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Abstract

Whole-genome or genome-wide association studies have become a fundamental part of modern genetic
studies and methods for dissecting the genetic architecture of common traits based on common
polymorphisms in random populations. It is hoped that there will be many potential uses of these
identified variants, including a better understanding of the pathogenesis of traits, the discovery of
biomarkers and protein targets, and the clinical prediction of drug treatments for global health.
Questions have been raised on whether associations that are largely discovered in populations of
European descent are replicable in diverse populations, can inform medical decision-making globally,
and how efficiently current GWAS tools perform in populations of high genetic diversity, multi-wave
genetic admixture, and low linkage disequilibrium (LD), such as African populations. In this study, we
employ genomic data simulation to mimic structured African, European, and multi-way admixed
populations to evaluate the replicability of association signals from current state-of-the-art GWAS
tools in these populations. We then leverage the results to discuss an optimized framework for the
analysis of GWAS data in diverse populations and outline the implications, challenges, and
opportunities these studies present for populations of non-European descent.

Introduction

The frequent occurrence of population differences in phenotype outcomes and drug responses has

important consequences for the biomedical sciences and industries. This has been shown to be a result
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of variation in host genomes and differing environments (Evangelou and loannidis, 2013; Goetz et al,
2014). For over a decade, GWAS have been used successfully for detecting variants in LD within
causal genes (Visscher et al., 2017). These approaches have become a fundamental part of modern
genetic studies, and methods for dissecting the genetic architecture of common traits based on
common polymorphisms in different populations have been developed (Purcell et al., 2007; Yang et al.,
2011; Seldin et al.,, 2011; Loh et al,, 2015). As a result, our knowledge of the genetic architecture of
complex diseases, such as heritability estimation, the genetic correlation between diseases, the number
of loci, and their effect sizes, has been enhanced (Zaitlen et al., 2014; Brody et al,, 2017; Chimusa

et al., 2019; Duncan et al., 2019).

Thus far, many new genetic associations with diseases have been identified (Buniello et al., 2019).
However, common current approaches to identifying the associations have been mostly designed to
capture genomes with a long range of LD and haplotypes, such as those found in populations of
European descent that have mostly undergone a population bottleneck (Martin et al., 2017).
Consequently, GWAS today continues to be dominated by studies conducted on European cohorts
(Sirugo et al., 2019). A concerning observation is that large numbers of modern drugs approved by
the Food and Drug Administration (FDA) and similar organizations have been developed with
relevance to Caucasian ancestry populations, yet research continues to reveal that subtle differences in
the genetic make-up of other populations, such as Asian, South American, and African populations,
can affect treatment (Petrovski and Goldstein, 2016; Sirugo et al.,, 2019). This is evidenced by the
hundreds of thousands of deaths occurring annually due to adverse drug reactions resulting from
differing factors, including disease determinants, environmental exposure, the human microbiome
profile, and genetic factors (Hassan et al., 2021). The use of genetic information to inform medical
decision-making therefore raises questions as to whether such use could be equitable. It is, therefore,
crucial to extend GWAS to diverse global population cohorts as well as assess how well current

approaches capture associations in these populations.

Given differences in allelic architecture, the differing pattern of LD, and the confounding of
environmental factors across populations, the richer mixtures of diverse population genetic variants
and differing environments are likely to contribute to a wider phenotypic variability (Campbell and
Tishkoff, 2008; Sirugo et al., 2019).

Significant effort has been invested in designing GWAS mapping tools since the first GWAS was
conducted. Researchers have explored various models and technologies, which have resulted in GWAS
tools with better power, improved efficiency, and a significantly lower computational cost. In
particular, linear mixed models (LMMs) have become an attractive approach in GWAS due to their
effectiveness in capturing possible population structures in the data. Other common approaches for
population structure control include the use of genomic controls (GC), the inclusion of principal
components (PCs) as covariates, and structured associations (Hellwege et al., 2017). However, LMMs
implement a genetic relatedness matrix (GRM) in the calculation of phenotypic variance, which allows
these approaches to capture a wide range of structures, from cryptic relatedness to population


https://doi.org/10.1101/2023.10.26.23297606
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.10.26.23297606; this version posted October 26, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Page 3

stratification (Korte et al., 2012; Korte and Farlow, 2013). As inclusion of diverse populations into
GWAS is underway, it is therefore not surprising that LMM has become the go-to method of choice for
many researchers in GWAS analysis of these populations (Chimusa et al., 2014; Chung and Zou, 2014;
Conomos et al., 2016; Swenson et al., 2018). This is often supplemented with a control for global
ancestry using PC axes as covariates and GC applied to the summary statistics. A substantial number
of GWAS in admixed African Americans, Latinos, and African populations today have been conducted
using LMM approaches (Hoffman, 2013; Chimusa et al., 2014; Burkart et al., 2018; Daya et al., 2019),
however, other GWAS methods, including logistic regression (Chen et al., 2015) has also been

employed in these populations.

Though LMM-based tools have become a standard in GWAS analysis, it has been noted that they do
not fully control for sub-variant structure between affected and unaffected samples, especially if there
is an environmental component to phenotypic associations with ancestry at local variants or
locus-specific ancestry due to admixture (\Winkler et al., 2010; Seldin et al., 2011; Brody et al., 2017;
Visscher et al,, 2017). Non-genetic factors, such as environmental exposures, may be correlated with
genetic ancestry due to the shared local environment (familial or community effects) or due to the
relationship between ancestry and socio-cultural factors such as ethnicity and religious background
(Mcgrath et al., 2013). Effective methods are thus needed to both leverage and control the effect of
local-specific ancestry tracts in variant-level GWAS, which may further improve power and reduce false
positives in mixed or multi-ancestry samples (Mcgrath et al., 2013; Marigorta et al., 2018; Awany

et al., 2019).

This study leverages realistic and robust simulations that mimick European, African, and admixed
populations to investigate how well current commonly used state-of-the-art GWAS analysis tools
capture disease signals of similar strength in the different populations, given that most GWAS tools are
benchmarked using the European population. We identify the challenges and provide an overview of
the prospects for individualized prediction of disease risk and its foreseeable impact on clinical practice

in people of non-European descent.

Methods

Leveraging Data Simulation Framework for GWAS Analysis in Diverse Populations

Simulation of homogeneous and admixed case-control populations with well-known structures that
mimic real populations may help to better understand their genetic variations and evaluate different
existing GWAS tools for complex disease association analysis. The genetic structure of populations as
well as other controllable factors, including allele frequency and LD patterns of genetic markers, are
important in the simulation of genotype data for GWAS. It is important to note that the power of a
statistical test to detect a risk locus relies heavily on the allelic spectrum (numbers and frequencies of

alleles) and the LD structure around the locus. Therefore, simulated data should possess both local
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and long-range LD (LRLD) patterns and maintain allele frequencies like real data ( , )-
The resampling approach starts with real data and avoids the use of an evolutionary process. It has
been shown that this method, compared to other approaches, has the advantage of retaining real data

properties such as allele frequency and LD in the initial pool of data (
' )

To facilitate the assessment of common GWAS tools, we simulated homogeneous and heterogeneous

datasets based on haplotypes from the 1000 Genomes project spanning the genome and realistic
enough to mimic African, European, and admixed populations to challenge the statistical methods for
association testing in real-world conditions. We used a resampling model with recombination

, )-

The African and European populations were simulated under a homogeneous simulation model. We

breakpoints while mimicking mutation rates as implemented in FractalSIM (

merged five European and two West African populations to form the reference population for the
simulation. The merged populations, the corresponding sample sizes, and the abbreviations for the
populations used are listed in Table 1.

We selected 9,139,969 similar biallelic SNPs in the European and African populations. Two sets of
case-control datasets with an equal number of cases and controls (500 cases, 500 controls and 2500
cases, 2500 controls) were simulated for each merged population. These sample sizes were chosen to
allow a realistic evaluation of GWAS power for the different tools in European versus African

populations, as most GWAS in non-European populations still suffer from small sample sizes.

For each of the simulations, in each of the sample sizes, for both the European and African
populations, we selected a total of 6 SNPs to be simulated with causal effects. The SNPs were
selected to be spread across the genome, and as such, we chose risk SNPs on chromosomes 2, 6, 11,
15, and 20. Figure 1 illustrates our choice of the risk SNPs on the different chromosomes. On
chromosome 2, we chose 2 SNPs, rs113456069 and rs112486568, that were selected such that they
were in complete LD (2 = 1) in the European dataset. SNP rs113456069 was then simulated as
causal in the European population, while rs112486568 was simulated as causal in the African
population. Both SNPs were simulated with the same signal strength in both populations. A similar
process was applied in choosing the causal SNPs on chromosome 20. SNPs rs6115358 and rs7343318
were in complete LD in the European reference dataset, but only rs6115358 was simulated as causal in
the European population and rs57343318 simulated as causal in the African populations. The objective
of this design in choosing the causal SNPs on chromosomes 2 and 20 was to enable investigation of
the replicability of GWAS results observed in the European population in an African population GWAS
study using different tools, given that the risk variants in the African GWAS and in the European
GWAS, are in LD in the European GWAS. The causal SNPs on chromosome 11 were chosen such that
they were in complete LD in both populations, but in the European population they were simulated to
have a strong signal, while in the African population they were simulated to have a weak signal. This
design was to enable the investigation of different tools for capturing disease signals in the GWAS of

the African population as the sample size increased when the signal strength was weak. On
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chromosomes 6 and 15, both SNPs were simulated with the same signal strength in both populations.

We specified the same homozygosity and heterozygosity relative risks for the 8 risk SNPs for both the
500 cases, 500 controls and 2500 cases, 2500 controls simulations. The list of these SNPs and the
corresponding relative risks in the European and African population simulations are listed in Table 2.
The cases and controls were then simulated using a multiple logistic regression model implemented in
FractalSIM.

The heterogeneous datasets were generated under a single-point admixture scenario, where the
admixture process occurs at a single point in history, such that the current generation is the offspring
of the admixed population that has interbred over the years. Considering a random mating model
where interbreeding has occurred for 10 generations, the admixture simulation first mimicked the
isolated growth of each population, where a disease model (causal or null) was simulated in the
isolated homogeneous simulation for each of the parental populations, similar to the case-control
homogeneous simulation of the European and African populations detailed above. At generation 0, the
isolated populations were allowed to interbreed. We simulated both 3-way and 5-way admixture
scenarios. Table 3 lists the reference parental populations used in the 2 scenarios, their corresponding

initial sample sizes, and the proportion of ancestry contribution of each of the populations.

In the 3-way simulation, we included 466,142 biallelic SNPs that were present in the 3 parental
populations. We simulated four risk SNPs, where we selected one SNP each on chromosomes 2, 6, 11,
and 15, and generated 2500 cases and 2500 controls. In the 5-way admixture scenario, we
incorporated 623,330 biallelic SNPs that were present in all 5 parental populations and simulated 8
risk SNPs on chromosomes 2, 6, 11, 15, and 20. On chromosomes 2, 11, and 20, we selected two
SNPs in each chromosome that were in high LD and one SNP each on chromosomes 6 and 15. In the
5-way scenario, however, we simulated two sets of datasets of different sample sizes: a dataset of 500

cases and 500 controls and another of 2500 cases and 2500 controls.

In the admixture simulation, we simulated different risk scenarios for the different chromosomes by
varying the presence and strength of genotype risk on the risk variant simulated and the ancestry risk
on the genomic region containing the variant. We simulated ancestry risk by simulating ancestry
deviation between cases and controls in the region that contained the risk variants. In the 3-way
simulation on chromosomes 2 and 11, we simulated strong genotype and ancestry risks; on
chromosome 6, we simulated very strong ancestry risk and weak genotype risk; and on chromosome
15, we simulated weak genotype and ancestry risks. All the other chromosomes were simulated under
a null model in this scenario. In the 5-way simulation, we simulated similar levels of risk in the 500
cases and 500 controls and 2,500 cases and 2,500 controls sample sizes. On chromosome 2, we
simulated strong genotype and ancestry risks; on chromosomes 6 and 20, we simulated a strong
genotype and no ancestry risk; on chromosomes 11 and 15, we simulated weak genotype and ancestry

risks; and a null model on all the other chromosomes.

The risk SNPs simulated in the 3-way and 5-way scenarios and their respective homozygosity and

heterozygisity relative risks specified for the cases are listed in Table 4. Depending on the MAF of the


https://doi.org/10.1101/2023.10.26.23297606
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.10.26.23297606; this version posted October 26, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Page 6

risk SNPs the specified risks introduced risk signals strength as indicated on Table 5.

Assessment of Population Structure in the Simulated Datasets

We first assessed the structure of the simulated data for both the homogeneous and admixed
populations. Since the simulation process was similar for the two sets of case-control datasets in the
homogeneous populations and the 5-way admixture simulation, we used the 500 cases and 500
controls simulated datasets for this assessment. In the 3 populations, European, African, and admixed,
we first merged the simulated GWAS datasets with their corresponding reference populations used in

the simulation. We then obtained the first 10 PCs using principal component analysis (PCA)

implemented in GCTA ( , ), and proceeded to plot the first and second PCs using the
GENESIS ( , ) tool. We used two approaches to assess the global
ancestry in the admixture simulation. We first ran the ADMIXTURE ( , ) tool,

using the supervised option, for the merged admixed datasets; then, secondly, we calculated the
simulated global ancestry from the local ancestry block estimates generated by FractalSIM. We then
plotted the two admixture tract plots for each scenario using the GENESIS tool.

Figures 2 and 3 show the PCA plots for the African and European population simulations, respectively,
while Figures 4 and 6 are the PCA plots for the 3-way and 5-way admixed populations. The admixture
tract plots for the 3-way and 5-way admixture simulations are shown in Figures 5 and 7, respectively.

On the PCA plots in Figures 2 and 3 we observed that the simulated African and European
populations, for both the cases and controls, clustered together as would be expected in a homogenous
population with no population structures. The simulated populations were also positioned between the
merged reference populations on the PCA 2 axis for the African population and the PCA 1 axis for the
European population. On the PCA 1 axis, the simulated African population was very close to the
reference population by considering the range of the axis, and similarly, on the PCA 2 axis, the
simulated European population was also very close to the reference population based on the range of
the axis. This implies that the simulated cases and controls were genetically close to the respective

merged African and European reference samples.

For the admixed population, we observed on the PCA plots in Figures 4 and 6 that the admixed
samples were confined within their respective reference parental populations, for both the 3-way and
5-way populations. We also observed that the simulated population was spread out, as would be
expected for an admixed population. The simulated 3-way admixed population was closer to the YRI
population, which contributed 70% of the ancestry, while the 5-way admixed population is spread out
further away from the EAS population but closer to the MAFR and SAS populations, which
contributed larger proportions of the ancestry. For the admixture tract, for both the 3-way and 5-way
scenarios, in Figures 5 and 7 we observe that the ADMIXTURE tool estimates the global ancestry
close to the true estimates but performs better in a 3-way simulation than a 5-way simulation.

The PCA and admixture plots indicate that the structure of the simulated populations met the criteria


https://doi.org/10.1101/2023.10.26.23297606
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.10.26.23297606; this version posted October 26, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Page 7

of the population that we required for the downstream analysis.

Association Analysis of the Simulated Populations

In this endeavor, we investigated five commonly used GWAS tools for both homogeneous and
multi-way admixed populations using the simulated GWAS datasets described above. We included
LMM-based approaches EMMAX (Kang et al., 2010), GCTA (Yang et al., 2011) and GEMMA (Zhou
and Stephens, 2012), as well as the most widely used GWAS analysis tools PLINK (Purcell et al.,
2007), and SNPTEST (Marchini and Howie, 2010). For the homogeneous African and European
population we considered the standard PLINK association and under a logistic model that allowed us
to include covariates, which we labeled PLINK-Logistic. For the admixture simulations we only
considered PLINK-Logistic. For GCTA, we considered two association approaches included in the tool.
In the first approach, the GRM used includes the chromosome with the SNP being tested for
association, which we labeled GCTA, while the second approach uses a GRM that excludes the
chromosome that contains the SNP being tested for association, which we label GCTA-LOCO (leave
one chromosome out). This approach is an extension of GCTA to eliminate proximal contamination
that may be introduced in the association analysis when this chromosome is included in the calculation
of the GRM. Similarly, in SNPTEST, we considered both the frequentist association approach (which
we refer to as SNPTEST-Frequentist) and the Bayesian approach (which we refer to as
SNPTEST-Bayesian).

We first obtained the first 10 PCs under each simulated set of data using GCTA. For the homogeneous
populations, we included 5 PCs as covariates when running PLINK-Logistic and SNPTEST, as based
on the PCA plots, we did not observe structures in the homogeneous cohorts. In the admixture
populations, however, we included 10 PCs as covariates in the association test to control for global
ancestry. No missingness was observed in the datasets, and all the simulated samples were retained for

the association analysis. We considered only common SNPs when running the association tests.

We thus ran the association analysis using eight disease-scoring statistics for the homogeneous
population and seven for the admixed population. We then obtained the corresponding summary
statistics and Manhattan plots. To correct for multiple tests, we used the Bonferroni correction
approach. Since the number of SNPs in our homogeneous population was > 1,000, 000, we used a
standard genome-wide significance of 1.0 x 107% for all the frequentist tests. The significance
threshold for the 3-way admixed population was 1.576984 x 10797; for the 5-way admixed population,
for the smaller sample size, 8.480081 x 10798; and for the larger sample size, 8.479046 x 10 — 08. We
used log(BF) of 4.61 as the significant threshold for the BF factor for the SNPTEST-Bayesian test,
using Jeffrey's scale of evidence (Jeffreys, 1961).
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Results

Assessment of the European and African Simulation GWAS Analysis.

The Manhattan plots for the homogeneous European and African populations are shown in Figures 8
to 11 and the corresponding summary statistics tables for the simulated risk SNPs are on Tables 6 to
21. In both simulations, we observed that, for all the tools assessed with the small sample size, none
detected the signal on chromosome 11. However, for the European population, the LMM-based tools,
GEMMA, GCTA, and GCTA-LOCO, capture the signals on 4 of the chromosomes, while PLINK and
PLINK-Logistic detect significant signals on 3 of the chromosomes. Though EMMAX and SNPTEST
detect 3 out of the 5 simulated risk regions at this sample size for the European population, they
eliminate the risk SNP on chromosome 6 from the analysis as part of internal quality controls, and thus
no significant SNP was observed. In comparison, in the African population with the smaller sample
size, we observed that all the tools were only able to capture the signals on chromosomes 2 and 6 at
significant levels, and the signals on chromosomes 15 and 20 only at marginal significance thresholds.

On increasing the sample size for the European population, we observed that all the tools were able to
capture the simulated disease signals, and though EMMAX and SNPTEST excluded the risk SNP on
chromosome 6 by internal quality control, SNPs in LD with these risk SNPs were captured for this
population, and a significant signal was detected. However, in the African population, the signals at
chromosomes 15 and 20 improved with increased sample sizes but were at a less significant threshold
in comparison to the European population. We also note that at chromosome 11, where a weak signal
was simulated for the African simulation, even with a larger sample size, the signals were still at a
marginal significance thresholds with all 8 scoring statistics.

Our results thus suggested that in a homogeneous European population with small sample sizes,
GEMMA, GCTA, and GCTA-LOCO were more robust in capturing most of the simulated risk variants
at significant levels, with PLINK and PLINK-Logistic following suit. However, with large sample sizes,
all the tools were effective in capturing the simulated risk at significance levels. We also noted that
internal quality control checks implemented in EMMAX, SNPTEST-Frequentist, and
SNPTEST-Bayesian that removes variants might remove risk variants, especially in analysis with small
sample sizes, and thus missing out significant associations. However, our results revealed that with a
small sample size, most tools were underpowered to detect some of the risk variants present at a
significant level in the African GWAS, and even with an increased sample size, as observed on
chromosome 11, some risk variants did struggle to reach the stringent GWAS threshold when the

signal was weak.

Similar significant thresholds were observed for the risk SNPs simulated on chromosome 2,
rs113456069 and rs112486568, in the European and African populations, respectively, and similarly on
chromosome 20, rs6115358 and rs57343318, in the European and African populations, respectively.
Of note is that only SNPs rs113456069 on chromosome 2 and rs6115358 on chromosome 20 were
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simulated as causal in the European population, while SNPs rs112486568 on chromosome 2 and
rs7343318 on chromosome 20 were simulated in the African population. Though SNPs rs113456069
and rs112486568 on chromosome 2 were chosen to be in high LD in the European population, we
observed that these SNPs were also in high LD in the African population. Similarly, SNPs rs6115358
and rs57343318 on chromosome 20 were also in high LD in the African datasets. We thus deduce that
if strong risk signals exist in both European and African populations with high-powered studies,

cross-population replication is possible using most of the tools assessed.

Assessment of the Admixture Simulation GWAS Analysis

Figure 12 shows the Manhattan plots of the association tests of the seven disease scoring statistics
assessed using the 3-way admixed population simulation, while Tables 22 to 28 are the summary
statistics of the risk SNPs simulated. We observed that the LMM-based tools EMMAX, GEMMA, and
GCTA performed quite similarly in detecting the simulated risk variants and captured the risk variants
on chromosomes 2 and 6 at a significant threshold. Though the three tools detected the risk variants
simulated on chromosomes 11 and 15 at marginal significance thresholds, the SNPs in LD with the
risk variant on chromosome 11 were detected as significant. GCTA-LOCO, an LMM-based approach,
performed quite similarly to PLINK-Logistic, SNPTEST-Frequentist, and SNPTEST-Bayesian in
capturing the risk variants on chromosomes 2, 6, and 11 as significant while capturing the signal on
chromosome 15 at a marginal significance threshold. On chromosome 11, however, we note that the
four approaches detected a second region that was not simulated with a risk variant and, thus, a false
positive association that could be due to admixture. The four approaches also captured a significant
signal on chromosome 12 that was not simulated as significant but detected at a marginal significance
threshold by the other tools. We, therefore, noted that the LMM-based approaches EMMAX,
GEMMA, and GCTA were more robust in capturing a wide range of population structures, which
enabled them to control for any spurious associations. However, GCTA-LOCO, also an LMM-based
approach, was ineffective in capturing the sample structures, and we hypothesize that the LOCO
approach might have missed accounting for a significant amount of the sample structure in the

analysis.

In the assessment of the tools using a 5-way admixed population, we obtained the Manhattan plots on
Figures 13 and 14 and the summary statistics of the risk SNPs simulated on Tables 29 to 35 on page
42. We observed that for the small sample size of 500 cases and 500 controls, all the tools could
capture the simulated risk variants on chromosomes 2, 6, and 20. However, none of the tools captured
the risk variants on chromosomes 11 and 15 at a significant level. With a large sample size, we
observed that all the tools could capture one of the risk variants on chromosome 11, but the signal at
chromosome 15 could still not reach the significant threshold.

We thus noted that when the genotype risk was strong, irrespective of the presence and strength of
the ancestry association, all the tools were also able to detect the risk variant at a significant level, as

observed on chromosomes 2 and 6 in the 3-way simulation and on chromosomes 2, 6, and 20 in the
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5-way simulation analysis. This was true for most tools, even with the smaller sample size in the 5-way
simulation analysis. However, when the genotype risk was weak and the ancestry risk present was
weak or strong, most of the tools were limited in their ability to detect the simulated risk variant at a
significant level, as observed on chromosome 15 in the 3-way simulation and on chromosomes 11 and
15 in the 5-way simulation. Though GCTA-LOCO, PLINK-Logistic, SNPTEST-Frequentist, and
SNPTEST-Bayesian were able to detect the risk SNP simulated on chromosome 11 in the 3-way
admixed simulation at significance thresholds, they were limited in capturing the admixture-LD on this
chromosome and resulted in spurious association signals, which GEMMA, EMMAX, and GCTA were
successful in controlling for; however, they detected this risk variant at marginal significance
thresholds. By increasing the sample size, one simulated risk SNP on chromosome 11 in the 5-way
admixed population association was also detected as significant by all tools. The simulated ancestry
risk on this chromosome was weak, which implied that the increase in power to detect the risk variant

was highly likely due to the increase in sample size and not associated with ancestry risk.

Discussion

In this study, we implemented FractalSIM and simulated European, African, and admixed populations
to evaluate five of the commonly used GWAS tools on their performance in GWAS of diverse
populations. Our results suggested that LMM-based tools were more robust in capturing risk variants
present in the European population with smaller samples, but with increased samples, all the tools
performed similarly. In the African population, all the tools were limited in their ability to capture risk
variants present in small sample sizes. Though increasing the sample size did improve the power to
capture the risk variants, when the signal was weak, some risk variants still struggled to reach the
significant levels set in GWAS. The standard significance threshold for GWAS, 5.0 x 1079 has been
set using the European population. Given the increased independent testing in African population
GWAS analysis due to generally higher number of SNPs and short LD blocks, it has been suggested

, ). Taking this
into account, it raises the question of whether the risk signals observed at the near marginal

and shown that a stricter significance threshold should be considered (

significance thresholds in our African population study with increased sample sizes would still be
significant with more stringent thresholds. This, therefore, emphasizes the dire need for increased
sampling in African populations if African GWAS is to catch up with European GWAS, given that
small sample sizes still plague African GWAS.

Our homogeneous GWAS analysis also showed that, using most of the tools assessed, there is a
possibility of cross-population replication in the presence of strong risk signals in both European and
African populations when the studies are high-powered. However, caution should be exercised while
using EMMAX, SNPTEST-Frequentist, and SNPTEST-Bayesian approaches, as we noted that internal

quality controls in the tools could eliminate risk variants in the analysis.

In the admixture context, we also observed that the LMM-based models, except for GCTA-LOCO,
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performed better in controlling for spurious associations. However, they were limited in detecting the
simulated risk variant when the genotype risk was very weak, irrespective of whether the ancestry risk
was very high or moderate at the genomic region containing the risk SNP. Though increasing the
sample size improved the power to capture some risk variants using all the tools, similar to the African
population, some risk variants still struggled to reach the significant threshold. Therefore, as GWAS
extends to diverse populations, it should be noted that, though increasing sampling in admixed
populations may improve the power to detect some variants in the population using the tools assessed,
association methods that can leverage ancestry risk in multi-way admixed populations, as has been
illustrated in GWAS of 2-way admixed populations, will play a key role in improving GWAS power in

these populations.

Consistent with other recent studies, the lesson learnt from the various GWAS in our study is that one
should consider (i) applying population-specific GWAS pipelines and significance thresholds; (ii)
choosing appropriate GWAS tools among the existing tools or possibly running multiple GWAS tools
to allow a genome-wide level of significance to have consensus across many tools; (iii) the direction of
effect size in each study in meta-analysis with diverse populations to replicate European GWAS and
(iv) reporting population specific minor allele frequency, effect size, standard error of the effect size and
LD of the associated variants in diverse populations to enable improved interpretation of the results.

The high genetic diversity of African and other diverse populations may enable the detection of many
novel variants that are yet to be described in current public databases, such as the GWAS catalog
(Buniello et al., 2019) or PhenGenl (Pasha and Scaria, 2013). It is thus important to develop new or
adapted pipelines for diverse genetic data or to benchmark existing bioinformatics pipeline tools using
diverse populations to account for diverse genetic and environmental characteristics that could

differently shape phenotypic variation.

Numerous studies have leveraged local-specific ancestry tracts in variant-level association analyses for
African Americans (Kim et al., 2022), Latinos (Torgerson et al., 2012), South African Coloured
(Chimusa et al., 2014) and Hispanic cohorts (Kizil et al., 2022), demonstrating added value beyond
standard association testing. Admixture association critically relies on accurate local ancestry inference
(LAI), which requires well-specified founding population reference samples (Shriner, 2017). Though
combining admixture mapping and SNP association testing has been shown to improve power in
GWAS (Shriner et al., 2011; Salter-Townshend and Myers, 2019), this approach is rarely adopted
because of the multi-stage process required and the challenge of application to complex admixed
samples (Thornton and Bermejo, 2014), while most joint approaches to date are tailored to 2-way
admixed populations (Tang et al., 2010; Pasaniuc et al., 2011; Shriner et al., 2011; Atkinson et al.,
2021). Therefore, there is a critical need to (1) improve LAl accuracy (Geza et al., 2019), (2) build
integrative software for running multi-way admixture deconvolution analysis (Geza et al., 2020), (3)
design user-friendly, integrative joint association methods that generate comprehensive association
statistics, and (4) optimize the power of association testing in multi-way admixed data (Duncan et al,,
2019; Coram et al., 2017; Marnetto et al., 2020).
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Table 1: The table lists the different populations, their abbreviations, and the corresponding sample
sizes for the populations merged to obtain the reference population for the simulation of European and
African populations.

Simulation Reference Population Sample Size

European  British (GBR) 85
Iberian Spanish (IBS) 107
Finnish (FIN) 99
Toscani in Italy (TSI) 104

Utah residents with Northern

and Western European ancestry (CEU) 94
Merged European reference 489
African Gambian Mandinka (GWD) 113
Yoruba (YRI) 108

Merged African reference 221
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Table 2: The table lists the simulated risk SNPs and their corresponding homozygosity (HOM) and
heterozygosity (HET) risks specified during simulation; - indicates the SNP was not simulated in that
population.

Chr rsID Position  European Population African Population
HOM HET HOM HET
2 rs113456069 113842451 2.5004 0.124 - -
2 rs112486568 113842455 - - 25004 0.124
6  rs146841607 29942575  2.5004 0.051 2.5004 0.051
11 rs17146528 64732006  1.5004 0.304 1.5004 0.704
11 rs113948263 64733224  1.5004 0.304 1.5004 0.704
15 rs289138 62599775  1.5004 0.104 1.5004 0.104
20  rs6115358 25856361  1.5004 0.304 - -
20  rs7343318 25856699 - - 0.5004 0.304

Table 3: The table provides information on the parental reference populations for the 3-way and 5-way
admixture simulations, their abbreviations, initial sample sizes, and the percentage of ancestry each
population contributed in each scenario.

Simulation Parental Population Sample Size Ancestry Proportion
3-way Utah residents with Northern

and Western European ancestry (CEU) 94 20%

Han Chinese from Beijing, China (CHB) 103 10%

Yoruba (YRI) 108 70%
5-way Europeans (EUR) 305 15%

South Asians (SAS) 386 35%

East Asians (EAS) 441 10%

Other African ancestries (MAFR) 256 10%

West Africans (WAFR) 405 30%
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Table 5: The table lists the disease risk scenarios simulated in the 3-way and 5-way admixture simulations
and the chromosomes containing the risk SNP. v* indicates a strong risk was simulated, (v') indicates
a weak risk was simulated, while X indicates no risk was simulated.

Simulation Chromosome Genotype Risk Ancestry Risk

3-way 2 v
6 v
11 (V) v
15 (v) v
Others X X

5-way 2 v (v)
6 & 20 v X
11 (v) ()
15 (V) v

Others X X
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Table 22: GWAS statistics from EMMAX of the simulated risk SNPs in the 3-way admixture simulation
for 2500 cases and 2500 controls.

EMMAX

Chr rsiD Position Al A2 OR p-value

2 rs76091761 119924776 0.8284 8.70874 x10~1¢

6 rs79354975 78841154 0.9074 4.67783 x10~ !

0.9452 6.73071x109%¢

C
T
11 rs73417185 4119431 A
G

> o 0o -

15 rs2960806 60169020 1.0497 1.54807 x107%

Table 23: GWAS statistics from GEMMA of the simulated risk SNPs in the 3-way admixture simulation
for 2500 cases and 2500 controls.

GEMMA

Chr rsID Position Al A2 OR(95% C.l.) stderr p-value

2 rs76091761 119924776 [1.1627, 1.2533] 0.02312 4.31377 x10~1%°

6 rs79354975 78841154 [1.0722, 1.1297] 0.01467 6.39394 x10~ 10

[1.0232, 1.0879] 0.0165  1.51937 x107%3

> o 0o -

C
T
11 rs73417185 4119431 A
G

15 rs2960806 60169020 [0.9329, 0.9724] 0.01009 1.46203 x10~%

Table 24: GWAS statistics from GCTA of the simulated risk SNPs in the 3-way admixture simulation
for 2500 cases and 2500 controls.

GCTA
Chr rsID Position Al A2 OR(95% C.l.) stderr p-value
2 rs76091761 119924776 C T [1.1573, 1.2511] 0.02392 7.99158 x10~1'°
6 rs79354975 78841154 T C [1.0651, 1.1236] 0.01492 1.52098 x10~%9
11 rs73417185 4119431 A G [1.0182, 1.082] 0.01628 2.68599x 1003
15  rs2960806 60169020 G A [0.9329, 0.9726] 0.01012 1.69894 x10~%¢
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Table 25: GWAS statistics from GCTA-LOCO of the simulated risk SNPs in the 3-way admixture
simulation for 2500 cases and 2500 controls.

GCTA-LOCO
Chr rsID Position Al A2 OR(95% C.l.) stderr p-value
2 rs76091761 119924776 C T [1.1378, 1.2175] 0.02034 8.93609 x10~16
6 rs79354975 78841154 T C [1.0972, 1.142] 0.01144 5.40953 x10~23
11 rs73417185 4119431 A G [1.0656, 1.111] 0.01158 2.66512 x10713
15 rs2960806 60169020 G A [0.9488, 0.9844] 0.00908 0.00018

Table 26: GWAS statistics from PLINK (Logistic) of the simulated risk SNPs in the 3-way admixture
simulation for 2500 cases and 2500 controls.

PLINK (Logistic)

Chr rsID Position Al A2 OR p-value

2 rs76091761 119924776 2263  4.564 x10717

6 rs79354975 78841154 1.835  1.022 x10=2%

1.711  3.868 x10~19

> o 0o -

C
T
11 rs73417185 4119431 A
G

15 rs2960806 60169020 0.8226 1.249 x10~%

Table 27: GWAS statistics from SNPTEST of the simulated risk SNPs in the 3-way admixture simulation
for 2500 cases and 2500 controls.

SNPTEST - Frequentist

Chr rsID Position Al A2 OR(95% C.l.) stderr p-value

2 rs76091761 119924776 [0.2517, 0.6329]  0.09724 2.49893 x 10718

6 rs79354975 78841154 [0.43, 0.6571] 0.05793 1.0629 x10~26

[0.4674, 0.7028] 0.06005 1.47774 x10~19

> o 0o -

C
T
11 rs73417185 4119431 A
G

15 rs2960806 60169020 [1.1367, 1.2946] 0.04028 1.18143 x107%
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Table 28: GWAS statistics from SNPTEST of the simulated risk SNPs in the 3-way admixture simulation
for 2500 cases and 2500 controls.

SNPTEST - Bayesian

Chr rsiD Position Al A2 OR(95% C.l.) stderr log(BF)

2 rs76091761 119924776 [0.3474, 0.683]  0.08562 13.2702

6 rs79354975 78841154 [0.4611, 0.6782] 0.05539 22.4432

[0.4992, 0.7238] 0.0573  15.815

> o 0o -

C
T
11 rs73417185 4119431 A
G

15 rs2960806 60169020 [1.129, 1.2838]  0.03947 4.22825
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Figure 1: The figure illustrates the choice of the risk SNPs selected for the simulation of homogeneous
European and African populations. EUR indicates European, AFR indicates African, and CHR
indicates the chromosome. A red star indicates the SNP was simulated as a risk SNP in that
population. In contrast, a grey star indicates a SNP is present in the European population, in high
LD with the risk SNP simulated on that chromosome, but simulated as a risk SNP in the African
Population. The black dotted vertical lines indicate the presence of other chromosomes between
the two chromosomes. The risk SNPs on chromosomes 2, 6, 15, and 20 were simulated with the
same risk strength in both populations, while on chromosome 11, the risk SNPs of Europeans were
simulated with a strong risk signal, while those of Africans were simulated with a weak risk signal.
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PCA plot of the Homogeneous Simulation with African Reference
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Figure 2: PCA plot of the simulated African population (500 cases and 500 controls) and the corre-
sponding reference populations used in the simulation. AFR_GWD indicates the Gambian Mandinka,
AFR_YRI indicates the Yoruba population, while AFR_cases and AFR_controls are the African simu-
lated cases and controls.
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PCA plot of the Homogeneous Simulation from European Reference
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Figure 3: PCA plot of the simulated European population (500 cases and 500 controls) and the
reference populations used in the simulation. EUR_GBR are the British, EUR_FIN are the Finnish,
EUR_IBS are the Iberian Spanish, EUR_CEU are the Utah residents with Northern and Western
European ancestry, and EUR_TSI are the Toscani in Italy. The EUR_cases and the EUR_controls
indicate the simulated European population.

3-way Admixture Simulation
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Figure 4: PCA plot of the 3-way admixture simulated population (2500 cases and 2500 controls)
and the corresponding CEU, CHB, and YRI simulated in isolation from the reference populations.
The simulated admixed population is labeled SIM.
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3way Admixture Simulation

A: ADMIXTURE

B: TRUE

Figure 5: The admixture plot of the 3-way admixture simulated population (SIM), comprised of
2500 cases and 2500 controls, and the corresponding CEU, YRI, and CHB reference populations
used in the simulation. A: is the admixture block estimated by the ADMIXTURE tool and B: is the
admixture block of the true simulated global ancestry proportion calculated from the ancestry block
output by FractalSIM.

5-way Admixture Simulation
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Figure 6: PCA plot of the 5-way admixed population simulation of 500 cases and 500 controls.
ADM is the admixed group, while EAS, EUR, MAFR, SAS, and WAFR are the parental populations
simulated in isolation from the reference ancestral populations.
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5-way Admixture Simulation

A: ADMIXTURE

B: TRUE

EAS EUR MAFR SAS WAFR SIM

Figure 7: The admixture plot of the 5-way admixture simulation population (SIM), including 500
cases and 500 controls, and the respective EAS, EUR, MAFR, SAS, and WAFR parental populations.
A: is the estimated admixture block produced by the ADMIXTURE tool, while B: is the estimated
admixture block of the true simulated global ancestry proportion generated by FractalSIM.
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