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Abstract

Background: For antigenically variable pathogens such as influenza, strain fitness is
partly determined by the relative availability of hosts susceptible to infection with that
strain compared to others. Antibodies to the hemagglutinin (HA) and neuraminidase
(NA) confer substantial protection against influenza infection. We asked if a
cross-sectionalantibody-derived estimate of population susceptibility to different clades
of influenza A (H3N2) could predict the success of clades in the following season.
Methods: We collected sera from 483 healthy individuals aged 1 to 90 years in the
summer of 2017 and analyzed neutralizing responses to the HA and NA of
representative strains using Focus Reduction Neutralization Tests (FNRT) and
Enzyme-Linked Lectin Assays (ELLA). We estimated relative population-average and
age-specific susceptibilities to circulating viral clades and compared those estimates to
changes in clade frequencies in the following 2017-18 season.
Results: The clade to which neutralizing antibody titers were lowest, indicating greater
population susceptibility, dominated the next season. Titers to different HA and NA
clades varied dramatically between individuals but showed significant associations with
age, suggesting dependence on correlated past exposures.
Conclusions: This study indicates how representative measures of population
immunity might improve evolutionary forecasts and inform selective pressures on
influenza.

Introduction 1

The epidemiological and evolutionary dynamics of antigenically variable pathogens are 2

intrinsically sensitive to immunity in the host population. This understanding has long 3

shaped vaccination strategies against influenza. Twice each year, representative strains 4

from circulating clades are evaluated for their ability to escape antibodies to current 5

vaccine strains, under the expectation that these clades might come to dominate and 6

could be poorly matched by the current vaccine. As surrogates for the human 7

population, influenza-naive ferrets are infected or vaccinated with one of a set of 8

reference influenza strains (e.g., current vaccine strains), and their post-exposure sera 9

are tested against candidate strains for the next vaccine. The extent to which these sera 10
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cross-react or neutralize candidate strains is taken as a measure of their immune escape 11

or antigenic distance [1, 2]. These experimental measures of immune escape, alongside 12

other estimates of variant growth rates and sequence-based fitness models [3], are used 13

to anticipate the dominant clade and need for vaccine updates. In the past few years, 14

escape from human sera has been considered too (e.g., [4]). 15

An open question is whether more direct and representative estimates of population 16

immunity could lead to better vaccine choices while potentially shedding light on the 17

mechanisms of coevolution between the viral population and host immunity. In the past 18

decade, large differences have occasionally appeared in the antigenic distances inferred 19

from ferret compared to human sera [5, 6]. These differences might arise at the species 20

level, although the antibody responses of ferrets and humans after their first influenza 21

exposures appear roughly similar [7]. A more likely explanation comes from 22

observations of original antigenic sin, whereby individuals exposed to the same strain of 23

influenza can mount antibody responses with different cross-reactivity profiles shaped 24

by their distinct histories of exposure [5, 8–11]. These past infections and vaccinations 25

lead to biases in which viral sites or epitopes antibodies recognize. Consequently, a 26

mutation in one epitope might be antigenically important for some people (or ferrets) 27

but not others. Since most influenza infections occur in people with preexisting 28

immunity to influenza, and antibodies to influenza surface proteins contribute 29

substantially to protection and transmission [5, 12–16], accurate measures of population 30

immunity may be useful in viral forecasting and vaccine strain selection. 31

Using the 2017-2018 influenza season in North America as a case study, we 32

characterized a cross-sectional, age-representative estimate of antibody-mediated 33

immunity in an urban population and asked whether it could predict which of several 34

circulating clades of H3N2 would dominate regionally in the next influenza season. 35

Forecasting for vaccine strain selection often focuses on antigenic changes to the 36

hemagglutinin (HA) surface protein, which vaccines attempt to match. We measured 37

neutralizing antibody titers to the neuraminidase (NA) protein as well as to HA because 38

antibodies to NA are also protective and should thus affect clade fitness. We found 39

large differences in the expected susceptibility of the population to different clades’ HA 40

and NA, and these differences in susceptibility predicted clade dominance. They also 41

partially predicted the relative attack rates of clades by age. We furthermore quantified 42

the heterogeneity in neutralizing titers in the population, finding patterns consistent 43

with age-associated epitope targeting. Although data from a single timepoint cannot 44

fully elucidate the role of population immunity in clade evolution, our results 45

demonstrate for the first time how such measures can improve on traditional approaches. 46

Results 47

Human sera from the summer of 2017 poorly neutralize the clade 48

that dominated in North America in the next influenza season 49

We investigated whether neutralizing antibody titers to HA and NA from H3N2 clades 50

circulating in early 2017 could predict the dominant (most frequent) clade in the next 51

influenza season. Antibodies to HA can protect against infection [12,13,15–17], and we 52

expected that the clade to which the largest fraction of the population had poorly 53

neutralizing anti-HA titers would be most successful. This expectation implicitly 54

assumes that exposure rates, other factors affecting susceptibility, and the average 55

infectiousness or transmissibility of an infected person do not differ starkly between age 56

groups; it also assumes that antibody-mediated protection derives primarily from 57

neutralization and not Fc-mediated effector functions, or that the two are well 58

correlated. 59
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Antibody neutralization was measured by the focus reduction neutralization test 60

(FRNT) for anti-hemagglutinin antibodies and enzyme-linked lectin assay (ELLA) for 61

the anti-neuraminidase antibodies, and these antibodies levels were assumed proxies for 62

protection. Correlates of protection have not been established for FRNT-derived titers, 63

but because microneutralization titers correlate well with hemagglutination inhibition 64

(HAI) [18], and a 1:40 HAI titer is traditionally associated with a 50% reduction in 65

infection risk [12], we initially assumed a 1:40 FRNT titer corresponds to a 50% chance 66

of infection, testing other assumptions in sensitivity analyses. We looked at the fraction 67

of the population below this cutoff for each clade to obtain the expected relative 68

susceptibility and ranked clades by this measure. Using a cutoff avoids overestimating 69

protection that might arise from especially high titers in a subset of recently infected 70

individuals, but for robustness, we also estimated the relative susceptibility according to 71

the geometric mean titer (GMT) to each clade, with lower GMT implying higher 72

susceptibility. With both measures, the population-level susceptibility was estimated by 73

weighting the susceptibility of different age groups according to their proportion in the 74

population (Methods). We initially assumed 1:80 NA titer by ELLA to be the 50% 75

protective titer and later explored other assumptions. 76

We collected serum samples from May to August of 2017 from the University of 77

Pennsylvania BioBank and Children’s Hospital of Philadelphia [19] (Methods; Fig S1). 78

Samples from children were primarily obtained for lead testing. Adults with certain 79

health conditions were excluded. No information on vaccination status was available. 80

We measured neutralizing titers to the 8 HA and 2 NA representing common current or 81

recently circulating H3N2 clades (Fig 1A left for HA and Fig S2A left for NA). 82

The genetic diversity of the H3N2 HA was high in 2017. Two distinct clades, 3C.2A 83

and 3C.3A, which last shared a common ancestor in 2012, circulated globally. These 84

clades differed by amino acid substitutions in epitopes A and B (Fig 1B, C) and in 85

non-epitope sites. Clade 3C.2A had gained a potential glycosylation site at epitope B 86

(K160T; H3 numbering used throughout) and had lost a glycosylation motif at epitope 87

A (N144S). Clade 3C.3A had lost a different glycosylation site in epitope A (T128A) 88

(Fig 1B, C). 89

We picked at least one reference virus for each clade, further splitting clade 3C.2A 90

into subclades 3C.2A1, 3C.2A2, and 3C.2A3. We chose as the reference virus for basal 91

clade 3C.2A the H3N2 vaccine strain in the 2016-2017 season (A/Hong 92

Kong/4801/2014). For subclades 3C.2A1, 3C.2A2, and 3C.2A3, we picked 3, 2, and 1 93

reference viruses, respectively, each carrying subclade-specific nonsynonymous 94

substitutions and (for 3C.2A1 and 3C.2A2) potentially important amino acid 95

polymorphisms within the subclade. Each subclade contained an epitope A substitution 96

compared to the 3C.2A reference strain (Fig 1B, C). Notably, one reference virus for 97

clade 3C.2A1 (virus 3C.2A1-3) had the T135K mutation, which removes a glycosylation 98

motif in epitope A. For clade 3C.3A, we picked one reference virus. 99

For all reference viruses, an undetectable HA titer (titer of 1:10) was the most 100

common HA titer in all age groups except children 5-17 years old (Figs 2A, S3). Most 101

people over 4 years old had detectable NA titers (1:≥ 20) (Figs 3A, S4). Even though 102

detectable antibody to H3N2 HA or NA is expected among older children and adults, 103

who have been infected and possibly vaccinated with H3N2, surprisingly large variation 104

was observed among individuals of the same age (Figs 2A, 3A). These are likely genuine 105

differences in titer, as technical replicates had high agreement. 106

The population-level relative susceptibility inferred using the 1:40 protective cutoff 107

in HA titer was highest to the 3C.2A2 subclade, specifically the group of viruses with 108

261Q in epitope E (3C.2A2-2 reference strain; the susceptibility to 3C.2A2-2 is higher 109

than the susceptibility to 3C.2A2-1 and 3C.3A, both bootstrap p < 0.001), followed by 110

the rest of the 3C.2A2 subclade (3C.2A2-1 reference strain; the susceptibility to 111
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Fig 1. Reference viruses representing co-circulating H3N2 clades during the
2016-2017 season. A. Genealogies of H3N2 HA through the 2016-2017 (left) and
2017-2018 season (right). Branches are colored by clade. Tips are shown as filled circles
if collected in North America during the most recent season. B. Amino acid and
glycosylation site variation among reference viruses. Clades 3C.3A and 3C.2A diverge at
additional non-epitope sites (not shown). Residue 128 belongs to antigenic site B, but
the substitution T128A results in loss of glycosylation on residue 126 of epitope A.
Therefore, we show residue 128 in epitope A and in the glycosylation site involving
residues 126-128, following [1]. C. Variable residues among the reference viruses are
shown on the H3 structure of A/Aichi/2/1968 (Protein Data Bank: 1HGG) and colored
by epitope as in panel B. For each strain, residues differing from 3C.2A are numbered
and darker in color. D. Glycosylation sites used in the model shown on the H3 structure.

3C.2A2-1 is higher than the susceptibility to 3C.2A1-1, bootstrap p < 0.05) and the 112

3C.3A clade (p < 0.01 for the same test; Fig 2B, left panel) (Methods). Not only was 113

the average population susceptibility highest to 3C.2A2-2, but susceptibility to it was 114

also the highest or the second highest among the reference strains for all age groups 115
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except 1-4 year-olds. Using GMTs or alternative titer cutoffs also suggested the 116

susceptibility was highest to the 3C.2A2-2 reference strain followed by 3C.2A2-1 (Figs 117

S5-S8). The greatest protection or lowest susceptibility in the population by both 118

measures was to strains of the 3C.2A1 subclade with 135K in epitope A and 121K in 119

epitope D (reference strain 3C.2A1-3) and subclade 3C.2A3 (reference strain 3C.2A3). 120

Fig 2. Antibody titers and inferred relative susceptibilities to co-circulating
H3 strains show variability by strain and age group. A. FRNT titers with points
jittered slightly along the x- and y-axes. Lines are locally estimated scatterplot
smoothing (LOESS) curves of geometric mean titers (smoothing parameter α = 0.75,
degree = 2). B. Inferred relative susceptibility to each reference strain for the whole
population (left) and by age group (right). The bars indicate 95% CIs obtained from
bootstrapping. Separately for the overall population and each age group, we ranked
strains in decreasing order of susceptibility using pairwise bootstrap tests (e.g., a strain
had rank 1 if susceptibility to it was significantly higher than susceptibility to all other
strains in pairwise tests, 2 if significantly higher for all but one strain, etc. Strains are
tied in rank if their relative susceptibilities do not differ significantly.) The gray arrows
show how the clades changed in frequency in North America between the 2016/17 and
17/18 seasons.

Consistent with simple predictions, clade 3C.2A2 dominated in North America in 121

the 2017-18 season (Fig 1A, right panel; Fig 2B, gray arrows), followed by 3C.3A. To 122

assess dominance, influenza sequences were downloaded from GISAID [20]. We assigned 123

9913 sequences collected in North America during the 2016-2017 and 2017-2018 124

influenza seasons to reference viruses based on their genetic similarity at segregating 125
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sites and found that the frequency of sequences genetically similar to reference strain 126

3C.2A2-2 in clade 3C.2A2 increased from 21% in the 2016-2017 season to 85% in the 127

2017-2018 season (Fig 2B; Fig S9). Clade 3C.3A increased from 6% to 8% over that 128

period. We did not find a perfect correlation between the rank measured by inferred 129

relative susceptibilities and rank by relative growth: despite having higher estimated 130

susceptibility than subclade 3C.2A1 (3C.2A1-3), subclade 3C.2A1 (3C.2A1-2) 131

experienced a more severe decline. Although the available sequences are not generated 132

from any kind of systematic surveillance program and thus may not accurately reflect 133

relative prevalence, trends were stable regionally (Fig S9A). The results suggest that 134

population-average anti-HA neutralizing titers reflect strain fitness, but that other 135

factors may be relevant for detailed predictions. 136

We next measured antibody responses to NA reference strains representing the NAs 137

of clades 3C.2A and 3C.2A2 (“3C.2A (NA)” and “3C.2A2-2 (NA)”, respectively) (Fig 138

3A) [19]. The two reference viruses differ by 7 amino acid substitutions in the NA head: 139

176, 245, 247, 329, 334, 339, and 386. We first estimated population-level relative 140

susceptibilities to the two clades using a 1:80 protective cutoff (Fig 3B, left panel). 141

Similar to our findings for HA, serological responses to NA indicated higher 142

susceptibility to 3C.2A2-2 (NA) than to 3C.2A (NA) across all age groups. Using GMT 143

or alternative NA titer thresholds also suggested higher susceptibility to 3C.2A2-2 (Figs 144

S10-S12). Because only two NA reference strains were used, we cannot conclude if 145

anti-NA titers would have predicted clades’ rank frequencies as accurately or perhaps 146

better than titers to HA, but they are generally consistent with higher susceptibility to 147

the 3C.2A2 clade compared to the ancestral 3C.2A. 148

Age groups differ in their susceptibility to and relative attack 149

rates with different H3N2 clades 150

Because age-specific patterns of antibody titers have been associated with age-specific 151

infection risk [5, 21], we estimated relative susceptibility to each clade within each age 152

group and measured correlations with their estimated relative clade-specific infection 153

rates in the 2017-2018 influenza season. Age groups differed slightly in their expected 154

susceptibilities to different clades of H3N2 (Fig 2B, right panel). Assessed by their 155

anti-HA titers, children 1 to 4 years old appear equally susceptible to all reference 156

viruses. The anti-HA titers of older children and adults showed heightened susceptibility 157

to the 3C.2A2 clade: titers from 5- to 17-year-olds indicated the highest susceptibility 158

to the basal 3C.2A2 clade (reference strain 3C.2A2-1) followed closely by reference 159

strain 3C.2A2-2, the 3C.2A2 subclade with the R261Q substitution. People aged 18-64 160

y had pronounced susceptibility to reference strain 3C.2A2-2 compared to other clades. 161

Because 3C.2A2-2 differs from a 3C.2A2-1 by a single amino acid substitution (E261Q), 162

these results suggest that many HA antibodies in adults target the mutated site. All 163

age groups with previous influenza experience (≥ 5 y) were least susceptible to clades 164

3C.2A1 and 3C.3A (reference strains 3C.2A1-3 and 3C.2A3, respectively). Interestingly, 165

5- to 17-year-olds were least susceptible to 3C.3A, while adults were relatively 166

susceptible to 3C.3A. We also found that children 1 to 4 years old had comparable 167

susceptibility to the two clades of NA, and all older age groups demonstrated greater 168

susceptibility to the 3C.2A2 clade (3C.2A2-2 (NA)) (Fig 3B, right panel). 169

We evaluated whether the age-associated trends in relative susceptibilities to different 170

clades in the summer of 2017 were mirrored in their relative rate of infection with each 171

clade in the 2017-2018 influenza season. Due to lack of systematic surveillance, unbiased 172

estimates of attack rates by clade do not exist for this population. We nonetheless 173

examined the ages associated with sequences uploaded into GISAID to approximate the 174

proportion of infections caused by each clade in each age group. Because the 3C.2A2 175
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Fig 3. Antibody titers and relative susceptibilities to co-circulating N2 stains
show differences by strain and age group. A. ELLA titers with points jittered
slightly along the x- and y-axes. Lines are locally estimated scatterplot smoothing
(LOESS) curves of geometric mean titers (smoothing parameter α = 0.75, degree = 2).
B. Inferred relative susceptibility and its rank for each NA for the whole population
(left) and by age group (right). A lower rank indicates significantly higher susceptibility.
Strains are tied in rank if their relative susceptibilities do not differ significantly.

clade dominated in the 2017-2018 season and all but the youngest age groups showed 176

particularly high susceptibility to this clade, we expected clade 3C.2A2 to be the most 177

frequent within each age group. This is what we found (Fig 4, Figs S13-S14). However, 178

we observed that children < 5 y old, who seemed approximately equally susceptible to 179

all clades by HA and NA, had a relatively lower proportion of 3C.2A2 infections 180

compared to adults (chi-square test, p < 0.001). Children 5-17 y old, who were only 181

slightly more susceptible to 3C.2A2 than other clades, also had a lower proportion of 182

3C.2A2 infections compared to adults (p < 0.001). Consistent with our observation that 183

18- to 64-year-olds were disproportionately susceptible to clade 3C.2A2, the age 184

distribution of that clade was slightly more skewed toward adults compared to 185

non-3C.2A2 clades, which were more common in children (Fig 4). 186
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Fig 4. Host age distribution of H3N2 isolates sampled in the United States
during the 2017/18 season. We obtained isolate data from GISAID. Viruses from
clade 3C.2A2 are shown in purple, and viruses from all other clades combined are shown
in gray. 3C.2A2 isolates were more common across all ages than viruses from other
clades combined, but viruses from other clades were proportionally more common in
children relative to adults.

Correlations between titers to different strains vary by age, 187

suggesting age-associated differences in epitope targeting 188

We next investigated the correlations in titers to different clades (Fig 5A): Do 189

individuals with high titers to 3C.3A tend also to have high titers to 3C.2A2, for 190

instance? Closely correlated titers to related viruses suggest that individuals might 191

target epitopes conserved among them, which could underlie differences in neutralizing 192

titers between age groups. (High titers to multiple strains could also indicate recent 193

infections or immunizations with each of those strains and responses to their non-shared 194

epitopes, although H3N2 infections typically occur at least several years apart and are 195

less frequent in adults compared to children [17,22,23].) Aside from providing insight 196

into the specificity of the antibody response, understanding the structure of titers 197

within the population might lead to improved estimates of selective pressures on viruses. 198

For instance, weakly correlated titers to different clades suggest a population with more 199

heterogeneous immunity, which can affect viral coexistence, vaccination thresholds, and 200

other dynamics [24–27]. 201

After removing individuals with undetectable titers to all strains from the analysis, 202

we found that the strength of correlation differed by age group and virus pair. In 203

general, titers to all the reference viruses but 3C.3A were highly correlated in children 204

and less correlated in older ages (Figs 5B, S15). This suggests that children target 205

epitopes common to many reference viruses or have been infected by close relatives of 206

each, whereas older age groups target epitopes conserved among only a subset. Results 207

hold when age groups are chosen to span an equal number of years (Fig S16), showing 208

that the weaker correlations in adults 18-44 y, 45-64 y, and 65-90 y are not due simply 209

to the groups’ relative sizes or the diversity of childhood exposures represented in them. 210

In contrast to children and younger adults, 45- to 90-year olds have their highest titers 211

and strongest titer correlations to a distinct subset of reference strains (3C.2A, 3C.2A3, 212

3C.2A1-1, and 3C.2A1-2; Figs 2 and 5) that share many epitope A residues not 213

conserved in the other strains (e.g. 128T, 131T, 135T, 138A, 142R), suggesting 214

antibody responses focused on this antigenic region. In all age groups, titers to 3C.3A 215

were least correlated with titers to other viruses (Fig S17). This might be explained by 216

reduced exposure to 3C.3A viruses, especially in adults (Fig S3), and/or the targeting of 217

sites on 3C.2A clade viruses that are not shared with 3C.3A (e.g., sites 128, 138, 142, 218

and 144 in epitope A, the last potentially masked by a glycan in 3C.3A). 219
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Fig 5. Correlations in titers to different clades A. Schematics demonstrating how
we calculated the correlation in titers to each strain pair across people in each age
group. For these analyses, we randomly imputed continuous titer values between
consecutive dilutions (e.g., a titer of 160 was replaced by a continuous value between
160 and 320 drawn with uniform probability). For each pair of viruses and each age
group, we report the average Spearman correlation coefficient across 1000 replicate
imputations. We removed individuals with undetectable titers across all reference
viruses. B. Correlations between titers to different strains differ by age group,
suggesting age-dependent patterns of epitope targeting.

Discussion 220

Current approaches for forecasting influenza and mapping its antigenic evolution rely on 221

antigenic distance measurements that do not always reflect immunity in the human 222

population. Understanding the size of the difference and how much it matters would 223

require analyzing discrepancies between antibody titers and traditional ferret-based 224

measurements over multiple years from representative cross-sectional surveys in different 225

populations. Multiple years of sampling could also resolve the subpopulations and 226

measures needed to assess immune selective pressures and compare them to other 227

factors influencing fitness and growth rates [3, 28–32]. Here, as a proof of principle, we 228

demonstrate how human sera can reveal differences in expected susceptibility to 229

circulating HA clades that predict the clade circulating in the following season. The 230

sera also demonstrate high heterogeneity in neutralizing titers by age. The consequences 231

of these differences remain unclear, but they partly predict the relative susceptibility of 232

different age groups to different clades in 2017-2018. 233

These findings might have been useful before the 2017-2018 influenza season in the 234

United States, which was severe, causing approximately 41 million illnesses and 52,000 235

deaths [33]. The moderate effectiveness of the vaccine that season was attributed to egg 236

adaptations that created a mismatch to circulating strains [34]. The H3N2 component 237

of the vaccine, A/Hong Kong/4801/2014 (a basal 3C.2A strain), had been unchanged 238

from the previous season because no clear indication of antigenic evolution was apparent 239

by early 2017, when vaccine strain composition for the Northern Hemisphere was 240

decided; the 3C.2A2 clade was nonetheless noted to be growing quickly [35]. Over 90% 241

of 3C.2A2 strains isolated from the United States in the 2017-2018 season were 242

described as well inhibited by ferret antisera raised against the cell-propagated reference 243

virus for A/Hong Kong/4801/2014 (A/Michigan/15/2014), and in early 2018, the H3N2 244

vaccine component was updated only to avoid egg adaptations, not because antigenic 245

change had been detected [36]. (Notably, a later investigation of H3N2 viruses 246
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circulating in Japan in 2017-2018 did detect antigenic differences between 3C.2A and 247

3C.2A2 strains using ferret antisera [37].) Our study shows that antigenic changes in 248

fact were detectable in human sera by at least the summer of 2017, and they could 249

predict the dominance of 3C.2A2 and the populations more susceptible to infection. 250

Consistent with this prediction, Ursin et al. found that individuals testing positive for 251

H3N2 in the 2017-2018 season had consistently lower serum neutralization titers to the 252

3C.2A2 clade than those testing negative—with no differences between the two groups’ 253

titers to cell-grown A/Hong Kong/4801/2014—underscoring the consequences of these 254

neutralization differences for protection and potentially transmission [38]. 255

Measurements of population immunity could be substantially more efficient and 256

useful for forecasting if we understood exactly what to measure and in whom. Antibody 257

titers to HA have been an established correlate of protection for half a century, and 258

antibodies to NA for approximately a decade. The generally good concordance between 259

hemagglutination inhibition assays and microneutralization suggest neutralization is a 260

decent surrogate, but it is unclear how much protection each immune response confers 261

in different people and whether measures of neutralization, total binding, 262

antibody-dependent cellular cytoxicity or phagocytosis activity, and/or potentially other 263

B- or T-cell or innate immune measures could improve estimates of relative susceptibility. 264

Correlates likely vary in quality over time: large discrepancies between binding antibody 265

titers and neutralization or protection have been reported and are associated with 266

priming to other strains [19,39,40]. Furthermore, an accurate evolutionary forecasting 267

model would be grounded on correlates of transmission rather than simply protection 268

against disease. It might also be important to weight immunity in different 269

subpopulations differently: for instance, an infected child might be more likely to 270

transmit than an infected adult. These considerations would affect the need to sample 271

particular populations, such as unvaccinated members of certain age groups. Over larger 272

geographic scales, samples from typical “source” populations may be better predictors 273

or provide a longer lead time than populations that export fewer strains [41–43]. 274

Our data revealed variation in antibody titers between age groups that are broadly 275

consistent with influenza’s epidemiology but lack precise explanation. Children over five 276

years old had the highest geometric mean titers to all strains. This is consistent with 277

the high attack rates in school-age children [44,45] and other studies that report young 278

children having the high titers to recent strains [46]. Children also had relatively high 279

vaccination coverage (approximately 59% in the 2016-2017 season in children ≥ 6 mos.) 280

compared to younger adults [47]. These two factors might interact, since recent 281

infection can boost vaccine immunogenicity [48,49]. The relatively high vaccination 282

coverage in the oldest age group (approximately 65% in adults ≥ 65 y) might explain 283

their higher titers compared to middle-aged and younger adults. Surprisingly, most 284

middle-aged individuals had no detectable neutralizing antibodies to the HAs of 285

circulating H3N2 clades. These results suggest antibodies to HA may be a poor 286

correlate of protection in this age group and complement other reports of their 287

discrepant anti-HA titers [19,50]. We also observed that unlike children, adults had 288

highly correlated titers to a subset of 3C.2A strains suggestive of antibody responses 289

focused on epitope A. Consistent with this observation, Welsh et al. [32] recently 290

applied deep mutational scanning to H3N2 and sera isolated in 2020. They found that 291

compared to children, adults derived a larger fraction of their neutralizing response to 292

epitope A, which had been immunodominant during the early 1990s [51]. 293

Although not presented here, we fitted dozens of generalized linear mixed models to 294

attempt to explain individuals’ titers to these strains as a function of potential recent 295

infections, vaccinations, early infections with strains with homologous epitopes, and 296

individual-specific biases in the contributions of different epitopes to titers. These 297

models were inconclusive, suggesting a need for more careful study of how a person’s 298
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antibody titers change over time in response to exposures, and potentially with some 299

deconvolution of the response to specific epitopes [52]. 300

Our results demonstrate the feasibility of detecting significant differences in 301

neutralizing titers to different H3N2 clades in a convenience sample of few hundred sera. 302

This approach could entail substantial improvements over the use of ferret sera, which 303

do not capture the immune history and heterogeneity in the human population [32]. 304

Testing improved sampling protocols and forecasting models, which would be facilitated 305

by the existence of global blood banks [53,54] and common standards [55], might yield 306

rapid advances in forecasting not only the dominant clade but also potentially the 307

dominant subtype, and ideally at longer lead times than shown here. If linked to other 308

forms of surveillance, cross-sectional sera might also help predict season severity and 309

attack rates by age, as suggested here. The same samples and similar models might also 310

predict the dynamics of other pathogens. 311

Materials and methods 312

Serological data 313

Sera from 489 individuals were collected between May and August of 2017 from the 314

Children’s Hospital of Philadelphia (1- to 17-year-olds) and from the University of 315

Pennsylvania Health care system via Penn BioBank (18- to 90-y-olds), as reported 316

om [19]. Serum samples were originally collected from children for lead testing, and 317

leftover de-identified samples were then used for this study. The Penn BioBank 318

routinely collects serum samples from individuals visiting the University of Pennsylvania 319

Health care system. We did not include samples collected by the Penn BioBank from 320

donors who had a pregnancy reported during the last 9 months, who had a medical 321

history of cancer or organ transplantation, or who had a reported infectious disease 322

within the previous 28 days. The study complied with all relevant ethical regulations 323

and was approved by the Institutional Review Board of the University of Pennsylvania. 324

Leftover de-identified samples collected at CHOP were considered exempt from human 325

research (exemption 4) since the samples were leftover discarded samples that were 326

completely de-identified before our research team received them. 327

Foci reduction neutralization tests (FRNT) were performed on 437 individuals’ sera 328

using 8 viruses (3C.3A, 3C.2A, 3C.2A1-1, 3C.2A1-2, 3C.2A1-3, 3C.2A2-1, 3C.2A2-2 and 329

3C.2A3), and enzyme-linked lectin assays (ELLA) were performed on 352 individuals 330

using NAs from two strains (3C2.A (NA) and 3C.2A2-2 (NA)) as described in [19]. HA 331

and NA test virus used for 3C.2A is A/Colorado/15/2014, which is a reference virus for 332

vaccine strain for the 2016-17 season and is used as a wild type strain to make viruses 333

within 3C.2A. There were no significant titer differences between batches. 334

We visualized titers to different reference strains by age using locally estimated 335

scatterplot smoothing (LOESS) curves with a smoothing parameter α = 0.75 and 336

degree = 2. 337

Genealogy of H3N2 and clade-specific amino acid substitutions 338

Prior to our analyses, we downloaded all available H3N2 HA and NA sequences from 339

the 2012-13 season through the 2017-18 season from GISAID (accessed in 01/10/2022). 340

Sequences were aligned using MAFFT 7.310 [56]. 341

We downsampled sequences to construct the phylogeny. From the 2012-13 through 342

the 2015-16 season, we sampled 20 sequences per season. For the 2016-17 and 2017-18 343

season, 100 sequences were sampled per season. The GISAID accession IDs and 344

metadata of the sequences used for the analysis are available in the Supporting 345
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Information. We used BEAST 2.6.6 to reconstruct the genealogy [57] with a HKY 346

substitution model [58] with a four-category gamma site model with 4 and a log normal 347

relaxed clock. A coalescent Bayesian Skyline tree was used for the prior. We ran the 348

chain for 50 million steps and saved every 1000 trees, using 5 million steps as burn-in. 349

The maximum clade credibility tree was obtained using TreeAnnotator 2.6.6 version. 350

To visualize the tree, we used the R package ggtree 3.0.4 [59]. The trees were colored 351

by clade. For the genealogy of the 2016-17 season, only tips of sequences collected in 352

North America during the 2016-17 season were shown; these circled tips are colored 353

according to their assigned clade. For sequences collected in other areas or seasons, only 354

branches were shown. Similarly, for the genealogy of the 2017-18 season, only sequences 355

collected in North America in that season are shown as colored circles. 356

Sequence samples were assigned to reference viruses according to reference 357

virus-specific mutations at segregating sites, shown in Fig 1B. Here, sequences were 358

assigned to each reference virus rather than the subclade represented by each reference 359

strain. This is because sequences with 171K, 121K, and 135K, such as reference strain 360

3C.2A1-3, occur multiple times in clade 3C.2A1, and thus these sequences do not belong 361

to any one subclade of 3C.2A1. Additionally, within a subclade, mutations at 362

segregating sites occur so that a sequence in the same clade as a reference virus may not 363

share the same genetic characteristics. Due to frequent mutation at residue 142 across 364

most of clades, we allowed residue 142 to have any amino acid across most of clades, 365

except for clade 3C.2A2, which has a clade-specific 142K substitution. We confirmed 366

that all the sequences assigned to a reference virus fall in the same subclade as the 367

reference virus. 368

Clade-specific substitutions were colored by epitope on the H3 structure using 369

PyMOL version 2.3.3 [60]. 370

Inferring relative susceptibility from titers 371

We defined the relative susceptibility to a strain as the fraction of the population with 372

titers to that strain below some threshold (here, initially 40 for HA and 80 for NA). To 373

estimate this fraction for the U.S. population, we first computed the fraction below the 374

threshold in different age bins in our sample. We then computed a weighted sum in 375

which the weights were the projected fractions of the U.S. population in each age bin in 376

2017. This adjustment was necessary to obtain a representative estimate of immunity in 377

the overall population, since sample availability varied by age. Suppose Si is the 378

fraction of the overall U.S. population susceptible to strain i and Ŝi,a is the fraction of 379

serum samples in age bin a with titers to i below the threshold. Then 380

Si =
∑
a

Ŝi,a × fa, (1)

where fa is the projected fraction of the U.S. population in age bin a in 2017. We 381

started with age bins at the resolution of one year using data from [61]. When there 382

were fewer than eight titer measurements for a year of age, that age was grouped with 383

the next year of age to form a larger bin, and so on until the bin contained at least eight 384

titer measurements. 385

To estimate the susceptible fraction for a particular age group in the U.S. 386

population, we simply computed the sum above across age bins contained in that larger 387

group, divided by the fraction of the U.S. population in those bins combined. For 388

instance, to calculate the susceptible fraction among 5-17 year-olds in the U.S., we used 389

S5−17
i =

∑
a∈5−17 Ŝi,a × fa∑

a∈5−17 fa
. (2)
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We found that using alternate titer thresholds for HA (Figs S6, S7, and S8) and NA 390

(Figs S11 and S12) resulted in consistent relative susceptibilities across strains. 391

We alternatively measured relative susceptibility by the geometric mean titer 392

(GMT). The GMT was weighted analogously by the population fraction of each age bin. 393

Because lower GMTs correspond to higher susceptibility, we used a reverse scale when 394

showing the relative susceptibility by GMT. 395

To test for meaningful differences in relative susceptibilities, we bootstrapped 396

individuals to determine if the difference in inferred relative susceptibilities between two 397

viruses was significantly greater than zero [62]. For each age bin, individuals were 398

resampled 1000 times with replacement, and the fraction of individuals susceptible to 399

each virus was calculated. For a given pair of viruses, we defined the relative 400

susceptibility difference observed in the data as θ̂. The bootstrap value of θ̂, θ̂∗, was 401

obtained 1000 times by resampling individuals. Then we obtained the null distribution 402

of (θ̂∗ − θ̂) and calculated the probability (p) of observing θ̂ or a greater value under 403

this null distribution. If p < 0.05 (with no correction for multiple testing), the relative 404

susceptibility difference is significantly greater than zero, i.e., susceptibility to the first 405

virus significantly exceeded that to the second virus. For a given virus, we perform this 406

comparison against all other viruses and counted the number of significant results. The 407

more significant results, the lower the rank (closer to 1) of the relative susceptibility to 408

a virus. We used the same approach and significance level for all other bootstrapping 409

analyses. 410

Frequencies of subclades 411

To calculate the frequencies of different subclades in the 2016-17 and 2017-18 seasons, 412

we downloaded sequences from GISAID on January 10, 2022, and assigned sequences to 413

each subclade using the same method as was used to construct the genealogy. Because 414

there were few sequences from Philadelphia, we calculated subclade frequencies in three 415

different ways, using sequences collected from North America, United States, or the 416

northeastern US. We considered Region 1, Region 2, and Region 3 of the U.S. 417

Outpatient Influenza-like Illness Surveillance Network (ILINet, [47]) as the Northeastern 418

U.S. states. These states are Connecticut, Maine, Massachusetts, New Hampshire, 419

Rhode Island, Vermont, New Jersey, New York, Delaware, the District of Columbia, 420

Maryland, Pennsylvania, Virginia, and West Virginia. Region 2 of ILINet includes 421

Puerto Rico and the Virgin Islands, but we excluded them from the analysis of the 422

northeastern U.S. For estimates derived from North American sequences, we used 4488 423

and 5425 sequences from the 2016-17 and 2017-18 seasons, respectively. For the US, 424

3707 and 3782 sequences were used. For the northeastern US, 782 and 676 sequences 425

were used. The GISAID accession IDs and metadata of the sequences used for the 426

analysis are available in the Supporting Information. 427

Correlations between titers to different strains 428

For each age group and pair of viruses, we calculated Spearman’s ρ using the cor 429

function in R. To account for the interval censoring of titer data and the presence of a 430

lower limit of detection, we randomly imputed continuous titer values and calculated 431

the average regression coefficient across 1000 imputations. Titers below the lower limit 432

of detection (1:20) were uniformly sampled between the lowest possible titer (1:1, 433

indicating no dilution) and 1:20. Titers at or above the limit of detection were randomly 434

sampled from the interval between the recorded titer and the next dilution (e.g., a 435

recorded titer of 1:160 was imputed a value between 1:160 and 1:320, with uniform 436

probability). 437
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For each virus pair, we tested the difference in correlation coefficients between the 438

youngest age group and each other age group using the same bootstrapping procedure 439

we used to test for differences in susceptibility among strains within an age group (Fig 440

S15). 441

We also used bootstrapping to evaluate differences in correlation coefficients between 442

viral pairs within an age group. For each virus pair, we did a series of bootstrap tests 443

comparing the pair’s correlation coefficient with the coefficient for each of the other 444

pairs. Then, for each virus pair, the number of tests in which the pair’s correlation was 445

significantly weaker than that of other pairs within the group was counted. In each age 446

group, there are 28 virus pairs whose correlation coefficient was calculated. One of the 447

pairs, for example, is 3C.3A and 3C.2A, and this pair’s correlation coefficient is 448

compared with the other 27 correlation coefficients of other virus pairs. The 3C.3A v. 449

3C.2A pair’s correlation was weaker than 15 other pairs’ correlations. This number of 450

tests in which the pair’s correlation was significantly weaker than other pairs within the 451

group is shown as the color intensity of the heat map of Fig S17. 452

For these boostrapping procedures, we used a significance level of 95% without 453

correction for multiple testing, randomly imputing continuous titers once for each 454

bootstrap replicate. 455
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Fig S1. Age distribution of serum sample donors. We collected serum samples
from May to August of 2017 from the University of Pennsylvania BioBank and
Children’s Hospital of Philadelphia. The age distribution of donors at 1 year resolution
is shown on the left, and the sizes of different age groups are shown on the right.
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Fig S2. NA of co-circulating H3N2 clades during the 2016-17 and 2017-18
seasons. A. Genealogy of H3N2 showing NA sequence samples through the 2016-17
season (left) and through the 2017-18 season (right). Tips are filled circles if collected in
North America during the 2016-17 season (left) and the 2017-18 season (right) and
colored according to the associated test virus. B. Variable amino acids and PNGS
between test viruses. Between clade 3C.2A (NA)and clade 3C.2A2 (NA), only
substitutions at NA head are shown. C. The differences between clade 3C.2A (NA) and
3C.2A2-2 (NA) are shown on N2 head structure (Protein Data Bank: 6n4d). Amino
acid differences between the two test viruses are colored in red. D. PNGS that vary
between 3C.2A (NA) and 3C.2A2 (NA) are shown on the N2 structure.
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Fig S3. Distribution of HA titers for each strain by age group. A titer of 10
indicates the titer is below the limit of detection.
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Fig S4. Distribution of NA titers for each strain by age group. A titer of 10
indicates the titer is below the limit of detection.
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Fig S5. The GMT for each HA reference strain. Since lower GMT corresponds
to higher susceptibility, we use an inverse scale to indicate the relative susceptibility.
GMTs are shown for the whole population (A) and by age group (B). The bars indicate
95% CIs obtained from bootstrapping. A lower rank indicates significantly higher
implied susceptibility: the strain with lowest GMT has rank 1, and strains are tied in
rank if their GMTs do not differ significantly.

Fig S6. Inferred relative susceptibility to each reference strain using a 1:20
HA titer threshold. Inferred relative susceptibility and the susceptibility rank of each
reference strain for the whole population (left) and by age group (right). The bars
indicate 95% CIs obtained from bootstrapping. A lower rank indicates significantly
higher susceptibility: the strain to which susceptibiity is highest has rank 1, and strains
are tied in rank if their relative susceptibilities do not differ significantly.
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Fig S7. Inferred relative susceptibility to each reference strain using a 1:80
HA titer threshold. Inferred relative susceptibility and the susceptibility rank of each
reference strain for the whole population (left) and by age group (right). The bars
indicate 95% CIs obtained from bootstrapping. A lower rank indicates significantly
higher susceptibility: the strain to which susceptibiity is highest has rank 1, and strains
are tied in rank if their relative susceptibilities do not differ significantly.

Fig S8. Inferred relative susceptibility to each reference strain using a 1:160
HA titer threshold. Inferred relative susceptibility and the susceptibility rank of each
reference strain for the whole population (left) and by age group (right). The bars
indicate 95% CIs obtained from bootstrapping. A lower rank indicates significantly
higher susceptibility: the strain to which susceptibiity is highest has rank 1, and strains
are tied in rank if their relative susceptibilities do not differ significantly.
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Fig S9. Comparison of H3 proportions by clade (reference strain) and
inferred relative susceptibilities. A. Proportion of H3 sequences assigned to each
test virus were calculated using GISAID sequences from North America, US, and the
Northeastern US during the 2016-17 and 2017-18 season. B. Inferred relative
susceptibilities to test viruses assuming a 1:40 HA titer threshold for protection.
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Fig S10. The GMT for each NA reference strain. Since lower GMT corresponds
to higher susceptibility, we use an inverse scale to indicate the relative susceptibility.
GMTs are shown for the whole population (A) and by age group (B). The bars indicate
95% CIs obtained from bootstrapping. A lower rank indicates significantly higher
implied susceptibility: the strain with lower GMT has rank 1.

Fig S11. Inferred relative susceptibility to each NA reference strain using a
1:20 threshold. Inferred relative susceptibility and the susceptibility rank of each
reference strain for the whole population (left) and by age group (right). The bars
indicate 95% CIs obtained from bootstrapping. A lower rank indicates significantly
higher susceptibility: the strain to which susceptibiity is highest has rank 1, and strains
are tied in rank if their relative susceptibilities do not differ significantly.
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Fig S12. The inferred relative susceptibility to each reference strain using a
1:40 NA titer threshold. Inferred relative susceptibility and the susceptibility rank
of each reference strain for the whole population (left) and by age group (right). The
bars indicate 95% CIs obtained from bootstrapping. A lower rank indicates significantly
higher susceptibility: the strain to which susceptibiity is highest has rank 1, and strains
are tied in rank if their relative susceptibilities do not differ significantly.
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Fig S13. Proportions of H3 sequences in the 2017-18 season assigned to each
reference virus by age group. Proportions were calculated using GISAID sequences
collected in North America, United States, and the northeastern United States,
respectively.
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Fig S14. Host age distribution of H3N2 isolates sampled during the 2017/18 season,
shown at different geographical resolutions. We obtained isolate data from GISAID.
Viruses from clade 3C.2A2 are shown in purple, and viruses from all other clades
combined are shown in gray.
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Fig S15. Compared to the youngest age group, older children and adults
have significantly more weakly correlated titers to different strains. For each
pair of viruses, we calculated the correlation in HA titers within each age group,
averaging across 1000 random imputations of continuous titers. For each pair of strains,
we used bootstrapping to test if the correlation for that pair in each age group was
significantly weaker than in 1-4 year-olds. The cells are colored blue if the correlation is
significantly weaker. Individuals with all undetectable titers were removed from these
analyses.
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Fig S16. Weak correlations in adults’ HA titers between viral strains persist
when age groups cover the same number of years. For these analyses, we
randomly imputed continuous titer values between consecutive dilutions (e.g., a titer of
160 was replaced by a continuous value between 160 and 320 drawn with uniform
probability). For each pair of viruses and each age group, we report the average
Spearman correlation coefficient across 1000 replicate imputations. We removed
individuals with all undetectable titers from this analysis.
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Fig S17. Titers to the 3C.3A virus had the weakest correlation with titers to
other viruses. For each pair of viruses, we computed the correlation in HA titers in
each age group, averaging across 1000 random imputations of continuous titer values.
Within each age group, we used bootstrapping to compare the correlations across
different pairs of strains. For each pair of strains, we counted how many other pairs of
strains had significantly stronger correlations in the same age group. Strain pairs with
weaker correlation than most other pairs appear in dark red. Individuals with all
undetectable titers were removed from these analyses. Gray cells indicate the diagonal,
where tests were not performed because the correlation is always 1
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