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Abstract

Cigarette smoking remains the leading cause of preventable disease
and death in the United States, accounting for nearly half a million deaths
annually. Given the recent rise of artificial intelligence in healthcare ap-
plications, computational assessment of smoking behaviors is a promising
direction. In this study, we aim to recognize and classify addiction pat-
terns in individual smokers’ daily usage based on time series data. To this
end, we leverage Gaussian process modeling to iteratively learn a function
that defines a smoker’s behavior as usage data is accumulated. Namely,
we aim to learn weekly periodic trends in usage, and then utilize the
model to predict future trends. We demonstrate that the outputted pre-
dictions resemble the actual data well, and that these informed forecasts
significantly outperform those of a naive prediction model with respect to
accuracy. Finally, we propose strategies for utilizing these predictions for
goal-setting as part of a computer-supervised gradual cessation program.

1 Introduction

Smoking cessation generally comes in two forms: abrupt and gradual. Abrupt
cessation has shown to be more effective in maintaining long-term abstinence
than self-supervised gradual cessation [1]. However, computer-supervised grad-
ual cessation (i.e., goal-setting algorithms) has not been widely explored, and
a preliminary approach showed significantly higher long-term abstinence rates
than both abrupt and self-supervised gradual cessation attempts, at least in
adolescents [2]. With the recent rise and great success of artificial intelligence
(AI) in healthcare applications [3], this is a promising direction.

Modeling drug use and addiction computationally has been widely explored
in recent years [4]. Popular approaches include reinforcement learning [5] and
dopamine-based modeling [6]. In [7], the author demonstrates that Bayesian
frameworks can be effective for analyzing decision-making behaviors in drug
addicts. In [8], the authors develop a computational model of nicotine addiction
that classifies the severity of a user’s addiction based on neurophysiological
indicators.
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Time series forecasting is the problem of predicting future data points or
trends in a time series, given a segment of the current data. Popular time series
forecasting techniques include exponential smoothing, ARIMA models, Kalman
filters, long short-term memory (LSTM) models [9], and Gaussian processes
(GPs) [10]. Because they operate on Bayesian inference, GPs pose the additional
advantage of uncertainty quantification in outputted predictions, which can be
especially helpful in evaluating their efficacy in the proposed setting. For an
intuitive tutorial on the mechanics of GPs for solving regression problems, see
[11].

The main challenge in forecasting is to learn the underlying patterns within
potentially noisy data. This makes time series forecasting a very valuable tool
in healthcare, as exemplified by its application to disease diagnosis and prog-
nosis [12, 13]. Time series analysis and forecasting have also been applied in
modeling large-scale nicotine use and cessation [14], especially in evaluating
interventions [15, 16]. However, applying forecasting methods in behavior as-
sessment of individual smokers has not been widely studied in recent years.

We propose that the nicotine use of smokers with respect to time can be
modeled using GPs, and that this model can be employed for effective clas-
sification and prediction of addiction and cessation behaviors. Ultimately, we
aim to leverage these insights to develop a personalized and adaptive gradual
smoking cessation program.

2 Methods

2.1 Preliminary: Gaussian Processes

2.1.1 Definition

A Gaussian process (GP) model describes a probability distribution over all
possible functions that fit a set of points. A GP model leverages Bayesian
inference to update the posterior function function, defined as the outputted
means with the variances as quantified uncertainties, as new data is obtained.
This posterior function can be used as a regression model to make predictions
about new data.

2.1.2 Kernels

The kernel of a GP model defines the general curve fitting behavior, i.e. our
foundational beliefs on how our function should behave. More formally, a kernel
kθ(x1, x2) defines the covariance between two function values x1 and x2 using
some hyperparameters θ. Multiple kernels can be combined through kernel
composition in order to fit more complex functions.
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2.1.3 Hyperparameters

Being the coefficients of our kernel function, the hyperparameters θ determine
the exact curve fitting behavior of the GP model. Estimating hyperparameters
manually is difficult; a common approach is Bayesian optimization.

2.2 Modeling Smoking Habits

We observe that weekly patterns emerge in smokers’ nicotine use [17]. Thus, we
can formulate the problem as periodical time forecasting, for which GPs have
proven to be effective [18]. At a high level, the role of the GP is to learn a
function that defines the user’s behavior. Our approach uses the framework
provided in [18] as a foundation, and we summarize the framework as it relates
to our work below.

2.2.1 Kernel Composition

We utilize a kernel K, which is composed by

K = PER + LIN + RBF + SM1 + SM2. (1)

Here, the periodic kernel PER provides a weekly seasonality, the LIN kernel
provides a linear trend, and the RBF, SM1 and SM2 kernels are collectively
used to represent nonlinear trends. See [18] for explicit definitions of each of
these kernels.

2.2.2 Hyperparameter Estimation

While the model aims to learn the specific parameters defining an individual’s
behavior, it also consists of hyperparameters θ defining general behavior that
applies to the entire function space, i.e., all users’ behaviors. We begin by
assigning log-normal priors to each hyperparameter, and then improve our esti-
mations by training the model on various sample data using an iterative process
called maximum a posteriori (MAP) estimation, as outlined in [18].

2.2.3 The Forecasting Problem

GP regression modeling is naturally applicable to time series forecasting prob-
lems. We can formally represent our addiction forecasting task as a regression
problem

y = f(x) + v (2)

where y is nicotine dose per day (measured in number of cigarettes), x is time
in days, f ∼ GP (0, kθ) is the function with the GP as a prior distribution, and
v ∼ N (0, σ2

v) is the noise with variance σ2
v . Then, givenm points of training data

x = (x1, ..., xm),y = (y1, ..., ym), and given n test inputs x∗ = (x∗
m+1, ..., x

∗
m+n),

the forecasting problem is to compute the function’s posterior distribution f∗ =
(f(x∗

m+1), ..., f(x
∗
m+n)).
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3 Experiments

3.1 Dataset

We utilize the dataset provided in [17], which contains a sample of 62 partic-
ipants who have been smoking for more than two consecutive years and who
smoke more than five cigarettes a day. Participants were male and female col-
lege students between 18 and 26 years of age. Each participant recorded the
number of cigarettes he or she smoked each day for up to 12 consecutive weeks.
Some data was incomplete, so we consider only the participants who recorded
data for the full 12-week period, which yields T = 50 time series. For each time
series, we form our training set using the first m = 56 days and our test set
using the last n = 28 days. We normalize each time series to have a mean of 0
and a standard deviation of 1.

3.2 Baseline

We compare the performance of the GP model to that of a baseline naive model.
The naive model uses the average value of the historical data as its predicted
value for all future days. More formally,

f∗(x) =
1

m

m∑
t=0

f(t), ∀x ∈ {m+ 1, ...,m+ n}. (3)

The naive model makes an educated guess that smoking behaviors remain con-
stant, but it leverages no knowledge of weekly patterns in behavior.

3.3 Evaluation Metric

The mean absolute error (MAE) of the test set is given by

1

n

m+n∑
t=m

|f(t)− f∗(t)|. (4)

Lower values of MAE indicate better model performance. MAE is a common
metric for evaluating regression models on normalized data.

3.4 Results

The MAE values across the time series were significantly lower for the GP model
(M = 0.823, SD = 0.168) than for the naive model (M = 0.908, SD = 0.150),
t(49) = 4.78, p < .001. The GP model successfully discerns a wide variety
of periodicities (Fig. 1), and the predicted values and associated error bounds
resemble the actual data well, χ2(26, N = 50) = 767.65, p < .001.
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(a)

(b)

(c)
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(d)

(e)

Figure 1: Example outputs from GP forecasting.
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4 Guided Cessation

We have shown that GPs are an effective tool for modeling nicotine addiction
behaviors. We expect that the model will be useful in designing a computer-
supervised gradual smoking cessation program. However, this requires an addi-
tional goal-setting procedure that actually leverages the model’s insights. Here,
we outline some suggested procedures.

4.1 Naive Bounding Procedure

At time t, let f∗ = (f(x∗
1), ..., f(x

∗
m)) denote the posterior distribution of f ∼

GP (0, kθ), i.e. the regression output up to x = xm where t < xm. Then a
simple goal-setting function is

g(t) = max(0, ⌊kf∗(t)⌋) (5)

for some constant k ∈ (0, 1) to enforce a downward trend.

4.2 Bayesian Inference Procedure

More generally, we can express our goals-setting function as

g(t) = max(0, ⌊λf∗(t)⌋) (6)

where λ is the user’s learning rate – the rate at which he or she can successfully
reduce nicotine intake. The learning rate can be somewhat interpreted as the
strength of the user’s addiction. If λ is too low, the goals are unachievable and
the user is prone to relapse. On the other hand, if λ is too high, progress is
minimal the cessation process is unnecessarily prolonged. In some sense, our
learning rate here is analogous to the learning rate in gradient descent (usually
denoted α), which determines the step size in each iteration. Each user has a
unique learning rate that might even change throughout the cessation attempt,
and thus we are tasked with learning the optimal λ over time.

We claim that λ can be learned using Bayesian inference. On day t = 0 we
begin with some prior distribution, say λ ∼ N (0.9, 0.2). Then for all days t > 0,
we update our distribution with an iteration of Bayes’ theorem using the new
evidence

Et =
f(t− 1)

g(t− 1)
(7)

and we sample our new λ from the posterior distribution.

5 Conclusion

In this paper, we showed that Gaussian processes are an effective method for
individualized modeling of nicotine addiction behaviors. In particular, GPs
perform well when tasked with finding weekly patterns in a user’s smoking
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habits, and the outputted predictions for future usage are significantly more
accurate than those of a naive forecasting model. We also proposed methods for
leveraging the GP forecast outputs for goal-setting as part of a guided gradual
cessation program. In future work, we intend to conduct a user study that
validates the effectiveness of GPs in computer-guided smoking cessation.
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