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Abstract  

Understanding how gene-environment interactions (GEIs) influence the circulating proteome 
could aid in biomarker discovery and validation. The presence of GEIs can be inferred from single 
nucleotide polymorphisms that associate with phenotypic variability - termed variance 
quantitative trait loci (vQTLs). Here, vQTL association studies are performed on plasma levels of 
1,468 proteins in 53,752 UK Biobank participants.  A set of 683 independent vQTLs are identified 
across 571 proteins, all of which are newly discovered. They include 65 variants that lack 
conventional additive main effects on protein levels. Over 1,400 GEIs are identified between 142 
proteins and 101 lifestyle and metabolic exposures. GEI analyses uncover biological mechanisms 
that explain why 13/65 vQTL-only sites lack corresponding main effects. Stratified analyses also 
highlight how age, sex and genotype can interact to modify relationships between biomarkers and 
health-related traits. This study establishes the most comprehensive database yet of vQTLs and 
GEIs for the human proteome.    
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Introduction  

High-throughput proteomic analyses enable scalable biomarker discovery for complex disease 
states 1. A growing number of studies have catalogued genetic influences on the human plasma 
proteome 2-6. Sequence variants associated with protein abundances are termed protein 
quantitative trait loci (or pQTLs) and their colocalisation with disease-associated variants guides 
the identification of pathogenic molecular pathways, aiding drug and biomarker validation 7-9. 
However, the influences of environmental factors and, in particular, gene-environment 
interactions (or GEIs) on the human plasma proteome have remained understudied. Determining 
whether environmental exposures modify genetic associations with protein abundances should 
provide additional, nuanced insights into protein biology and personalised medicine strategies.  
 

GEIs most commonly arise when genotype groups at a locus show differential associations 
between an environmental exposure and a phenotype of interest (e.g. protein levels) 10,11. There 
has been relatively limited success in identifying GEIs due to their small effect sizes and challenges 
in accurately recording multiple environmental exposures over the life course 12,13. Using all 
genome-wide genetic variants and hundreds of potential environmental modifiers to test for GEIs 
also imposes a significant multiple testing burden.  
 

A GEI can manifest in the form of differences in the variance of a given trait across genotypes at a 
locus (Fig. 1). Therefore, one strategy to infer the presence of a GEI is to perform genome-wide 
scans for these loci, which are defined as variance quantitative trait loci or vQTLs 14,15. This is in 
contrast with pQTLs, which associate with differences in mean protein levels across genotype 
groups. Of note, variants that associate with mean differences in traits (i.e. pQTLs) have been 
referred to as additive main effect or simply, main effect loci in the vQTL literature 16,17. Studies 
have identified vQTLs for lifestyle and cardiopulmonary traits such as blood pressure and body 
mass index 15,16,18,19. These studies have also shown that the power to detect GEIs is enhanced 
when restricting the genetic search space to vQTLs instead of all genome-wide variants or to QTLs 
with additive main effects on the outcome (analogous to pQTLs) 15-17. Westerman et al. (2022) 
recently applied the two-stage approach of vQTL discovery and GEI testing to serum 
cardiometabolic biomarkers, which included 10 proteins. However, the vQTL architecture for most 
human proteins remains undescribed thereby hindering systematic screens for GEIs that may 
impact their circulating levels. Identifying vQTLs and associated GEIs in this context could further 
guide predictions on the safety and efficacy of protein biomarkers and drug targets.  
 

In this study, we first conduct genome-wide vQTL association studies on plasma levels of 1,463 
Olink proteins in up-to-53,752 UK Biobank participants. GEI associations are then comprehensively 
screened using vQTL loci identified in stage one and over 100 lifestyle and metabolic exposures 
(see Fig. 1 for a summary of the study design). vQTL variants are cross-referenced with a recent 
pQTL (or main effect QTL) study using the same sample, highlighting novel aspects of protein 
biology that would not have otherwise been captured by conventional additive GWAS models 4. 
GEI association tests are also repeated using pQTLs to assess whether there is an enrichment in 
GEI discovery when restricting the genetic search space to variance effect versus main effect QTLs. 
Additionally, age- and sex-specific GEI association tests are performed to further inform which 
strata of the population are most susceptible to a given GEI. This study establishes and prioritises 
a comprehensive catalogue of variance effects for the human proteome, which others may utilise 
to investigate GEIs of interest. Further, we detail several, disparate examples that provide 
biological insights into the complex interplay between the genome, proteome and environment.  
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Fig. 1. Overview of study design for variance QTL analyses in The UK Biobank Pharma Proteomics Project 
sample. Top panel: Plasma levels of 1,463 proteins (measured by 1,472 Olink analytes) and genotype data were 
available for 53,752 participants in UK Biobank following quality control. Variance QTL (vQTL) analyses were 
performed using 6.8 million imputed SNPs to detect loci that associated with differential variances in protein 
levels across genotypes. Gene-environment interactions (GEIs) can manifest as differences in the variance of a 
trait (e.g. protein levels) across genotypes at a given polymorphism. In this example, which uses fictitious data, 
the G-allele positively correlates with protein levels in one sub-group of the sample (current smokers, shown in 
teal). A negative correlation is observed in never smokers (shown in red). There is no correlation in ex-smokers 
(shown in peach). Therefore, genotype at this locus interacts with the exposure (e.g. smoking status), which 
creates a mean-based interaction effect. The effect underlies the dispersion of the data in G-allele carriers and 
in turn gives the appearance of a vQTL. Bottom panel: The independent discovery and replication sets consisted 
of 35,571 and 18,181 participants, respectively. Effect sizes and p-values for variance QTLs were compared 
against those from a recent main effect QTL analysis on the same proteins and sample by Sun et al. The use of 
vQTLs for GEI tests can greatly reduce computational burden. Therefore, we tested whether protein levels were 
associated with an interaction between their vQTLs and a broad range of health-related phenotypes in UK 
Biobank. A large number of phenotypes were correlated with one another (e.g. adiposity-related traits). 
Stepwise conditional analyses were employed in order to identify ‘independent’ interactions. MAF, minor allele 
frequency; GEI, gene-environment interactions; vQTL, variance quantitative trait locus. Image created using 
Biorender.com.  
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Results 

Discovery of variance QTLs underlying the plasma proteome  

In the first stage of the study, Levene’s test was used to perform genome-wide vQTL analyses on 
blood levels of 1,463 unique proteins. The 1,463 proteins were measured by 1,472 analytes. A 
Bonferroni-corrected significance threshold was set at p<3.4x10-11, which reflected the 
adjustment of p<5x10-8 (a commonly used threshold in GWAS) 20 for 1,463 proteins. There were 
274,272 significant vQTL associations across 572 analytes at p<3.4x10-11. The associations 
implicated 571 unique proteins as two analytes targeted the same protein. There was limited 
evidence for genomic inflation (range of λ=[0.9, 1.1], Supplementary Table 1). Six hundred and 
eighty-three independent vQTLs were identified through linkage disequilibrium (LD) clumping (see 
Methods, Supplementary Table 2).  
 

Four hundred and seventy-three (70.1%) of the 683 independent vQTLs were cis effects (within 
1Mb from the gene encoding the protein) and the remaining 210 represented trans effects (Fig. 
2A). The majority of proteins had one independent vQTL (489, 85.6%) and the maximum number 
of vQTLs per protein was 6 (for FOLR3, Fig. 2B). There was an inverse relationship between the 
logarithms of effect sizes and minor allele frequency (MAF) for both cis and trans loci (r=-0.36 and 
-0.49, respectively, MAF≥5%, Fig. 2C). Six variants were not available for replication testing as they 
had MAF<5% in the replication set. Of the 677 variants available for testing, 645 (95.3%) were 
nominally significant (p<0.05) and directionally concordant with estimates from the discovery set. 
Effect sizes were highly correlated between both sets (r=0.96, 95% CI=[0.95, 0.97], Fig. 2D, 
Supplementary Table 3).  

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 26, 2023. ; https://doi.org/10.1101/2023.10.26.23297604doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.26.23297604
http://creativecommons.org/licenses/by/4.0/


 

Fig. 2. Genome-wide association studies to identify variance QTLs for 1,472 blood protein measures in UK 
Biobank. (A) The 1,472 analytes or measures represented 1,463 unique proteins. A Bonferroni-corrected 
significance threshold of p<3.4x10-11 was set. The x-axis represents the chromosomal location of independent 
cis and trans vQTLs. The y-axis represents the position of the gene encoding the associated protein. Cis (red 
circles); trans (blue circles). (B) The number of independent vQTLs per protein. (C) Association between the 
common logarithm of minor allele frequencies and the natural logarithm of absolute effect sizes for cis and trans 
vQTLs. Cis (red circles and line); trans (blue circles and line). (D) The discovery and replication sets consisted of 
35,571 and 18,181 participants, respectively. Correlations between effect sizes in the discovery and replication 
sets are shown for vQTLs that were significant in the discovery set. CI, confidence interval; MAF, minor allele 
frequency; vQTL, variance quantitative trait locus.  
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Variance QTLs largely overlap with main effect QTLs for the blood proteome  

The majority of vQTLs (618, 90.5%) had main effect p-values <3.4x10-11 (Supplementary Table 2). 
Only sixteen vQTLs lacked a main effect finding at p<0.05. Their p-values ranged from 0.07 to 0.98 
and five loci were located in the MHC region. Fig. 3A and 3B demonstrate examples of vQTL loci 
with and without marginal main effects, respectively. A reverse look-up strategy showed that only 
3.4% of main effect QTLs (299 of 8,857 variants at MAF≥5%) had vQTL p-values <3.4x10-11 
(Supplementary Table 4).    
 

Fig. 3C and 3D show the predicted functional classes of vQTLs and main effect QTLs. Most 
predicted classes exhibited little variation between these QTL types given their substantial 
overlap. However, a higher proportion of main effect QTLs were annotated to exons than vQTLs 
(17.3% vs. 11.6%). In balance, a lower proportion of main effect QTLs were annotated to intergenic 
sites when compared to vQTLs (18.9% vs. 27.7%).  

 

Of note, main effect QTLs and variance QTLs had similar profiles in terms of imputation accuracy 
and the median INFO scores were 99.3% (interquartile range (IQR)=1.8%) and 99.4% (IQR=1.5%), 
respectively. The higher proportion of exon annotations for main effect QTLs may reflect variants 
that affect amino acid sequences and, in turn, antibody-antigen recognition. Indeed, 23% of cis 
main effect associations were protein-altering variants or were in linkage disequilibrium (r2>0.8) 
with such variants 4. These variants may precipitate differential binding rather than differences in 
circulating abundances. The effects are likely to influence mean protein measurements across 
genotypes (i.e. additive main effect or pQTLs) as opposed to differences in the variance, and may 
contribute to the observed differences in predicted functional classes between main effect and 
vQTLs.  
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Fig. 3. Genetic architectures of main effect and variance QTLs for plasma protein levels. (A) Example of variance 
QTL (rs147072313) without corresponding main effect on protein levels (FLT3LG). (B) Example of variance QTL 
(rs12037951) with significant main effect on protein levels (ACP6). (C) Distributions of predicted functional 
annotation classes for all variance QTLs. Bar height represents the mean proportion of variants within each class. 
(D) Distributions of predicted functional annotation classes for main effect QTLs. TF, transcription factor; UTR, 
untranslated region; vQTL, variance quantitative trait locus.   
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Variance QTLs unveil gene-environment interactions dispersed across the plasma proteome   

In the second stage of the study, we tested whether protein levels were associated with an 
interaction between their vQTL(s) and 114 disparate exposures. There were 1,497 GEIs at a 
Bonferroni-adjusted threshold of p<5.4x10-6 when vQTLs were used as index variants (p<0.05 
adjusted for 683 variants and 13.5 effective exposures). Significant GEIs comprised 22.2% of the 
vQTLs tested (152 variants) and reflected 142 unique proteins (Supplementary Tables 5 and 6). 
The main effect QTL strategy returned 4,036 GEIs at the same threshold. However, these 
associations encompassed only 4.1% of main effect QTLs (359 of 8,857 variants, Supplementary 
Table 7). Prioritising vQTLs therefore provided a 5.4-fold enrichment in GEI discovery over 
conventional QTLs at the variant level, and this estimate is in line with previous findings 15,17.  
 

Of note, applying the same multiple testing threshold is more liberal for main effect QTLs given 
their larger number of input variants (683 vs. 8,857) 17. Only 2,997 of 4,036 GEIs (73.7%) and 280 
sites (3.2%) remained at a tailored threshold of p<4.2x10-7 (p<0.05 adjusted for 8,857 variants and 
13.5 effective exposures).    
 

Stepwise conditional analyses suggested that 215 of the 1,497 GEIs with vQTLs were ‘independent’ 
when further accounting for correlations between phenotypes (see Methods, Fig. 4A, 
Supplementary Table 8). Eighteen proteins exhibited three or more conditionally significant 
associations with a maximum of 8 GEIs for PAEP (progestagen-associated endometrial protein or 
glycodelin, Fig. 4B). Conditional GEIs included 62 unique phenotypes. In total, 172/215 GEIs were 
nominally significant (p<0.05) and directionally concordant with estimates from the replication set 
(Supplementary Table 9). Sensitivity analyses for the preparation of phenotypes in vQTL and GEI 
association tests are detailed in the Supplementary Note.   

 

GEIs revealed interactions consistent with known biology, such as associations between LDL 
receptor (low-density lipoprotein, LDLR) and LDL cholesterol. Our data illustrate genotype-
dependent effects for these relationships. For instance, the trans variant rs75627662-T located 
near APOE had an additive effect on transformed LDLR levels and served as a vQTL (Fig. 4C). There 
was no correlation between LDLR and cholesterol in individuals homozygotes for the minor T-allele 
(rminor=0.005, Pearson’s correlation). However, heterozygotes showed a positive correlation 
(rhet=0.32) and a stronger association was observed in those homozygous for major (C)-allele 
(rmajor=0.41). This underscored a clear GEI that was uncovered by the two-stage strategy.   
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Fig. 4. Gene-environment interactions underlying the plasma proteome are pervasive. (A) Circos plot showing 
all conditionally significant GEIs. Only associations that surpassed a Bonferroni-corrected threshold of p<5.4x10-6 

are displayed. Exposure variables are broadly categorised into similar classes for clarity. (B) Interaction Z-scores 
are highlighted only for proteins with three or more conditionally significant GEI effects. Positive Z-scores are 
shown in green and negative Z-scores are shown in purple. (C) Mean transformed LDL receptor or LDLR levels 
(closed circles) with 95% confidence intervals (vertical bars) when stratified by vQTL genotype (rs75627662) and 
tertiles of measured blood LDL cholesterol. GEI, gene-environment interaction; LDL, low-density lipoprotein; 
vQTL, variance quantitative trait locus.  
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Gene-environment interactions are influenced by age and sex differences 

It is unclear whether a given interaction remains consistent across an entire study population (i.e. 
across age ranges and sexes). We therefore sought to highlight GEIs that may be susceptible to 
age and/or sex differences. Linear regression models were used to test whether protein levels 
were associated with (i) genotype-by-sex and (ii) genotype-by-age interaction terms. Only the 142 
proteins that participated in GEIs were considered. Two proteins (GP2 and TACSTD2) showed age-
biased QTLs at p<5.4x10-6 (matching the threshold used in GEI tests, Supplementary Table 10). 
Twenty-nine proteins associated with a genotype-by-sex interaction at this threshold and the 
strongest association was observed for PAEP (p=4.7x10-223). 
 

The association between PAEP and body weight clearly illustrated how GEIs can be accounted for 
by sex differences. The cis rs697449-T variant was a vQTL for PAEP levels and also showed an 
additive main effect on PAEP levels (Fig. 5A). Moderate correlations between PAEP and body 
weight were observed in T-allele carriers when males and females were analysed together (r=0.22 
for heterozygotes and T-homozygotes, Fig. 5A). However, a weak negative association was 
observed in major (G)-allele homozygotes (r=-0.05). This GEI effect was not present when the 
sample was stratified by sex (Fig. 5B). It arose in the combined analysis (males and females) as the 
QTL was sex-biased and had a larger additive effect on protein levels in males than in females 
(β=1.2 and 0.8 per-allele increase in transformed PAEP levels, respectively; both p<2.2x10-16). This 
difference is highlighted by the genotype-by-sex interaction analyses described above (p=4.7x10-

223). Males with the T-allele therefore had higher protein levels than females as well as higher body 
weights. This forced a positive correlation between the protein and phenotype in the combined 
sample. The slight negative correlation in major allele homozygotes was due to males having 
slightly lower PAEP levels and higher body weights at this genotype (Fig. 5B).  
 

Age also masked associations between PAEP levels and body weight in females (Fig. 5C). The age 
range of UKB-PPP participants spanned three separate decades of life at the study baseline (40-
50, 50-60 and 60-70 years). Negative correlations between PAEP and body weight were observed 
across genotypes in the youngest age group (40-50 years, range of r=[-0.06,-0.13]). This age group 
also showed the highest glycodelin levels (Fig. 5B). Weak-to-moderate positive correlations were 
observed in the older age groups (range of r=[0,0.10] and [0.03,0.30]). The opposing associations 
across age groups nullified one another in the main analyses displayed in Fig. 5B. Interactions with 
genotype were also detected only in those aged 50-60 and 60-70 years (Supplementary Fig. 1). 
The age-dependent association between PAEP and body weight remained pronounced when the 
sample was further divided into 5-year age bins, with an apparent switch-point around 55 years 
of age (Supplementary Fig. 2). By contrast, associations between PAEP and body weight were 
consistent across age in males.  
 

A three-term interaction between age, sex and genotype associated with 24 proteins at p<0.05, 
which included PAEP (p=4.8x10-5). These proteins associated with 30 metabolic, 13 physical and 
one lifestyle trait in GEI tests (Supplementary Tables 11-13). Age, sex and genotype may therefore 
together influence relationships between these plasma proteins and environmental exposures, as 
illustrated by PAEP and body composition.  
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Fig. 5. Relationships between glycodelin levels and body weight are influenced by age, sex and genotype. (A) Mean 
transformed glycodelin levels (PAEP, closed circles) with 95% confidence intervals (vertical bars) are shown according 
to tertiles of body weight (left-side, in kilograms, kg) and rs697449 genotype. (B) Relationship between glycodelin and 
body weight across genotypes as shown in (A) but stratified to females (blue) and males (green). (C) Relationship 
between glycodelin and body weight in females as shown in (B) but stratified into three separate decades of life.  
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Gene-environment interactions explain why some vQTLs lack main effects on protein 
biomarkers  

vQTLs may lack genetic main effects if the variant positively correlates with protein levels in one 
stratum of an exposure and negatively in other strata. The opposing effect sizes preclude a 
marginal main effect and produce a ‘directionally discordant’ GEI 17. A similar proportion of vQTLs 
with and without main effects at p<3.4x10-11 participated in conditional GEIs (15/65 or 23.1% and 
137/618 or 22.2%, respectively). However, 13 of the 15 vQTLs (86.6%) without additive main 
effects were involved in directionally discordant interactions, compared to only 4/137 (2.9%) of 
those with additive main effects (Supplementary Table 14). Indeed, directionally discordant 
interactions likely explained why 13 of the wider 65 vQTL-only sites lacked additive main effects.  
 

A clear example of this effect was observed at the trans indel in FLT3 (rs147072313, fms-related 
tyrosine kinase 3), which associated with the variance of its ligand (FLT3LG). The binding of FLT3LG 
to cell-surface FLT3 promotes monocyte proliferation (Fig. 6A) 21. FLT3LG levels associated with a 
genotype-by-monocyte count interaction in this sample (p=6.5x10-11). rs147072313 positively 
correlated with FLT3LG levels within those assigned to the highest tertile of monocyte count and 
negatively in the lowest, likely precluding a main effect (Fig. 6B). The additive main effect was 
almost null (p=0.95, shown previously in Fig. 2A).  
 

Fig. 6C shows that the indel was associated with decreased variance of transformed FLT3LG levels 
(p=2.1x10-16, also visualised previously in Fig. 2A). The GEI revealed a weak negative correlation 
between measured FLT3LG levels and monocyte count in major allele carriers (T-allele, rmajor=-
0.03). A weak positive correlation was observed in heterozygotes (rhet=0.03) and a stronger 
positive correlation was observed in indel homozygotes (rminor=0.11, Fig. 6C). This suggested that 
the effect of FLT3LG on monocyte count could be linked to rs147072313 genotype. However, the 
relationship between FLT3LG and FLT3 levels was consistent across genotypes, which suggested 
that ligand-receptor binding was preserved (Fig. 6D). Genotype also did not associate with mean 
differences in monocyte count (β=-0.001 per T-allele, p=0.59, Fig 6E). Therefore, the indel was not 
associated with an overall detrimental effect on monocyte count. The relationship was specific to 
monocytes when considering eight other blood cell types (Supplementary Fig. 3).  
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Fig. 6. Variance QTL in FLT3 receptor gene modifies the relationship between FLT3 ligand levels and monocyte 
count. (A) Schematic diagram showing the role of FLT3 receptor and FLT3 ligand (FLT3LG) binding in monocyte 
proliferation. (B) Mean transformed FLT3LG levels (closed circles) with 95% confidence intervals (vertical bars) are 
displayed according to tertiles of monocyte count and rs147072313 genotype. Of note, the wide confidence 
intervals in those homozygous for the indel reflect the small sample size of this group. They represent confidence 
intervals for the mean of the protein levels across strata. They do not reflect the variance of the protein level, which 
is instead visualised in (C) and most clearly illustrated via boxplots in Fig. 2A. (C) displays full distributions of FLT3LG 
levels and their correlation with monocyte count. (C) The correlation between transformed FLT3LG levels and 
monocyte count differs according to genotype at rs147072313 giving rise to a gene-environment interaction. Here, 
it is also apparent that the vQTL confers reduced variance in FLT3LG in carriers of the indel. (D) The association 
between circulating FLT3LG levels and FLT3 receptor levels is not influenced by genotype at rs147072313. (E) Violin 
plots show that rs147072313 genotype does not have an additive main effect on monocyte count. QTL, quantitative 
trait locus. Image created using Biorender.com.  
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Discussion  

In this study, we utilised one of the world’s largest proteomic datasets and performed the first 
genome-wide vQTL association study on blood levels of approximately 1,450 proteins. We 
identified 1,400 GEIs across 142 blood proteins. We further highlighted GEIs that are either 
masked by or attributed to age and sex differences, and others that would not have been detected 
by conventional proteogenomic strategies.  
 

Many of the exposures in this study do not represent behavioural or environmental exposures 
external to an organism. However, they were included due to prior evidence for their relevance to 
GEIs that involve blood-based biomarkers as well as interactions between the proteome and 
metabolome 17,22. For instance, we observed positive correlations between LDLR and LDL 
cholesterol in carriers of the major C-allele at rs75627662, which is located near APOE. The 
association was attenuated in individuals with two copies of the minor T-allele. Further, the T-
allele was associated with elevated LDLR levels in our study, and has been linked to adverse lipid 
profiles and reduced expression in whole blood of genes within the TOMM40/APOE/APOC1 locus 
23,24. APOE is an important component of several lipoprotein particles including LDLR. Typically, 
hepatic cell-surface LDLR clears cholesterol from the circulation. Therefore, a negative association 
between membrane-bound LDLR and cholesterol may be anticipated 25. By contrast, positive 
correlations between soluble or circulating LDLR and LDL cholesterol have been reported 
previously 26-29. One possible mechanism that explains the positive association entails shedding of 
cell-surface LDLR. Shedding increases the soluble form of the receptor and raises cholesterol levels 
due to the reduced availability of cell-surface proteins to clear circulating particles. Our findings 
may suggest that normal LDLR post-translational regulatory mechanisms are compromised in T-
allele carries. Further, this relationship may be linked to genetic variation within the 
TOMM40/APOE/APOC1 cluster. Elevated LDLR levels in minor allele carriers could also likely 
underscore dysregulated receptor turnover and lipid metabolism. However, it is important to note 
that measured levels do not necessarily inform about activity and these findings warrant further 
investigation in follow-up mechanistic in vitro and in vivo studies.  
 

Associations involving glycodelin and physical traits were attributed to sexual dimorphism in body 
composition and sex-biased QTL effects. By contrast, associations between glycodelin and body 
composition were masked by age, but only within females. Females under 55 years of age showed 
negative correlations between glycodelin and body mass whereas those over 55 years exhibited 
positive correlations. Glycodelin has four major glycoforms (-A,-S,-F and –C) with prominent roles 
in reproduction, pregnancy and immune function 30. Plasma glycodelin levels are highest in 
females between 40-45 years of age with a steady reduction until 55 years, after which plasma 
profiles resemble those of male counterparts 4. Over 90% of females in UKB self-reported 
menopausal onset by 55 years (data field 3581). Of note, genetic variation within PAEP is not linked 
to differences in body composition. However, our data suggest that the role of glycodelin within 
the homeostatic landscape may become altered following the onset of menopause. This provides 
one example whereby age, sex and genotype interact to modify the association between 
biomarkers and health-related phenotypes. These findings are important as previous GEI studies 
often only correct the biomarker for demographic variables and include sexually dimorphic 
exposures in association tests. They also do not often perform stratified analyses and therefore 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 26, 2023. ; https://doi.org/10.1101/2023.10.26.23297604doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.26.23297604
http://creativecommons.org/licenses/by/4.0/


may be agnostic to age variation and sex. This finding further underscores the need for large 
samples to enable stratified analyses that can inform biomarker research in understudied groups.  
 

In addition to demographic variables, we identified exposures that explained why some loci affect 
the variance of protein biomarkers only. For instance, the effect of a trans indel within FLT3 on the 
distribution of its ligand FLT3LG was explained by an interaction with monocyte count. A 
conventional model suggests that lower circulating FLT3LG levels serve as a proxy for higher 
receptor-bound ligand. In turn, higher receptor-coupled ligand produces higher monocyte count, 
leading to a negative correlation between free ligand and cell count 31. An unexpected positive 
correlation was observed in indel carriers. However, monocyte count and receptor-ligand binding 
were stable across genotype groups. This suggested that the indel may instead impact 
downstream ligand-mediated signalling processes without exerting overall detrimental effects on 
blood cell profiles. GEIs are one possible explanation for a vQTL that lacks a main effect, which 
may instead reflect phantom vQTLs 32,33, phenotypic dispersion induced by selection and epistasis 
33. In particular, 16 vQTLs that lacked main effects were located within the pleiotropic HLA and 
ABO regions, which could underscore gene-gene interactions. Complex interactions between 
multiple environmental exposures or inaccurately recorded phenotypes could also have precluded 
GEI detection, in particular within the large correlated constellation of phenotypes studied.  
 

Large biobank efforts have successfully detected genetic underpinnings of the human proteome, 
defining variants that associate with mean differences in protein levels. Whilst variants with 
additive main effects (i.e. non-vQTL sites) can be used in GEI tests, we observed that the 
proportion of vQTLs participating in a GEI was five-fold higher than corresponding main effect 
sites. Therefore, this study provides additional evidence that vQTLs increase the likelihood of 
identifying an underlying gene-environment interaction when compared to main effect loci. The 
higher number of main effect loci over vQTLs reflects the greater statistical power of standard 
regression methods when compared to Levene’s test. By contrast, the power of GEI tests may 
increase when using vQTLs rather than main effect loci. Variance QTLs in particular may be 
susceptible to differences in phenotype transformations owing to their reliance on the distribution 
of the trait. This could result in some vQTLs representing artefacts of the nominated 
transformation 34,35. However, our sensitivity analyses suggested that the majority of associations 
observed in our study were robust to phenotype pre-processing and transformation.  
 

The two-stage design and stepwise conditional analyses have been applied previously 15-17,36. 
However, our study advances beyond the existing literature by (i) conducting the first vQTL 
analyses on over 1,400 blood proteins, (ii) considering the largest number of biomarkers in vQTL-
GEI studies to date and crucially, (iii) demonstrating how demographic variables (e.g. age and sex 
differences) may mask or induce observed GEIs. The latter addition provides novel biological 
insights alongside crucial methodological considerations for GEI discovery as combined multi-omic 
and phenomic resources expand. Importantly, others will be able to utilise our prioritised set of 
vQTLs and extract their genotypes to perform GEI tests with phenotypes of interest in their study.  
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This study has a number of limitations. First, an external replication set was not available as the 
set of proteins and phenotypes are presently unique to UKB. Second, the majority of participants 
were of European ancestry. It is not possible to clearly generalise gene-environment effects to 
other ancestry groups given potential differences in both genetic and environmental profiles. 
Third, specific quality control parameters could not feasibly be applied to all phenotypes tested. 
Additional confounders and phenotype-specific transformations may need to be considered in 
follow-up or mechanistic studies.  
 

Conclusion 

The study complements existing proteogenomic efforts by considering additional distributional 
properties of the proteome whilst cataloguing biologically informative examples of its interaction 
with the genome, metabolome and phenome. Our datasets of variance QTL effects and GEIs 
establish unmet resources in the pursuit of accelerating biomarker discovery and validation.   
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Online Methods  

UK Biobank Study  

UKB is a prospective, population-based cohort of approximately 500,000 individuals aged between 
40-69 years at recruitment 37. Recruitment took place between 2006 and 2010. Here, a subset of 
the UKB sample was utilised, which was defined by The UKB Pharma Proteomics Project or UKB-
PPP consortium. The consortium comprises 13 biopharmaceutical companies, which funded the 
generation of blood-based proteomic data. The UKB-PPP sample includes 54,306 participants and 
consists of (i) a randomised subset of 46,673 UKB participants at the baseline visit, (ii) 6,385 
individuals at the baseline selected by the UKB-PPP consortium members and (iii) 1,268 individuals 
who participated in the COVID-19 repeat imaging study.  
 

Protein measurement in UK Biobank 

Blood samples from 54,306 UKB-PPP participants were analysed using the Olink Explore 1536 
platform. The platform uses Proximity Extension Assay 38 and measured 1,472 protein analytes 
across four Olink panels (Cardiometabolic, Inflammation, Neurology and Oncology). The analytes 
reflect 1,463 unique proteins. EDTA-treated plasma samples (60µl) were serially diluted to 1:10, 
1:100 and 1:1000 and transferred to 384-well plates. Samples were processed in eight batches 
(termed batches 0-7) and incubated with antibodies overnight at -4°C. Olink’s inbuilt quality 
control (QC) workflow returned Normalized Protein eXpression (NPX) values, which is a relative 
quantification unit on a log-2 scale. Full details on protein measurement and QC are available in 
Supplementary Methods. Protein data were available for 54,189 individuals following QC.  
 

Genotyping in UK Biobank  

The UKB genotype dataset includes 488,377 participants. Of these, 49,950 individuals were 
genotyped on the Applied Biosystems UK BiLEVE Axiom™ Array and 438,427 participants were 
genotyped on the closely related UK Biobank Axiom™ Array 37. Here, we followed the genotype QC 
process of Sun et al. (2022) in order to enable direct comparisons to a conventional main effect 
QTL analysis using the same sample 4. Briefly, UKB genotype data were imputed to the Haplotype 
Reference Consortium 39 and UK10K 40 reference panels. Imputed genetic variants were filtered 
for INFO>0.7 and minor allele count>50, and chromosome positions were lifted to hg38 build using 
LiftOver 41. Variants with a genotyping rate >99%, Hardy-Weinberg equilibrium test p>10−15 and 
<10% missingness were retained. Sun et al. (2022) utilised variants with minor allele frequency 
(MAF)>1%. We applied a higher threshold of MAF>5% in accordance with the workflow of Wang 
et al. for vQTL analyses 15. Following QC, 6,815,574 variants remained. There were 53,752 
individuals with paired genotype and protein data. 
 

The UKB-PPP sample was separated into discovery (n=35,571) and replication subsets (n=18,181) 
as per the design of Sun et al. (2022) 4. The discovery set included participants who were of 
European ancestry and present in Olink measurement batches 1-6. The remaining samples 
comprised the replication set and included 14,706 White, 1,225 Black/Black British, 998 
Asian/Asian British, 148 Chinese, 339 Mixed, 613 Other and 152 individuals with missing self-
reported ethnic backgrounds (as defined by data field 21000).  

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 26, 2023. ; https://doi.org/10.1101/2023.10.26.23297604doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.26.23297604
http://creativecommons.org/licenses/by/4.0/


Variance QTL association studies  

vQTL association studies were performed using the vQTL suite in OSCA 42. Levene’s test with 
median was applied. The false-positive rate of this test has been shown to be well-calibrated across 
simulated data in comparison to other commonly-used vQTL methods 15.  
 

In the discovery cohort, rank-based inverse normal transformed protein values (NPX) were 
regressed onto age, age2, sex, age*sex, age2*sex, batch, UKB study centre, UKB genotype array, 
time between blood sampling and measurement and 20 genetic principal components. One 
additional covariate was included in the replication set, which indicated whether samples were   
pre-selected by consortium members or as part of the COVID imaging study. Summary data for 
covariates are available in Supplementary Table 15 and their associations with protein levels are 
shown in Supplementary Tables 16 and 17 for discovery and replication sets, respectively. The 
preparation of protein data was aligned as closely as possible to the corresponding main effect 
QTL study by Sun et al. 4. Of note, Sun et al. did not adjust protein levels prior to genetic association 
studies and instead included fixed-effect covariates. This was not possible in our study as the 
Levene’s test module did not permit fixed-effect covariates. Residuals were standardised to Z-
scores and entered as dependent variables. Additively-coded genotype status was included as the 
independent variable.  
 

A Bonferroni-corrected significance threshold of p<3.4x10-11 was applied (p<5x10-8 adjusted for 
1,463 proteins). Primary associations were defined by clumping variants ±1Mb around significant 
vQTLs using PLINK 43 with the exception of the HLA locus (chromosome 6: 25.5-34.0 Mb). The larger 
HLA locus was considered as one region due to its complex linkage disequilibrium structure.  
 

Preparation of phenotypes for gene-environment interaction tests 

Prior to QC, 601 candidate phenotypes were considered for GEI tests. Phenotypes with excessive 
missingness (i.e. >20%, n=472) and insufficient heterogeneity (n=1) were removed in line with the 
protocol of the PHESANT algorithm 44. An additional fourteen phenotypes were removed due to 
lack of relevance to health outcome testing (i.e. were technical or QC variables). There were 114 
phenotypes following QC. Categorical variables were converted into binary or ordinal phenotypes 
as appropriate. Continuous variables were rank-based inverse normal transformed. The 
phenotypes or ‘exposures’ consisted of 63 metabolic, 46 physical, four lifestyle and one technical 
variable (season of blood draw). Further information on phenotype selection and their 
preparations are available in Supplementary Methods. Principal component analysis was 
performed using the R function prcomp on all 114 phenotypes in the discovery set, which revealed 
13.5 effective phenotypes for multiple testing correction. 
 

Gene-environment interaction tests  

Linear regression models tested whether the levels of a given protein were associated with an 
interaction between its vQTL (stage one) and each of 114 possible exposures (stage two):  
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ~ 𝑆𝑆𝑆𝑆𝑆𝑆 (0,1,2) ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 +  𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
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No fixed-effect covariates such as age and sex were included in GEI association models as protein 
levels were already corrected for relevant covariates in stage one, and in keeping with prior GEI 
studies 17. A Bonferroni-corrected threshold of p<5.4x10-6 was applied (p<0.05 adjusted for 683 
vQTLs and 13.5 effective exposures). By contrast, vQTL association tests in stage one were adjusted 
for the total number of proteins rather than their effective number in order to match the threshold 
used in Sun et al. and to ensure appropriate cross-study comparisons. As described in Westerman 
et al. 17, conditional GEI tests were performed in stage two in order to further account for the 
correlation structure between related phenotypes. All GEIs for a given protein that withstood 
multiple testing correction were brought forward to stepwise conditional analyses. Interaction 
effects for a given protein were re-tested while iteratively conditioning on the interaction that 
involved the most significant exposure (i.e. smallest p-value for a given protein). The process was 
repeated until no further GEIs could be considered. Interactions with age and sex were also 
investigated in addition to 114 candidate exposures. In standard GEI tests (i.e. with the 114 
candidate exposures), protein levels were corrected for age, age2 or sex and interaction terms 
involving these variables as described in the preceding sections. However, protein levels were 
adjusted only for technical factors (e.g. batch and study centre) and genetic PCs when age and sex 
were included as possible exposures.     
 

Data availability 

Genome-wide vQTL summary statistics and GEI association data will be made available via an 
open-access repository upon publication. Proteomics data are available in UK Biobank under 
return dataset [return dataset ID and URL will be provided upon publication].  
 

Code availability 

All code is available with open access at the following GitHub repository: 
https://github.com/robertfhillary/vqtls-uk-biobank.  
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