2021-08-22 74 2021-10-23 90 
2021-02-18 324 2021-04-21 952 2021-06-22 71 2021-08-23 83 2021-10-24 84 
2021-02-19 289 2021-04-22 961 2021-06-23 59 2021-08-24 98 2021-10-25 80 
2021-02-20 313 2021-04-23 917 2021-06-24 57 2021-08-25 107 2021-10-26 74 
2021-02-21 317 2021-04-24 884 2021-06-25 51 2021-08-26 118 2021-10-27 67 
2021-02-22 296 2021-04-25 846 2021-06-26 46 2021-08-27 119 2021-10-28 62 
2021-02-23 298 2021-04-26 877 2021-06-27 44 2021-08-28 126 2021-10-29 64 
2021-02-24 280 2021-04-27 869 2021-06-28 49 2021-08-29 128 2021-10-30 57 
2021-02-25 280 2021-04-28 835 2021-06-29 43 2021-08-30 129 2021-10-31 63 
2021-02-26 273 2021-04-29 778 2021-06-30 42 2021-08-31 143 2021-11-01 69 
2021-02-27 285 2021-04-30 735 2021-07-01 35 2021-09-01 148 2021-11-02 71 
2021-02-28 257 2021-05-01 719 2021-07-02 36 2021-09-02 134 2021-11-03 69 
2021-03-01 259 2021-05-02 715 2021-07-03 32 2021-09-03 131 2021-11-04 68 
2021-03-02 261 2021-05-03 752 2021-07-04 28 2021-09-04 135 2021-11-05 61 
2021-03-03 250 2021-05-04 736 2021-07-05 28 2021-09-05 127 2021-11-06 64 
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Date Number of 
Hospitalizations Date Number of 

Hospitalizations Date Number of 
Hospitalizations Date 

Number of 
Hospitalizations Date 

Number of 
Hospitalizations 

2021-11-07 54 2022-01-11 955 2022-03-17 117 2022-05-21 285 2022-07-25 395 
2021-11-08 64 2022-01-12 1096 2022-03-18 102 2022-05-22 283 2022-07-26 427 
2021-11-09 54 2022-01-13 1107 2022-03-19 111 2022-05-23 280 2022-07-27 390 
2021-11-10 57 2022-01-14 1161 2022-03-20 104 2022-05-24 283 2022-07-28 408 
2021-11-11 49 2022-01-15 1171 2022-03-21 116 2022-05-25 287 2022-07-29 413 
2021-11-12 48 2022-01-16 1149 2022-03-22 130 2022-05-26 277 2022-07-30 403 
2021-11-13 46 2022-01-17 1197 2022-03-23 143 2022-05-27 250 2022-07-31 376 
2021-11-14 45 2022-01-18 1200 2022-03-24 152 2022-05-28 221 2022-08-01 375 
2021-11-15 53 2022-01-19 1163 2022-03-25 155 2022-05-29 202 2022-08-02 340 
2021-11-16 57 2022-01-20 1221 2022-03-26 155 2022-05-30 204 2022-08-03 387 
2021-11-17 53 2022-01-21 1239 2022-03-27 145 2022-05-31 206 2022-08-04 363 
2021-11-18 53 2022-01-22 1170 2022-03-28 163 2022-06-01 177 2022-08-05 338 
2021-11-19 52 2022-01-23 1121 2022-03-29 173 2022-06-02 187 2022-08-06 336 
2021-11-20 69 2022-01-24 1127 2022-03-30 177 2022-06-03 187 2022-08-07 315 
2021-11-21 63 2022-01-25 1162 2022-03-31 184 2022-06-04 204 2022-08-08 313 
2021-11-22 69 2022-01-26 1097 2022-04-01 172 2022-06-05 195 2022-08-09 313 
2021-11-23 74 2022-01-27 1036 2022-04-02 202 2022-06-06 191 2022-08-10 308 
2021-11-24 67 2022-01-28 958 2022-04-03 216 2022-06-07 174 2022-08-11 274 
2021-11-25 59 2022-01-29 891 2022-04-04 228 2022-06-08 180 2022-08-12 288 
2021-11-26 51 2022-01-30 820 2022-04-05 252 2022-06-09 179 2022-08-13 269 
2021-11-27 43 2022-01-31 839 2022-04-06 252 2022-06-10 177 2022-08-14 259 
2021-11-28 48 2022-02-01 831 2022-04-07 241 2022-06-11 170 2022-08-15 286 
2021-11-29 59 2022-02-02 751 2022-04-08 268 2022-06-12 160 2022-08-16 300 
2021-11-30 63 2022-02-03 706 2022-04-09 294 2022-06-13 164 2022-08-17 293 
2021-12-01 67 2022-02-04 609 2022-04-10 270 2022-06-14 178 2022-08-18 275 
2021-12-02 62 2022-02-05 589 2022-04-11 292 2022-06-15 169 2022-08-19 287 
2021-12-03 69 2022-02-06 587 2022-04-12 322 2022-06-16 161 2022-08-20 301 
2021-12-04 74 2022-02-07 567 2022-04-13 299 2022-06-17 157 2022-08-21 291 
2021-12-05 66 2022-02-08 547 2022-04-14 314 2022-06-18 170 2022-08-22 293 
2021-12-06 82 2022-02-09 479 2022-04-15 314 2022-06-19 150 2022-08-23 296 
2021-12-07 91 2022-02-10 436 2022-04-16 319 2022-06-20 151 2022-08-24 306 
2021-12-08 84 2022-02-11 388 2022-04-17 318 2022-06-21 168 2022-08-25 296 
2021-12-09 72 2022-02-12 369 2022-04-18 320 2022-06-22 149 2022-08-26 279 
2021-12-10 67 2022-02-13 331 2022-04-19 311 2022-06-23 159 2022-08-27 264 
2021-12-11 76 2022-02-14 318 2022-04-20 333 2022-06-24 162 2022-08-28 261 
2021-12-12 72 2022-02-15 322 2022-04-21 366 2022-06-25 160 2022-08-29 269 
2021-12-13 80 2022-02-16 302 2022-04-22 368 2022-06-26 167 2022-08-30 266 
2021-12-14 89 2022-02-17 284 2022-04-23 372 2022-06-27 189 2022-08-31 277 
2021-12-15 61 2022-02-18 265 2022-04-24 331 2022-06-28 213 2022-09-01 267 
2021-12-16 74 2022-02-19 237 2022-04-25 352 2022-06-29 199 2022-09-02 274 
2021-12-17 75 2022-02-20 223 2022-04-26 342 2022-06-30 199 2022-09-03 271 
2021-12-18 62 2022-02-21 228 2022-04-27 383 2022-07-01 171 2022-09-04 253 
2021-12-19 62 2022-02-22 222 2022-04-28 376 2022-07-02 203 2022-09-05 277 
2021-12-20 70 2022-02-23 210 2022-04-29 364 2022-07-03 201 2022-09-06 290 
2021-12-21 88 2022-02-24 211 2022-04-30 370 2022-07-04 231 2022-09-07 302 
2021-12-22 90 2022-02-25 197 2022-05-01 371 2022-07-05 247 2022-09-08 301 
2021-12-23 103 2022-02-26 184 2022-05-02 394 2022-07-06 221 2022-09-09 306 
2021-12-24 118 2022-02-27 161 2022-05-03 402 2022-07-07 229 2022-09-10 305 
2021-12-25 120 2022-02-28 159 2022-05-04 373 2022-07-08 252 2022-09-11 281 
2021-12-26 118 2022-03-01 163 2022-05-05 392 2022-07-09 252 2022-09-12 292 
2021-12-27 131 2022-03-02 165 2022-05-06 386 2022-07-10 262 2022-09-13 315 
2021-12-28 148 2022-03-03 167 2022-05-07 380 2022-07-11 281 2022-09-14 288 
2021-12-29 224 2022-03-04 160 2022-05-08 373 2022-07-12 300 2022-09-15 270 
2021-12-30 237 2022-03-05 161 2022-05-09 361 2022-07-13 309 2022-09-16 272 
2021-12-31 327 2022-03-06 160 2022-05-10 326 2022-07-14 303 2022-09-17 282 
2022-01-01 382 2022-03-07 164 2022-05-11 348 2022-07-15 328 2022-09-18 251 
2022-01-02 436 2022-03-08 172 2022-05-12 347 2022-07-16 347 2022-09-19 252 
2022-01-03 513 2022-03-09 171 2022-05-13 359 2022-07-17 367 2022-09-20 269 
2022-01-04 591 2022-03-10 156 2022-05-14 342 2022-07-18 392 2022-09-21 258 
2022-01-05 686 2022-03-11 145 2022-05-15 320 2022-07-19 450 2022-09-22 254 
2022-01-06 682 2022-03-12 140 2022-05-16 319 2022-07-20 468 2022-09-23 300 
2022-01-07 774 2022-03-13 135 2022-05-17 338 2022-07-21 464 2022-09-24 275 
2022-01-08 766 2022-03-14 130 2022-05-18 286 2022-07-22 452 2022-09-25 251 
2022-01-09 896 2022-03-15 108 2022-05-19 293 2022-07-23 462 2022-09-26 275 
2022-01-10 978 2022-03-16 109 2022-05-20 293 2022-07-24 426 2022-09-27 293 
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Date Number of 
Hospitalizations Date Number of 

Hospitalizations Date Number of 
Hospitalizations Date 

Number of 
Hospitalizations Date 

Number of 
Hospitalizations 

2022-09-28 305 2022-10-17 416 2022-11-05 420 2022-11-24 322 2022-12-13 321 
2022-09-29 301 2022-10-18 464 2022-11-06 373 2022-11-25 318 2022-12-14 277 
2022-09-30 327 2022-10-19 434 2022-11-07 384 2022-11-26 292 2022-12-15 319 
2022-10-01 326 2022-10-20 453 2022-11-08 385 2022-11-27 263 2022-12-16 325 
2022-10-02 318 2022-10-21 435 2022-11-09 372 2022-11-28 267 2022-12-17 327 
2022-10-03 315 2022-10-22 452 2022-11-10 370 2022-11-29 296 2022-12-18 313 
2022-10-04 351 2022-10-23 422 2022-11-11 337 2022-11-30 284 2022-12-19 325 
2022-10-05 351 2022-10-24 442 2022-11-12 325 2022-12-01 287 2022-12-20 333 
2022-10-06 367 2022-10-25 455 2022-11-13 321 2022-12-02 279 2022-12-21 306 
2022-10-07 393 2022-10-26 442 2022-11-14 328 2022-12-03 266 2022-12-22 300 
2022-10-08 387 2022-10-27 436 2022-11-15 344 2022-12-04 260 2022-12-23 310 
2022-10-09 371 2022-10-28 472 2022-11-16 312 2022-12-05 282 2022-12-24 282 
2022-10-10 404 2022-10-29 445 2022-11-17 296 2022-12-06 288 2022-12-25 267 
2022-10-11 418 2022-10-30 433 2022-11-18 317 2022-12-07 297 2022-12-26 267 
2022-10-12 454 2022-10-31 445 2022-11-19 329 2022-12-08 277 2022-12-27 277 
2022-10-13 415 2022-11-01 472 2022-11-20 307 2022-12-09 286 2022-12-28 294 
2022-10-14 408 2022-11-02 414 2022-11-21 311 2022-12-10 308 2022-12-29 288 
2022-10-15 446 2022-11-03 438 2022-11-22 321 2022-12-11 298 2022-12-30 297 
2022-10-16 380 2022-11-04 407 2022-11-23 319 2022-12-12 307 2022-12-31 317 

 
Appendix B: Data grouped into 73 groups with dates assigned numerical values 
 
Group Number of 

Hospitalizations Group Number of 
Hospitalizations Group Number of 

Hospitalizations Group 
Number of 
Hospitalizations Group 

Number of 
Hospitalizations 

1 5664 16 2457 31 648 46 1912 61 2759 
2 6520 17 1296 32 527 47 2866 62 2878 
3 5278 18 546 33 610 48 3390 63 2711 
4 4081 19 329 34 633 49 3767 64 2971 
5 3232 20 309 35 766 50 3542 65 3811 
6 2858 21 324 36 906 51 2947 66 4303 
7 2493 22 341 37 3675 52 2115 67 4464 
8 2723 23 424 38 9586 53 1768 68 3900 
9 3712 24 899 39 11749 54 1596 69 3190 
10 5481 25 1343 40 8538 55 1933 70 2969 
11 8033 26 1302 41 4611 56 2656 71 2841 
12 8654 27 1057 42 2504 57 4156 72 3153 
13 6630 28 884 43 1677 58 3914 73 2899 
14 5235 29 866 44 1430 59 3117 
15 3979 30 812 45 1285 60 2881 

 
Appendix C: Number of hospitalizations in increasing order and with term numbers 
 
Term Number of 

Hospitalizations Term Number of 
Hospitalizations Term Number of 

Hospitalizations Term 
Number of 
Hospitalizations Term 

Number of 
Hospitalizations 

1 309 16 906 31 2504 46 3153 61 4464 
2 324 17 1057 32 2656 47 3190 62 4611 
3 329 18 1285 33 2711 48 3232 63 5235 
4 341 19 1296 34 2723 49 3390 64 5278 
5 424 20 1302 35 2759 50 3542 65 5481 
6 527 21 1343 36 2841 51 3675 66 5664 
7 546 22 1430 37 2858 52 3712 67 6520 
8 610 23 1596 38 2866 53 3767 68 6630 
9 633 24 1677 39 2878 54 3811 69 8033 
10 648 25 1768 40 2881 55 3900 70 8538 
11 766 26 1912 41 2899 56 3914 71 8654 
12 812 27 1933 42 2947 57 3979 72 9586 
13 866 28 2115 43 2969 58 4081 73 11749 
14 884 29 2457 44 2971 59 4156 
15 899 30 2493 45 3117 60 4303 

 
Appendix D: Data grouped into 73 groups with dates assigned numerical values and outliers 
replaced by the mean of the two closest number of hospitalizations 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2023. ; https://doi.org/10.1101/2023.10.26.23297654doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.26.23297654
http://creativecommons.org/licenses/by/4.0/


 18

Group Number of 
Hospitalizations Group Number of 

Hospitalizations Group Number of 
Hospitalizations Group 

Number of 
Hospitalizations Group 

Number of 
Hospitalizations 

1 5664 16 2457 31 648 46 1912 61 2759 
2 6520 17 1296 32 527 47 2866 62 2878 
3 5278 18 546 33 610 48 3390 63 2711 
4 4081 19 329 34 633 49 3767 64 2971 
5 3232 20 309 35 766 50 3542 65 3811 
6 2858 21 324 36 906 51 2947 66 4303 
7 2493 22 341 37 3675 52 2115 67 4464 
8 2723 23 424 38 4143 53 1768 68 3900 
9 3712 24 899 39 4143 54 1596 69 3190 
10 5481 25 1343 40 4143 55 1933 70 2969 
11 6055.5 26 1302 41 4611 56 2656 71 2841 
12 6055.5 27 1057 42 2504 57 4156 72 3153 
13 6630 28 884 43 1677 58 3914 73 2899 
14 5235 29 866 44 1430 59 3117 
15 3979 30 812 45 1285 60 2881 

 
Appendix E: Link to the Code Randomizing Fifteen Numbers from 1 to 73 
https://docs.google.com/document/d/1iTKYf4wEY5faM6ikTFJ7JEy7ghZVIxSkIOOK15JgwPo/
edit?usp=sharing 
 
Appendix F: Data Grouped into 73 Groups with Dates Assigned Numerical Values, with 
Outliers Replaced, Only Including the Train Split 
 
Group Number of 

Hospitalizations Group Number of 
Hospitalizations Group Number of 

Hospitalizations Group 
Number of 
Hospitalizations 

1 5664 19 329 38 4143 57 4156 
2 6520 20 309 39 4143 58 3914 
3 5278 21 324 40 4143 59 3117 
4 4081 22 341 41 4611 60 2881 
6 2858 23 424 42 2504 61 2759 
7 2493 24 899 44 1430 62 2878 
9 3712 25 1343 45 1285 63 2711 
10 5481 27 1057 47 2866 65 3811 
11 6055.5 28 884 48 3390 66 4303 
12 6055.5 29 866 49 3767 67 4464 
13 6630 31 648 50 3542 68 3900 
14 5235 32 527 52 2115 70 2969 
15 3979 33 610 53 1768 73 2899 
16 2457 34 633 54 1596 
18 546 36 906 55 1933 
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