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Abstract 
The COVID-19 pandemic has accelerated the development and adoption of wastewater-based 
epidemiology. Wastewater samples can provide genomic information for detecting and 
assessing the spread of SARS-CoV-2 variants in communities and for estimating important 
epidemiological parameters such as the growth advantage of the variant. However, despite 
demonstrated successes, epidemiological data derived from wastewater suffers from potential 
biases. Of particular concern are differential shedding profiles that different variants of concern 
exhibit, because they can shift the relationship between viral loads in wastewater and 
prevalence estimates derived from clinical cases. Using mathematical modeling, simulations, 
and Swiss surveillance data, we demonstrate that this bias does not affect estimation of the 
growth advantage of the variant and has only a limited and transient impact on estimates of the 
effective reproduction number. Thus, population-level epidemiological parameters derived from 
wastewater maintain their advantages over traditional clinical-derived estimates, even in the 
presence of differential shedding among variants. 

Main 
In the context of the COVID-19 pandemic, wastewater-based surveillance has become 
widespread and has proved to be a reliable data source to inform disease trajectories1. The viral 
loads of SARS-CoV-2 in wastewater have been shown to have a strong positive correlation with 
COVID-19 incidence in the region connected to the studied sewershed, and they are routinely 
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used as an epidemiological indicator. Tracking the dynamics of SARS-CoV-2 RNA in 
wastewater can reliably estimate the effective reproductive number (Re)2, a critical parameter 
describing disease dynamics and informing public health policy. Further, wastewater samples 
enable the detection and tracking of the progression of genomic variants using PCR-based 
methods3, including quantitative and digital PCR (dPCR)4, as well as next-generation 
sequencing (NGS) methods5–7. Both approaches are able to reliably quantify the relative 
abundances of genomic variants, with estimates coinciding with those obtained from traditional 
methods based on clinical samples4–7. Wastewater genomics allows early detection of variants, 
as shown, for example, by the detection of the first confirmed case of Omicron BA.1 in 
Switzerland in wastewater8. For epidemiology, wastewater samples provide accurate 
population-level data at largely reduced costs and simplified logistics. Therefore, wastewater-
derived data is increasingly incorporated into national surveillance strategies.  
 
Tracking the relative abundance of a newly introduced genomic variant over time provides 
insights into its dynamics and growth advantage over the current dominant strain, which is a key 
parameter for models predicting future disease trajectories. Early, accurate estimates of this 
parameter are crucial as they can inform on the epidemic potential of a new variant before an 
increase in case numbers is observed9. The growth advantage informs about the increase in 
transmissibility and immune evasion of a variant10. Generally, it is assumed that a constant 
multiplicative growth advantage or disadvantage holds for a newly introduced variant, which in 
the case of an advantage results in logistic growth of its relative abundance11. It has been 
shown that both NGS and dPCR analysis of wastewater samples can provide timely and 
accurate estimates of the growth advantage of a variant, requiring orders of magnitude fewer 
samples than traditional surveillance methods relying on samples of infected individuals4,5.   
 
However, wastewater-based quantification of SARS-CoV-2 and its genomic variants is 
influenced by shedding load profiles, which describe the average amount of viral RNA each 
infected individual contributes to the sewer during the course of infection2. Although some rare 
prolonged low levels of fecal shedding have been reported12, shedding decay throughout the 
course of infection is believed to be fast enough so that wastewater concentration is indicative 
of COVID-19 incidence rather than prevalence13. The different variants of concern that have 
emerged and spread since the beginning of the pandemic have all exhibited a difference in 
average viral loads in the respiratory tract, but the overall shape of the shedding profile was 
conserved14. For the Omicron BA.1 variant of concern, lower fecal shedding compared to 
Delta15 has been suspected, possibly due to changes in tropism16. Such differences in shedding 
profiles can decouple the established relationship between estimates of incidence based on 
wastewater from those derived from clinical test data. As a consequence, population-level 
incidence based on historical relationships between SARS-CoV-2 concentrations in wastewater 
and case data will be underestimated (if shedding from the new variant is lower) or 
overestimated (if shedding from the new variant is higher). To enable accurate wastewater-
based estimates of disease trajectory for all variants, including new and uncharacterized ones, 
analytical approaches need to be robust to shifts in shedding load profiles. Such methods will 
aid perennial integration of wastewater-derived epidemiological data into public health policy.  
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In this study, we derived, for a class of common wastewater-derived estimates of variant growth 
advantage and Re based on both NGS and dPCR, mathematical expressions of their bias under 
shifts in shedding load profiles. The mathematical derivations are supported by simulations, as 
well as by analysis of sequencing and dPCR data collected during the introduction and 
transmission of Omicron BA.1 in Switzerland. We demonstrate the invariance of growth 
advantage estimates under differential shedding and show that wastewater-derived Re 
estimates are affected only transiently and with a limited magnitude.  
 
 

Results 

Growth advantage estimates are invariant to differences in shedding 
The growth advantage of an emerging variant is commonly estimated by fitting a logistic growth 
curve to the time series of variant relative abundance. For wastewater-derived estimates, we 
derived a closed-form expression for the bias in the estimate of growth advantage for the case 
in which the variant is shed at a different rate and demonstrated that it is zero (Figure 1 A, B, C). 
However, the estimate of the midpoint of the logistic growth curve has an additive bias of 
−𝑙𝑜𝑔(𝑐)/𝑎, where 𝑎 is the growth rate of the curve and 𝑐 is the rate at which the variant is 
differentially shed (Figure 1 C, Figure 2 A).  

Differences in shedding have a transient and limited effect on Re estimates  
We next focused on the effective reproduction number (Re). We derived a closed-form 
expression to describe the bias in Re that arises from a lower (or higher) shedding of the variant 
and demonstrated that this bias term can be significantly different from zero, but only for a brief 
period. Assuming a mean generation interval time 𝑔, the additive bias term has the form 

𝑔 𝑙𝑜𝑔 {!"#(%"!)('(!)
!"#(%)('(!)

}.  

The bias vanishes for 𝑓(𝑡 + 1) ≈ 𝑓(𝑡), i.e., early in the introduction of the new variant or later 
when it has established itself as the most abundant strain. The estimate will experience a 
temporary bias as the variant grows (Figure 1D), with the severity of the bias depending on the 
extent of undershedding (Figure 2B). Importantly, the introduction and spread of a competitive 
variant, will still be indicated by a rise in the apparent Re. However, this rise can be delayed 
shortly, potentially setting back the day on which the estimate of the Re will be observed to 
cross the Re=1.0 threshold.  

Increased variability of generation time does not bias estimates of growth 
advantage and Re  
The closed-form expression of the bias in Re derived above assumes an exponentially-
distributed generation interval time (the time between infections in a chain of infections) with 
mean and standard deviation g. Generally this assumption is considered unrealistic, and a 
preferred, less restrictive assumption is that the generation interval time follows a Gamma 
distribution, which can account for different degrees of dispersion17. We investigated whether 
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dropping the exponential distribution assumption and varying the level of dispersion in the 
generation time interval distribution might affect our findings. We simulated viral variant 
incidence time series from a stochastic model where the generation interval time is sampled 
from a Gamma distribution with a mean of 4.8 days (Figure 2 C). From these time series, we 
computed the Re values using the method implemented in EpiEstim18. Varying the variance 
(while keeping the mean constant) of the generation interval time distribution did not add bias to 
the growth advantage estimates, and they remained unbiased (Figure 2 D). Similarly, the 
pattern of transient bias of the Re estimates was not affected by increasing the variance of the 
generation interval time distribution (Figure 2 E).  

Growth advantage estimates of BA.1 in Switzerland from wastewater and 
from clinical data 
In Switzerland, SARS-CoV-2 viral loads in wastewater are monitored since 2020, and variants 
are monitored in wastewater since 20211. During the progression of Omicron, there was an 
apparent decoupling of the daily measured SARS-CoV-2 load (viral genome copies per day) 
from the daily reported new cases in all six of the sewersheds monitored at that time (Figure 3 
A, B, Supplementary Figure 1). We suspected that the discrepancy might be due to differential 
shedding of Omicron versus Delta. 
 
Despite this discrepancy, the estimates of the logistic growth rates based on wastewater NGS 
and dPCR analysis of wastewater were very similar to the estimates based on clinical 
sequencing data (Figure 3 C, Supplementary Figure 1). Specifically, the logistic growth rates 
based on wastewater sequencing ranged from 0.14 (0.12 – 0.17) in Laupen to 0.23 (0.19 – 
0.27) in Altenrhein. The estimates based on dPCR analysis of wastewater ranged from 0.14 
(0.12 – 0.16) in Laupen to 0.23 (0.19 – 0.27) in Chur. In clinical sequencing, the logistic growth 
rates estimates ranged from 0.12 (0.08 – 0.17) in Zürich to 0.21 (0.15 – 0.27) in Lugano. In 
contrast, estimates of the midpoint parameter of the growth curve were higher when computed 
from wastewater data compared to those computed using clinical data (Supplementary Figure 2, 
Z), suggesting that the bias stemming from possible undershedding was absorbed in the 
nuisance parameter 𝑡). Logistic growth curves fitted to the data from the six sewersheds 
indicated a similar progression of the relative abundances of BA.1 across Switzerland 
(Supplementary Figure 1). 
 
Estimates of the relative abundance of BA.1 produced using the S:L452R dPCR probe were in 
general consistently higher compared to those generated using the S:HV69-70 deletion probe or 
those generated using wastewater NGS (Supplementary Figure 1). This apparent bias is 
reflected by the estimates of the midpoint parameter of the curve, which were consistently lower 
(Supplementary Figures Y, Z). However, this bias has no discernible effect on the estimates of 
the growth advantage of the variant (Figure 3 C, Supplementary Figure 1).  

 
1 https://www.eawag.ch/en/department/sww/projects/sars-cov2-in-wastewater/ 
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Figure 1: Effect of differential shedding on estimates of incidence, growth advantage and Re of 
SARS-CoV-2 and its variants. A: Different variants (Delta, green and Omicron, red) are shed in 
variable amounts. The incidence of SARS-CoV-2 and its variants in the population is quantified 
from clinical samples (top path) and from wastewater samples (bottom path) using PCR-based 
and NGS methods. The difference in shedding can lead to a biased wastewater-based 
quantification. B: Simulated time series: the dominant strain (Delta, green) has a stable Re of 
0.6, and the incidence is steadily declining. A new variant (Omicron, red) with a growth 
advantage over Delta resulting in an Re of 2.2, is introduced and increases in absolute 
prevalence. The generation interval time is constant and equal to 4.8 days. For illustration, we 
assume here that the new variant is shed 50% less, which decouples the historic relationship 
between community prevalence (solid line) and concentration in wastewater (dashed line), 
leading to underestimation of its incidence from wastewater-derived data. This in turn also leads 
to underestimating the total incidence of the virus (blue). C: The differential shedding results in a 
time-shift of 2 days in the growth and decay curves of relative abundance of the variants, but 
does not alter the growth or decay rates. The estimates of the growth advantage of the variant 
are not affected. D: The differential shedding results in a transient bias in the estimated Re. The 
Re=1.0 threshold is estimated to be crossed 2 days later than without undershedding. The 
variant-specific Re for both variants do not suffer any bias. 
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Figure 2: Dependence of the bias in midpoint and Re estimation on shedding difference, growth 
advantage, and generation interval time distribution. A: The time-shift in the growth and decay 
curves depends both on the magnitude of differential shedding and on the growth advantage of 
the variant. B: The magnitude of the bias of the Re estimate depends on the amount of 
undershedding. For variants with a higher growth advantage, the bias rises and decreases more 
sharply. C: Simulated time series, where a variant with Re=0.6 (Delta, green) is replaced by a 
newly introduced variant with Re=2.2 (Omicron, red). The generation time is sampled from a 
Gamma distribution with mean 4.8 days and variance 5 days2. The new variant is assumed to 
shed 50% less, leading to underestimation of its incidence (solid line) from wastewater 
concentrations (dashed line) and underestimation of the total incidence of the virus (blue). D: 
For increasing variance levels of the generation interval time distribution (20 values linearly 
spaced between 0.1 and 10.0 days, but constant mean of 4.8 days), we produced growth 
advantage estimates from simulated data with and without undershedding and calculated the 
difference to estimate the bias stemming from undershedding. At each variance level, we 
repeated the simulation 100 times. Boxplots hinges represent the median and quartiles, with 
whiskers extending to the largest and smallest values no further than 1.5 times the interquartile 
range (data points beyond these limits are plotted individually). On average, the bias is zero, 
independently of the variance of the generation interval time distribution. E: Using the same 
simulations as in B, the bias in Re over time averaged over the simulation runs is shown. The 
transient pattern of the bias is not affected by the variance of the generation interval time 
distribution.  
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Figure 3: Concordant estimation of the growth advantage of Omicron BA.1 in Switzerland using 
clinical and wastewater-derived data. A: Map of Switzerland indicating the location of all six 
wastewater treatment plants (WWTPs) sampled in this study. The discs are scaled to represent 
the amount of inhabitants in the respective catchment areas. B: SARS-CoV-2 genome copies in 
wastewater (7-day rolling median) per new confirmed case in the catchment area (7-day rolling 
median), throughout the spread of BA.1. C: Growth advantage estimates for BA.1 in the six 
WWTP regions, based on wastewater NGS (left) as well as wastewater ddPCR duplex assays 
targeting the S:HV69-70 deletion (center) and S:L452R substitution (right), compared with 
estimates derived from clinical sequencing from the cantons surrounding the WWTPs. Error 
bars represent 95% Wald confidence intervals adjusted for overdispersion.  
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Discussion 
A current caveat of wastewater-based epidemiology is the possible impact of differential 
shedding. The introduction and spread of a new variant that is shed more or less than the 
current one can introduce bias in the real time estimates of viral incidence and prevalence, as 
well as estimates of variant relative abundances. Beyond these quantities, wastewater-based 
epidemiology can provide multiple other metrics of central importance to public health 
strategies. Metrics describing growth of the virus and its variants are of prime importance and 
are expected to be less sensitive to biases affecting normalization. In the case of genomic 
epidemiology, a parameter that is crucial to estimate when a new variant emerges is its growth 
advantage relative to the currently circulating strain(s)11. Here, we have shown that if there is 
differential shedding by a constant factor, then no bias is introduced in the estimation of the 
growth advantage. A parameter describing the current disease dynamics, which is critical to 
assess the epidemiological situation and inform policy, is the effective reproduction number 
(Re). We have shown here that the bias of Re estimation stemming from differential shedding is 
transient, i.e., the estimator will recalibrate itself after a short period of time. We derived a 
formula for the bias based on the mean generation interval time, the growth advantage and the 
difference in shedding.  
 
Clinical data is generally considered the gold standard to obtain epidemiological insight into the 
dynamics of a pathogen and its variants. However, estimates based on clinical data are 
themselves subject to biases, which are not encountered in wastewater-derived data, such as 
non-random testing and sequencing. Also, they require orders of magnitude more samples. Our 
findings demonstrate that wastewater-based epidemiology remains a valid (and advantageous) 
tool to estimate competitive advantages between multiple variants of a pathogen and to assess 
the current disease dynamics, even in the presence of differential shedding. Moreover, it follows 
that a large number of possible biases stemming from the protocol used for quantification (e.g., 
underestimating a variant prevalence due to the dPCR probe used) will also not impact the 
estimation of the growth advantage. This robustness makes integrating various data sources 
into a large scale program easier and more robust to differences in methodology among 
participating labs. Lastly and beyond wastewater-based epidemiology, differential clinical testing 
between variants (for example due to differential asymptomatic infection rates) should, following 
the same reasoning, introduce a bias in the quantification of a variant that will not impact variant 
growth advantage estimates from clinical data.  
 
Tracking the progression of a variant using dPCR relies on the availability of an assay targeting 
a mutation separating it from the currently circulating variants. Using an already established 
assay can reduce the lead time needed to track the progression of a new variant. We tracked 
the spread of BA.1 using not only the rise of a BA.1 signature mutation (S:HV69-70), but also 
using the decline of a Delta signature mutation (L452R). Despite yielding different estimates of 
the relative abundance of Omicron BA.1, the same estimates of the growth advantage were 
obtained using the different dPCR assays. This result further illustrates the robustness of 
estimating the growth advantage of a variant to quantification biases. 
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More generally, we suggest that if there is a potential introduction of a new source of bias in the 
quantification of a pathogen or its variants, it is essential to understand the impact of this bias on 
the estimation of relevant quantities. As we showed here for differential shedding, it might turn 
out that this bias has no bearing on the answers to relevant questions regarding growth. In other 
cases, it might also be that even though the bias indeed propagates to the estimates of some 
quantity of interest, it does so in such a small magnitude relative to the already present 
statistical error that it can be ignored in practice. If feasible and even if based on strong 
assumptions, closed-form expressions can clarify the nature of the bias. Additionally, 
simulations can help test the assumptions of the closed-form expressions or replace them 
entirely when they are not available. Here, we investigated the effects of a scaling of the 
shedding profile, but other sources of biases (e.g., changes in mean generation time, shifts in 
shedding load distributions, etc.) should be rigorously studied to further test the robustness of 
wastewater-based genomic epidemiology.  

Methods 

Bias in growth advantage estimates due to differences in shedding 
We derive a closed-form expression for the bias in growth advantage due to lower or higher 
shedding of a variant, and show that it is zero. Let 𝑋(𝑡) and 𝑌(𝑡) be the incidence of two 
variants in the population through time 𝑡. Let 𝑓(𝑡) be the relative abundance of 𝑋 in the 
population  

𝑓(𝑡) = 𝑋(𝑡)/(𝑋(𝑡) + 𝑌(𝑡)) 

 
The logit transform of 𝑓(𝑡) is then: 

𝑙𝑜𝑔𝑖𝑡	(𝑓(𝑡)) 		= 𝑙𝑜𝑔	{𝑓(𝑡)/[1 − 𝑓(𝑡)]} 		= 𝑙𝑜𝑔	{𝑋(𝑡)} − 𝑙𝑜𝑔	{𝑌(𝑡)}	 
Let 𝑋′(𝑡) and 𝑌′(𝑡) be the measured incidence (derived from viral genome copies) of 𝑋 and 𝑌 in 
the wastewater through time 𝑡. Let 𝑔(𝑡) be the shedding load profile describing the magnitude of 
viral particles shed at time t. 𝑌′(𝑡) and 𝑌(𝑡) are related by a convolution with the shedding load 
profile 𝑔(𝑡), such that 

𝑌′(𝑡) = 𝑌(𝑡) ∗ 𝑔(𝑡) = 	:
*∈,

𝑔(𝑡 − 𝜏)𝑌(𝜏)𝑑𝜏 

If 𝑋 is on average shed less (or more) by a constant 𝑐 relative to 𝑌, such that the shedding load 
profile is scaled by 𝑐, then 

𝑋′(𝑡) = 𝑋(𝑡) ∗ 𝑐𝑔(𝑡) = 𝑐(𝑋(𝑡) ∗ 𝑔(𝑡))	 

Where the second equality follows from associativity of the convolution product with scalar 
multiplication. For the fraction 𝑓′(𝑡) = 𝑋′(𝑡)/(𝑋′(𝑡) + 𝑌′(𝑡)) of 𝑋′(𝑡) concentration in wastewater, 
we have 

𝑙𝑜𝑔𝑖𝑡	(𝑓′(𝑡)) 		= 𝑙𝑜𝑔	{𝑋′(𝑡)} − 𝑙𝑜𝑔	{𝑌′(𝑡)} 			= 𝑙𝑜𝑔	{𝑐(𝑋(𝑡) ∗ 𝑔(𝑡))} − 𝑙𝑜𝑔	{𝑌(𝑡) ∗ 𝑔(𝑡)}		 
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																													= 𝑙𝑜𝑔	{𝑋(𝑡) ∗ 𝑔(𝑡)} − 𝑙𝑜𝑔	{𝑌(𝑡) ∗ 𝑔(𝑡)} + 𝑙𝑜𝑔	{𝑐} = 𝑙𝑜𝑔𝑖𝑡	(𝑓(𝑡)) + 𝑙𝑜𝑔	{𝑐}	 
Thus, the logit-transformed estimates of wastewater-based prevalences are shifted by the 
constant 𝑙𝑜𝑔{𝑐}, the logarithm of the constant factor by which 𝑋 is differentially shed. 

If 𝑓(𝑡) is assumed (as is commonly the case) to follow a logistic growth with rate 𝑎 (the relative 
growth advantage of the variant over the dominant strain) and midpoint 𝑡), then 𝑓′(𝑡) will follow 
a logistic growth with the same rate, with the bias from undershedding being absorbed by the 
midpoint parameter 𝑡). To see this, let 𝑎′ and 𝑡)′ be the growth rate and midpoint observed in 
wastewater. Then 

𝑎′(𝑡 − 𝑡)′) = 𝑙𝑜𝑔𝑖𝑡	(𝑓′(𝑡)) = 𝑙𝑜𝑔𝑖𝑡	(𝑓(𝑡)) + 𝑙𝑜𝑔	{𝑐} = 𝑎(𝑡 − 𝑡)) + 𝑙𝑜𝑔	{𝑐} 	= 𝑎(𝑡 − 𝑡) + 𝑙𝑜𝑔	{𝑐}/𝑎)		 

We conclude that 𝑎′ = 𝑎 and that 𝑡)′ = 	 𝑡) − 𝑙𝑜𝑔{𝑐}/𝑎, i.e., the observed growth advantages are 
equal, and the midpoints differ by a constant depending on 𝑐 and 𝑎.  

Bias in Re estimates due to differences in shedding 
Next, we analyze the effective reproduction number Re. We derive a closed-form expression for 
the bias in Re estimation due to lower shedding of a variant and show that it is significant for a 
short period of time. We construct our derivation using the approximation presented by 
Bettencourt and Ribeiro, which is based on the SIR model and thus assumes an exponential 
distribution of the generation interval time17,19. The approximation relates the incidence through 
time 𝐼(𝑡) to the reproduction number 𝑅(𝑡) and mean generation time 𝑔 by 

𝐼(𝑡 + 1) = 𝐼(𝑡)𝑒
-(%)	(	!

/  

Solving for 𝑅(𝑡) and substituting f(t) we obtain 

𝑅(𝑡) 	= 	1 + 𝑔 𝑙𝑜𝑔 {
𝑓(𝑡 + 1)𝐼(𝑡 + 1) 	+	(1 − 𝑓(𝑡 + 1))𝐼(𝑡 + 1)

𝑓(𝑡)𝐼(𝑡) 	+	(1 − 𝑓(𝑡))𝐼(𝑡)
} 

If 𝑋 is differentially shed by a factor c, then the observed reproduction number 𝑅′(𝑡) is affected 
as 

𝑅′(𝑡) 	= 	1 + 𝑔 𝑙𝑜𝑔 {'#(%"!)0(%"!)	"	(!(#(%"!))0(%"!)
'#(%)0(%)	"	(!(#(%))0(%)

} = 1 + 𝑔 𝑙𝑜𝑔 {0(%"!)
0(%)

} + 𝑔 𝑙𝑜𝑔 {!"#(%"!)('(!)
!"#(%)('(!)

}  

i.e., the observed reproduction number suffers an additive bias of 𝑔 𝑙𝑜𝑔 {!"#(%"!)('(!)
!"#(%)('(!)

}.  

Stochastic simulations of variant emergence 
In the derivations of closed form expressions for the biases in growth advantage and Re due to 
reduced or increased shedding, we assumed an exponentially-distributed generation time 
interval. We simulated data to assess the impact of underdispersed or overdispersed generation 
time intervals on the estimates of Re and growth advantage. We simulated two distinct time 
series of SARS-CoV-2 infections, each for a different variant: the first variant started from 1500 
cases with a constant Re of 0.6, and the second started from a single case with a constant Re 
of 2.2. The simulations largely followed the simulation framework used in Huisman et al.2,20. 
Infections were simulated forward in time using the renewal equation framework described by 
Cori et al2120,21. We relaxed the exponentially-distributed generation time to a Gamma-distributed 
generation time, with constant mean but varying variance. The overall Re was then estimated 

https://paperpile.com/c/mwYtMN/fpVld+WDiYa
https://paperpile.com/c/mwYtMN/nJwiL+IvX7I
https://paperpile.com/c/mwYtMN/z1HEK
https://paperpile.com/c/mwYtMN/z1HEK+IvX7I
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from the simulated infection incidence time series, once considering the two time series 
untouched and once having the second time series scaled down by 50% to simulate 
undershedding. The Re values were computed using the package EpiEstim18.  

Wastewater sampling and processing  
Wastewater-based surveillance for SARS-CoV-2 was conducted in six sewersheds (Altenrhein, 
Chur, Laupen, Lugano, Geneva, Zurich) across Switzerland from 24 November 2021 through 10 
January 2022 (Figure 3 A, Supplementary Figure 1). Twenty-four–hour flow composite samples 
were collected daily from wastewater influent at each of the six sites and stored at 4°C for up to 
5 days before being transported on ice for processing at a central laboratory (Eawag, 
Dübendorf, Switzerland). Processing included total nucleic acid extraction from 40 ml samples 
(Wizard Enviro Total Nucleic Acid Extraction Kit, CN A2991, Promega Corporation, USA) with 
an elution volume of 80ul and subsequent inhibitor removal using OneStep PCR Inhibitor 
Removal columns (CN D6030, Zymo Research, USA). From these samples, a subset were 
analyzed for variants of concern using drop-off RT-dPCR assays targeting signature mutations 
for Delta (S:L452R, n = 74 samples) and Omicron BA.1 (S:HV69-70, n = 79), based on Caduff 
et al. (2022)4. Almost all (n = 280) samples were also analyzed using NGS to identify Delta 
versus Omicron BA.1, based on Jahn et al. (2022)5. RNA extracts were stored at -80°C for up to 
1 week prior to sequencing and up to 3 months prior to RT-dPCR analysis. 

Drop-off RT-dPCR assays for detection of signature mutations 

Drop-off RT-dPCR assays targeted the S:HV69-70 deletion indicative of Omicron BA.1, as 
previously described4, and the S:L452R mutation indicative of Delta (lineage B.1.617.2).The 
assay targeting S:L452R includes two hydrolysis probes binding to a single amplicon: a 
universal probe targeting a conserved region on the amplicon and a variant-specific probe that 
binds to the S:L452R mutation (Supplementary Table 1, Supplementary Figure 3). In the digital 
PCR, generated droplets with dual fluorescence indicates the presence of an amplicon from the 
mutation (i.e., Delta), whereas single fluorescence indicative of only the universal probe 
indicates an amplicon without the S:L452R mutation (i.e., Omicron). For the S:HV69-70 assay, 
the variant-specific probe only binds when S:HV69-70 is present22, and therefore dual 
fluorescence in a given droplet indicates presence of an amplicon without the mutation (i.e. 
Delta), whereas single fluorescence of only the universal probe indicates the presence of the 
mutation (i.e., Omicron).  

Clinical VOC data 
For each canton surrounding a WWTP, we downloaded counts of infected individuals binned by 
variant of sequenced PCR-positive clinical samples through the LAPIS API of Cov-Spectrum 23. 
The data was restricted to sequences originating from the Viollier lab (8525 sequences, 
Supplementary Figure 1), which sends a random subset of their PCR-positive samples out for 
sequencing. For the Geneva sewershed, we also compared estimates to data on the qPCR S-
gene target failure (SGTF) data from the Geneva University Hospital (HUG) available at 
https://www.hug.ch/laboratoire-virologie/surveillance-variants-sars-cov-2-geneve-national (5794 
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tests, Supplementary Figure 1),. The SGTF qPCR is based on the detection of S:HV69-70; 
failed amplification of a clinical sample previously positive for the N1 gene target is used as a 
proxy to indicate that the clinical sample is Omicron BA.1.  

Data Analysis 
We analyzed the data using the R statistical programming language and the R package 
WWdPCR2 4. The package was used to obtain maximum likelihood estimates (MLE) and 
confidence intervals of the logistic growth rate of the Omicron BA.1 variant in each region. 
Confidence intervals for the logistic growth parameter were computed assuming a quasibinomial 
(for the clinical and wastewater sequencing data) or quasimultinomial (for the dPCR data) model 
of the counts to account for overdispersion, but without allowing underdispersion (i.e. 
overdispersion factors <1 were not considered). Confidence bands for the fitted values were 
computed on the logit scale using the Delta method and then back-transformed to the linear 
scale, to optimize their coverage and ensure they were constrained to the [0,1] range.  
 
The logistic growth model was fitted separately using the wastewater S:L452R dPCR data, the 
wastewater S:HV69-70 dPCR data, the wastewater sequencing data, and the clinical 
sequencing data. For Geneva, we fit the model also on the SGTF data. For the S:L452R dPCR, 
the dual fluorescence droplets are indicative of Delta, so we assumed that the single 
fluorescence droplets indicated Omicron BA.1. The growth advantage of BA.1 was calculated 
using S:L452R data assuming a negative logistic decay rate of the mutated fraction. For 
wastewater sequencing, we proceeded as previously described in Jahn et al. 5, and we 
estimated the relative abundance of BA.1 using the observed fractions of reads bearing 
mutations characteristic of BA.1, while excluding mutations also present in B.1.617.2*. 
Amplicons suffering potential differential dropout rates or altered amplification due to mutations 
in the primer regions were discarded.  
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