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Abstract5

Wastewater surveillance has proven a key public health tool to understand a wide range of community health
diseases and has proven to be especially critical to health departments throughout the SARS CoV-2 pandemic.
The size of the population served by a wastewater treatment plant (WWTP) may limit the targeted insight
about community disease dynamics. To investigate this concern, samples of wastewater were obtained at
lift stations upstream of WWTPs within the sewer network. First, an online, semi-automatic time series
model is fitted to the weekly measurements of WWTP samples to estimate the viral trend for the community
and compared to the time series observations from the lift stations. Second, deviations from the WWTP
trend are identified using an Exponentially Weighted Moving Average (EWMA) control chart. The analysis
reveals that the lift stations display slightly different dynamics than the larger WWTP, highlighting the more
granular insight gleaned from sampling sites which represent smaller populations. Discussion focuses on the
use of our methods to support rapid public health decision-making based on additional, targeted samples in
times of concern.
Keywords: Wastewater-based epidemiology, COVID-19, Time series data6

1. Introduction7

Wastewater-based epidemiology (WBE) is a cost-effective and fast way to survey the transmission of8

disease in populations, and it has been widely applied for the monitoring of viral pathogens, including9

SARS-CoV-2 (Kisand et al., 2023; Olesen et al., 2021). Multiple studies have confirmed the correlation10

between SARS-CoV-2 wastewater monitoring data and COVID-19 clinical testing data (Hopkins et al., 2023b;11

Ciannella et al., 2023; Kasprzyk-Hordern et al., 2023; Kaya et al., 2022; Mao et al., 2020; Peccia et al.,12

2020; Wolken et al., 2023). Routine wastewater monitoring highlights SARS-CoV-2 dynamics and provides13

early notice of the emergence in the population served by the wastewater catchment areas (Cao and Francis,14

2021; Karthikeyan et al., 2021; Kisand et al., 2023; Li et al., 2021; Vallejo et al., 2022; Zhao et al., 2022;15

Kirby et al., 2022). In short, wastewater epidemiology is an effective public health tool guiding meaningful16

interventions (Hopkins et al., 2023a).17

Wastewater monitoring for diseases has predominantly involved the collection of samples from the influent of18

wastewater treatment plants (WWTPs). Monitoring centralized WWTPs is typically easier for municipalities19
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to implement due to routine sampling that takes place at the treatment plants unrelated to WBE. Since20

these centralized WWTPs in large municipalities often serve large populations, it can be unclear where to21

take action when pathogens are detected.22

Expanding spatial granularity of WBE surveillance can improve the accuracy and actionability of routine23

wastewater monitoring. Several prior studies focused on sampling sites upstream of the WWTP, such as lift24

stations, schools, universities, and hospitals (Castro-Gutierrez et al., 2022; Fielding-Miller et al., 2023; Gibas25

et al., 2021; Haak et al., 2022; Holm et al., 2022; Scott et al., 2021; Spurbeck et al., 2021). The WBE program26

for the City of Houston has routinely made use of sub-sewershed measurements (hou-wastewater epi.org/,27

2023). Moreover, the nested sampling strategy was proposed to monitor the trend of SARS-CoV-2 in the28

catchment area and simultaneously identify and trace the community-level COVID-19 hotspots (Wolken29

et al., 2023; Wang et al., 2023; Yeager et al., 2021). The strategy highlighted the importance of sampling site30

selection, which can help develop a more sensitive and effective wastewater surveillance system for COVID-1931

and other diseases.32

Studies on the use of nested sampling strategy for wastewater monitoring remain limited, and more33

investigations are needed regarding the application of nested sampling on WBE to maximize the value of34

the data and improve the system efficiency (Acosta et al., 2022; D’Aoust et al., 2021; Holm et al., 2022;35

Wang et al., 2023; Yeager et al., 2021). D’Aoust et al. (2021) compared the wastewater SARS-CoV-236

surveillance results from two locations in a small, rural community with the community’s COVID-19 cases,37

and recommended sampling from lift stations, because they observed an overall higher and more stable38

SARS-CoV-2 load as compared to its downstream wastewater treatment lagoon. Holm et al. (2022) observed39

no statistical difference between SARS-CoV-2 viral concentrations in WWTPs and several upstream sampling40

sites, including lift stations and manholes, and recommended sampling sites that support larger populations.41

Acosta et al. (2022) observed a lower correlation between COVID-19 clinic data and SARS-CoV-2 RNA in42

wastewater samples from neighborhoods compared to samples from WWTPs, indicating that the current43

smaller wastewater monitoring system may induce more heterogeneous data that can reduce the sensitivity44

of the surveillance. Acosta et al. (2022); Haak et al. (2022) also indicated that issues associated with sample45

collection may decrease the stability and representativeness of the data collected at the community or46

neighborhood level.47

Despite the potential community-wide benefits in wastewater monitoring at the sub-sewershed level,48

statistical analyses on this approach have been limited in their modelling assumptions and flexibility. Several49

analyses assume wastewater measurements over time to be independent (Acosta et al., 2022; D’Aoust et al.,50

2021; Holm et al., 2022) and compare differences between sewershed and sub-sewershed measurements using51

a simple group-level difference of means or pairwise correlations. Failure to account for time dependence may52

underestimate variability and inadequately capture the temporal dynamics of the wastewater measurements,53

where clear trends and patterns in the data exist. Within the wide literature of statistical models for54

SARS-CoV-2 wastewater longitudinal trends, most typically fall under the categories of autoregressive55

or regression-based models (Cao and Francis, 2021; Peccia et al., 2020; Jeng et al., 2023), SEIR models56

(McMahan et al., 2021; Fazli et al., 2021), or machine learning approaches such as the artificial neural57

network (ANN) of Li et al. (2021) or the time-series based machine learning approaches in Lai et al. (2023).58

Application of these models to the comparison of sub-sewershed time series has been sparse to nonexistent,59

and many may not be appropriate for detection of structural deviations away from downstream measurements.60

Previously, cubic smoothing splines have been used by the City of Houston (Hopkins et al., 2023b; Stadler61

et al., 2020) to identify the sometimes rapidly changing signal in the noisy wastewater time series obtained62

through routine monitoring of the city wastewater. This spline model captures the trend and curvature of63

the trend in the nonlinear time series from the noisy wastewater measurements. However, smoothing splines64

cannot separate the inherent variability of the time series from the measurement process.65

We conduct two statistical analyses that offer flexible, semi-automatic, and online estimation of wastewater66

dynamics between large WWTPs and sub-sewersheds. First, we model the wastewater measurements using67

a dynamic linear state-space time series model. This modelling framework allows for both online and68
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retrospective estimation of wastewater trends accompanied with confidence bands to capture the precision of69

the estimates via the Kalman filter and smoother Shumway and Stoffer (2017). These estimates give broad70

insight into whether sub-sewershed time series give different information from large, centralized WWTP71

time series, as well as the ability to forecast future values. Second, we utilize tools from statistical process72

control (SPC) literature, namely exponentially weighted moving average (EWMA) control charts, to monitor73

whether even just one of the lift station measurements deviates significantly from the trend estimate for the74

larger WWTP, allowing for immediate online detection of community-specific spikes in SARS-CoV-2.75

2. Methods76

2.1. Data description77

The City of Houston has 39 WWTPs, serving populations from approximately 500,000 to 600 individuals.78

Within the larger WWTPs, there are a number of lift station (LS) facilities where wastewater can be sampled79

and may serve to refine the geographic resolution provided by wastewater analysis. This work focuses on the80

largest WWTP that serves a population of roughly 551,150 people. Wastewater was sampled from May 24,81

2021 through March 13, 2023 for four lift stations (see Figure 1) which are geographically contained within82

the large WWTP catchment area.83

Figure 1: (a) The WWTP catchment areas for the City of Houston, with the WWTP of focus shaded. The box shows the
extent of (b), the map showing the 4 lift stations considered in the analysis. (c)-(f) plot the time series of Log10 Copies/L for
the WWTP and the 4 lift station facilities, referred to as Lift Station A-D.

Data on wastewater analysis results for the lift stations and the WWTP was updated on a weekly basis. For84

each weekly sample, we quantified SARS-CoV-2 N1 and N2 gene copies per liter of wastewater, as described85

previously (Hopkins et al., 2023b). We average the N1 and N2 concentrations to simplify our analysis and86

focus on the comparison between the WWTP and LS time series. All measurements taken in a given week87
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were aligned to the corresponding Monday of that week. Wastewater viral concentration data was received88

in units of copies per liter and was subsequently log transformed in base 10 (log10). Any measurements89

below the level of detection (LOD) were labeled as missing values. Table 1 contains the names of the 5 series90

considered and summary statistics for each series. Figure 1 (a) and (b) are maps of the WWTP and LS91

catchments for each of the series, and Figure 1 (c)-(f) plot the time series of observed values for all 5 series92

on the log10 scale.93

Name Population Mean St. Dev. Min Max Missing
WWTP 551150 4.51 0.50 3.29 5.74 4

Lift Station A 2442 4.72 0.70 3.26 6.51 11
Lift Station B 373937 4.89 0.43 3.92 6.00 28
Lift Station C 4849 4.72 0.73 3.26 5.89 42
Lift Station D 1724 4.88 0.74 3.48 7.81 18

Table 1: Name, size of population, and summary statistics Log10 of average of replicate RNA N1 and N2 copies/L for each
wastewater treatment plant (WWTP) or lift station (LS) considered. The study period spanned 93 weeks.

2.2. Hierarchical Time Series Model for Trend Estimation94

When time series data are collected, the goal is often to estimate a trend, that is, whether the “typical values”95

are changing in time. For example, 1 (c)-(g) show the times series of viral concentration of SARS-CoV-2.96

Visually, it is clear that these values are changing in time, and even seem to exhibit similar behavior that97

may be predictable with a well-chosen model. Such a model should be able to separate out the “noise”, or98

observation/measurement error, in these observations from the “signal”, or trend. An additional constraint99

when modeling time series data is the presence of temporal correlation structure, i.e. the values are not100

independent, so models which assume independence can lead to misleading forecasts and/or conclusions101

about which variables are important in modeling a time series (Hyndman and Athanasopoulos, 2021). In102

summary, the desired model will separate sources of variability for both the trend and the observation as103

well as account for temporal correlation.104

The state space modeling framework can accommodate both these needs. A state space model represents a105

time series in two levels: an unobserved trend which encodes temporal dependence structure and a noisy106

observed time series. In other words, it is a hierarchical model which is able to separate sources of variability107

as desired. In the time series literature, the levels of this model are called the state equation and the108

observation equation. Equations 1 and 2 display the state space model used for each series in this particular109

study:110

Observation equation: yt = µt + vt (1)
State equation: (µt − µt−1) = (µt−1 − µt−2) + wt. (2)

Initial condition: µ0 ∼ N(c0, m0). (3)

The error terms vt and wt are independent and normally distributed with mean zero, and variances denoted111

by σ2
v for the observation error and σ2

w for the state error.112

The observation model of Equation 1 represents the model fit to the concentration of SARS-CoV-2 RNA in113

wastewater measured by the lab. The observation model is the underlying state µt plus a variance term σ2
v114

corresponding to the inherent measurement and sampling error. The state model in Equation 2 represents115

the true state of the viral trend derived from the measured concentration of SARS-CoV-2 RNA, for the116

sampled region. The noise term associated with the state equation, σ2
w, represents the natural variability in117

the viral concentration in the population as measured by wastewater.118

Within this framework, the state variable serves as the core component of the model, characterizing the119

underlying system’s behavior and dynamics, in other words the trend of the virus concentration. Note120
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the temporal structure encoded by Equation 2: the right hand side concerns the previous two time points,121

while the left hand side concerns the current and past time point. In particular, Equation 2 encompasses a122

statistical framework that employs the concept of first difference applied twice. The first difference operation123

captures the change in the state variable over successive time periods, and by applying this operation twice,124

we gain insights into the acceleration or curvature of the trend. That is, this choice of structure for the125

state equation is chosen to capture the temporal dependence of the SARS-CoV-2 RNA concentration. For126

additional details about the state-space modeling framework and its relations to smoothing splines, see127

Shumway and Stoffer (2017).128

Once the structure of the model is chosen, the model can be fit to the data with three goals in mind:129

retrospective estimates of the trend using all available data, online estimates of the trend using only past data130

up to a given time point, and one-step-ahead forecasts of the next time point. In the time series literature,131

the retrospective and online estimates are referred to as smoothers and filters, respectively. We focus on132

retrospective and online estimates for this paper, but provide steps for obtaining the one-step-ahead forecasts133

in the supplemental materials.134

To estimate the online and retrospective trends, four parameters are themselves estimated: the initial135

state mean and variance, the variance of the measurement and sampling error (σ2
v), and the variance of the136

trend (σ2
w). Estimates are obtained through maximum likelihood estimation which is computationally fast137

due to use of the Kalman Filter for updating linear Gaussian systems. For the online estimates, a rolling138

estimation structure is used, meaning the parameters are re-estimated with each new time point. Estimation139

is implemented using the KFAS package in R Helske (2017), which can easily handle missing data. Once an140

estimate of the model is obtained, a step to check that the model fits the data is required. For the present141

model, an autocorrelation plot of the model’s residuals can be checked for autocorrelation. If no correlation142

is present in the residuals, the model can be considered a good fit. Additional details of estimation and143

model fit checks as well as all code used for the analysis are available in the supplemental materials.144

The inputs, outputs, and process of fitting the spline state space model of Equations 1 and 2 are summarized145

in Algorithm 1.146

Algorithm 1: Variability-separating trend estimation
Input: Raw lab values

1 Process the raw data (average N1 and N2 replicates, identify non-detects, transform copies/L to
Log10).

2 Initialize the model by estimating parameters using the first 10 weeks of data.
3 Compute online trend estimates and confidence limits using Equation 2 and re-estimating parameters

with each additional data point.
4 Compute retrospective trend estimates and confidence limits.
5 Verify convergence of estimates and time series modeling assumptions.
6 Compute table of state and observation variances for each time series.
7 Compare visualizations of retrospective estimates of WWTP and sub-sewershed trends to determine

whether a difference was present.
Output: Online and retrospective trend estimates, estimates of trend variability and

measurement/sampling variability.

Visualizations of the retrospective and online estimates along with the data are provided in 2.147

2.3. Detection of trend deviations148

Recall the goal of determining whether sub-sewershed measurements give different information than the149

routinely monitored centralized WWTP measurements. Using all available data, the retrospective estimates150

from the model fit using Equations 1 and 2. These estimates, visualized in Figure 3, show some periods of151

separation, indicating that the sub-sewershed measurements do indeed give different information. However,152
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Figure 2: Retrospective and online estimates of the viral concentration trend with uncertainty quantification for the large
WWTP. The vertical axis is log10 copies/liter. The shaded grey rectangles correspond to periods of missing data. Note that the
online trend estimates are “noisier” and have wider uncertainty bands than the retrospective trend estimates.
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if the goal is to extract actionable information from the data, the online estimates, which only use data153

up to the current time point, should be used. While the retrospective estimates show clear separation, the154

online estimates are noisier, so detecting when the sub-sewersheds may be deviating from the WWTP’s trend155

requires more than a visual comparison of the two series. In addition, sub-sewersheds may not be sampled156

frequently enough to support the model described in Section 2.2, so a method which can be used with at157

least one sub-sewershed observation is ideal.158

The statistical process control (SPC) literature provides a framework for iterative improvement of a decision-159

making process based on time series data. Some examples of the traditional applications of SPC include160

ensuring a given percentage of on-time deliveries to a client, speed and consistency of service quality in a161

bank, and loading passengers onto an airplane (Montgomery, 2009). In short, SPC provides a framework for162

identifying when a time series of interest is “out of control” so that steps can be taken to bring that series163

back “in control”. Although the ability to bring disease burden in a community back “in control” is limited164

in WBE compared to traditional applications, ideas from SPC can be borrowed to improve the actionability165

of the information contained in wastewater time series.166

For this paper, the time series of interest is the difference between the sub-sewershed and the WWTP. If167

we simply subtract the observed values for each series, the resulting difference will contain the “noise”, or168

measurement and sampling error. Instead, we use the online estimate of the trend for the WWTP obtained169

from Equations 1 and 2, which can be assumed to be free of observation error. Since the online estimate of170

the trend requires 10 weeks of data to be initialized, we use the observed (unmodeled) value(s) from the171

sub-sewershed directly.172

Formally, using the previous notation, the standardized difference at time point t, for lift station i = 1, . . . , 4173

is given by:174

di,t = yi,t − µ̂t

σ̃d
, (4)

where σ̃2
d = Var(yi,t − µ̂t). This variance is approximated by175

σ̃2
d ≈ σ̂2

vt
+ σ̂2

wt
− 2Corr(yi, µ̂) · σ̂vt

· σ̂wt
, (5)

where Corr(yi, µ̂) is the Pearson correlation coefficient between the WWTP estimated state time series and176

the observed copies/liter from the ith lift station. If any of the sub-sewershed values yi,t are missing, we177

replace these values with the online trend estimate for the WWTP, which will yield a value of 0.178

If the sub-sewershed and the WWTP are “in control”, or gave equivalent information, then di,t would179

be normally distributed with mean 0, and there would be no autocorrelation in the series. To determine180

whether the sub-sewershed is “out of control”, or separating from the trend of the WWTP, a control chart181

can be constructed. Many types of control charts are available for different scenarios, for example, Shewhart182

(Shewhart, 1931) and CUSUM (Page, 1954) control charts. We choose an Exponentially Weighted Moving183

Average control chart (Roberts, 1959), which can detect small shifts in temporally correlated series such as184

our di,t and is appropriate for use with individual observations (Montgomery, 2009). The EWMA chart is185

based on the following series:186

zi,t = λdi,t + (1 − λ)zi,t−1, (6)

where zi,t can be interpreted as a weighted average of all past values for series i, where the weighting is187

controlled by the value λ, for which we use the estimate of the lag 1 autocorrelation of di,t. In the case of a188

missing sub-sewershed value, the aforementioned replacement with the WWTP online estimate allows for the189

exponential weighting of past values to continue under the assumption of no separation. The EWMA charts190

are visualized for each of the 4 lift stations compared to the WWTP in Figure 4.191
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The dots on Figure 4 represent the values of zt. The dotted lines are the upper and lower confidence192

limits. When zt exceeds one of these confidence limits, the point is colored red, and the sub-sewershed can193

be considered “out of control”, in other words, the sub-sewershed time series is separating from the WWTP194

time series which gives different information. The direction of the separation can also be determined by195

examining whether the point exceeds the upper limit, indicating the viral concentration is higher for the196

sub-sewershed, or the lower limit, indicating the sub-sewershed is lower.197

We summarize the creation of the EWMA chart in Algorithm 2. For additional discussion of EWMA198

charts and examples of their use with correlated data, see Hunter (1986); Lucas and Saccucci (1990);199

Supharakonsakun et al. (2020).200

Algorithm 2: Detecting deviation of sub-sewershed measurement from centralized WWTP trend
estimate

Input: At least 10 + n WWTP observations, n ≥ 1 sub-sewershed observations
1 Read in cleaned WWTP series and apply 1 to obtain online trend estimates through the date of the

first sub-sewershed observation.
2 Replace any missing sub-sewershed observations with WWTP online trend estimate for corresponding

date.
3 Create difference time series of sub-sewershed observed copies/liter (log 10) - WWTP Online Trend

Estimate.
4 Standardize the difference series by dividing by the standard deviation computed in Equation 5.
5 Construct EWMA chart for the standardized difference series.
6 Inspect EWMA chart for separation.

Output: EWMA chart for determining separation of sub-sewershed from centralized WWTP.

Data Availability201

Given the small populations associated with some of the lift stations, real data will be made available on202

a case-by-case basis by contacting the corresponding author and subsequent approval by Houston Health203

Department. Synthetic wastewater surveillance data which preserves the statistical properties of the real204

data are available along with code on a GitHub repository.205

Code Availability206

All code used to fit the models described in this paper are available in a public GitHub repository. All code207

is written in the R language (R Core Team, 2023).208

3. Results209

3.1. Trend Estimation210

The retrospective estimates depicted in Figure 3 indicates three peaks in the estimated population viral211

dynamics for the population served by the WWTP, with maximums that occur on January 3 and July212

18, 2022, and January 9, 2023. We will refer to these peaks as PK1, PK2 and PK3, respectively. The213

retrospective review illustrates there are instances where the lift stations provided early information with214

respect to increasing or decreasing viral trends in the population measured. Again, these features are215

highlighted in Figure 4. A separation in the confidence intervals for each series indicates a statistically216

significant difference in the estimated trend for the respective series, namely the trend estimated for the217

WWTP and each of the lift stations.218

We also see in the retrospective review that three of the four lift stations, namely Lift station A, Lift station219

C, and Lift station D, exhibit a comparable trend as that estimated from the WWTP, with a few deviations220
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Figure 3: Retrospective estimates of the viral concentration trend with uncertainty quantification for the WWTP and each LS
series, using all available information. The vertical axis is log10 copies/liter. The shaded grey rectangles correspond to periods
of missing data and the dotted lines correspond to the peaks of three surges. Note that the time series model is still able to
provide estimates of the trend during periods of missing data, though with greater uncertainty. Compared to Figure 1, the start
date of this trend plot is later, since the first 10 weeks of data are used to initialize the model.
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(see Figure 3). Lift station A indicates an early signal leading up to PK1. Lift station C separates from the221

WWTP trend by remaining at high levels between PK1 and PK2. It is important to note that there are222

several missing values in the Lift station A series during this time, as highlighted by the light grey bars in223

Figure 3. However, the estimated level for Lift station C does not show an increase in uncertainty due to224

the fact that the observed levels during this time were relatively consistent (see Figure 1). Lift station D225

registers a statistically higher trend in PK3. Lift station B was unique amongst the four lift stations, in that226

its estimated trend separated from the estimated WWTP trend following PK1 and remained higher until227

PK2. Lift station B also failed to drop as low between PK2 and PK3. However, the trend estimates for the228

WWTP and Lift station B were not significantly different in PK3. It is also worth noting that Lift station229

A, Lift station C, and Lift station D exhibited more variation in their trend estimates as evidenced by the230

width of the respective confidence intervals, than that of the WWTP.231

Recall that the hierarchical trend estimation framework can separate variability associated with the trend232

from the “noise”, or lab and sampling error. These results are summarized in Table 2. We see from this233

table that the measurement and sampling variation are highest for Lift station A and Lift station D, and234

also elevated for Lift station C. Since we expect the lab variability to be approximately constant across all235

measurements, the extra variation is most likely due to the lift station wastewater containing highly variable236

levels of SARS-CoV-2 due to the small population that it serves. Based on this observation, the sampling237

variation is approximately equivalent for Lift station B as it is for the WWTP. The state dynamics for each238

location exhibit similar variability, with slightly elevated variation for Lift station D.239

Name Sampling and Lab Trend Population
Variability Variability

WWTP 0.0372 0.0130 551150
Lift station A 0.2798 0.0105 2442
Lift station B 0.0350 0.0130 373937
Lift station C 0.1374 0.0134 4849
Lift station D 0.2810 0.0175 1724

Table 2: Estimates of inherent variability, σw (state) and measurement variability σv (observation, lab and sampling variability)
for each series.

Again, the retrospective review provides the best understanding of the dynamic population trend in virus240

levels for location as well as insight into the lab and sampling variability over the entire study period.241

However, this retrospective review is not useful in real time as it requires knowledge of the full time series,242

i.e. the future, to implement.243

3.2. Trend Deviations244

The results of Algorithm 2 applied to each lift station and the WWTP are graphically introduced in245

Figure 4. The information is consistent with the retrospective study in that Lift station A, Lift station C and246

Lift station D, all demonstrate minor perturbations from the trend estimated for the WWTP. Further, Lift247

station B clearly demonstrates a strong and consistent deviation from the WWTP estimated trend, between248

PK1 and PK2, and then again between PK2 and PK3. In Figure 4 we also include the observed standardized249

difference between the two measurements. You will note that the differences may be large, but they are not250

statistically significant based on the EWMA control chart. The control chart is used to identify a level shift251

in the trend, and not specific outlying events. Based on the EWMA control chart, statistically significant252

level shifts occurred at the red highlighted temporal locations.253

4. Discussion254

The objective of this paper is to highlight the additional information gleaned from samples taken within255

the sewer network and upstream of WWTPs, namely lift stations. We bring forward a hierarchical time256
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Figure 4: The EWMA chart for the observed values at each lift station compared to the WWTP online estimate. The solid dots
represent the exponentially weighted standardized difference while the plus signs represent the actual standardized difference.
Observations which correspond to a structural break, or exponentially weighted values beyond the dotted control limits, are
colored red. The dark grey vertical lines are the approximate dates of the peaks of different surges.
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series approach to capture the dynamic trend in population viral dynamics from each wastewater series.257

The state-space time series model is simple to implement both in a retrospective, and real-time mode,258

and naturally adapts to the nonlinear dynamics in the population viral trend. The EWMA control charts259

provide a framework for identifying when sub-sewershed measurements deviate from measurements in a260

larger, centralized WWTP. Note that these deviations could be due to any number of factors, for example,261

number of infections, dilution, degradation, inhibitors, etc.262

For our system the only lift station within the large wastewater catchment area of the WTTP whose trend263

consistently deviated from that of the WWTP was Lift station B. Further, the measurement and sampling264

uncertainty for Lift station B was on par with that of the WWTP. This lift station serves 373,937 people265

whereas the WWTP serves 551,150 people. In other words, Lift station B serves 68% of the people in the266

large catchment area. Regular monitoring of Lift station B in addition to the WWTP is warranted based on267

this study. The Lift station B state estimate of viral load and its uncertainty, indicates that for the 68%268

of the population served by Lift station B, the viral load did not decrease as substantially as that of the269

WWTP between PK1 and PK2, and also between PK2 and PK3.270

For the lift stations serving smaller populations, namely Lift station A, Lift station C and Lift station D,271

we see evidence of early signals through each COVID-19 peak. However, the measurement and sampling272

uncertainty with these smaller lift stations was substantially higher. Although routine monitoring may be273

prohibitively expensive, monitoring through times of high concern to public health may be warranted.274

A side result of our modeling approach is the opportunity to separate the variation in the trend of the275

viral load from the measurement and sampling variation. In this comparison, and assuming a consistent276

measurement or lab variability across all samples, we find that the sampling variation for the smaller lift277

stations is much greater than that for the WWTP and the large Lift station B. If regular sampling at smaller278

lift stations, where flow may be irregular, is required, sampling strategies may need to be reviewed.279
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