
1

1 Competing risks multi-state model for time-to-event data analysis of HIV/AIDS: A 
2 retrospective cohort national datasets, Ethiopia.

3 Tsegaye Hailu Kumsa1, 3  , Andargachew Mulu1  , Adane Mihret 1   ,  Zeytu G.  Asfaw2     

4
5 1 Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
6 2 Schools of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
7 3 Department of Statistics Hawassa University,  Hawassa, Ethiopia

8 Abstract      
9 Introduction: When HIV/AIDS patients die from opportunistic infections that cause death to 

10 happen more quickly, competing dangers are present. The objective of the current study was to 
11 estimate the probability of HIV/AIDS patients dying from competing illnesses such as 
12 tuberculosis, diarrhea, other opportunistic infections, and unidentified infections.
13 Methods: All regional states, including the administrative cities of Addis Abeba and Dire Dawa, 
14 a retrospective cohort research was carried out between November 2019 to March 2020. There 
15 were 39590 HIV-positive individuals considered. We used competing risk models with a time-
16 to-death horizon of 1212 for the total number of HIV-positive people. A competing event was 
17 thought to be death from various causes.
18 Results: Out of the total 1212 deaths, 542(44.7%) died competing with other opportunistic 
19 infection (TE-Esophageal Candidiasis, TO-oral, CT-CNS Toxoplasmosis, CM-Crypotococcal 
20 Meningitis…), 421 (34.7%) died due to tuberculosis and  the remaining death were 
21 unknown/Not specified infection 222(18.3%) and diarrhea 27(2.2%). Rates of mortality caused 
22 by tuberculosis, competing with other opportunistic infection, diarrhea and unknown/Not 
23 specified were 3.5, 4.5, 0.2 and 1.8 per 1000 person-months, respectively. Responding to 
24 combined Antiretroviral Treatment (cART) 6 months after initiation, receiving Pneumocystis 
25 Pneumonia (PCP) prophylaxis, and higher CD4 count at diagnosis reduced the hazard of 
26 tuberculosis, other opportunistic infection and unknown and diarrhea causes of death. However, 
27 older age, late HIV.AIDS diagnosis, and the last HIV/AIDS WHO clinical stages increased the 
28 hazard of tuberculosis and other opportunistic disease mortality. Additionally, male gender, older 
29 age and last HIV clinical stages increased the mortality HIV/AIDS patients.
30 Conclusion: The findings of this study demonstrated that TB, an opportunistic infection, was the 
31 primary cause of death in HIV/AIDS patients, despite the presence of several competing risks, 
32 such as diarrhea, other infections, and an undetermined or unclear cause. It's important to use 
33 effective techniques to quickly detect those who have HIV or AIDS and provide them with care 
34 and treatment to increase their chances of surviving.
35 Keywords: AIDS; Competing risks; ·Cause-specific hazard; ·Sub-distribution hazard; 
36 Cumulative Incidence Function.

37 Introduction
38 According to estimates, HIV has affected 40.1 million people worldwide and is still transmitting 
39 in all nations, with 25.6 million of those cases occurring in the African region [1, 2]. HIV 
40 infection affected 1.5 million individuals in 2021, and 650000 people passed away from HIV-
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41 related causes (1, 3). In 2022, there will be about 10421 fatalities each year in Ethiopia across all 
42 age groups (4).
43
44 Antiretroviral therapy (ART) has increased the long-term survival rate of HIV-infected patients 
45 and transformed their outlook from a terminal sickness to a protracted and treatable condition. 
46 But this depends on a number of risk variables, such as if the HIV patient has TB, diarrhea, other 
47 opportunistic illnesses, or an unknown infection. As a result, rather than the virus itself, an 
48 HIV/AIDS patient died from TB and opportunistic illness that were growing more common in 
49 the population. In order to develop effective intervention strategies, improve patient care, and 
50 minimize HIV patient mortality as much as possible, causes of death (CoD) among HIV-infected 
51 patients must be evaluated (5). Human immunodeficiency virus (HIV) patients receiving 
52 antiretroviral therapy (ART) were the subjects of cohort studies, where participants might go 
53 through a variety of circumstances. One must consider the possibility of opportunistic infectious 
54 disease while examining the time to death process in HIV positive individuals, for example. 
55 Understanding the prognostic variables affecting HIV patients' long-term survival is necessary 
56 (6, 7). In addition to the risk of dying from tuberculosis, HIV/AIDS patients also run the risk of 
57 dying from other infections or diarrhea. Competing risks arise when participants can witness one 
58 or more events, they 'compete' with one another, and the occurrence of one event could make it 
59 impossible to witness the other events or change the likelihood of their occurrence. It is 
60 customary to achieve this by carrying out separate studies for each end point and the 
61 intermediate events, but this is insufficient because it disregards the connections between these 
62 events. Multistate models (MSM) are a natural technique to model such complex systems in this 
63 context (8). 
64
65 A particularly helpful tool for answering a variety of survival analysis concerns that traditional 
66 models are unable to address is the MSM framework (9). Figure 1 displays the two simplest but 
67 most typical instances. Although the current HIV/AIDS study is primarily focused on deaths 
68 caused by tuberculosis, some patients may experience many competing causes of death. 
69 Although fatalities from other causes occur in place of tuberculosis deaths, the event of interest is 
70 a death from tuberculosis. Comparative risk model assessed cause-specific mortality in patients 
71 on highly active antiretroviral treatment (HAART) from tuberculosis, diarrhea, other 
72 opportunistic infections, and unknown/unspecified causes (10–12). In patients who died from 
73 opportunistic infections while on HAART, there are many international literatures that quantify 
74 death from other causes (13–17).
75
76 However, relatively few researches were carried out in Ethiopia, for example, at the Gonder, 
77 Dilla, and Pawai hospitals. Their attention was on HIV patients who were lost to follow-up who 
78 presented competing risks. In this study, death-competing risks from tuberculosis, diarrhea, other 
79 opportunistic infections, and unidentified infections are examined using national statistics.  Such 
80 research could be a useful contribution to the Ministry of Health's efforts to develop appropriate 
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81 intervention strategies and enhance patient care. Reduced mortality from AIDS-related 
82 opportunistic infections is also very helpful for HIV-positive patients.
83
84 The Kaplan-Meier estimator and Cox proportional hazard model are the traditional classical 
85 survival analysis techniques for time-to-event data (18, 19). These techniques work well in 
86 investigations where there is just one primary event type of interest. The aforementioned 
87 techniques might not fully reveal the relationship when there are several occurrences of interest. 
88 Methods that can reveal the underlying connection between the variables, the intermediate 
89 outcomes, and the outcomes of interest are required in these circumstances.  To expand on tried-
90 and-true techniques, multistate models offer a versatile and expansive framework (20). The 
91 competing risks model, which is a special case of a multi-state model and is a cause specific 
92 hazard, sub-distribution hazard, and flexible parametric hazard model, was used in this study.  
93 Because of this, the main goal of this article was to estimate the risk of death for HIV patients 
94 using ART from tuberculosis, diarrhea, other opportunistic infections, and unidentified infections 
95 in the lack of covariates and the existence of competing hazards. Finally, the cumulative 
96 Incidence Function (CIF) was utilized to predict the likelihood of mortality and the cause 
97 specific hazard, sub-distribution hazard, and flexible parametric hazard model were employed to 
98 evaluate the covariate impacts on CIF.

99  Material and Methods
100 Source population: The source population of this study (record review) constituted all medical 
101 records of HIV/AIDS patients who initiated and were enrolled on anti-retroviral therapy at all 
102 health facilities in Ethiopia.
103 Study population: The study population is classified from health facility and individual 
104 perspectives as follow:

105 Inclusion criteria

106 Health Facilities: Governmental, non-governmental, private or uniformed hospitals and health 
107 centers that have been providing ART service for at least one year prior to the study period.
108 Records for review: records of individuals diagnosed with HIV/AIDS and at least one year since 
109 they have initiated ART at time of data collection.

110 Exclusion criteria

111 Health centers having <100 patients whoever started ART were excluded so as to get adequate 
112 records and be cost effective while moving to that site. Catchment Health center which are more 
113 than 30 km from the mentoring hospital or Center (Zonal town).

114 Sample size determination and sampling procedure
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115 Sampling techniques

116 Standard probability sampling technique was applied to select nationally representative sample 
117 from the study population, and region was the domain of analysis. The primary sampling units 
118 are ART patient charts in the hospitals and catchment health centers providing ART.

119 Sampling

120 Multi-stage clustered sampling method was used to select study facilities and participants. The 
121 steps followed to select the regions, facilities, and allocate ART sample to each facility is 
122 depicted in to three strata:                                                                                            

123 Sample size determination

124 This study was more or less a replica of the second round ART program effectiveness 
125 assessment done back in 2011. Hence, the sample size was derived purposively by using the 
126 cohort sampled population size from the previous study of around 40,000 ART patient charts to 
127 be reviewed for comparison sake. Finally, at the end of the data collection we ended up 
128 retrieving and reviewing a total of 39,590 medical records, which includes all 5,802 pediatric 
129 ART patient records in the facilities.

130 Data Collection Tools and Procedures
131 The instrument measures age at baseline, gender, baseline WHO stage, baseline functional status, 
132 and outcome (alive and on treatment, transferred out, lost to follow-up, known dead). Moreover, 
133 achieved ART outcomes explained by quality of life such as CD4 count, weight, functional 
134 status, and 7 years survival rates by strata and by different time points were also assessed. 
135 Likewise, it also measured self-reported adherence to treatment and care, dropout rate, drug pick 
136 up behavior, and retention on 1st line regimen. It detected problems in the flow of the questions, 
137 gauge the length of time required for interviews, and identify problems in the understanding of 
138 terms and concepts.
139 Pretest: The instrument was pretested and piloted during the training of the data collectors, and 
140 the modification and amendment were done by all the trainees’ feedback and valuable inputs. It
141 At National level, the NAPES team was basically structured into nine routes established based 
142 on the main transportation roads in the country. In late- January, three additionally new sub 
143 routes were added to assist the existing nine routes. Each route consisted on average of 5 - 7 
144 hospitals, and the period of stay at each facility was ranging from 5 -10 days based on the 
145 sampled ART patients/case load in that facility. The data collection comprised of gathering GPS 
146 coordinates, facility level information by interviewing the facility head, and data extraction of 
147 ART patient chart.
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148 Data Quality Assurance
149 Quality assurance began with the recruitment of data collectors and team leaders with a health 
150 background. Data collectors took pre- and post-test to assess their learning and knowledge of the 
151 assessment guidelines and standards for data collection. An intensive 8 days training was given 
152 to all field team. Each data collector was given a hard copy manual of the assessment guidelines 
153 for reference in the field. The central team, performed data quality checks, followed by a data 
154 quality control Skype call between the whole team to discuss any data collection or quality 
155 issues. Also, based on teams’ feedback, frequent modification of the Redcap tool was done to 
156 make the tool user friendly and ensure quality. 

157  Data preparation 

158 Predictors variables 

159 In this survey, a retrospective cohort study design was employed. It was a national study 
160 involving nine regional states and two city administrations from November 2019 to March 2020. 
161 The study participants were selected randomly from patient registers and medical data those 
162 started ART.  Age, weight, hemoglobin, sex, marital status, educational level, region, and type of 
163 health facility were among the demographic data obtained. The retrospective record review also 
164 revealed trends of ART treatment regimen change, adherence and TB status were also 
165 determined from the retrospective record review also revealed. The patient has had tests for 
166 opportunistic infections, TB status, liver enzyme, Hepatitis B and C, and family planning 
167 counseling. Additionally, each visit includes a CD4 count and viral load measurements.

168 Outcome variable 

169 The primary endpoint for this study was mortality from AIDS related tuberculosis, diarrhea, 
170 other opportunistic infection and unknown/not specified causes. The study data collector 
171 recorded the causes of death using tablet and in cases where inadequate information is provided 
172 to determine the causes of death, the study coordinator contacts personnel at the study site for 
173 further information. Patients are classified as having an unknown or not specified cause of death 
174 if no further information is obtained.

175 Multi-state models
176 A multi-state model is a model for time-to-event data in which all individuals start in one or 
177 possibly more starting states (e.g. HIV patient ) and eventually may end up in one (or more) 
178 absorbing or final state(s) (e.g. TB or Diarrhea or other Opportunistic infection disease or 
179 unknown[1]. Some individuals are censored before they reach an absorbing state. Competing 
180 risks models are a sub-category of multi-state models: they have one starting state, at least two 
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181 absorbing states and no intermediate states (see Fig. I) left panel [2]. Their transitions are often 
182 indicated as causes of failure. An example of a multi-state model is illustrated in Fig I right panel 
183 shown. 
184 Figure I. Title  competing risks model with and death as causes of failure (left panel).  Fig I 
185 legend Illness-death model with an initial state of illness state and a death state (right panel)

186 The competing risks multistate model
187 A special kind of multistate model called competing risk analysis seeks to accurately predict the 
188 marginal probability of an event in the presence of competing events[3] When analyzing the 
189 marginal probability for cause-specific occurrences, the Kaplan Meier product-limit technique 
190 has a tendency to yield estimates that are erroneous since it is not designed to take into account 
191 the competing nature of numerous causes to the same event[4]. Cumulative Incidence Function 
192 (CIF) has been used to predict the chance of death due to competing risk. In this competing risk 
193 analysis, the cause specific hazard model and the sub distribution hazard model were utilized to 
194 analyses the covariate impacts on cause specific hazard[5]. A flexible parametric hazard model 
195 was also used to determine the importance of covariates[6] and the outcomes of these three 
196 strategies are then compared.197 3.1 Hazard-based regression models
198 Cause-specific hazard regression

199 The most commonly used regression model for analyzing event-time data is the Cox proportional 
200 hazards model[7]. In the presence of competing risks, the standard Cox proportional hazards 
201 model is not adequate because the cause-specific Cox model treats competing risks of the event 
202 of interest as censored observations [8] In addition, the cause-specific hazard function does not 
203 have a direct interpretation in terms of survival probability[9]. An adaptation of Cox regression 
204 requiring data augmentation has been proposed. With k competing events, the data for each 
205 patient are duplicated k times, one row for each type of failure; then, k-1 indicator variables are 
206 created for identifying whether a certain event has occurred. A stratified Cox regression could 
207 also be applied to allow non-proportional hazards[10].
208
209 To make complete inference, we performed cause-specific hazard model and cause-specific 

210 hazard functions [2, 11-13] are defined as:

211  hk(t) = log∆t→0
p(t ≤ T < t + ∆t, K = k|T ≥ t)

∆t
                                                     

212 (1)
213 Where T be the survival time and K be the cause of death (k=1, 2, 3, 4).

214 The cumulative cause-specific hazard is written as:
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215               Hq(t) = ― ∫t
0 hq(u)du                                     (2)

216                                      Sq(t) = exp (Hq(t))                   (3)     

217 Here we assume that the event of interest is death of AIDS patient due to the opportunistic 
218 infection TB (indexed 1, 2, 3, 4), coded Tuberculosis (as the event of interest), diarrhea, other 
219 opportunistic infections and unknown causes respectively. Fig II tell us the model competing risk 
220 HIV/AIDS patients on ART.
221

222 Figure II. Title Competing Risks Model for HIV/AIDS Patients on ART

223  Sub-distribution hazard regression—the Fine and Gray model

224 The Fine-Gray[9] sub-distribution hazard model is frequently used in the tuberculosis related  
225 diarrhea, Other opportunistic infection  and unknown infections cause death  to estimate subject-
226 specific probabilities of the occurrence of an event of interest over time in the presence of 
227 competing risks. The sub distribution hazard is a key concept in this approach, and it is defined 
228 as the hazard of failing from a given cause in the presence of competing events, given that a 
229 subject has survived or has already failed due to different causes. We can write the sub-
230 distribution hazard[5] for cause as
231 λr(t) = lim

∆t→0

Pr(t ≤ T < t + ∆t, R = r│T ≥ t ∪ (T ≤ t ∩ R ≠ r))
∆t

                                      (4)

232   = ― 𝑑
𝑑𝑡log (1 ― 𝐼𝑟(t))

233         Where  𝐼𝑟(t)) = Pr(T ≤ t, R=r) is the CIF for cause r (r =1, 2, 3).

234 A semi parametric proportional hazards model for the sub-distribution hazard of cause r for a 
235 subject with covariate vector X as follows
236 λr(t/X) = λr0(t)exp (βT

r  X)                                                                      (5)

237 where λr0(t) is the baseline subdistribution hazard of cause r, and βr is the vector of coefficients 
238 for the covariates. Estimation for this model follows the partial likelihood approach used in a 
239 standard Cox model.

240 Flexible Parametric Proportional Hazard Model

241 The flexible parametric model was first developed for use with censored survival data (6). The 
242 log cumulative hazard variant of a Weibull model was picked since it is the most prominent 
243 parametric survival model with both proportional hazards and accelerated failure time model 
244 interpretations. A Weibull distribution's survival function is     
245 S(t) = exp ( ― λty)                                                                                    (6)
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246 Transforming this to the log cumulative hazard scale, we get 
247 ln H(t)= ln[-ln(S(t))]                                                     (7)

248 ln H(t)= ln(λ) + γln(t)                                                 (8)
249 This is a linear function of log time, now adding covariates X in this model, we have               
250 ln[(t/X)] = ln(λ) + γln(t) +Xβ                                  (9)
251 Where β are the covariate coefficients, but instead of assuming linearity with ln(t), adopt a 
252 flexible parametric method that employs restricted cubic splines for ln(t)(14). Under the premise 
253 of proportional hazards, covariate effects can be seen as log hazard ratios. Transforming the 
254 model parameters yields the survival and hazard functions.
255  ln[H(t/X)=S(ln(t)/ γ, n0)+ Xβ                                                       (10)
256 One of the primary advantages of the flexible parametric technique is the ease with which time 
257 dependent effects can be fitted.

258 Result
259 In the present study, we have considered 39590 HIV patients. Out of the total HIV patients, 1212 
260 were died during the period of observation from November 2019 to March2020. The 
261 characteristics of these people as at the time of their death are shown in Table 1. Out of the total, 
262 34.7% were died due to TB;  44.7% were died of other opportunistic infection; and the remaining 
263 18.3% and 2.2 % were died of unknown/Not specified and diarrhea respectively ( Table 1 and 
264 Fig 1) . At the time of death, the mean age of the HIV patients was 35±14.6 with mean weight of 
265 48.7kg and 11.9±6.3 Hemoglobin. The majority of deaths nearly 80% were between WHO stage 
266 2 and stage 4 and 639(67.33%) were CD4 count cell and the remaining 19.9% were stage1.The 
267 majority (73.3%) was divorce or widowed and the remaining 18.3% were single. Similarly, the 
268 mean weight was 48.7Kg and hemoglobin mean was 11.9±6.31.
269

270 Table 1 : Title Characteristics of the respondents at death (N= 1212) 

271
272 Fig 1: Title Death due to various opportunistic infection

273 Survival analysis 
274 Male patients had better survival than female HIV patients for the first 45 months and after 75 
275 months than female but female were better than male 46-75 months during the follow-up periods 
276 (Fig 2A). In figure 2B, patients had nearly high risk of probability of death due to other 
277 Opportunistic Infection and Diarrhea in the first 30 months but probability of death due to 
278 unknown were lower as compared to the others causes. After 40 months, Diarrhea had lower risk 
279 as compared to the others opportunistic infection and unknown infections.  
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280  

281      Fig 2. Title Kaplan-Meier curve. Fig 2 legend Fig.2A:Kaplan-Meier curve by male and 
282 female and Fig.2B: Kaplan-Meier curve by Tuberculosis, Diarrhea other opportunistic disease 
283 and unknown.

284 Non-parametric comparison of cumulative incidence 
285 function (CIFs) 
286 HIV/AIDS patients have higher risk of death from other opportunistic infection and followed by 
287 death from TB, Unknown and Diarrhea causes. As the time goes from 6-50 months, Male 
288 patients have slightly higher risk of death from Other Opportunistic Infection but from 50- 
289 84month Female patients were higher risk of death as compared to male. But in the causes (OI 
290 and TB) male had higher risk of death than female. Similarly, there is no significant difference in 
291 mortality risk from all causes of death for male versus female patients, since p-values (p= 0.48, 
292 0.18, 0.21, and 0.75: TB, Diarrhea, other Opportunistic Infection and Unkown respectively) 
293 (Fig 3A).
294   Fig 3.Title Non-parametric estimates of cumulative incidence functions Fig 3 legend 

295 Fig3Adeaths from TB (status==1) Diarrhea (status=2), other Opportunistic Infection (status=3) 

296 and unknown causes (status=4).Each outcome is compared between male and female patients. 

297 Fig 3B:  Estimate cumulative incidence in the presence of TB death, Diarrhea, Other OI & 

298 Unknown 

299

300 Fig 3B above showed that the death from tuberculosis, Diarrhea, other opportunistic infection 
301 and unknown causes. From 6 month to 60 months, TB had higher risk of mortality than with the   
302 other related death followed by other opportunistic infections and unknown infections but lower        
303 death from diarrhea as compared to other infections. After 65 months, unknown infections   had 
304 higher risk death as compared to the other infections. This result indicated that the unknown      
305 infection should be differentiated, listed out and given due attention by health professionals.            
306 There is no significant difference in mortality risk from these causes of infections, since p-value 
307 (p= 0.025<0.05). 

308 Cause-specific hazard regression
309 Estimation of the risk of a male patient,  age category 31-40 years and whose CD4 count is            
310 between 201-350 cells/mm3, the output shows that the cumulative incidences of death of this                  
311 patient from other OIs at time points of 30, 50, 80 months were 0.31,0.37 and 0.40, respectively. 
312 The cumulative incidences of death of these patients from TB at the same time point were 0.28, 
313 0.33 and 0.35. Unknown infection at time points of 30, 50, 80 months were 0.15, 0.19 and 0.20 
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314 respectively and diarrhea were 0.017, 0.019 and 0.020 respectively. Based on   these numerical 
315 figures we can conclude that death due to opportunistic infection is more likely happened than 
316 the others causes.

317 Sub-distribution hazards (SHs) model
318 Sub-distribution hazards (SHs) model is also known as Fine-Gray model. It is a Cox proportional 
319 regression model but the cumulative incidence is associated with SHs. The motivation for Fine-
320 Gray is that the effect of a covariate on cause-specific hazard function may be quite different 
321 from that on Cumulative incidence function (CIF). In other words, a covariate may have strong 
322 influence on cause-specific hazard function, but have no effect on CIF[2]. The difference 
323 between cause-specific hazard and sub-distribution is that the competing risk events are treated 
324 differently. The former considers competing risk events as non-informative censoring, whereas 
325 the latter takes into account the informative censoring nature of the competing risk events[14].
326  

327 Prediction 
328 Here we have considered four hypothetical individuals and using certain covariate combinations 
329 using the fitted Fine-Gray model selected based on the significance of the model. Age, sex, and 
330 starting CD4 levels are defined for individuals as covariates. The first individual, female,  29 
331 years old  and  CD4 count is >=501. Referring with Fig 4, she is belonging to younger age but 
332 she is more likely to be died. This mean even if she had higher CD4 count, being a female was 
333 high risk of death early the start of ART.
334
335 Fig 4. Title Parametric estimates of cumulative incidence functions for three patients with 
336 given covariate
337
338 The second individual is a man who is 60 years old and his CD4 count is < 200. This 60 year old 
339 HIV patient has lower risk of death. This means, male patient has at lower risk than female 
340 during the first 3 years of the follow-up time. 
341
342 Fig5 graphical output gives CIF for patients with characteristics specified in extracted data had 
343 three variables:  Age, CD4 count, WHO clinical stage and Patient Residence. The link argument 
344 controls the link function to be used, “prop” for the Fine-Gray regression model with values 
345 age=52, CD4 count , WHO clinical stage  and Residence  compared in the four-graph panel with 
346 four  of causes: tuberculosis, other opportunistic infection and diarrhea; and unknown causes. 
347 Then other opportunistic infection, tuberculosis, unknown and diarrhea causes were higher risk 
348 of death followed respectively. when we compared in each cause, those patients had higher 
349 WHO clinical stage  higher risk as compare to other combination in the patient with the variable 
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350 combination due to tuberculosis causes and other opportunistic but in contrast with tuberculosis 
351 cause the patient who had lower CD4 count high risk of death than the other combination.  Blow 
352 Fig 5, as the baseline cd4 count increases, then decreases significantly the risk of   death in all 
353 causes of death.            
354 Fig 5. Title Estimated CIF Fig 5 legend  Figure 5A;TB, Figure 5B:Diarrhea, Figure5C:Other 
355 Infection and Figure 5D;Unknow Causes of Deaths of  HIV/AIDS Patients by CD4 cell count 
356 using cause-specific hazard models.
357

358 Factors associated with opportunistic infections related mortality

359 In this study, we estimated the cumulative incidence of death from tuberculosis, diarrhea, other 
360 opportunistic diseases, and unknown infections using a cause-specific, sub-distribution, and 
361 flexible parametric hazard model. In univariate analysis, prognostic factors with p-values less 
362 than 0.2 were chosen, and the results are reported in Tables 2 & 3 below, and age group, patient 
363 residence, WHO stage, and baseline CD4 count met the criteria for multivariate analysis. Age 
364 group, WHO stage, residence and baseline CD4  count were statistically significant (P-
365 value<0.05), Participant  with age group 21-30 years had  1.78, 1.43 and 2.02  times higher  risk 
366 of hazard  of death due to tuberculosis causes as compared to age group <=20 years  in the cause 
367 specific, sub-distribution and flexible parametric hazard model  [HR= 1.78 , 95% CI (1.24 -
368 2.541), SHR=1.43, 95% CI(.002 -1.98); HR=2.02, 95% CI(1.41-2.88)] respectively. But Death 
369 due to diarrhea cause the patient age group 40-50 years less like as compared to age group <20 
370 years with HR =0.24 and 0.23   which slightly similar in the  two models  cause specific and 
371 flexible parametric hazard model  [HR= 0.24 , 95% CI (0.06-0.93), HR=0.23, 95% CI(0.06-
372 0.92)] respectively but not significant in sub-distribution model. Since age is a confounding 
373 variable and majority of the patients 56% were died at early of the follow up period (6 months).
374 The patient live in the rural area were   higher risk death due to tuberculosis in the three models 
375 and nearly similar hazard ratio HR=1.37, 1.37 & 1.29 as compared to patients live in the Urban 
376 area in the cause specific, sub-distribution and flexible parametric hazard model [HR= 1.37, 95% 
377 CI (1.11-1.68), HR=1.37, 95% CI(1.13-1.65) and HR=1.29, 95% CI(1.04-1.58)] respectively. 
378 But patient live in rural area had 0.77, 0.76 and 0.78 less risk of death due to other opportunistic 
379 infection in almost similar in three models as compared to patients live in the urban area in the 
380 cause specific, sub-distribution and flexible parametric hazard respectively. 
381 The cause specific, sub-distribution  and flexible parametric hazard model an increase in baseline 
382 CD4 count cells/mm3 is found to be strongly associated with the survival of HIV/AIDS patients 
383 and it is  found to be a significant factor for the probability of death due to tuberculosis cause (P-
384 value <0.05) .CD4 count  category 351-500 count cells/mm3 less risk  death due to  tuberculosis 
385 than CD4 count  category <200 count cells/mm3 with HR=0.58 and  HR=0.54 in cause specific 
386 and flexible parametric hazard model  (HR= 0.58, 95% CI (0.34, 0.98) and HR=0.54, 95% 
387 CI(0.32-0.92)]  respectively. But sub-distribution was not significant death due to tuberculosis, 
388 diarrhea, other opportunistic infection and other unknown infection causes. WHO stage is found 
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389 to be a significant factor for the probability of death due to any cause in the cause specific model 
390 (P-value <0.05).The result indicated that higher WHO stage nearly similar result in three models 
391 in the cause specific, sub-distribution and flexible parametric hazard ratio more than 2 times 
392 higher risk of death due to tuberculosis as compared to lower WHO stage. The reason WHO 
393 clinical stage increases the risk of death in all causes, the patient immunology decreases and they 
394 are exposed by opportunistic infectious 
395

396 Table 2: Result of Cause specific Hazard Model and Sub-distribution Hazard 

397 Model               

398 Table 3. Result of Flexible Parametric Proportional Hazard Model

399 Discussion
400 In this study, we used a national dataset that included all regional states and two administrative 
401 cities, and so it can give evidence to national health policy on the causes of mortality of 
402 HIV/AIDS patients under the ART category.  It could be considered as an extension from the 
403 previous few studies already done in one region and health center from November 2019 to march 
404 2020 patients under ART. We have discussed the three common methods for handling competing 
405 risks and their applications to regression setting.
406 The cause specific hazard model, sub-distribution hazard model and flexible parametric hazard 
407 model shows in the analysis output Table 2 & 3 produced nearly similar results with regard to 
408 the effect of covariates. Tuberculosis is the most common opportunistic infection cause of death 
409 among HIV/AIDS patients supported by previous studies [15-18]. During the period of 
410 observation, 34.7% were died due to tuberculosis,  44.7% were died due to other opportunistic 
411 infection but the others died due to diarrhea and unknown infection causes were 20.6%.This 
412 study agree with the study[15] and higher the study conducted in France[19]. According to all 
413 the methodologies, age group, CD4 count and WHO stage were significant indicators for 
414 HIV/AIDS patients.
415
416 Male patients had better survival than female HIV patients the start of ART treatment  than 
417 female but female were better than male  after 3 years of treatment  periods [15]. Patient had 
418 nearly high risk of probability of death due to other opportunistic infection and Diarrhea in the 
419 first 2 years  but probability of death due to unknown were lower as compared to the others 
420 causes. After 3 years, diarrhea had lower risk as compared to the others opportunistic infection 
421 and unknown infections  and in agreement with the study[20] but  in contrast with the study[21] . 
422
423 According to all the sub-distribution hazard models, flexible parametric and cause specific 
424 hazard models approaches, CD4 cells count is a key indicator for HIV/AIDS patients. Cause 
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425 specific, sub-distribution and flexible parametric hazard ratios for tuberculosis deaths were found 
426 that the higher CD4 cell count cells/mm3 patients were less risk of death due to tuberculosis 
427 compared to the patients with lower CD4 cell count cells/mm3. This study was lower result than 
428 with the studies [15, 17]. 
429 The patient with higher age group were higher risk of death as compared to patient with lower 
430 age group and in agreement with the study [22]but death due to  diarrhea were less as compared 
431 to lower age group this in agreement. This could be the cofounding effects of age.
432 The results of cause specific, sub-distribution and flexible parametric hazard model are found to 
433 be more than 2 times higher risk death in tuberculosis, diarrhea and opportunistic infection 
434 patient in ART treatment in WHO stage IV as compared to lower WHO stage I lower with the 
435 studies done previously[21]. Because of this, it may be wise on the side of treatment and care 
436 providers to focus on early detection of opportunistic infection and fast action should be taken to 
437 reduce morbidity and improve quality of life for persons with HIV/AIDS. Early detection and 
438 treatment of tuberculosis in HIV-infected people need to be prioritized. The prediction of patient 
439 risk with fewer combinations of variables weight, age and sex, CD4 cell count had lower risk as 
440 the patient had increase cd4 count.
441
442 There are several important benefits to this study. To our knowledge, this study is the first in 
443 Ethiopia compared death risks due to tuberculosis and other opportunistic infection in Ethiopian 
444 HIV/AIDS positive individuals. The overestimation of cumulative incidence and bias in the 
445 covariate effects might both be avoided. Second, our study had a sizeable sample of 39590 
446 participants from across the country and a protracted follow-up period of (84 months). Last but 
447 not least, we looked into the connection between the time between starting ART and mortality in 
448 HIV/AIDS patients with high and low CD4+ cell counts.
449 According to the current study findings, late HIV/AIDS diagnosis at an older age, in stages 3 or 
450 4, or with a lower CD4 count may raise the risk of death considerably. These findings were 
451 consistent with those of other investigations[15, 21].

452 This study has some limitations, the dynamic fluctuations in CD4+ cell counts over time and 
453 causes of death record not appropriate this could affect to see the survival of HIV/AIDS patients. 
454 Due to the study's record review methodology, some variables including height and hemoglobin 
455 were missing. Due to the incompleteness of the data, BMI and anemia status were excluded from 
456 the current analysis. 

457 Conclusion
458 The results of this study clearly shown that tuberculosis, diarrhea, opportunistic infection and 
459 unknown cause are substantially accelerating death for HIV/AIDS patients in Ethiopia. Applying 
460 effective strategies is needed to achieve on time diagnosis of individuals with HIV and provide 
461 them with HIV/AIDS care and treatment services to enhance the survival of the patients. 
462 Moreover, female younger age living with HIV/AIDS requires more attention when receiving 
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463 HIV/AIDS care and treatment as they experience a higher risk of death the first 3 years after 
464 ART initiation. The findings of the current research revealed that early HIV/AIDS care and 
465 treatment could substantially reduce opportunistic infection death among HIV/AIDS patients. 
466 Therefore, to reduce mortality rate HIV/AIDS patient, the current strategies should be revised to 
467 improve the timing of treatment initiation and also to optimize the adherence to the treatment.
468
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