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Abstract: 

Introduction 

Automated machine learning (autoML) removes technical and technological barriers to 

building artificial intelligence models. We aimed to summarise the clinical applications of 

autoML, assess the capabilities of utilised platforms, evaluate the quality of the evidence 

trialling autoML, and gauge the performance of autoML platforms relative to 

conventionally developed models, as well as each other. 

Methods 

This review adhered to a PROSPERO-registered protocol (CRD42022344427). The 

Cochrane Library, Embase, MEDLINE, and Scopus were searched from inception to 11 July 

2022. Two researchers screened abstracts and full texts, extracted data and conducted 

quality assessment. Disagreement was resolved through discussion and as-required 

arbitration by a third researcher. 

Results 

In 82 studies, 26 distinct autoML platforms featured. Brain and lung disease were the most 

common fields of study of 22 specialties. AutoML exhibited variable performance: AUCROC 

0.35-1.00, F1-score 0.16-0.99, AUCPR 0.51-1.00. AutoML exhibited the highest AUCROC in 

75.6% trials; the highest F1-score in 42.3% trials; and the highest AUCPRC in 83.3% trials. In 

autoML platform comparisons, AutoPrognosis and Amazon Rekognition performed 

strongest with unstructured and structured data respectively. Quality of reporting was 

poor, with a median DECIDE-AI score of 14 of 27. 

Conclusions 

A myriad of autoML platforms have been applied in a variety of clinical contexts. The 
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performance of autoML compares well to bespoke computational and clinical benchmarks. 

Further work is required to improve the quality of validation studies. AutoML may facilitate 

a transition to data-centric development, and integration with large language models may 

enable AI to build itself to fulfil user-defined goals. 

Keywords: artificial intelligence, automated machine learning; AI; autoML; machine 

learning; deep learning;  

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2023. ; https://doi.org/10.1101/2023.10.26.23297599doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.26.23297599
http://creativecommons.org/licenses/by/4.0/


 4

Introduction 

In medicine, machine learning (ML) has been applied in a wide variety of contexts ranging 

from administration to clinical decision support, driven by greater availability of healthcare 

data and technological development (1–5). Automated machine learning (autoML) enables 

individuals without extensive computational expertise to access and utilise powerful forms 

of AI to develop their own models. AutoML thereby enables developers to focus on curating 

high quality data rather than optimising models manually, facilitating a transition from 

model-driven to data-driven workflows (6). AutoML has been posited as a means of 

improving the reproducibility of ML research, and even generating superior model 

performance relative to conventional ML techniques (7). 

AutoML technologies aim to automate some or all of the ML engineering process which 

otherwise requires advanced data or computer science skills. The first stage is data 

preparation, involving data integration, transformation, and cleaning. Next is feature 

selection, where aspects of the data to be utilised in designing the ML model are decided; 

this may involve data imputation, categorical encoding, and feature splitting (8). Model 

selection, training, and optimisation are then executed, with model performance 

evaluation being critical for identification of an optimal solution. AutoML systems use 

various methods and optimisation techniques to achieve state-of-the-art performance in 

some or all of the engineering process, such as Bayesian optimisation, random search, grid 

search, evolutionary based neural architecture selection, and meta-learning (7,9). The 

optimised model may then be outputted for further work, such as clinical deployment, 

explainability analysis, or external validation. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2023. ; https://doi.org/10.1101/2023.10.26.23297599doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.26.23297599
http://creativecommons.org/licenses/by/4.0/


 5

AutoML exhibits four major strengths which may support its application in clinical practice 

and research. Firstly, individual studies have reported comparable performance of autoML 

to conventionally developed models (10). This raises the possibility of clinical deployment 

of autoML models and use in pilot studies preceding further model development. Secondly, 

autoML may improve the reproducibility of ML research by reducing the influence of 

human technicians who currently engage with an idiosyncratic process of tuning until a 

satisfactory result is achieved: supporting a transition toward more reproducible data-

centric development (6). Thirdly, the reduction in computational experience and hardware 

conferred by autoML adoption should act as a major democratising force, providing a much 

larger number of clinicians with access to AI technology (9). Lastly, the time spent on 

developing models is significantly reduced with autoML, as manual tuning is abolished—

this improves efficiency and facilitates an acceleration of exploratory research to establish 

potential applications of AI (9). 

With the myriad of available autoML tools, democratisation of AI beyond those with clinical 

and computational expertise is feasible, and potential applications are diverse (9,10). 

However, rigorous validation is necessary to justify deployment. Here, a systematic review 

was conducted to examine the performance of autoML in clinical settings. We aimed to 

evaluate the quality of result reporting; describe the specialties and clinical tasks in which 

autoML has been applied; and compare the performance of autoML platforms with 

conventionally developed models, as well as each other. 

Methods 
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The reporting of this study adheres to PRISMA guidance, and the systematic review 

protocol was prospectively registered on PROSPERO (identifier CRD42022344427) (11,12). 

The protocol was amended to use a second quality assessment tool (PROBAST) in addition 

to DECIDE-AI, as described below. 

Data sources and searches 

The Cochrane Library, Embase (via OVID), MEDLINE (via OVID), and Scopus were searched 

from inception up to 11 July 2022, with no initial restrictions on publication status or type. 

Our search strategy isolated autoML in clinical contexts with the use of Boolean operators, 

as detailed in Supplementary Material 1. Before screening, duplicates were removed using 

Zotero version 6.0.14 (Corporation for Digital Scholarship, Vienna, Virginia, US); and 

Rayyan (11,13). 

Study selection 

Abstract screening was conducted in Rayyan by two independent researchers, with a 

separate third arbitrator with autoML expertise resolving cases of disagreement (13). Full-

text screening was similarly conducted by two researchers with a separate arbitrator, in 

Microsoft Excel for Mac version 16.57 (Microsoft Corporation, Redmond, Washington, US). 

The explicit, hierarchical criteria for inclusion during abstract and full-text screening are 

listed below in descending order, with full details provided in Supplementary Material 2: 

1. Is written in the English language. 

2. Is a peer-reviewed primary research article. 

3. Is not a retracted article. 

4. Utilises automated machine learning. 
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5. AutoML is applied in a clinical context. 

Data extraction and quality assessment 

For articles satisfying the inclusion criteria, data extraction was conducted by two 

researchers; with a first clinical researcher’s work verified by a second computational 

researcher. Quality assessment was conducted by a single researcher, using implicit criteria 

based on the Developmental and Exploratory Clinical Investigations of DEcision support 

systems driven by Artificial Intelligence (DECIDE-AI) framework (14). Risk of bias and 

concerns regarding applicability were assessed similarly by two researchers using the 

Prediction model Risk Of Bias ASsessment Tool (PROBAST) framework and guidance 

questions (15).  

Other data collected included citation details; autoML platform; processing location (cloud 

or local); code intensity of the autoML platform; technical features of the autoML platform; 

clinical task autoML applied towards; medical or surgical specialty defined anatomically 

where possible; sources of data used to train and test models; training and validation 

dataset size; dataset format (i.e. structured or unstructured); evaluation metrics used to 

gauge performance; and benchmark figures if presented such as with comparisons to 

expert clinician or conventional ML performance. Specifically, figures for area under the 

receiver operator characteristic curve (AUCROC), F1-score, and area under the precision-

recall curve (AUCPR) were gathered. If F1-score was not provided but precision (positive 

predictive value) and recall (sensitivity) were, F1-score was calculated as the harmonic 

mean of the two metrics. If metrics were not stated in text form but were clearly plotted in 

graphical form, figures were manually interpolated using WebPlotDigitizer v4.6.0 (Ankit 
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Rohatgi, Pacifica, California, USA). Metrics were excluded if the source or modality of the 

tested model was unclear (16). Where two researchers disagreed, resolution was achieved 

through discussion or as-required arbitration by a third researcher. 

Data synthesis and analysis 

A narrative synthesis was conducted because meta-analysis was precluded by 

heterogeneity of datasets, platforms, and use-cases. Quantitative comparisons of autoML 

models was based on performance metrics (F1-score, AUCROC, AUCPR) to judge the 

clinical utility of applied autoML (17). AutoML platforms were compared on the same basis 

where platforms were applied to an identical task with the same data. A statistically 

significant difference in metrics was defined as featuring non-overlapping 95% confidence 

intervals. To establish the congruence between studies’ conclusions and their presented 

data, the discussion and conclusion sections of each study were appraised by a single 

researcher to identify if autoML was compared to conventional techniques, and if so 

whether the comparison favoured autoML, conventional techniques, or neither. AutoML 

platforms were compared in terms of their requirements and capabilities, with researchers 

contacted to clarify any questions regarding code intensity, processing location, or data 

structure. Figures were produced with R version 4.1.2 (R Foundation for Statistical 

Computing, Vienna, Austria) (18–20), and Affinity Designer version 1.10.4 (Pantone LLC, 

Carlstadt, New Jersey, USA). 

Results 
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Record inclusion 

Of 2417 records initially identified, 82 were included in the final analysis (Figure 1) 

(10,16,21–100). In rare cases, research reports referred to autoML or similar terms in the 

broader context of ‘ML that automates’, despite not utilising autoML technology: these 

articles were excluded under criterion 4 (101,102). Other borderline cases considered to be 

outside the scope of this review based on criterion 5 involved uses of autoML in clinical 

contexts, but without contributing to patient diagnosis, management, or prognosis. These 

included a surgical video identification and prediction of biological sex from medical images 

(103,104). 

Characteristics of included studies 

The characteristics of the 82 included studies are summarised in Figure 2 and 

Supplementary Material 3. AutoML first entered the medical literature in 2018 and has 

been growing in impact ever since: 1 paper in 2018; 7 in 2019; 21 in 2020; 35 in 2021; 18 by 

July 11th 2022. Use-cases are diverse, but diagnostic tasks (53 studies) were more common 

than management (four studies) or prognostic (25 studies) tasks. The most common 

specialties in which autoML was used were pulmonology and neurology. Structured (e.g. 

tabulated) and unstructured (e.g. imaging) data were used similarly commonly. Dataset 

size varied widely, between 31 to 2,185,920 for training; 8 to 2,185,920 for internal 

validation; and 27 to 34,128 for external validation. 

Quality of reporting is summarised in Figure 2F, with individual scores reported in 

Supplementary Material 4. The median number of fulfilled DECIDE-AI criteria was 14 out of 

27, with the highest score being 19 out of 27. Nine criteria were fulfilled by over 90% of 
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included studies. Thirteen criteria were not fulfilled in over half of the included studies: (III) 

Research governance, (3) Participants, (5) Implementation; (6) Safety and errors in the 

results; (7) Human factors; (8) Ethics; (VI) Patient involvement; (9) Participants; (10) 

Implementation; (11) Modifications; (13) Safety and errors in results; (14) Human factors; 

and (16) Safety and errors in the discussion. Of these, three criteria were not fulfilled by any 

of the 82 included studies: (8) Ethics; (VI) Patient involvement; and (13) Safety and errors in 

the results. 

Risk of bias and concerns regarding applicability are summarised in Figure 2G. The most 

common sources of bias were retrospective study design often using publically available 

datasets, rather than testing autoML models in prospective trials to validate clinical 

performance and establish generalisability; and failure to provide an appropriate bespoke 

computational or clinical benchmark to demonstrate the performance of autoML—

conferring unclear or high risk of bias in PROBAST appraisal (Supplementary Material 5). In 

many cases, this was because autoML was used as a tool, rather than the study being a trial 

of autoML technology, but a statement was made in the discussion or conclusion regarding 

the effectiveness of autoML in 27 of 47 studies (57%) judged to have a high or unclear risk of 

bias in the analysis. 

AutoML performance relative to other modalities 

The reporting of performance metrics varied widely between papers, likely representing 

the inherent limitations of applied autoML platforms. 79 studies (96%) provided AUCROC 

(Figure 3), F1-score (Figure 4), or AUCPR (Supplementary Material 6) as a measure of 

performance. Of these, 35 studies (44%) exhibited a computational or clinical benchmark to 
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compare autoML performance against, and 21 studies (27%) provided 95% confidence 

intervals for estimates of performance metrics. Of twelve studies (15%) with benchmark 

comparisons and confidence intervals, autoML exhibited statistically significantly superior 

AUCROC in six of 17 trials (35%); significantly superior F1-score in zero of one trial (0%); and 

significantly superior AUCPR in zero of two trials (0%). In studies with benchmark 

comparisons and confidence intervals, autoML did not exhibit the lowest AUCROC, F1-

score, or AUCPR in any trial. In all studies comparing modalities, autoML exhibited the 

highest AUCROC in 28 of 37 trials (76%); the highest F1-score in eleven of 26 trials (42%); 

and the highest AUCPRC in ten of 12 trials (83%). AutoML exhibited the lowest AUCROC in 

five of 37 trials (14%); the lowest F1-score in six of 26 trials (23%); and the lowest AUCPR in 

two of twelve trials (17%). For autoML models, AUCROC ranged from 0.346-1.000 (scores 

of 0.5 are equivalent to chance; maximum score = 1); F1-score ranged from 0.128-0.992 

(maximum score = 1); and AUCPR ranged from 0.280-1.000 (maximum score = 1). 

57 studies (70%) compared autoML to other conventional modelling methods in the prose 

of their discussion or conclusion. Of these, 28 suggested that autoML was superior to 

conventional methods; 29 suggested that autoML was comparable to conventional 

methods; and none suggested that autoML was inferior to conventional methods. Only 35 

studies provided a quantitative comparison in their results, as described above (Figure 3, 

Figure 4, Supplementary Material 6). Conclusions of comparable effectiveness were 

justified by congruence with reported performance metrics in 16 of 29 studies (55%); 

conclusions of superior effectiveness of autoML were justified in eleven of 28 studies (39%). 
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Comparative performance of AutoML platforms 

A comparative summary of the autoML platforms validated in the literature is presented in 

Table 1. Platforms vary greatly in their accessibility, technical features, and portability. 

While performance in different tasks cannot be compared, five studies directly compared 

distinct autoML platforms in the same task. Of these, one study (20%) provided AUCROC 

metrics, which favoured AutoPrognosis over TPOT to prognosticate mortality in cystic 

fibrosis.(23) Four studies (80%) provided F1-score metrics for a total of nine trials (Figure 5): 

prognosticating mortality in cystic fibrosis; predicting invasion depth of gastric neoplasms 

from endoscopic photography; diagnosing referrable diabetic retinopathy from fundus 

photography; diagnosing age-related macular degeneration, central serous retinopathy, 

macular hole, and diabetic retinopathy from optical coherence tomography (OCT); 

diagnosing choroidal neovascularisation, diabetic macular oedema, and drusen from OCT; 

and classifying spine implants from lumbar spine radiographs (23,29,50,97). 

AutoPrognosis (structured data) and Rekognition (unstructured data) exhibited the 

strongest performance as they were superior to every platform they were compared with, 

although this was only to TPOT for AutoPrognosis, and Rekognition was compared with 

fewer platforms than Cloud AutoML. Two studies (40%) reporting five trials provided 

AUCPR metrics for prognosticating mortality in cystic fibrosis and classifying 

electrocardiogram traces (23,32). Here, performance favoured AutoPrognosis over TPOT; 

and AutoDAL-SOAR over USDM, AER, Auto-Weka, Auto-Sklearn, and ASSL+US. While not 

all platforms can be compared against one another due to incompatibility with data 

structure, many possible combinations were not trialled and the number of comparative 

trials was small, making it difficult to establish comparative performance. 
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Confidence in conclusions 

Confidence in conclusions is tempered by high risk of bias, particularly in retrospective 

study design and limited metrics facilitating statistical comparisons. However, as autoML 

did not exhibit statistically significantly worse performance than conventional techniques in 

any trial and exhibited lower performance metrics than conventional trials in a minority of 

studies, there is high confidence in the conclusion that autoML technology facilitates 

production of models with comparable performance to conventional techniques such as 

bespoke computational approaches. Given the low number of studies providing confidence 

intervals to enable statistical comparison of models’ performance within trials, conclusions 

regarding the superiority of autoML relative to conventional techniques have low 

confidence. In addition, conclusions cannot be assumed to generalise to all use cases and 

datasets: performance is highly context-specific, as demonstrated by the large variability 

observed in AUCROC (Figure 3), F1-score (Figure 4), and AUCPR (Supplementary Material 

6). Confidence in the superior performance of AutoPrognosis with structured data is very 

low, as there were very few comparative trials; and low for the superior performance of 

Rekognition with unstructured data, as the number of comparative trials was low—though 

not as low as for structured data—and as there were no data for many possible platform 

comparisons. 

Discussion 

This study shows that autoML has been trialled in a wide variety of diagnostic, patient 

management, and prognostic tasks. AutoML has been used in many clinical specialties, 

most commonly in brain and lung imaging. Performance of autoML models generally 
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compares well to bespoke computational and clinical benchmarks, often exhibiting superior 

performance. However, available studies and appraised risk of bias preclude conclusion of 

autoML providing universally superior performance to conventional modelling; relative and 

absolute performance vary widely with the applied platform, use case, and data source. The 

strength of the evidence base supporting use of different autoML platforms is highly 

heterogenous, with some platforms exhibiting results more supportive of equivalence or 

superiority to conventional techniques than others. Few studies compared different 

autoML platforms to determine which provide optimal performance for a given task. 

Despite these knowledge gaps, a high number of non-comparative studies suggests that 

autoML is already being applied as a statistical tool, comparable to bespoke machine 

learning coding packages or statistical software. 

There are five main deficiencies in the quality of the autoML evidence base. First, 

inconsistency in performance metrics may be a consequence of restrictions imposed by 

autoML platforms but observed variation between studies using similar platforms also 

suggests that selective reporting is common. Reporting comprehensive metrics is essential, 

particularly in the context of diagnostic algorithms, as some metrics are a function of 

prevalence or model threshold (17). Second, explainability analysis is challenging for similar 

reasons regarding portability, but is possible with emerging technological solutions (22). In 

addition, some platforms incorporate inbuilt explainability, such as by providing salience 

maps for DL models. Issues regarding ‘black box’ algorithms are accentuated in autoML 

research, leading to a third limitation: a lack of ethical consideration—such as regarding 

algorithmic fairness—by all the included studies. 
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Fourth, inconsistent use of benchmarking represents a form of publication bias leading to 

erroneous conclusions of equivalent or superior autoML performance relative to 

conventional bespoke computational methods or clinicians. Many studies relied on 

historical controls or provided no benchmark at all. To confidently conclude that autoML 

performance compares well to bespoke models—and particularly to ‘state-of-the-art 

techniques’—a researcher with computational aptitude should have an opportunity to 

maximise performance. Finally, models should be deployed on separate datasets which 

were not used in testing or training, for external validation; this demonstrates 

generalisability, a critical component of clinical potential. Without external validation, 

overfitting to the datasets provided may lead to inflated estimates of performance (105). 

External validation is limited on many autoML platforms by a lack of ability to batch test on 

new data, or to export models for analysis and deployment. 

Limitations 

This systematic review was limited by three issues: (1) PROBAST had to be adapted to 

apply it in non-diagnostic applications of autoML—we employed DECIDE-AI as a domain-

specific quality indicator to mitigate this limitation, and utilised PROBAST in the context of 

trialling autoML technology rather than in validating models for clinical application. 

Development of more domain-specific tools to optimise AI-related systematic reviews is 

underway, and will be a welcome development (106,107). (2) Confidence in conclusions was 

affected by high risk of bias, a common theme in AI research more broadly (108). We 

provide comprehensive indicators of quality, risk of bias, and concerns regarding 

applicability to facilitate contextualisation of performance metrics. (3) It is difficult to draw 

conclusions for autoML as a modality because platforms are variable in their features, 
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performances, and requirements—future reviews may focus on individual platforms, 

although the number of studies featuring most platforms is very small. 

Implications 

Researchers applying a platform without providing benchmark comparators for the 

purposes of primary research or clinical work should justify their decision with validation 

data demonstrating that their approach is acceptable. Evidence should be contextually 

relevant, preferably pertaining to the same clinical task. While it is apparent that autoML 

has already begun to be applied in clinical research as a statistical tool, it is important that 

these tools are demonstrated to produce accurate, reliable, and fair models. Studies 

purported as evidence of validation of autoML are often limited by retrospective design, 

high risk of bias, and unfulfillment of conventional reporting standards—comparable to 

research regarding other AI technologies (109). Future comparative studies should address 

the limitations discussed above to convince researchers, clinicians, and policy makers that 

autoML platforms may be applied in lieu of bespoke modelling. 

When reporting AI algorithms tasked with a certain clinical job, it would be helpful to avoid 

ambiguity in terminology. We would suggest a complete restriction of the terms 

‘automated machine learning’, or ‘autoML’ for those algorithms built with technology that 

automates some or all parts of the process of the engineering process—all conventional ML 

models process data without human guidance, so description of these technologies as 

automated is redundant. Similar terms such as ‘automated artificial intelligence’, 

‘automated machine learning’, and ‘automated deep learning’ are also redundant in the 

context of bespoke computational models. A simple alternative term for conventional ML 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 26, 2023. ; https://doi.org/10.1101/2023.10.26.23297599doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.26.23297599
http://creativecommons.org/licenses/by/4.0/


 17

projects would be ‘automatic’—these systems may automate a particular task, but their 

development is not automated, the defining feature of autoML. 

The reduced barrier to entry in terms of computational expertise and hardware 

requirements conferred by many autoML platforms makes them a powerful contributor to 

democratisation of AI technology: a far greater number of clinicians and scientists are 

capable of ML development through use of these platforms. AutoML could be an invaluable 

resource for teaching, as individuals can more rapidly develop hands-on experience, learn 

by trial-and-error, and thereby develop intuitive understanding of the capabilities and 

limitations of ML. AutoML could also be applied in pilot studies, enabling clinicians with 

domain-specific expertise to explore possibilities for ML research—facilitating prioritisation 

of allocation of scarce resources such as GPU access and expert computer scientists. 

Validated platforms may be applied more broadly, including in patient care. Moreover, 

autoML is well placed to respond to calls to inculcate data-centric AI as opposed to model-

centric development; focusing effort on curating high quality data, which limits 

development more often than code or model infrastructure (6). Acceleration in this process 

may be facilitated by large language models as their emerging capability to leverage 

plugins will allow autoML to facilitate AI building itself to fulfil user-defined aims (110). 

Further work is indicated to improve validation of autoML platforms, either by allowing 

models to be exported, or by providing more comprehensive internal metrics. Other work 

should focus on improving the functionality of autoML, specifically on reducing the trade-

offs currently implicit in selecting a platform with a given code intensity and computing 

locus. Using automation to reduce human error to optimise engineering and improve 
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performance is one ideal: this has been demonstrated with structured data by 

AutoPrognosis. Increased functionality of code-free platforms while retaining the 

customisability of code-intense solutions is another ideal: H2O.ai Driverless AI offers the 

same functionality as the H2O.ai R and Python packages, but with a code-free graphical 

user interface. Alternatively, maximising accessibility by automating the whole engineering 

process may be desirable: Dedicaid is a platform requiring just data, with no customisable 

parameters, but has an ‘ethical compass’ which flags inappropriate datasets. 

Conclusion 

AutoML performance is often comparable to bespoke ML and human performance. Many 

autoML platforms have been developed in academia and industry, with variable strengths 

and limitations. AutoML may prove especially useful in pilot studies and education, but 

potential use-cases include primary research and clinical deployment if platforms are 

rigorously validated. Future autoML research must be more transparently reported, adhere 

to reporting guidelines, and provide appropriate benchmarks for performance 

comparisons. Further autoML development should seek to minimise the ‘trade-offs’ 

currently inherent in selecting any given platform. 
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Legends 

Table 1—Technological comparison of autoML platforms applied in the studies included in 

this review. AER = approximated error reduction; ML = machine learning; ASSL = 

automated semi-supervised learning; WEKA = Waikato Environment for Knowledge 

Analysis; AutoDAL = automated distributed active learning; AutoDC = automated data-
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centric processing; JADBio = Just-Add-Data Bio; KNIME = Konstanz Information Miner; 

MILO = Machine Intelligence Learning Optimizer; TPOT = Tree-based Pipeline 

Optimization Tool; USDM = uncertainty sampling with diversity maximization. 

Figure 1—PRISMA flow chart depicting the search, screening, and inclusion process of this 

review. 

Figure 2—Collectively summarised characteristics of included studies: (A) Date of 

publication bar chart; (B) Continent of corresponding author bar chart; (C) Country of 

corresponding author bar chart; (D) Funding source bar chart; (E) Clinical specialty bar 

chart; (F) DECIDE-AI score histogram; (G) PROBAST evaluation bar chart; (H) Dataset size 

histogram with logarithmic X-axis; (I) Data nature bar chart; (J) Data source bar chart. RoB = 

risk of bias; CrA = concerns regarding applicability. 

Figure 3—Forest plot depicting reported AUCROC metrics. SVM = support vector machine; 

FEV1 = forced expiratory volume in 1 second; PH = proportional hazards; GBM = gradient 

boosting machine; DRF = distributed random forest; XRT = extremely randomised tree; BMI 

= body-mass index; ccf-DNA = circulating cell-free DNA; CT = computerised tomography; 

ARSS = Aneurysm Recanalization Stratification Scale; MCTSI = Modified Computed 

Tomography Severity Index. 

Figure 4—Forest plot depicting reported F1-score metrics. SVM = support vector machine; 

FEV1 = forced expiratory volume in 1 second; GBM = gradient boosting machine; ARSS = 

Aneurysm Recanalization Stratification Scale. 
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Figure 5—Heat map depicting the comparative performance of autoML platforms as 

applied to the same clinical tasks in terms of F1-score. Shading and numbers correspond to 

the number of superior performances exhibited by the index platform with respect to the 

reference platform. 

Supplementary Material 1—Systematic review search strategy. 

Supplementary Material 2—Inclusion and exclusion criteria, as provided to researchers 

conducting abstract and full-text screening. 

Supplementary Material 3—Tabulated study characteristics. 

Supplementary Material 4—Study-level data exhibiting fulfilment of DECIDE-AI reporting 

standards. 

Supplementary Material 5—Study-level data exhibiting appraisal of risk of bias (RoB) and 

concerns regarding applicability (CrA) using PROBAST. 

Supplementary Material 6—Forest plot depicting reported AUCPR metrics. SVM = support 

vector machine; FEV1 = forced expiratory volume in 1 second; GBM = gradient boosting 

machine; DRF = distributed random forest; XRT = extremely randomised tree. 
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Platform
Abbas et al, 2022

Specialty

Cloud AutoML

Modality

XGBoost

F1−score (95% CI)

Alaa and van der Schaar, 2018
AutoPrognosis
TPOT
SVM
Gradient boosting
Bagging
Nkam method
Buzzetti method
CF−ABLE−UK method
FEV1% predicted criterion

An et al, 2021
KNIME

Antaki et al, 2020
MATLAB quadratic SVM
Manual quadratic SVM
MATLAB optimised naïve Bayes
Manual optimised naïve Bayes

MATLAB optimised SVM
Manual optimised SVM
MATLAB optimised naïve Bayes
Manual optimised naïve Bayes

Bang et al, 2021
Cloud AutoML
Neuro−T
Create ML Image Classifier

Cloud AutoML
Neuro−T
Create ML Image Classifier

Borkowski et al, 2020
Azure

Danilatou et al, 2022
JADBio
XGBoost

Faes et al, 2019
Cloud AutoML

Cloud AutoML

Cloud AutoML

Cloud AutoML

Cloud AutoML
Feretzakis et al, 2021
Azure StackEnsemble
Azure VotingEnsemble
Azure LightGBM
Azure XGBoostClassifier

Ghosh et al, 2021
Cloud AutoML

Hasimbegovic et al, 2021
Dedicaid AutoMl

Ito et al, 2022
Cloud AutoML

Ito et al, 2021
Cloud AutoML

Cloud AutoML
Jen et al, 2021
MILO neural network
MILO GBM
MILO KNN
MILO naïve bayes
MILO random forest
MILO SVM
MILO logistic regresion

Karhade et al, 2021
Cloud AutoML

Cloud AutoML
Karstoft et al, 2020
JADBio random forest

JADBio random forest
Katsuki and Matsuo, 2021
Prediction One

Kim et al, 2021
Cloud AutoML 1
Cloud AutoML 2
Retina specialist
Ophthalmology residents

Koga et al, 2021
Cloud AutoML

Korot et al, 2021
Rekognition
Create ML
Clarifai
Cloud AutoML
MedicMind
Azure

Rekognition
Create ML
Cloud AutoML
Azure

Rekognition
Create ML
Cloud AutoML
Azure

Rekognition
Create ML
Clarifai
Cloud AutoML
MedicMind
Azure

Liu et al, 2022
TPOT

Livingstone and Chau, 2020
Cloud AutoML

Mohsen et al, 2022
H2O.ai
Random forest
AdaBoost
Support Vector Classifier

Nero et al, 2020
TPOT
XGBoost
Logistic regression
SVM

Orlenko et al, 2020
TPOT
Logistic regression
Decision tree
Random forest

TPOT
Logistic regression
Decision tree
Random forest

Ou et al, 2021
TPOT
Random forest
Logistic regression
ARSS

Peng et al, 2022
TPOT

TPOT
Purkayastha et al, 2020
TPOT

Rallabandi et al, 2020
Auto−WEKA SVM
Auto−WEKA Naïve Bayes
Auto−WEKA K−nearest neighbour
Auto−WEKA Random forest
Auto−WEKA Decision tree

Rashidi et al, 2021a
MILO neural network
MILO logistic Regression

MILO neural network
MILO logistic Regression

Rashidi et al, 2021b
MILO logistic regresion

Real et al, 2022
Auto−WEKA bagging
Auto−WEKA random committee
Auto−WEKA multilayer perceptron

Auto−WEKA logistic model tree
Auto−WEKA reduced error pruning tree
Auto−WEKA J48
Auto−WEKA random tree

Auto−WEKA sequential minimal optimisation
Auto−WEKA multilayer perceptron
Auto−WEKA adaboost
Auto−WEKA bagging

Sakagianni et al, 2020
Cloud AutoML

Sills et al, 2021
H2O.ai
Random forest
Logistic Regresion

H2O.ai
Random forest
Logistic Regresion

Su et al, 2020
TPOT

Tahmasebi et al, 2021
Cloud AutoML
Radiologist

Vagliano et al, 2022
AutoPrognosis
Logistic Regression

AutoPrognosis
Logistic Regression
APACHE

van Eeden et al, 2021
Auto−Sklearn
Logistic regression
Naïve Bayes

Auto−Sklearn
Logistic regression
Naïve Bayes

Auto−Sklearn
Logistic regression
Naïve Bayes

Auto−Sklearn
Logistic regression
Naïve Bayes

Wan et al, 2021
Cloud AutoML
Random forest
Convolutional neural network
Logistic regression
Linear discriminant analysis
K-nearest neighbour
Naïve Bayes
SVM
Adaboost

Wang et al, 2020b
Cloud AutoML

Cloud AutoML
Wang et al, 2020c
Cloud AutoML
TI−RADS classification

Xavier and Chen, 2022
Cloud AutoML
Random forest
Tree ensemble
Gradient boosting
Multi−layer perceptron
Universal language model fine−tuning

Yang et al, 2021
Cloud AutoML
Create ML
Convolutional neural network

Cloud AutoML
Create ML
Convolutional neural network

Yin et al, 2022
H2O.ai gradient boosting
H2O.ai XGBoost
H2O.ai random forest
H2O.ai generalised linear model
H2O.ai deep learning
Logistic Regression
Ranson criteria
MCTSI
BISAP score
SABP score

Zeng and Zhang, 2020
Cloud AutoML
Cruz−Roa method
Janowczyk method
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Gastrointestinal (1)
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Pulmonology (1)
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0.91 (0.86 to 0.96)
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