| 1  | Title: Viral and host factors associated with SARS-CoV-2 disease severity in Georgia, USA                                                                                            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Authors: Ludy R. Carmola <sup>1*</sup> , Allison Dorothy Roebling <sup>2,3,4</sup> , Dara Khosravi <sup>1</sup> , Rose M.                                                            |
| 3  | Langsjoen <sup>1</sup> , Andrei Bombin <sup>1,4</sup> , Bri Bixler <sup>5</sup> , Alex Reid <sup>1</sup> , Cara Chen <sup>1</sup> , Ethan Wang <sup>1</sup> , Yang Lu <sup>1</sup> , |
| 4  | Ziduo Zheng <sup>6</sup> , Rebecca Zhang <sup>6</sup> , Phuong-Vi Nguyen <sup>4</sup> , Robert A. Arthur <sup>7</sup> , Eric Fitts <sup>1</sup> , Dalia Arafat                       |
| 5  | Gulick <sup>8</sup> , Dustin Higginbotham <sup>8</sup> , Azmain Taz <sup>1</sup> , Alaa Ahmed <sup>1,9</sup> , John Hunter Crumpler <sup>1</sup> , Colleen                           |
| 6  | Kraft <sup>1,4</sup> , Wilbur A. Lam <sup>10,11,12,13</sup> , Ahmed Babiker <sup>1,4</sup> , Jesse J. Waggoner <sup>4</sup> , Kyle P. Openo <sup>2,3,4</sup> ,                       |
| 7  | Laura M. Johnson <sup>14</sup> , Adrianna Westbrook <sup>14</sup> , Anne Piantadosi <sup>1,4</sup> *                                                                                 |
| 8  | Affiliations:                                                                                                                                                                        |
| 9  | <sup>1</sup> Department of Pathology and Laboratory Medicine; Emory University School of Medicine;                                                                                   |
| 10 | Atlanta, GA, 30322; USA.                                                                                                                                                             |
| 11 | <sup>2</sup> Georgia Emerging Infections Program; Georgia Department of Health; Atlanta, GA, 30303;                                                                                  |
| 12 | USA.                                                                                                                                                                                 |
| 13 | <sup>3</sup> Atlanta Veterans Affairs Medical Center; Decatur, GA, 30033; USA.                                                                                                       |
| 14 | <sup>4</sup> Division of Infectious Diseases; Department of Medicine, Emory University School of                                                                                     |
| 15 | Medicine; Atlanta, GA, 30322; USA.                                                                                                                                                   |
| 16 | <sup>5</sup> Graduate Program in Genetics and Molecular Biology, Emory University; Atlanta, GA, 30322;                                                                               |
| 17 | USA.                                                                                                                                                                                 |
| 18 | <sup>6</sup> Department of Biostatistics and Bioinformatics; Rollins School of Public Health, Emory                                                                                  |
| 19 | University; Atlanta, GA, 30322; USA                                                                                                                                                  |
| 20 | <sup>7</sup> Emory Integrated Computational Core; Emory University School of Medicine; Atlanta, GA,                                                                                  |
| 21 | 30322; USA.                                                                                                                                                                          |
|    |                                                                                                                                                                                      |

- <sup>8</sup>Georgia Clinical & Translational Science Alliance; Emory University School of Medicine;
- 23 Atlanta, GA, 30322; USA.
- <sup>9</sup>Emory Integrated Genomics Core; Emory University School of Medicine; Atlanta, GA, 30322;
- 25 USA.
- <sup>10</sup>The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies; Atlanta, GA,
- 27 30322; USA.
- <sup>11</sup>Department of Pediatrics, Emory University School of Medicine; Atlanta, GA, 30322; USA.
- <sup>12</sup>Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta; Atlanta, GA,
- 30 30322; USA
- <sup>13</sup>Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia
- 32 Institute of Technology, Atlanta, GA, USA.
- <sup>14</sup> Pediatric Biostatistics Core; Department of Pediatrics; School of Medicine; Emory University;
- 34 Atlanta, GA, 30322; USA
- \*Corresponding authors. Email: <u>anne.piantadosi@emory.edu</u>, <u>ludy.registre@emory.edu</u>
- 36 Keywords: SARS-CoV-2, post-vaccine infection, disease severity

## 38 ABSTRACT

39 While SARS-CoV-2 vaccines have shown strong efficacy, their suboptimal uptake 40 combined with the continued emergence of new viral variants raises concerns about the ongoing 41 and future public health impact of COVID-19. We investigated viral and host factors, including vaccination status, that were associated with SARS-CoV-2 disease severity in a setting with low 42 43 vaccination rates. We analyzed clinical and demographic data from 1,957 individuals in the state of Georgia, USA, coupled with viral genome sequencing from 1,185 samples. We found no 44 difference in disease severity between individuals infected with Delta and Omicron variants 45 46 among the participants in this study, after controlling for other factors, and we found no specific mutations associated with disease severity. Compared to those who were unvaccinated, 47 vaccinated individuals experienced less severe SARS-CoV-2 disease, and the effect was similar 48 for both variants. Vaccination within 270 days before infection was associated with decreased 49 odds of moderate and severe outcomes, with the strongest association observed at 91-270 days 50 post-vaccination. Older age and underlying health conditions, especially immunosuppression and 51 renal disease, were associated with increased disease severity. Overall, this study provides 52 53 insights into the impact of vaccination status, variants/mutations, and clinical factors on disease severity in SARS-CoV-2 infection when vaccination rates are low. Understanding these 54 associations will help refine and reinforce messaging around the crucial importance of 55 vaccination in mitigating the severity of SARS-CoV-2 disease. 56

# 58 INTRODUCTION

| 59 | Vaccinations against SARS-CoV-2 have undeniably demonstrated high efficacy in                            |
|----|----------------------------------------------------------------------------------------------------------|
| 60 | preventing COVID-19 infections and improving disease outcomes <sup>1-3</sup> , but their impact is       |
| 61 | challenged by the emergence of new variants carrying immune evasion mutations and the                    |
| 62 | waning of immune responses over time <sup>4</sup> . Partly due to these issues, public trust in COVID-19 |
| 63 | vaccines has diminished with each round of booster recommendations, especially in the                    |
| 64 | southeast United States (US) <sup>5</sup> . Throughout the SARS-CoV-2 pandemic, the state of Georgia has |
| 65 | consistently held one of the lowest rates of vaccine coverage in the nation <sup>6</sup> . One important |
| 66 | approach to addressing vaccine hesitancy is to conduct studies – and disseminate their results –         |
| 67 | to populations with low vaccine uptake.                                                                  |
| 68 | Understanding the impact of vaccination on SARS-CoV-2 disease outcomes requires                          |
| 69 | consideration of other host factors such as underlying health conditions, sex, race, and                 |
| 70 | socioeconomic factors, which impact SARS-CoV-2 disease severity <sup>7-17</sup> . Viral factors are also |
| 71 | important, especially as variants emerge with distinctive properties affecting pathogenesis and          |

immune evasion. For example, the Delta variant has been associated with high risk of ICU
admission and mortality<sup>11,18,19</sup>, while Omicron shows low neutralization sensitivity to vaccine
induced immunity<sup>20</sup>.

In order to elucidate viral and host factors that contribute to disease outcomes in the context of low vaccination rates, we analyzed demographic and clinical data from 1,957 individuals in the state of Georgia. We also analyzed full viral genome sequences from 1,185 of these individuals to examine the influence of variants and mutations on disease severity. We leveraged a large study population and extensive demographic, clinical, and sequence data to

define factors associated with SARS-CoV-2 disease severity in a region marked by low
vaccination rates.

82

# 83 **RESULTS**

### 84 Clinical and demographic factors differ by SARS-CoV-2 vaccine status

Between May 2021 and May 2022, we identified 1,957 individuals who tested positive for SARS-CoV-2 within the Emory Healthcare system in Atlanta, Georgia. The majority of participants (66%) were residents of the Metro Atlanta area (Table 1, Figure 1A). The median age was 51 years (Interquartile range [IQR]=36,65), and 56% of individuals were female. The racial distribution of participants was predominantly Black (58%) or White (31%). Individuals experienced a range of clinical presentations and outcomes, from asymptomatic infection (15%) to death (2.8%) (Table 2). Among the 967 individuals in this study who were hospitalized, 625

92 (65%) of the hospitalizations were due to COVID-19.

During the period of this study, the state of Georgia had the 7<sup>th</sup> lowest vaccination rate in 93 all 50 United States and the District of Columbia, with 55.1% of the population vaccinated 94 95 (Figure 1B). In our study, a slightly lower proportion (48%) of individuals were vaccinated, in part based our study was designed to ensure inclusion of unvaccinated individuals. Vaccinated 96 individuals were significantly older than unvaccinated individuals (median age of 58 years vs 43 97 98 years, p<0.001) (Table 1). We observed a large disparity in vaccine status by race; among the unvaccinated participants, 70% were Black and 21% White, while among the vaccinated 99 100 participants, 45% were Black and 43% were White (Table 1). Vaccination status was not significantly associated with any other demographic variable evaluated. 101

| 102 | We found that vaccinated individuals were more likely to have underlying medical                      |
|-----|-------------------------------------------------------------------------------------------------------|
| 103 | comorbidities than unvaccinated individuals. Notably, 28% of vaccinated individuals were              |
| 104 | immunocompromised, compared to 17% of unvaccinated individuals (p <0.001, Table 2).                   |
| 105 | Vaccinated individuals were also more likely to have hypertension (56% vs. 39%, p < 0.001),           |
| 106 | cardiovascular disease (36% vs. 23%, p <0.001), diabetes (28% vs. 19%, p <0.001), renal disease       |
| 107 | (24% vs. 11%, p <0.001), and autoimmune disease (7% vs. 4%, p = 0.03) (Table S1).                     |
| 108 | Vaccinated individuals were less likely to be pregnant (1% vs. 6%, p < 0.001) (Table 2, Table         |
| 109 | S1), however, at the time of the study, vaccines were not yet approved for pregnant individuals.      |
| 110 | These findings are consistent with higher rates of vaccination in individuals with medical            |
| 111 | comorbidities.                                                                                        |
| 112 | We also found differences in clinical symptoms by vaccination status. Compared to                     |
| 113 | unvaccinated individuals, those who were vaccinated were less likely to have fever (52% vs.           |
| 114 | 42%, p <0.001), chills (38% vs. 32%, p = 0.02), nausea/vomiting (35% vs. 25%, p <0.001), and          |
| 115 | shortness of breath or difficulty breathing (49% vs. 39%, p <0.001); they were more likely to         |
| 116 | have sore throat (17% vs. 22%, $p = 0.02$ ) and runny nose/nasal congestion (27% vs. 45%, p           |
| 117 | <0.001) (Table S1). These findings are consistent with milder disease in vaccinated individuals.      |
| 118 | SARS-CoV-2 $C_T$ value by qRT-PCR is often used as a rough proxy for viral load, and we               |
| 119 | found several key factors associated with SARS-CoV-2 C <sub>T</sub> . Because multiple qRT-PCR assays |
| 120 | were used within the Emory Healthcare system during this time, we controlled for assay                |
| 121 | variability (Table 3). Vaccinated individuals had a slightly lower C <sub>T</sub> than those who were |
| 122 | unvaccinated (-0.70, SE=0.26, p =0.01). Though this finding seems counterintuitive, we attribute      |
| 123 | it to vaccinated individuals presenting for testing earlier after symptom onset, compared to          |
| 124 | unvaccinated individuals (Table 2). Symptom duration was significantly inversely associated           |

with  $C_T$  (Table 3). Specifically, after controlling for other variables, and compared to

asymptomatic individuals, those who were tested within 0-3 days after symptom onset had a

lower  $C_T$  value by 3.0 cycles (Standard Error [SE]=0.55, p < 0.001) and those who were tested

within 4-7 days had a lower  $C_T$  value by 1.62 cycles (SE=0.61, p = 0.01). Those who were tested

129 8 or more days from symptom onset did not have a significantly different  $C_T$  than those who

130 were asymptomatic (p = 0.77) (Table 3). No significant differences in C<sub>T</sub> were observed

between variants, after adjusting for other factors (Table 3).

# 132 Variant frequency differs between vaccinated and unvaccinated individuals

133 We sequenced full SARS-CoV-2 genomes from residual nasopharyngeal swab samples from 1,185 individuals. The minimum genome coverage of the samples was 76% and the median 134 135 sequencing depth was 1,804 (Supplementary Data File). Sequences were primarily Delta (68%) and the BA.1 sublineage of the Omicron variant (23%), followed by other Omicron sublineages 136 (5.1%), Alpha (2.5%) and less than 1% each of Beta, Gamma, Mu, A.2.5, and B.1 (Table 4). In 137 Georgia, during the time of this study (May 2021- May 2022), Delta accounted for 55% of 138 infections, Omicron for 40%, and Alpha for 2.5% (Figure 1C, Table S2). Therefore, our study 139 included a somewhat higher proportion of Delta and a lower proportion of Omicron than was 140 141 circulating in the state. The distribution of all other variants aligned with the overall variant distribution observed in Georgia (Table S2, Table 4). 142

The distribution of SARS-CoV-2 variants in our study was different for vaccinated and unvaccinated individuals (p <0.001) (Table 4). Omicron had a higher frequency in vaccinated individuals (32%) than unvaccinated (25%), whereas Alpha and Delta were more common in unvaccinated compared to vaccinated individuals (Table 4). These differences correspond with

the timing of each variant's circulation compared to vaccine rollout, though decreased vaccine
effectiveness against Omicron may also contribute<sup>21</sup>.

149 In addition to the frequency of VOCs among vaccinated and unvaccinated individuals, 150 we investigated the frequency of individual mutations. Within each VOC – Alpha, Delta, and Omicron – no sequence characteristics, including mutations, deletions, and insertions, were 151 152 different between viruses infecting vaccinated and unvaccinated individuals (Figure 2, Figure 153 S1). However, the number of non-lineage defining mutations was lower in vaccinated compared to unvaccinated individuals (Figure 1D) suggesting that vaccination may have an impact on viral 154 155 diversity within a host. Phylogenetic analysis demonstrated that sequences from vaccinated individuals were intermixed with sequences from unvaccinated individuals, further confirming 156 no distinct features of post vaccination infections (Figure S2). 157

In-depth metagenomic analysis of 513 samples did not reveal any viral co-infections(Supplementary Data File).

# 160 Age, underlying conditions, and vaccination status are associated with disease severity

We evaluated associations between disease severity and demographic characteristics, 161 162 underlying health conditions, vaccination status, and SARS-CoV-2 variant. Disease severity was defined according to the WHO clinical progression scale<sup>22</sup>. Mild disease included asymptomatic 163 infection and symptomatic infection without hospitalization. Moderate disease included 164 hospitalized individuals without oxygen therapy or oxygen by mask or nasal prongs. Severe 165 disease included the use of oxygen by noninvasive or high flow, intubation and mechanical 166 167 ventilation, vasopressors, dialysis, or extracorporeal membrane oxygenation. Death included inhospital deaths directly linked to COVID. 168

169 Using an adjusted multinomial logistic regression model that included demographic 170 characteristics, underlying conditions, vaccination status and variant, we found that age, certain underlying medical conditions, and time since most recent vaccination were significantly 171 associated with disease severity (Table 5). Underlying health conditions significantly associated 172 173 with disease severity included chronic lung disease, renal disease, and the use of systemic 174 immunosuppressive therapy prior to hospitalization. Other conditions showed weak or nonsignificant associations with disease severity, including pregnancy, diabetes, liver disease, and 175 autoimmune disease. The Omicron variant did not show a significant association with disease 176 177 severity compared to the Delta variant in the adjusted model although an association was observed in an unadjusted model (Table 5, Table S3). Finally, compared to unvaccinated 178 individuals, vaccination within 91-180 days (about 3 - 6 months) was associated with lower odds 179 180 of moderate disease, severe disease, and death (Table 5). There were similar effects across all disease severity outcomes when vaccination occurred between 181 – 270 days (about 6 to 9 181 months). When vaccination occurred more than 270 days ago, however, there were no significant 182 differences in disease severity when compared to the unvaccinated group. Additionally, 183 vaccination that had occurred within the past 90 days (about 3 months) was associated with 184 lower odds of moderate disease relative to mild disease but was not associated with lower odds 185 of severe disease or death. In short, vaccinations were most protective against moderate disease, 186 severe disease, and death when they occurred within the prior 3-9 months. Overall, after 187 188 controlling for multiple host and viral factors, we found that age, chronic lung disease, renal disease, and immunosuppressive therapy increased the odds of progressively more severe 189 COVID-19 disease, while vaccination decreased the odds and SARS-CoV-2 variant had no 190 191 effect.

192

# 193 DISCUSSION

Our comprehensive analysis of host and viral factors associated with SARS-CoV-2 194 disease severity in a setting with low vaccination rates led to several key findings. First, age and 195 underlying health conditions – especially chronic lung disease, renal disease, and the use of 196 immunosuppressive therapy – were associated with more severe disease and death. Second, 197 SARS-CoV-2 variant and viral mutations were not associated with disease severity in this study 198 199 population, which was comprised of individuals who sought medical care. And third, vaccination was protective against severe outcomes for both Delta and Omicron variants to a similar degree. 200 Unique features of our study included the analysis of a large number of SARS-CoV-2 full viral 201 202 genome sequences linked to extensive clinical and demographic data, and our focus on a relatively under-studied region of the U.S. 203

Georgia is an important proxy for the southeastern U.S. and other populations with high 204 numbers of vaccine refusals, inequitable access to healthcare, and low insurance coverage<sup>23-25</sup>. 205 Emphasizing the positive impact of SARS-CoV-2 vaccination among this population, similar to 206 others in the U.S.<sup>26,27</sup>, is critical as new variants emerge. It is also important to note that among 207 208 the individuals in this study who contracted SARS-CoV-2 after being vaccinated, a greater 209 proportion reported milder upper respiratory symptoms like sore throat and runny nose, while a 210 lower percentage experienced more severe symptoms such as nausea/vomiting, fever, and shortness of breath/difficulty breathing, in comparison to unvaccinated individuals. Vaccinations 211 were most protective against severe COVID outcomes when they occurred within the prior 3-9 212 213 months. This finding has timely implications on a national level, given persistently low vaccine uptake, especially of the bivalent SARS-CoV-2 vaccine<sup>5</sup>, and the need for ongoing vaccine 214

updates targeting emerging variants<sup>4</sup>. Results from our study will help emphasize the benefits of
vaccination to the public as a means of safeguarding against severe COVID outcomes.

217 Our results also indicated the importance of demographic and clinical factors associated 218 with SARS-CoV-2 disease severity, despite vaccination. Age was a key risk factor; after accounting for vaccination status, demographic factors, health conditions, and SARS-CoV-2 219 220 variant, our analysis revealed that for each additional year of age, the odds of experiencing more severe outcomes compared to mild disease increased by 5%. The association between age and 221 disease severity has been consistently observed, particularly among individuals aged 65 and 222 223 above<sup>7-10</sup>. Thus, relying solely on vaccination may be insufficient for reducing disease severity and mortality among older individuals. U.S. Census Bureau data indicates that the population is 224 aging, with Georgians aging at an even faster rate<sup>28</sup>, underscoring the need for additional 225 preventative and treatment measures. 226

In addition to age, we found that chronic lung disease, renal disease, and the use of 227 228 immunosuppressive therapy also increased the odds of experiencing moderate and/or severe infection and/or death. In previous studies, cardiovascular disease, diabetes, chronic respiratory 229 conditions, obesity, and compromised immune systems have also been found to increase the risk 230 231 of severe illness<sup>10-17</sup>. Interestingly, we found that cardiovascular disease was only associated with moderate disease (without any association with severe disease or mortality), while diabetes and 232 being overweight were not associated with disease severity in our final multivariate model. One 233 explanation for this discrepancy could be that these two conditions serve as indicators for factors 234 that we controlled in our study. It is noteworthy that when we did not adjust for any factors, these 235 236 conditions were significantly associated with increased odds of severe disease.

It is surprising that we found no difference in disease severity between Delta and Omicron variants, since multiple prior studies have found that the risk of hospitalization, ICU admission, and mortality vary by variant<sup>11,18,19,29</sup>. This discrepancy may be due to the fact that all individuals in our study sought medical care, so we did not include individuals with minimal symptoms. Our observation that vaccination was similarly protective for individuals with Delta and Omicron is consistent with results from another recent study among hospitalized patients<sup>30</sup>.

We did not find viral factors associated with post-vaccine infection. Most post-vaccine 243 infections were caused by the predominant lineage of the time. Within each variant (Delta and 244 245 Omicron), no SARS-CoV-2 SNPs, deletions, or insertions were more common in vaccinated individuals than unvaccinated individuals. These results are different from a prior study of 246 similar size, which found more resistance mutations (e.g. L452\* and E484\*) in vaccinated 247 compared to unvaccinated individuals in the pre-Omicron era<sup>16</sup>. Our negative finding likely 248 reflects the challenge of identifying the effect of an individual virus mutation in an increasingly 249 complex immune landscape. Interestingly, we found that vaccinated individuals had fewer non-250 lineage-defining SNPs than unvaccinated individuals, suggesting less diversity and potentially 251 252 less viral evolution within vaccinated individuals. This is consistent with a recent study 253 investigating within-host genetic diversity of SARS-CoV-2 in unvaccinated and vaccinated individuals.31 254

Our study had several limitations: We only included individuals who presented to care, thus skewing our study population towards individuals with more severe disease than the general population. In addition, due to our study design, we could not collect reliable data regarding prior SARS-CoV-2 infection(s) thus, we were unable to account for natural immunity. Given the retrospective study design, there may be residual confounding, however we adjusted for

260 important variables such age, demographics, pre-existing health conditions and vaccination261 status.

| 262                                                         | In summary, our findings underscore the critical role of vaccination status, age, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 263                                                         | medical comorbidities - especially immunosuppression, chronic kidney disease, and chronic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 264                                                         | lung disease – in determining disease severity and outcomes among SARS-CoV-2 infected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 265                                                         | individuals, regardless of virus variant. We contribute valuable insights into the nuanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 266                                                         | relationship between these factors, highlighting the importance of considering demographic,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 267                                                         | clinical, and genetic variables when evaluating disease severity. Ultimately, our results will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 268                                                         | valuable in strengthening and reinforcing messaging around SARS-CoV-2 vaccination,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 269                                                         | especially in settings of low vaccine uptake.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 270                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 271                                                         | METHODS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 272                                                         | Clinical and demographic data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 272<br>273                                                  | <b>Clinical and demographic data</b><br>This study was approved by the institutional review board at Emory University under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 272<br>273<br>274                                           | Clinical and demographic data<br>This study was approved by the institutional review board at Emory University under<br>protocol STUDY00000260, with a waiver of consent. All positive SARS-CoV-2 samples from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 272<br>273<br>274<br>275                                    | Clinical and demographic data<br>This study was approved by the institutional review board at Emory University under<br>protocol STUDY00000260, with a waiver of consent. All positive SARS-CoV-2 samples from<br>Emory University Hospital Molecular and Microbiology Laboratories collected between 5/3/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 272<br>273<br>274<br>275<br>276                             | Clinical and demographic data<br>This study was approved by the institutional review board at Emory University under<br>protocol STUDY00000260, with a waiver of consent. All positive SARS-CoV-2 samples from<br>Emory University Hospital Molecular and Microbiology Laboratories collected between 5/3/21<br>and 5/31/22 were reviewed for inclusion in this study. In addition to symptomatic testing, SARS-                                                                                                                                                                                                                                                                                                                                                                                               |
| 272<br>273<br>274<br>275<br>276<br>277                      | Clinical and demographic data<br>This study was approved by the institutional review board at Emory University under<br>protocol STUDY00000260, with a waiver of consent. All positive SARS-CoV-2 samples from<br>Emory University Hospital Molecular and Microbiology Laboratories collected between 5/3/21<br>and 5/31/22 were reviewed for inclusion in this study. In addition to symptomatic testing, SARS-<br>CoV-2 tests were administered before admission or outpatient procedure as part of Emory                                                                                                                                                                                                                                                                                                    |
| 272<br>273<br>274<br>275<br>276<br>277<br>278               | Clinical and demographic data<br>This study was approved by the institutional review board at Emory University under<br>protocol STUDY00000260, with a waiver of consent. All positive SARS-CoV-2 samples from<br>Emory University Hospital Molecular and Microbiology Laboratories collected between 5/3/21<br>and 5/31/22 were reviewed for inclusion in this study. In addition to symptomatic testing, SARS-<br>CoV-2 tests were administered before admission or outpatient procedure as part of Emory<br>Healthcare System's universal SARS-CoV-2 screening. Individuals were considered vaccinated                                                                                                                                                                                                      |
| 272<br>273<br>274<br>275<br>276<br>277<br>278<br>278<br>279 | Clinical and demographic data<br>This study was approved by the institutional review board at Emory University under<br>protocol STUDY00000260, with a waiver of consent. All positive SARS-CoV-2 samples from<br>Emory University Hospital Molecular and Microbiology Laboratories collected between 5/3/21<br>and 5/31/22 were reviewed for inclusion in this study. In addition to symptomatic testing, SARS-<br>CoV-2 tests were administered before admission or outpatient procedure as part of Emory<br>Healthcare System's universal SARS-CoV-2 screening. Individuals were considered vaccinated<br>if they had received a complete vaccine series (2 doses of the Pfizer-BioNTech or Moderna                                                                                                         |
| 272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280 | Clinical and demographic data<br>This study was approved by the institutional review board at Emory University under<br>protocol STUDY00000260, with a waiver of consent. All positive SARS-CoV-2 samples from<br>Emory University Hospital Molecular and Microbiology Laboratories collected between 5/3/21<br>and 5/31/22 were reviewed for inclusion in this study. In addition to symptomatic testing, SARS-<br>CoV-2 tests were administered before admission or outpatient procedure as part of Emory<br>Healthcare System's universal SARS-CoV-2 screening. Individuals were considered vaccinated<br>if they had received a complete vaccine series (2 doses of the Pfizer-BioNTech or Moderna<br>vaccines or 1 dose of the Janssen vaccine) at least 14 days before their first positive test result. |

state residency. From May 2021- September 2021, individuals were included in the study on a
case-match basis; for each post-vaccine case identified, 2-3 non-vaccinated control cases were
selected at random from the positive samples tested in the same calendar week. From October
2021- May 2022, all SARS-CoV-2 positive individuals identified who met inclusion criteria
were included.

The Centers for Disease Control and Prevention (CDC)-funded Georgia Emerging 287 Infections Program (GA EIP) performs active, population- and laboratory- based surveillance for 288 hospitalized cases of SARS-CoV-2 in metropolitan Atlanta, GA (population ~4 million). Patient 289 vaccination status was retrieved by GA EIP from the Georgia Registry of Immunization 290 Transactions and Services (GRITS) database. State of residency was retrieved from Georgia's 291 292 State Electronic Notifiable Disease Surveillance System (SENDSS). Patient demographics, 293 SARS-CoV-2 RT-PCR results, and C<sub>T</sub> value, underlying medical conditions, symptomatic illness, hospitalization, and disease outcome were obtained from the electronic medical record 294 (EMR). In constructing symptom categories, systemic symptoms were defined as fatigue, fever, 295 chills, rigors, myalgia, and headache. Gastrointestinal symptoms were defined as 296 nausea/vomiting and diarrhea. Upper respiratory symptoms were defined as sore throat, runny 297 nose, and nasal congestion. Lower respiratory symptoms were defined as cough, and shortness of 298 breath/difficulty breathing. Immunosuppressed was defined as HIV, active cancer, autoimmune 299 disease, or immunosuppressive therapy. "Other" underlying conditions were defined as 300 301 overweight, diabetes, renal, cardiovascular, pregnant, and liver disease.

Disease severity was defined according to the WHO clinical progression scale<sup>22</sup>. The scale includes mild disease- asymptomatic and symptomatic SARS-CoV-2 infection without hospitalization, moderate disease- hospitalization without oxygen therapy or hospitalization with

| 305 | oxygen hy  | mask i | or nasal | nrongs   | severe | disease- | hosnit | alizat | ion  | with 1 | ise of | ovvoen l | hv |
|-----|------------|--------|----------|----------|--------|----------|--------|--------|------|--------|--------|----------|----|
| 202 | UNY gui UY | mask v | or masar | proligs, | SUVUIU | uiscase- | nospn  | anzai  | JUII |        | 130 01 | UAYgeni  | Jy |

- 306 noninvasive or high flow, intubation and mechanical ventilation, vasopressors, dialysis, or
- 307 extracorporeal membrane oxygenation, and death.
- Data management and cleaning were conducted in Excel v16.73 and SAS studio v3.81.

# 309 SARS-CoV-2 sequencing and analysis

Residual nasopharyngeal (NP) swab samples were obtained from the Emory University

Hospital Molecular and Microbiology Laboratories. NP samples underwent RNA extraction,

312 DNase treatment, and cDNA synthesis followed by metagenomic or amplicon-based library

313 construction. For metagenomic sequencing, Nextera XT (Illumina) and Illumina sequencing

314 were performed as previously described<sup>32</sup>. Amplicon-based sequencing was performed using the

315 xGEN SARS-CoV-2 kit (IDT) as previously described<sup>33</sup>.

316 Reference-based SARS-CoV-2 genome assembly was performed using viral-ngs

v2.1.12.0<sup>34</sup> or Viralrecon<sup>35</sup> for metagenomic and amplicon sequencing, respectively, with

reference strain NC\_045512. SARS-CoV-2 lineages were determined using Pangolin<sup>36</sup>.

319 Sequences were aligned and visualized in Geneious Prime (<u>https://www.geneious.com</u>).

320 Consensus-level single nucleotide polymorphisms (SNPs) and insertions/deletions were

identified using the Nextstrain web-based mutation calling tool $^{37}$ .

# For phylogenetic analysis, 411,634 reference sequences, collected between May 1, 2021, and May 31, 2022, were downloaded from NCBI and were aligned with our study sequences to reference strains Wuhan/Hu-1/2019 and Wuhan/WHO/2019 using Nextalign within the Nextstrain v3.2.4 pipeline 7. This dataset was subsampled in Nextstrain using a custom scheme, in which crowd penalty was set to 0.0 to select 1000 sequences most genetically similar to our

| 327 | sequence dataset. Maximum likelihood phylogenetic trees were constructed using default        |
|-----|-----------------------------------------------------------------------------------------------|
| 328 | settings of the Nextstrain SARS-CoV-2 Workflow with TreeTime v0.8.6 <sup>38</sup> .           |
| 329 | Viral metagenomic analysis                                                                    |
| 330 | To assess the presence of viral co-infections in 513 samples that underwent metagenomic       |
| 331 | sequencing, reads were first passed through a pre-processing pipeline including deduplication |
| 332 | with Clumpify.sh in the BBMap tools (https://sourceforge.net/projects/bbmap/). Deduplicated   |
| 333 | reads were trimmed with Trimmomatic Version 0.40 and filtered for quality, with flags         |
| 334 | leading:3, trailing:3, slidingwindow:4:15, minlen:36                                          |
| 335 | (https://github.com/usadellab/Trimmomatic). Pre-processed reads were run through kraken2      |
| 336 | v2.1.3 against the k2_pluspf_20210127 database to assign each read to a taxonomic group, then |
| 337 | adjusted for significance with Bracken. Within the Kraken Tools packages, the                 |
| 338 | extract_kraken_reads.py script was used to separate reads by taxonomic ID for human           |
| 339 | taxID_hg="9606", bacteria taxID_bac="2", fungus taxID_fungus="4751", viruses                  |
| 340 | taxID_virus="10239", and COVID-19 taxID_COVID="2697049". Custom shell and R scripts           |
| 341 | were used to determine if the following viruses were found in each sample:                    |
| 342 | Human mastadenovirus C taxID=129951, Coronavirus HKU1 taxID=443239, Coronavirus               |
| 343 | NL63 taxID=277944, Coronavirus 299E taxID=11137, Coronavirus OC43 taxID=31631, SARS-          |
| 344 | CoV-2 taxID=2697049, Paramyxoviridae taxID=11158, Human metapneumovirus                       |
| 345 | taxID=162145, Parainfluenza virus taxID=2905673, Respiratory syncytial virus taxID=12814,     |
| 346 | Picornaviridae taxID=12058, Rhinovirus taxID=31708, Enterovirus taxID=12059,                  |
| 347 | Orthomyxoviridae taxID=11308, Influenza A taxID=382835, and Influenza B taxID=11520.          |
| 348 |                                                                                               |

349 Statistical Analysis

Demographics, symptoms, underlying conditions, and outcomes were described using frequency distributions for categorical variables and medians and interquartile ranges for continuous variables. Subgroup differences were evaluated to compare individuals who were vaccinated with individuals who were not vaccinated, using chi-square tests and Fisher's exact tests for categorical variables and Wilcoxon rank-sum test for continuous variables.

Prior to testing, the association between clinical factors and mean  $C_T$  was compared between qRT-PCR testing platforms using ANOVA. There were significant differences between the platforms indicating that platform is an important covariate to control for while modeling factors associated with  $C_T$ .

Missing values were imputed using the chained equations algorithm in the MICE R package<sup>39</sup> (R Version 4.1.3) to create 10 imputed data sets. Predictive mean matching, logistic regression imputation, and polytomous regression imputation were used for numerical, binary, and multicategory variables, respectively. Results from the 10 linear regression models ran on the imputed datasets were then pooled according to Rubin's rule to provide an overall estimate for the variables.

Multinomial logistic regressions were used to test the association between demographic 365 characteristics, underlying conditions, vaccine status, and SARS-CoV-2 variant with disease 366 severity (1=Mild [Reference Category], 2=Moderate, 3=Severe, 4=Death). First, unadjusted 367 368 models tested each variable's association with disease severity separately. Next, multivariable models were constructed in a step-wise fashion, adding variables in blocks of demographic 369 variables, including age (continuous), sex (0=Female[Reference], 1=Male), and 370 371 race(0=Black[Reference], 1=White), followed by a block of underlying condition variables, all 372 of which were binary (0=No, 1=Yes; pregnant, chronic lung disease, hypertension, overweight,

| 272 cordiovacciilar dicaaca diabatac ranal dicaaca livar d     | 100000 Distrimming dicooco |
|----------------------------------------------------------------|----------------------------|
| 575 – Calulovasculai uiscasci ulaikuksi tehai uiscasci livel u |                            |
|                                                                |                            |

- immunocompromised, systemic immunosuppressive therapy/medications), and the final model
- added a block of SARS-CoV-2-related characteristics including vaccination status
- 376 (1=Unvaccinated [Reference], 2=Vaccinated, 3=Vaccinated and Boosted), Days Since Most
- Recent Vaccination/Booster (1=Unvaccinated [Reference], 2=Within past 90 Days, 3=91 180
- 378 Days Ago, 4=181 270 Days Ago, 5=More than 270 Days Ago) and variant
- 379 (1=Delta[Reference], 2=Omicron). The multivariable models were tested for multicollinearity
- using variance inflation factor (VIF), though collinearity was not present, so all variables were

381 retained.

All analyses were conducted in R Version 4.1.3 (R Foundation for Statistical Computing,Vienna, Austria).

### **384 ACKNOWLEDGEMENTS:**

The study was supported by Centers for Disease Control and Preventions contract 385 75D30121C10084 under BAA ERR 20-15-2997 (to A.P) and by the Emory WHSC COVID-19 386 Urgent Research Engagement (CURE) Center, made possible by generous philanthropic support 387 from the O. Wayne Rollins Foundation and the William Randolph Hearst Foundation (to A.P.). 388 L.R.C. was supported by Award Number T32AI074492 from the National Institute of Allergy 389 and Infectious Diseases. EIP Surveillance of COVID-19 was funded through the Centers for 390 391 Disease Control and Preventions Emerging Infections Program [U50CK000485]. The study was supported by the National Institute of Biomedical Imaging and Bioengineering at the National 392 Institutes of Health under award U54 EB027690 (to W.A.L.) and the National Center for 393 394 Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR002378 (to W.A.L.). Additional support was provided by the Georgia Clinical & 395

| 396 | Translational Science Alliance of the National Institutes of Health under Award Number           |
|-----|--------------------------------------------------------------------------------------------------|
| 397 | UL1TR002378. The study was supported in part by the Emory Integrated Genomics Core               |
| 398 | (EIGC) and Emory Integrated Computational Core (EICC), which are subsidized by the Emory         |
| 399 | University School of Medicine and are one of the Emory Integrated Core Facilities. The study     |
| 400 | was supported by the Data Analytics and Pediatric Biostatistics Core, Department of Pediatrics,  |
| 401 | Emory University School of Medicine. The content is solely the responsibility of the authors and |
| 402 | does not necessarily represent the official views of the National Institute of Allergy and       |
| 403 | Infectious Diseases or the National Institutes of Health. The funders played no role in study    |
| 404 | design, data collection and analysis, decision to publish, or preparation of the manuscript.     |
| 405 |                                                                                                  |
| 406 | Data Availability                                                                                |
| 407 | All sequence data are available in NCBI under BioProject PRJNA634356. The GISAID                 |
| 408 | accession number for each sequence is listed in the Supplementary Data File.                     |
| 409 |                                                                                                  |
| 410 | Author contributions:                                                                            |
| 410 | Concentualization: LRC ADR AR AP                                                                 |
| 411 | Mathadalagy: LPC KPO IIW AP P7 77 PA LLAW                                                        |
| 412 | Investigation: LPC ADD IIW DHK ECE AD DN AT                                                      |
| 415 | Validation: ADP, DHV, AD                                                                         |
| 414 | Visualization: LPC EW VL PMI                                                                     |
| 415 | Data Curation: LPC ADD DHK AD AA IHC                                                             |
| 410 | Eunding acquisition: KDO, WAL, AD                                                                |
| 417 | Project administration: LPC DUK AD                                                               |
| 410 | Sumarrisian LDC DAC AD DZ                                                                        |
| 419 | Supervision: LKC, DAG, AP, KZ                                                                    |
| 420 | Writing – original draft: LKC, KML, ZZ                                                           |

- 421 Writing review & editing: DHK, ECF, AB, AP, RML, RZ, RA, JJW, LJ, AW, WAL
- 422 Resources: DHK, ECF, DAG, AP, CK, DH
- 423 Statistical analyses: RZ, AA, ZZ, LJ, AW
- 424 Unrestricted access to all data: KPO, AP
- 425 First draft of the manuscript, reviewed it and edited it: LRC, AP
- 426 All authors agreed to submit the manuscript, read and approved the final draft and take full
- 427 responsibility of its content, including the accuracy of the data and the fidelity of the trial to the
- 428 registered protocol and its statistical analysis.

# 429 **Competing interests:**

430 The authors have declared that no competing interests exist.

431

# 433 **REFERENCES**:

- Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA
   Covid-19 Vaccine. *N Engl J Med.* Dec 31 2020;383(27):2603-2615.
- 436 doi:10.1056/NEJMoa2034577
- 437 2. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-
- 438 CoV-2 Vaccine. *New England Journal of Medicine*. 2020;384(5):403-416.
- 439 doi:10.1056/NEJMoa2035389
- 440 3. Sadoff J, Gray G, Vandebosch A, et al. Safety and Efficacy of Single-Dose
- 441 Ad26.COV2.S Vaccine against Covid-19. *New England Journal of Medicine*.
- 442 2021;384(23):2187-2201. doi:10.1056/NEJMoa2101544
- 443 4. Food and Drug Administration. Updated COVID-19 Vaccines for Use in the United 444 States Beginning in Fall 2023. Updated June 16, 2023. Accessed August 10, 2023,
- https://www.fda.gov/vaccines-blood-biologics/updated-covid-19-vaccines-use-united-states beginning-fall-2023
- 5. Centers for Disease Control and Prevention. COVID-19 Vaccinations in the United
- 448 States. Updated May 11,2023. Accessed August 10, 2023, <u>https://covid.cdc.gov/covid-data-</u>
   449 tracker/#vaccinations vacc-people-booster-percent-pop5
- Murthy BP, Sterrett N, Weller D, et al. Disparities in COVID-19 Vaccination Coverage
  Between Urban and Rural Counties United States, December 14, 2020-April 10, 2021. MMWR
- 452 *Morb Mortal Wkly Rep.* May 21 2021;70(20):759-764. doi:10.15585/mmwr.mm7020e3
- 453 7. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult
- 454 inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *The Lancet*. 455 2020:395(10229):1054-1062 doi:10.1016/S0140-6736(20)30566-3
- 455 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3
- 456 8. Antonelli M, Penfold RS, Merino J, et al. Risk factors and disease profile of post-
- vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a
   prospective, community-based, nested, case-control study. *Lancet Infect Dis.* Sep 1
- 459 2021;doi:10.1016/S1473-3099(21)00460-6
- 460 9. Chemaitelly H, Tang P, Hasan MR, et al. Waning of BNT162b2 Vaccine Protection
- 461 against SARS-CoV-2 Infection in Qatar. *N Engl J Med.* Dec 9 2021;385(24):e83.
- 462 doi:10.1056/NEJMoa2114114
- Levin EG, Lustig Y, Cohen C, et al. Waning Immune Humoral Response to BNT162b2
  Covid-19 Vaccine over 6 Months. *N Engl J Med.* Dec 9 2021;385(24):e84.
- 465 doi:10.1056/NEJMoa2114583
- 466 11. Fisman DN, Tuite AR. Evaluation of the relative virulence of novel SARS-CoV-2
- 467 variants: a retrospective cohort study in Ontario, Canada. *Cmaj.* Oct 25 2021;193(42):E1619-
- 468 e1625. doi:10.1503/cmaj.211248
- 469 12. Lustig Y, Sapir E, Regev-Yochay G, et al. BNT162b2 COVID-19 vaccine and correlates
- 470 of humoral immune responses and dynamics: a prospective, single-centre, longitudinal cohort
- 471 study in health-care workers. *Lancet Respir Med.* Sep 2021;9(9):999-1009. doi:10.1016/S2213472 2600(21)00220-4
- 473 13. Russell CD, Lone NI, Baillie JK. Comorbidities, multimorbidity and COVID-19. *Nature* 474 *Medicine*. 2023/02/01 2023;29(2):334-343. doi:10.1038/s41591-022-02156-9
- 475 14. Di Fusco M, Moran MM, Cane A, et al. Evaluation of COVID-19 vaccine breakthrough
- infections among immunocompromised patients fully vaccinated with BNT162b2. *J Med Econ*.
- 477 Jan-Dec 2021;24(1):1248-1260. doi:10.1080/13696998.2021.2002063

15. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among 478 479 Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence - 25 U.S. Jurisdictions, April 4-December 25, 2021. 480 481 *MMWR Morb Mortal Wkly Rep.* Jan 28 2022;71(4):132-138. doi:10.15585/mmwr.mm7104e2 Servellita V, Morris MK, Sotomayor-Gonzalez A, et al. Predominance of antibody-482 16. resistant SARS-CoV-2 variants in vaccine breakthrough cases from the San Francisco Bay Area, 483 California. Nat Microbiol. Feb 2022;7(2):277-288. doi:10.1038/s41564-021-01041-4 484 Tenforde MW, Self WH, Adams K, et al. Association Between mRNA Vaccination and 485 17. COVID-19 Hospitalization and Disease Severity. JAMA. 2021;326(20):2043-2054. 486 doi:10.1001/jama.2021.19499 487 488 18. Lin L, Liu Y, Tang X, He D. The Disease Severity and Clinical Outcomes of the SARS-489 CoV-2 Variants of Concern. Systematic Review. Frontiers in Public Health. 2021-November-30 2021;9doi:10.3389/fpubh.2021.775224 490 Funk T, Pharris A, Spiteri G, et al. Characteristics of SARS-CoV-2 variants of concern 491 19. B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021. Euro 492 Surveill. Apr 2021;26(16)doi:10.2807/1560-7917.Es.2021.26.16.2100348 493 494 20. Willett BJ, Grove J, MacLean OA, et al. SARS-CoV-2 Omicron is an immune escape 495 variant with an altered cell entry pathway. Nature Microbiology. 2022/08/01 2022;7(8):1161-1179. doi:10.1038/s41564-022-01143-7 496 497 21. Chaguza C, Coppi A, Earnest R, et al. Rapid emergence of SARS-CoV-2 Omicron variant is associated with an infection advantage over Delta in vaccinated persons. Med. May 13 498 2022;3(5):325-334 e4. doi:10.1016/j.medj.2022.03.010 499 500 Marshall JC, Murthy S, Diaz J, et al. A minimal common outcome measure set for 22. 501 COVID-19 clinical research. The Lancet Infectious Diseases. 2020;20(8):e192-e197. doi:10.1016/S1473-3099(20)30483-7 502 503 23. Medcalfe SK, Slade CP. Racial residential segregation and COVID-19 vaccine uptake: an analysis of Georgia USA county-level data. BMC Public Health. Jul 20 2023;23(1):1392. 504 doi:10.1186/s12889-023-16235-0 505 Nguyen TH, Shah GH, Schwind JS, Richmond HL. Community Characteristics and 506 24. 507 COVID-19 Outcomes: A Study of 159 Counties in Georgia, United States. J Public Health Manag Pract. May-Jun 01 2021;27(3):251-257. doi:10.1097/phh.000000000001330 508 Berman AE, Miller DD, Rahn DW, et al. A County-Level Analysis of Socioeconomic 509 25. 510 and Clinical Predictors of COVID-19 Incidence and Case-Fatality Rates in Georgia, March-511 September 2020. Public Health Reports. 2021/09/01 2021;136(5):626-635. doi:10.1177/00333549211023267 512 513 26. Skarbinski J, Wood MS, Chervo TC, et al. Risk of severe clinical outcomes among 514 persons with SARS-CoV-2 infection with differing levels of vaccination during widespread Omicron (B.1.1.529) and Delta (B.1.617.2) variant circulation in Northern California: A 515 516 retrospective cohort study. Lancet Reg Health Am. Aug 2022;12:100297. 517 doi:10.1016/j.lana.2022.100297 Lewnard JA, Hong VX, Patel MM, Kahn R, Lipsitch M, Tartof SY. Clinical outcomes 518 27. 519 associated with SARS-CoV-2 Omicron (B.1.1.529) variant and BA.1/BA.1.1 or BA.2 subvariant infection in Southern California. Nat Med. Sep 2022;28(9):1933-1943. doi:10.1038/s41591-022-520 521 01887-z 522 28. United States Census Bureau. U.S. Older Population Grew From 2010 to 2020 at Fastest

523 Rate Since 1880 to 1890. Updated May 25,2023. Accessed August 10, 2023,

- 524 <u>https://www.census.gov/library/stories/2023/05/2020-census-united-states-older-population-</u>
- 525 grew.html#:~:text=The%20older%20population%20increased%20by,total%20population%20(ab
   526 out%20200%25).
- 527 29. Hyams C, Challen R, Marlow R, et al. Severity of Omicron (B.1.1.529) and Delta
- 528 (B.1.617.2) SARS-CoV-2 infection among hospitalised adults: a prospective cohort study in
- 529 Bristol, United Kingdom. The Lancet Regional Health Europe.
- 530 2023;25doi:10.1016/j.lanepe.2022.100556
- 531 30. Robinson ML, Morris CP, Betz JF, et al. Impact of Severe Acute Respiratory Syndrome
- 532 Coronavirus 2 Variants on Inpatient Clinical Outcome. *Clinical Infectious Diseases*.
- 533 2022;76(9):1539-1549. doi:10.1093/cid/ciac957
- 534 31. Gu H, Quadeer AA, Krishnan P, et al. Within-host genetic diversity of SARS-CoV-2
- lineages in unvaccinated and vaccinated individuals. *Nature Communications*. 2023/03/31
  2023;14(1):1793. doi:10.1038/s41467-023-37468-y
- 537 32. Babiker A, Bradley HL, Stittleburg VD, et al. Metagenomic Sequencing To Detect
- Respiratory Viruses in Persons under Investigation for COVID-19. *J Clin Microbiol*. Dec 17
   2020;59(1)doi:10.1128/JCM.02142-20
- 540 33. Sexton ME, Waggoner JJ, Carmola LR, et al. Rapid Detection and Characterization of
- 541 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Omicron Variant in a
- 542 Returning Traveler. *Clin Infect Dis*. Aug 24 2022;75(1):e350-e353. doi:10.1093/cid/ciac032
- 543 34. Park DJ, Dudas G, Wohl S, et al. Ebola virus epidemiology, transmission, and evolution
  544 during seven months in Sierra Leone. *Cell*. 2015;161(7):1516-1526.
- 545 35. Patel H, Varona S, Monzón S, et al. nf-core/viralrecon: nf-core/viralrecon v2.2 Tin
   546 Turtle. 2021;doi:https://doi.org/10.5281/zenodo.5146252
- 547 36. Rambaut A, Holmes EC, O'Toole A, et al. A dynamic nomenclature proposal for SARS-
- 548 CoV-2 lineages to assist genomic epidemiology. *Nat Microbiol*. Nov 2020;5(11):1403-1407.
   549 doi:10.1038/s41564-020-0770-5
- 550 37. Hadfield J, Megill C, Bell SM, et al. Nextstrain: real-time tracking of pathogen evolution.
- 551 *Bioinformatics*. Dec 1 2018;34(23):4121-4123. doi:10.1093/bioinformatics/bty407
- 38. Sagulenko P, Puller V, Neher RA. TreeTime: Maximum-likelihood phylodynamic
  analysis. *Virus Evolution*. 2018;4(1)doi:10.1093/ve/vex042
- 554 39. van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained
- Equations in R. Journal of Statistical Software. 12/12 2011;45(3):1 67.
- 556 doi:10.18637/jss.v045.i03
- 557

# 560 TABLES:

| Table 1. Demographic Characteristics by Vaccination Status |                                       |                 |               |                       |  |  |  |
|------------------------------------------------------------|---------------------------------------|-----------------|---------------|-----------------------|--|--|--|
| Variable                                                   | Overall,                              | Unvaccinated,   | Vaccinated,   | <b>p</b> <sup>2</sup> |  |  |  |
|                                                            | $N = 1,957^{1}$                       | $N = 1,024^{1}$ | $N = 933^{1}$ | -                     |  |  |  |
| Age                                                        | ·                                     | ·               |               |                       |  |  |  |
| Age (in years)                                             | 51 (36, 65)                           | 43 (31, 59)     | 58 (43, 70)   | < 0.001               |  |  |  |
| Age (by decade)                                            |                                       |                 |               | < 0.001               |  |  |  |
| 18-29                                                      | 275 (14%)                             | 216 (21%)       | 59 (6.3%)     |                       |  |  |  |
| 30-39                                                      | 342 (17%)                             | 225 (22%)       | 117 (13%)     |                       |  |  |  |
| 40-49                                                      | 325 (17%)                             | 178 (17%)       | 147 (16%)     |                       |  |  |  |
| 50-59                                                      | 317 (16%)                             | 152 (15%)       | 165 (18%)     |                       |  |  |  |
| 60-69                                                      | 332 (17%)                             | 133 (13%)       | 199 (21%)     |                       |  |  |  |
| 70-79                                                      | 228 (12%)                             | 80 (7.8%)       | 148 (16%)     |                       |  |  |  |
| 80-89                                                      | 113 (5.8%)                            | 31 (3.0%)       | 82 (8.8%)     |                       |  |  |  |
| 90+                                                        | 25 (1.3%)                             | 9 (0.9%)        | 16 (1.7%)     |                       |  |  |  |
| Sex                                                        |                                       |                 |               | 0.10                  |  |  |  |
| Female                                                     | 1,093 (56%)                           | 590 (58%)       | 503 (54%)     |                       |  |  |  |
| Male                                                       | 864 (44%)                             | 434 (42%)       | 430 (46%)     |                       |  |  |  |
| Race                                                       |                                       |                 |               | < 0.001               |  |  |  |
| American Indian/Alaska Native                              | 64 (3.3%)                             | 23 (2.2%)       | 41 (4.4%)     |                       |  |  |  |
| Asian/Native Hawaiian/ Pacific                             | 3 (0.2%)                              | 1 (<0.1%)       | 2 (0.2%)      |                       |  |  |  |
| Islander                                                   | · · · · · · · · · · · · · · · · · · · |                 | · · · · · ·   |                       |  |  |  |
| Black                                                      | 1,137 (58%)                           | 721 (70%)       | 416 (45%)     |                       |  |  |  |
| White                                                      | 611 (31%)                             | 211 (21%)       | 400 (43%)     |                       |  |  |  |
| Other                                                      | 6 (0.4%)                              | 5 (0.5%)        | 1 (0.1%)      |                       |  |  |  |
| Unknown                                                    | 134 (6.9%)                            | 62 (6.1%)       | 72 (7.7%)     |                       |  |  |  |
| (Missing)                                                  | 2                                     | 1               | 1             |                       |  |  |  |
| Ethnicity                                                  |                                       |                 |               | 0.99                  |  |  |  |
| Hispanic/Latino                                            | 64 (3.6%)                             | 34 (3.6%)       | 30 (3.6%)     |                       |  |  |  |
| Non-Hispanic/Latino                                        | 1,726 (96%)                           | 918 (96%)       | 808 (96%)     |                       |  |  |  |
| (Missing)                                                  | 167                                   | 72              | 95            |                       |  |  |  |
| Residence Region                                           |                                       |                 |               | 0.28                  |  |  |  |
| Metro Atlanta                                              | 1,301 (66%)                           | 692 (68%)       | 609 (65%)     | -                     |  |  |  |
| Other                                                      | 656 (34%)                             | 332 (32%)       | 324 (35%)     |                       |  |  |  |

<sup>1</sup> n (%) or median (Interquartile Range [IQR])

<sup>2</sup> Pearson's Chi-squared test or Fisher's exact test for categorical variables and Wilcoxon rank-sum test for continuous variables

| Variable                                    | <b>Overall</b> , $N = 1,957^{1}$ | Unvaccinated,<br>N = $1,024^{1}$ | Vaccinated,<br>N = $933^{1}$ | <b>p</b> <sup>2</sup> |
|---------------------------------------------|----------------------------------|----------------------------------|------------------------------|-----------------------|
| COVID Symptoms                              |                                  |                                  |                              |                       |
| Any Systemic Symptoms <sup>3</sup>          | 1,301 (82%)                      | 713 (84%)                        | 588 (81%)                    | 0.08                  |
| (Missing)                                   | 379                              | 175                              | 204                          |                       |
| Any GI Symptoms <sup>₄</sup>                | 642 (42%)                        | 387 (47%)                        | 255 (37%)                    | < 0.001               |
| (Missing)                                   | 440                              | 205                              | 235                          |                       |
| Any Upper Respiratory <sup>5</sup> Symptoms | 636 (43%)                        | 281 (35%)                        | 355 (53%)                    | < 0.001               |
| (Missing)                                   | 474                              | 216                              | 258                          |                       |
| Any Lower Respiratory <sup>6</sup> Symptoms | 1,275 (80%)                      | 675 (80%)                        | 600 (80%)                    | 0.71                  |
| (Missing)                                   | 364                              | 177                              | 187                          |                       |
| Symptom Duration at Time of Testing         |                                  |                                  |                              | < 0.01                |
| 0-3 days                                    | 681 (43%)                        | 338 (39%)                        | 343 (48%)                    |                       |
| 4-7 days                                    | 428 (27%)                        | 255 (29%)                        | 173 (24%)                    |                       |
| 8+ days                                     | 238 (15%)                        | 147 (17%)                        | 91 (13%)                     |                       |
| Asymptomatic                                | 233 (15%)                        | 125 (14%)                        | 108 (15%)                    |                       |
| (Missing)                                   | 377                              | 159                              | 218                          |                       |
| Underlying Conditions                       |                                  |                                  |                              |                       |
| Any Immunosuppressed Underlying             | 407 (22%)                        | 162 (17%)                        | 245 (28%)                    | <0.001                |
| Condition <sup>7</sup>                      | 407 (2270)                       | 102 (1770)                       | 245 (2070)                   | <0.001                |
| (Missing)                                   | 145                              | 73                               | 72                           |                       |
| Any Other Underlying Condition <sup>8</sup> | 1,164 (65%)                      | 573 (60%)                        | 591 (70%)                    | < 0.001               |
| (Missing)                                   | 155                              | 71                               | 84                           |                       |
| Disease Severity                            |                                  |                                  |                              | 0.70                  |
| Mild                                        | 1,148 (62%)                      | 609 (62%)                        | 539 (62%)                    |                       |
| Moderate                                    | 463 (25%)                        | 251 (26%)                        | 212 (24%)                    |                       |
| Severe                                      | 182 (9.9%)                       | 92 (9.4%)                        | 90 (10%)                     |                       |
| Death                                       | 51 (2.8%)                        | 24 (2.5%)                        | 27 (3.1%)                    |                       |
| (Missing)                                   | 113                              | 48                               | 65                           |                       |
| Vaccination                                 |                                  |                                  |                              |                       |
| Days Since Full Vaccination                 | 198 (141, 272)                   |                                  | 198 (141, 272)               |                       |
| (Missing)                                   | 1,024                            | —                                | 0                            |                       |
| Days Since Booster                          | 115 (63, 163)                    | —                                | 115 (63, 163)                |                       |
| (Missing)                                   | 1,796                            | —                                | 772                          |                       |
| Days Since Most Recent Vaccination/Boos     | ter                              |                                  |                              |                       |
| Unvaccinated                                | 1,024 (52%)                      | 1,024 (100%)                     | —                            |                       |
| Within past 90 Days                         | 136 (6.9%)                       | —                                | 136 (15%)                    |                       |
| 91 - 180 Days Ago                           | 402 (21%)                        | _                                | 402 (43%)                    |                       |
| 181 - 270 Days Ago                          | 283 (14%)                        | —                                | 283 (30%)                    |                       |
| More than 270 Days Ago                      | 112 (5.7%)                       |                                  | 112 (12%)                    |                       |
| Viral Load                                  |                                  |                                  |                              |                       |
| C <sub>T</sub> Value                        | 23 (19, 30)                      | 24 (19, 31)                      | 22 (18, 27)                  | < 0.001               |
| (Missing)                                   | 339                              | 164                              | 175                          |                       |

#### Table 2. Clinical Characteristics by Vaccination Status

<sup>1</sup> n (%) or median (Interquartile Range [IQR])

<sup>2</sup> Pearson's Chi-squared test or Fisher's exact test for categorical variables and Wilcoxon rank-sum test for continuous variables

- <sup>3</sup> Any Systemic symptoms included fatigue, fever, chills, rigors, myalgia, and headache
- <sup>4</sup> Any GI symptoms included nausea/vomiting, and diarrhea
- <sup>5</sup> Any Upper Respiratory symptoms included sore throat, runny nose, and nasal congestion
- <sup>6</sup> Any Lower Respiratory symptoms included cough, shortness of breath, and difficulty breathing
- <sup>7</sup> Any Immunosuppressed Underlying Condition included HIV, active cancer, autoimmune disease, immunosuppressed, or immunosuppressive therapy
- <sup>8</sup> Any Other Underlying Condition included overweight, diabetes, renal, cardiovascular, pregnant and liver disease

## 563

Table 3. Association between C<sub>T</sub> value and clinical factors

| Variable                                     | Beta  | SE   | р       |
|----------------------------------------------|-------|------|---------|
| Vaccination status                           |       |      |         |
| Unvaccinated                                 | Ref   |      | —       |
| Vaccinated                                   | -0.70 | 0.26 | 0.01    |
| Lineage                                      |       |      |         |
| Alpha                                        | Ref   |      | —       |
| Delta                                        | -0.23 | 0.87 | 0.79    |
| Omicron                                      | 1.68  | 0.92 | 0.07    |
| Symptom Duration at Time of Testing          |       |      |         |
| Asymptomatic                                 | Ref   |      | —       |
| 0-3 days                                     | -2.99 | 0.55 | < 0.001 |
| 4-7 days                                     | -1.62 | 0.61 | 0.01    |
| 8+ days                                      | 0.20  | 0.68 | 0.77    |
| Assay                                        |       |      |         |
| Cepheid Gene Xpert                           | Ref   |      | —       |
| BioFire Defense, LLC - BioFire COVID-19 Test | -1.78 | 2.82 | 0.54    |
| Cepheid - Xpert Xpress SARS-CoV-2/Flu/RSV    | -0.39 | 2.85 | 0.89    |
| Roche Cobas                                  | -0.56 | 0.35 | 0.11    |
| Other                                        | 4.37  | 7.81 | 0.59    |

SE = Standard Error, Ref = Reference Level

| Variable  | <b>Overall</b> , $N = 1,957^{1}$ | Unvaccinated,<br>$N = 1,024^{1}$ | Vaccinated,<br>N = $933^{1}$ | <b>p</b> <sup>2</sup> |
|-----------|----------------------------------|----------------------------------|------------------------------|-----------------------|
| Variant   |                                  |                                  |                              | < 0.001               |
| A.2.5     | 1 (<0.1%)                        | 0 (0%)                           | 1 (0.2%)                     |                       |
| Alpha     | 30 (2.5%)                        | 24 (4.0%)                        | 6 (1.0%)                     |                       |
| B.1       | 1 (<0.1%)                        | 0 (0%)                           | 1 (0.2%)                     |                       |
| Beta      | 1 (<0.1%)                        | 0 (0%)                           | 1 (0.2%)                     |                       |
| Delta     | 805 (68%)                        | 415 (70%)                        | 390 (66%)                    |                       |
| Gamma     | 6 (0.5%)                         | 5 (0.8%)                         | 1 (0.2%)                     |                       |
| Mu        | 4 (0.3%)                         | 4 (0.7%)                         | 0 (0%)                       |                       |
| Omicron   | 337 (28%)                        | 146 (25%)                        | 191 (32%)                    |                       |
| (Missing) | 772                              | 430                              | 342                          |                       |

#### Table 4. SARS-CoV-2 Variants by Vaccination Status

| Severity                              |             | . 1                      |           | ~ 1                                     | ,                      |        |                                        |               |        |
|---------------------------------------|-------------|--------------------------|-----------|-----------------------------------------|------------------------|--------|----------------------------------------|---------------|--------|
| Variable                              | Mode<br>aOR | rate <sup>1</sup><br>95% | р         | Severe <sup>1</sup><br>aOR <sup>2</sup> | 95%                    | р      | Death <sup>1</sup><br>aOR <sup>2</sup> | 95%           | р      |
|                                       | 2           | $\mathbf{C}\mathbf{I}^2$ |           |                                         | CI <sup>2</sup>        |        |                                        | $CI^2$        |        |
| Demographics                          | 1.05        | 1.02                     | -0.001    | 1.05                                    | 1.02                   | -0.001 | 1 00                                   | 1.05          | -0.001 |
| Age                                   | 1.05        | 1.03,                    | <0.001    | 1.05                                    | 1.03,                  | <0.001 | 1.09                                   | 1.05,         | <0.001 |
| Mala                                  | 1 20        | 1.00                     | 0.19      | 1 24                                    | 1.07                   | 0.24   | 1 01                                   | 1.13          | 0.66   |
| Male                                  | 1.20        | 0.89,                    | 0.18      | 1.54                                    | 0.82,                  | 0.24   | 1.21                                   | 0.32,         | 0.00   |
| White                                 | 0.70        | 1.83                     | 0.00      | 0.80                                    | 2.19                   | 0.67   | 0.72                                   | 2.81          | 0.52   |
| white                                 | 0.70        | 0.40,                    | 0.09      | 0.89                                    | 0.51,                  | 0.07   | 0.75                                   | 0.27,         | 0.55   |
| Underlying Conditions                 |             | 1.00                     |           |                                         | 1.34                   |        |                                        | 1.90          |        |
| Chronic Lung Disease                  | 2 10        | 1 38                     | <0.001    | 1 98                                    | 1 15                   | 0.01   | 1 31                                   | 0.50          | 0.58   |
| Chrome Lung Disease                   | 2.10        | 3 17                     | \$0.001   | 1.70                                    | 3 41                   | 0.01   | 1.51                                   | 0.50,<br>3.46 | 0.50   |
| Hypertension                          | 1.02        | 0.65                     | 0.94      | 0.97                                    | 0.53                   | 0.91   | 3 46                                   | 0.88          | 0.08   |
| Trypertension                         | 1.02        | 1.59                     | 0.74      | 0.97                                    | 1.76                   | 0.71   | 5.40                                   | 13 57         | 0.00   |
| Overweight                            | 1 40        | 0.95                     | 0.09      | 1 17                                    | 0.69                   | 0.56   | 1.61                                   | 0.65          | 0.30   |
| over weight                           | 1.40        | 2.07                     | 0.07      | 1.17                                    | 1.99                   | 0.50   | 1.01                                   | 0.03,<br>4 01 | 0.50   |
| Cardiovascular Disease                | 1 63        | 1.07                     | 0.03      | 1 45                                    | 0.82                   | 0.20   | 1.08                                   | 0.44          | 0.87   |
| Cur diovascular Discuse               | 1.00        | 2.50                     | 0.00      | 1.10                                    | 2.55                   | 0.20   | 1.00                                   | 2.63          | 0.07   |
| Diabetes                              | 0 99        | 0.64                     | 0.98      | 1 45                                    | 0.83                   | 0.20   | 1 09                                   | 0.43          | 0.86   |
| Diubetes                              | 0.77        | 1 54                     | 0.70      | 1.10                                    | 0.0 <i>5</i> ,<br>2.54 | 0.20   | 1.09                                   | 2 74          | 0.00   |
| Renal Disease                         | 2.64        | 1.61.                    | <0.001    | 1.91                                    | 1.01.                  | 0.05   | 3.63                                   | 1.41.         | 0.01   |
|                                       |             | 4.32                     | 0.001     | 10/1                                    | 3.64                   | 0.00   | 0.00                                   | 9.36          | 0.01   |
| Liver Disease                         | 1.13        | 0.48.                    | 0.78      | 1.84                                    | 0.69.                  | 0.22   | 1.48                                   | 0.25.         | 0.67   |
|                                       |             | 2.69                     |           |                                         | 4.92                   |        |                                        | 8.78          |        |
| Autoimmune Disease                    | 1.78        | 0.87.                    | 0.11      | 1.95                                    | 0.77.                  | 0.16   | 3.96                                   | 1.00.         | 0.05   |
|                                       |             | 3.65                     |           |                                         | 4.95                   |        |                                        | 15.65         |        |
| Immunocompromised <sup>3</sup>        | 1.08        | 0.55,                    | 0.82      | 0.59                                    | 0.25,                  | 0.23   | 3.26                                   | 0.83.         | 0.09   |
| 1                                     |             | 2.11                     |           |                                         | 1.40                   |        |                                        | 12.71         |        |
| Systemic                              | 3.45        | 1.88,                    | <0.001    | 5.01                                    | 2.38,                  | <0.001 | 1.48                                   | 0.38,         | 0.57   |
| Immunosuppressive                     |             | 6.32                     |           |                                         | 10.51                  |        |                                        | 5.71          |        |
| Therapy or Meds.                      |             |                          |           |                                         |                        |        |                                        |               |        |
| Days Since Most Recent V              | accinati    | on/Roost                 | pr        |                                         |                        |        |                                        |               |        |
| Unvaccinated                          | Ref         |                          | <u>er</u> | Ref                                     |                        |        | Ref                                    |               |        |
| Within past 90 Davs <sup>4</sup>      | 0.37        | 0.16.                    | 0.02      | 0.40                                    | 0.13.                  | 0.12   | 0.72                                   | 0.18.         | 0.64   |
| <b>F F F F F F F F F F</b>            |             | 0.88                     |           |                                         | 1.26                   |        |                                        | 2.86          |        |
| 91 - 180 Days Ago <sup>4</sup>        | 0.32        | 0.19.                    | <0.001    | 0.42                                    | 0.21.                  | 0.01   | 0.31                                   | 0.10.         | 0.04   |
|                                       | 0.00 -      | 0.54                     | 00001     | •••=                                    | 0.82                   | 0001   |                                        | 0.96          |        |
| <b>181 - 270 Davs Ago<sup>4</sup></b> | 0.32        | 0.18.                    | <0.001    | 0.38                                    | 0.17.                  | 0.01   | 0.14                                   | 0.04.         | 0.01   |
| g-                                    |             | 0.56                     |           |                                         | 0.80                   |        |                                        | 0.59          |        |
| More than 270 Days <sup>4</sup>       | 0.53        | 0.23,                    | 0.13      | 0.88                                    | 0.34,                  | 0.79   | 0.34                                   | 0.06,         | 0.23   |
| Ago                                   |             | 1.21                     |           |                                         | 2.29                   |        |                                        | 1.95          |        |
|                                       |             |                          |           |                                         |                        |        |                                        |               |        |
| Lineage                               |             |                          |           |                                         |                        |        |                                        |               |        |
| Delta                                 | Ref         |                          |           | Ref                                     |                        |        | Ref                                    | _             |        |
| Omicron <sup>5</sup>                  | 0.95        | 0.61,                    | 0.81      | 1.42                                    | 0.81,                  | 0.22   | 2.07                                   | 0.84,         | 0.12   |
|                                       |             | 1.47                     |           |                                         | 2.50                   |        |                                        | 5.12          |        |

 Table 5. Adjusted Multinomial Logistic Regression Models Testing the Association between

 Demographics, Underlying Health Conditions, and COVID-Related Characteristics with Disease

 Severity

<sup>1</sup>"Mild" is the Reference Category

<sup>2</sup> aOR = Adjusted Odds Ratio, CI = Confidence Interval, Ref = Reference Level

<sup>3</sup> HIV infection, active cancer, solid organ transplant, hematopoietic stem cell transplant

<sup>4</sup>Compared to unvaccinated individuals

<sup>5</sup>Compared to Delta

## 566 FIGURES:







574 Figure 2. Frequencies of single nucleotide polymorphisms (SNPs) among SARS-COV-2 genome sequences from vaccinated and unvaccinated individuals. Each point represents a 575 single SNP plotted by its frequency in sequences from unvaccinated individuals (Y-axis) versus 576 577 its frequency in sequences from vaccinated individuals (X-axis). Data is divided by WHO variant classifications Alpha (A), Delta (B), and Omicron (C). Mutations observed along the diagonal 578 depict mutations observed equally among vaccinated and unvaccinated individuals. Mutations 579 observed moving away from the diagonal represent mutations observed in either vaccinated (X-580 axis) or unvaccinated (Y-axis) individuals. (D) Frequency of SNPs in SARS-CoV-2 sequences 581 582 from unvaccinated (top) and vaccinated (bottom) individuals, by genome position (x-axis). In all panels, Alpha is represented by yellow circles, Delta by blue squares, and Omicron by red 583 triangles. 584

# 585 SUPPLEMENTARY TABLES

#### Table S1. Extended COVID Symptoms and Underlying Conditions by Vaccination Status

| Variable                                       | <b>Overall</b> ,<br>N = $1.957^{1}$ | Unvaccinated, N<br>= $1.024^{1}$ | Vaccinated, $N = 933^{1}$ | <b>p</b> <sup>2</sup> |
|------------------------------------------------|-------------------------------------|----------------------------------|---------------------------|-----------------------|
| COVID Symptoms                                 |                                     |                                  |                           |                       |
| Fever                                          | 720 (47%)                           | 430 (52%)                        | 290 (42%)                 | < 0.001               |
| (Missing)                                      | 435                                 | 197                              | 238                       |                       |
| Chills                                         | 537 (35%)                           | 314 (38%)                        | 223 (32%)                 | 0.02                  |
| (Missing)                                      | 435                                 | 198                              | 237                       |                       |
| Rigors                                         | 29 (2.0%)                           | 17 (2.1%)                        | 12 (1.8%)                 | 0.67                  |
| (Missing)                                      | 491                                 | 221                              | 270                       |                       |
| Myalgia                                        | 501 (34%)                           | 279 (35%)                        | 222 (33%)                 | 0.59                  |
| (Missing)                                      | 484                                 | 218                              | 266                       |                       |
| Headache                                       | 521 (35%)                           | 299 (37%)                        | 222 (33%)                 | 0.12                  |
| (Missing)                                      | 476                                 | 215                              | 261                       |                       |
| Sore Throat                                    | 286 (20%)                           | 138 (17%)                        | 148 (22%)                 | 0.02                  |
| (Missing)                                      | 496                                 | 228                              | 268                       |                       |
| Nausea / Vomiting                              | 451 (30%)                           | 282 (35%)                        | 169 (25%)                 | < 0.001               |
| (Missing)                                      | 455                                 | 209                              | 246                       |                       |
| Diarrhea                                       | 369 (25%)                           | 212 (26%)                        | 157 (23%)                 | 0.13                  |
| (Missing)                                      | 470                                 | 220                              | 250                       |                       |
| Fatigue                                        | 630 (41%)                           | 337 (41%)                        | 293 (41%)                 | 0.81                  |
| (Missing)                                      | 418                                 | 195                              | 223                       |                       |
| Runny Nose or Nasal Congestion                 | 519 (35%)                           | 217 (27%)                        | 302 (45%)                 | < 0.001               |
| (Missing)                                      | 473                                 | 215                              | 258                       |                       |
| Cough                                          | 1,087 (70%)                         | 576 (69%)                        | 511 (72%)                 | 0.37                  |
| (Missing)                                      | 414                                 | 195                              | 219                       |                       |
| Shortness of Breath or Difficulty<br>Breathing | 690 (44%)                           | 408 (49%)                        | 282 (39%)                 | < 0.001               |
| (Missing)                                      | 401                                 | 188                              | 213                       |                       |
| Loss of Taste                                  | 264 (18%)                           | 151 (19%)                        | 113 (17%)                 | 0.33                  |
| (Missing)                                      | 505                                 | 233                              | 272                       |                       |
| Underlying Conditions                          |                                     |                                  |                           |                       |
| Pregnant                                       | 69 (3.6%)                           | 59 (6.0%)                        | 10 (1.1%)                 | < 0.001               |
| (Missing)                                      | 66                                  | 42                               | 24                        |                       |
| Chronic Lung Disease                           | 387 (21%)                           | 193 (20%)                        | 194 (22%)                 | 0.33                  |
| (Missing)                                      | 134                                 | 75                               | 59                        |                       |
| Hypertension                                   | 874 (47%)                           | 377 (39%)                        | 497 (56%)                 | < 0.001               |
| (Missing)                                      | 95                                  | 50                               | 45                        |                       |
| Overweight                                     | 584 (32%)                           | 315 (33%)                        | 269 (32%)                 | 0.50                  |
| (Missing)                                      | 150                                 | 70                               | 80                        |                       |
| Cardiovascular Disease                         | 534 (29%)                           | 217 (23%)                        | 317 (36%)                 | < 0.001               |
| (Missing)                                      | 126                                 | 65                               | 61                        |                       |
| Diabetes                                       | 426 (23%)                           | 180 (19%)                        | 246 (28%)                 | < 0.001               |
| (Missing)                                      | 101                                 | 53                               | 48                        |                       |

| Renal Disease                                        | 316 (17%)  | 106 (11%) | 210 (24%) | < 0.001 |
|------------------------------------------------------|------------|-----------|-----------|---------|
| (Missing)                                            | 132        | 69        | 63        |         |
| Liver Disease                                        | 83 (4.5%)  | 37 (3.8%) | 46 (5.2%) | 0.16    |
| (Missing)                                            | 107        | 59        | 48        |         |
| Autoimmune Disease                                   | 101 (5.5%) | 42 (4.4%) | 59 (6.8%) | 0.03    |
| (Missing)                                            | 135        | 69        | 66        |         |
| Immunocompromised <sup>3</sup>                       | 269 (15%)  | 89 (9.3%) | 180 (21%) | < 0.001 |
| (Missing)                                            | 137        | 69        | 68        |         |
| Systemic Immunosuppressive<br>Therapy or Medications | 293 (16%)  | 117 (12%) | 176 (20%) | < 0.001 |
| (Missing)                                            | 115        | 59        | 56        |         |

<sup>1</sup> n (%) or median (Interquartile Range [IQR])

<sup>2</sup> Pearson's Chi-squared test or Fisher's exact test for categorical variables and Wilcoxon rank-sum test for continuous variables

<sup>3</sup> Immunocompromised (e.g., HIV infection, active cancer, solid organ transplant, hematopoietic stem cell transplant)

586

587

| Table S2. Circulation of VOC/VOI in Georgia, USA as measured by available sequences on GISAID |                                                 |                                                    |                                     |                                                               |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-------------------------------------|---------------------------------------------------------------|--|--|--|
| VOC/VOI                                                                                       | Period variant<br>circulated in GA <sup>1</sup> | Date range of<br>sequences obtained<br>from GISAID | Sequences<br>available on<br>GISAID | Total sequences<br>available from May<br>2021 to May 2022 (%) |  |  |  |
| Alpha                                                                                         | 12/10/2020-08/26/2021                           | 05/01/2021-08/26/2021                              | 1,361                               | 2.66                                                          |  |  |  |
| Beta                                                                                          | 02/01/2021-05/25/2021                           | 05/01/2021-05/25/2021                              | 16                                  | 0.03                                                          |  |  |  |
| Delta                                                                                         | 4/29/2021-03/10/2022                            | 05/01/2021-03/10/2022                              | 28,320                              | 55.5                                                          |  |  |  |
| Gamma                                                                                         | 03/05/2021-09/24/2021                           | 05/01/2021-09/24/2021                              | 185                                 | 0.36                                                          |  |  |  |
| Lamba                                                                                         | 02/07/2021-08/05/2021                           | 05/01/2021-08/05/2021                              | 18                                  | 0.04                                                          |  |  |  |
| Mu                                                                                            | 04/23/2021-09/14/2021                           | 05/01/2021-09/14/2021                              | 142                                 | 0.28                                                          |  |  |  |
| Omicron                                                                                       | 11/30/2021-4/18/2023                            | 11/30/2021-04/18/2023                              | 20,759                              | 40.6                                                          |  |  |  |
|                                                                                               |                                                 | Total VOC/VOI                                      | 50,801                              | 99.46                                                         |  |  |  |
| Fotal sequenc                                                                                 | es available on GISAID fro                      | 51,075                                             |                                     |                                                               |  |  |  |

<sup>1</sup>Period of circulation based on sequences available on GISAID including Emory Healthcare samples.

|                                                             | <b>Moderate</b> <sup>1</sup> |                     |        | Severe <sup>1</sup>    |                     |         | <b>Death</b> <sup>1</sup> |                     |        |
|-------------------------------------------------------------|------------------------------|---------------------|--------|------------------------|---------------------|---------|---------------------------|---------------------|--------|
| Variable                                                    | <b>OR</b> <sup>2</sup>       | 95% CI <sup>2</sup> | р      | <b>OR</b> <sup>2</sup> | 95% CI <sup>2</sup> | р       | OR <sup>2</sup>           | 95% CI <sup>2</sup> | р      |
| Unadjusted Models                                           |                              |                     |        |                        |                     |         |                           |                     |        |
| Age                                                         | 1.04                         | 1.03, 1.05          | <0.001 | 1.05                   | 1.04, 1.05          | <0.001  | 1.07                      | 1.05, 1.09          | <0.001 |
| Male <sup>3</sup>                                           | 1.40                         | 1.13, 1.74          | <0.01  | 1.30                   | 0.95, 1.78          | 0.10    | 1.26                      | 0.72, 2.22          | 0.40   |
| White <sup>4</sup>                                          | 0.86                         | 0.67, 1.10          | 0.20   | 1.27                   | 0.91, 1.77          | 0.20    | 1.04                      | 0.57, 1.91          | 0.90   |
| Chronic Lung Disease                                        | 2.07                         | 1.59, 2.68          | <0.001 | 1.95                   | 1.35, 2.81          | <0.001  | 2.65                      | 1.44, 4.86          | <0.01  |
| Hypertension                                                | 2.94                         | 2.35, 3.68          | <0.001 | 4.19                   | 2.98, 5.90          | <0.001  | 11.4                      | 5.09, 25.6          | <0.001 |
| Overweight                                                  | 1.45                         | 1.15, 1.83          | <0.01  | 1.58                   | 1.14, 2.19          | 0.01    | 2.02                      | 1.13, 3.61          | 0.02   |
| Cardiovascular Disease                                      | 2.89                         | 2.28, 3.67          | <0.001 | 3.46                   | 2.48, 4.81          | < 0.001 | 4.80                      | 2.70, 8.54          | <0.001 |
| Diabetes                                                    | 2.04                         | 1.58, 2.63          | <0.001 | 3.21                   | 2.29, 4.50          | <0.001  | 4.35                      | 2.43, 7.80          | <0.001 |
| Renal Disease                                               | 3.88                         | 2.90, 5.19          | <0.001 | 3.86                   | 2.62, 5.67          | < 0.001 | 9.86                      | 5.46, 17.8          | <0.001 |
| Liver Disease                                               | 1.47                         | 0.87, 2.50          | 0.20   | 2.36                   | 1.25, 4.45          | <0.01   | 3.08                      | 1.16, 8.21          | 0.02   |
| Autoimmune Disease                                          | 1.60                         | 1.01, 2.56          | 0.046  | 1.58                   | 0.82, 3.03          | 0.20    | 2.45                      | 0.93, 6.47          | 0.07   |
| Immunocompromised                                           | 2.65                         | 1.97, 3.58          | <0.001 | 2.44                   | 1.61, 3.69          | <0.001  | 3.69                      | 1.93, 7.09          | <0.001 |
| Systemic Immunosuppressive<br>Therapy/Meds.                 | 3.49                         | 2.61, 4.67          | <0.001 | 3.24                   | 2.18, 4.81          | <0.001  | 3.48                      | 1.79, 6.78          | <0.001 |
| Vaccination Status                                          |                              |                     |        |                        |                     |         |                           |                     |        |
| Unvaccinated                                                | Ref                          | _                   |        | Ref                    | _                   |         | Ref                       | _                   |        |
| Vaccinated <sup>5</sup>                                     | 0.80                         | 0.64, 1.01          | 0.07   | 0.86                   | 0.61, 1.21          | 0.40    | 1.00                      | 0.54, 1.84          | >0.90  |
| Vaccinated & boosted <sup>5</sup>                           | 2.28                         | 1.52, 3.43          | <0.001 | 3.24                   | 1.95, 5.40          | <0.001  | 3.69                      | 1.58, 8.59          | <0.01  |
| <u>Days Since Most Recent</u><br><u>Vaccination/Booster</u> |                              |                     |        |                        |                     |         |                           |                     |        |
| Unvaccinated                                                |                              |                     |        |                        |                     |         | _                         |                     |        |
| Within past 90 Days <sup>5</sup>                            | 1.34                         | 0.86, 2.08          | 0.20   | 1.68                   | 0.93, 3.03          | 0.09    | 2.81                      | 1.17, 6.79          | 0.02   |
| 91 - 180 Days Ago <sup>5</sup>                              | 0.98                         | 0.74, 1.29          | 0.90   | 0.92                   | 0.60, 1.40          | 0.70    | 1.14                      | 0.55, 2.37          | 0.70   |
| 181 - 270 Days Ago <sup>5</sup>                             | 0.72                         | 0.51, 1.01          | 0.06   | 0.74                   | 0.45, 1.24          | 0.30    | 0.71                      | 0.27, 1.89          | 0.50   |
| More than 270 Days Ago <sup>5</sup>                         | 1.18                         | 0.72, 1.94          | 0.50   | 2.49                   | 1.43, 4.36          | < 0.01  | 1.91                      | 0.64, 5.72          | 0.20   |
| <u>Lineage</u>                                              |                              |                     |        |                        |                     |         |                           |                     |        |
| Delta                                                       | Ref                          | _                   |        | Ref                    | _                   |         | Ref                       |                     |        |
| Omicron <sup>6</sup>                                        | 1.51                         | 1.09, 2.07          | 0.01   | 2.25                   | 1.46, 3.48          | <0.001  | 4.55                      | 2.25, 9.20          | <0.001 |

| Table S3. Unadjusted Multinomial Logistic Regression Models Testing the Association between Demographics, Underlying |
|----------------------------------------------------------------------------------------------------------------------|
| Health Conditions, and COVID-Related Characteristics with Disease Severity                                           |

<sup>1</sup>" Mild" is the Reference Category

<sup>2</sup> OR = Odds Ratio, CI = Confidence Interval, Ref = Reference Level <sup>3</sup> Compared to "Female" <sup>4</sup> Compared to "Black"

<sup>5</sup>Compared to "Unvaccinated individuals"

<sup>6</sup>Compared to "Delta"

# 590 SUPPLEMENTARY FIGURES









595 unvaccinated ("unvax") individuals are labeled. Each square in the heatmap represents the

number of single nucleotide polymorphisms (SNPs) in each gene, labeled on the x-axis. Each

row represents one sample.





# 599 Figure S2. Phylogenetic analysis does not reveal differences in SARS-CoV-2 sequences

# 600 **from vaccinated and unvaccinated individuals.** Maximum likelihood tree containing

sequences from vaccinated (green) and unvaccinated (yellow) individuals in the context of 2000

602 global sequences from GISAID (orange) selected by a custom Nextstrain subsampling scheme

603 and rooted to NC\_045512.

# 604 KEY RESOURCES TABLE

| REAGENT or RESOURCE                    | SOURCE                                   | IDENTIFIER                                                                  |
|----------------------------------------|------------------------------------------|-----------------------------------------------------------------------------|
| Biological samples                     |                                          |                                                                             |
| Residual NP swabs                      | Emory Microbiology<br>Lab                | N/A                                                                         |
| Critical commercial assays             |                                          |                                                                             |
| Nextera XT DNA Library Preparation kit | Illumina                                 | FC-131-1096                                                                 |
| Illumina MiSeq kit                     | Illumina                                 | MS-102-3001                                                                 |
| Deposited data                         |                                          |                                                                             |
| SARS-CoV-2 consequence sequences       | This paper                               | GISAID:<br>PRJNA634356                                                      |
| SARS-CoV-2 reads                       | This paper                               | NCBI: PRJNA634356                                                           |
| Software and algorithms                |                                          |                                                                             |
| Geneious                               |                                          | https://www.geneio<br>us.com                                                |
| Nextstrain                             | Hadfield et al., 2018                    | https://clades.nextst<br>rain.org/                                          |
| IQtree                                 | Trifinopoulos et al.,<br>2016            | http://iqtree.cibiv.u<br>nivie.ac.at/                                       |
| Interactive Tree of Life (iTOL)        | Letunic et al., 2021                     | https://itol.embl.de/                                                       |
| ViReMA                                 | Routh et al., 2013                       | https://sourceforge.<br>net/projects/virema                                 |
| Pangolin                               | Rambaut et al., 2020                     | https://pangolin.cog<br>-uk.io                                              |
| Pilon                                  | Walker et al., 2014                      | https://github.com/<br>broadinstitute/pilon                                 |
| Bowtie2                                | Langmead et al., 2012                    | http://bowtie-<br>bio.sourceforge.net/<br>index.shtml                       |
| samtools                               | Li et al., 2009                          | <u>http://www.htslib.o</u><br>rg/                                           |
| seqtk                                  | https://github.com/lh<br><u>3/seqtk</u>  | https://github.com/l<br>h3/seqtk                                            |
| DESeq2                                 | Love et al., 2014                        | https://bioconducto<br>r.org/packages/relea<br>se/bioc/html/DESeq<br>2.html |
| R Studios                              | RStudio: Integrated<br>Development for R | <u>Rstudio.com</u>                                                          |
| SAS                                    | SAS Institute                            | https://www.sas.co<br>m/en_us/home.html                                     |

605