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Abstract 13 

Dyadic social interactions evoke complex dynamics between two agents that while exchanging unequal 14 
levels of body autonomy and motor control, may find a fine balance to take turns and gradually build 15 
social rapport. To study the evolution of such complex interactions, we currently rely exclusively on 16 
subjective pencil and paper means. Here we complement this approach with objective biometrics of 17 
socio-motor behaviors conducive of socio-motor agency. Using a common clinical test as the backdrop 18 
of our study to probe social interactions between a child and a clinician, we demonstrate new ways to 19 
streamline the detection of social readiness potential in both typically developing and autistic children. 20 
We highlight differences between males and females and uncover a new data type amenable to 21 
generalize our results to any social settings. The new methods convert dyadic bodily biorhythmic 22 
activity into spike trains and demonstrates that in the context of dyadic behavioral analyses, they are 23 
well characterized by a continuous gamma process independent from corresponding binary spike rates. 24 
We offer a new framework that combines stochastic analyses, nonlinear dynamics, and information 25 
theory, to facilitate scaling the screening and tracking of social interactions with applications to autism.  26 

 27 

1 Introduction 28 

All research involving autism is (arguably) fundamentally tied to the Autism Diagnosis Observation 29 
Schedule (ADOS, currently in version 2 [1; 2; 3; 4].) Research spanning disparate fields, from 30 
genomics to complex social interactions relies on this test as the gold standard to classify humans 31 
across the lifespan as autistic or autism spectrum. Although clinically validated, the ADOS-based 32 
diagnosis misses females [5; 6; 7]. Moreover, there are not enough raters to absorb the large number 33 
of toddlers, children, and adults that according to various screening tools, are suspected as autistic 34 
today. The test is long and taxing on both the child and the clinician administering it because it has an 35 
average of 27 tasks aimed at engaging the child through social presses and expecting overtures from 36 
the child.  37 
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 38 

The ADOS is a dynamic and flexible test in the sense that the clinician can choose the tasks according 39 
to the flow of the child’s performance. It also adapts the test on demand, choosing the module that best 40 
agrees with the child’s communication level. However, the interaction occurs while the clinician also 41 
scores the child’s performance. Though valid to probe social competence, many of the tasks artificially 42 
rob the child of a chance to be naturally social, as the interaction is also taxing on the clinician and at 43 
times, awkward and seemingly forced. In this sense, several of the tasks might be biased, interfering 44 
with the child’s agency, and robbing the clinician of the spontaneity characteristic of a natural social 45 
exchange. In this sense, we need objective ways to quantify this potential bias that such a taxing effect 46 
may produce on both social agents. 47 

 48 

Prior work analyzing thousands of ADOS score records found non-obvious issues with the statistical 49 
foundations used to validate this test. While there are theoretical requirements of normality and 50 
homogeneous variance in the signal detection theory used to validate the ADOS [8; 9], as these 51 
assumptions are required for independence between bias and sensitivity [10], the empirical data across 52 
thousands of records, violate these assumptions [10]. New methods have then been proposed to help 53 
reduce the number of tasks [11], while also utilizing motor signatures to identify females [4; 11; 12; 54 
13]. However, there are no means to define naturalistic social agency in the dyad and to identify tasks 55 
that enhance it. Furthermore, no means to implement these tasks using artificial intelligence (AI) and 56 
machine learning (ML) methods have been proposed. Such approaches would help us speed up, 57 
automate, and scale the assessment process, particularly doing so with respect to currently 58 
underdiagnosed females [5]. 59 

 60 

We reasoned in the present work that the digital ADOS [11], i.e., the ADOS that is digitally recorded 61 
while the child and clinician interact, could leverage the validity of this test as the gold standard for 62 
clinical and research use, while providing a streamlined version of it that could help us (1) identify 63 
objective biometrics of social agency and (2) automate the process of identifying socially compliant 64 
tasks using methods from Artificial Intelligence (AI) and Machine Learning (ML).  65 

 66 

In our approach, socially compliant tasks are those which provide social agency to the child that is 67 
being diagnosed. More precisely, we here define social agency as the balance between autonomy and 68 
control during a social exchange. Autonomy is defined as the ability of the child to lead the 69 
conversation as much as the clinician does, rather than always following the lead of the clinician. 70 
Control is defined as the ability of the child to effectively predict the consequences of impending social 71 
actions and overall behaviors, based on intact motor control. Both concepts are illustrated in Figure 1.  72 

 73 

  74 

 75 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.25.23297428doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.25.23297428


3 
 

 76 

Figure 1. Digitally characterizing rapport and turn taking during an ADOS-based social 77 
interaction. (A) Snapshots of the interaction between a child and clinician wearing 6 biosensors, 78 
3 on each body, synchronously registering motion at 128Hz. Clinician-led interaction and note 79 
taking while rating the interaction. (B) Sample standardized micromovement spikes (MMS) 80 
derived from angular speed capturing approximately 11.7seconds of social exchange. (C) 81 
Frequency histograms of the MMS peaks, (one frame) from each sensor on the child and 82 
clinician. (D) Pairwise comparison of the histograms evolution using the Earth Movers’ distance 83 
similarity metric. Entries reflect the 6x6 matrix (child and clinician, 3 sensors at the torso, right 84 
and left wrist) as in (A). Off diagonal entries are the shared dyadic space, while entries next to 85 
the diagonal are the child’s or clinician’s activities in standalone mode. Blue to yellow color EMD 86 
scale ranks from most to least similar spike patterns. Star marks the maximal similarity.  87 

 88 

Socio-motor agency can be impeded if neurodevelopment undergoes a different maturation path [3; 89 
14; 15]. If the child, for example, has excessive motor noise and motor randomness in its performance, 90 
the predictive ability required for self-motor control will be compromised [3] and with it, the overall 91 
control ability will be altered. This alteration will also in turn affect the clinician’s perception of the 92 
child’s nuanced micro-motions underlying social behaviors, thus biasing the assessment [3; 11; 14]. 93 
Under such circumstances, socio-motor agency can be impeded, as can be the rating of the child by the 94 
clinician. Therefore, the tasks that manifest excess random noise of the joint dyadic motor patterns 95 
(lower control of the dyad) and / or excess lead of the clinician within the dyad (lower autonomy of the 96 
child), are inevitably bound to bias the clinician’s scoring towards a deficit model of autism. In contrast, 97 
the tasks that manifest high dyadic control and autonomy of the child are bound to boast social agency, 98 
according to our biometric definition. These tasks can provide a more appropriate model of readiness 99 
potential for social exchange. While detecting a problem relative to normative data, this new model 100 
can also do so in a fair, unbiased manner. In this sense, the child has a chance to succeed. In turn, the 101 
clinician can presume competence and identify areas of strength to recommend treatments more 102 
appropriately. Such treatments will rather be grounded on the non-obvious, nuanced aspects of 103 
behaviors occurring at a micro-level that escapes the naked eye. Yet they will be quantifiable with 104 
biosensors that read out biorhythmic activities from the nervous systems with sub-second resolution. 105 
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We here introduce a theoretical framework grounded on empirically derived power (scaling) laws of 106 
human ontogenetically orderly (neurodevelopmental) maturation. This framework connects stochastic 107 
analysis of human biorhythmic (time series) data with information theoretical metrics. We define new 108 
truly personalized computational indexes of dyadic control, autonomy, and socio-motor agency from 109 
biosensors’ digital data using as guidance the digitized ADOS-2. Then, we identify socially compliant 110 
tasks i.e., ADOS-2 tasks with balanced socio-motor agency, thus streamlining the digital ADOS-2. 111 
Lastly, we propose new ways to help automate and speed up autism screening and detection based on 112 
these socially appropriate tasks identified from the motor variability of the interactive dyad, rather than 113 
from the child’s or the clinician’s performance alone.  114 

 115 

2 Methods and Analyses 116 

2.1 Participants 117 

A total of 29 children including 19 males and 10 females spanning 4-15 years of age and two adult 118 
clinicians participated in the study (See Table 1). Children participated in multiple sessions over the 119 
span of 2 ½ years with one clinician per session and were administered a specific module per session, 120 
i.e., a specific subset of ADOS tasks, in accordance with their age, level of development and spoken 121 
language.  122 

Table 1. Participants information. 123 

Record 
Number 

Participant ID Age Sex Visit 1 
Module 
(Total Score) 

Visit 2 
Module 
(Total Score) 

Visit 3 
Module 
(Total Score) 

Visit 4 
Module 
(Total Score) 

1 NT01 (7-9) F 3(0) - - - 

2 NT02 (10-12) F 3(0) - - - 

3 NT03 (7-9) F 3(2) - - - 

4 NT04 (10-12) F 3(2) - - - 

5 NT06 (7-9) M 3(2) - - - 

6 NT08 (7-9) F 3(0) - - - 

7 NT09 (7-9) F 3(1) - - - 

8 NT10 (10-12) M 3(1) - - - 

9 NT11 (13-15) M 4(2) - - - 

10 NT12 (10-12) F 4(1) - - - 
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11 NT13 (13-15) M 4(0) - - - 

12 EP01 (4-6) M 3(10) 2(7) 3(9) 2(8)*x 

13 EP02 (7-9) M 3(9) 2(8) *X - - 

14 EP03 (10-12) M 3(12) 2(13) 3(24) *X 2(21) *X 

15 EP04 (13-15) F 3(7) 4(8) *X 3(11) *X 4(8) *X 

16 EP05 (4-6) M 3(9) 2(7) 3(8) *X - 

17 EP07 (10-12) M 3(12) 2(9) *X 3(18) *X 2(13) *X 

18 EP09 (4-6) M 1(18) *X 1(16) - - 

19 EP10 (7-9) M 1(13) 1(17) - - 

20 EP13 (4-6) M 3(17) - - - 

21 EP14 (13-15) M 1(8) 2(10) 1(14) 2(15) *X 

22 EP15 (10-12) M 1(17) 1(15) *X 1(26) 1(21) *X 

23 EP16 (4-6) M 3(11) 2(11) 3(22) *X 2(20) *X 

24 EP17 (10-12) M 1(16) 1(18) *X 1(18) 1(19) *X 

25 EP18 (7-9) F 3(10) 2(11) 3(16) 2(10) 

26 EP19 (7-9) M 3(8) *X 2(8) *X 3(8) - 

27 EP20 (7-9) M 3(11) 2(11) *X 3(17) *X 2(16) *X 

28 EP21 (10-12) F 3(11) 2(9) *X 3(8) *X 2(11) *11 

29 EP22 (4-6) M 1(26) 1(24) *X - - 

*X Denotes that the participant came for the visit, but his/her data could not be used either because it 124 
was not available/lost/corrupted or the information available was incomplete. NT stands for 125 
neurotypical participant and EP stands for expected-asd participant. The latter were confirmed by the 126 
clinician to have an ASD diagnosis at the end of the session. The identifiers EP/NT are not known 127 
to the clinicians or parents and are used as a way to number the participants internally in our 128 
lab. 129 

 130 
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2.2 Raw Data Acquisition 131 

Digital data were acquired during each session using light wearable sensors (APDM Opals, Portland, 132 
OR, USA). Six sensors were used, two on the left and right wrist and one on the torso, both on the 133 
child and clinician. The sensors continuously and synchronously recorded triaxial accelerometry and 134 
gyroscopic data at a sampling frequency of 128 Hz. The recording environment followed the 135 
standardized ADOS requirements using similar table and sitting arrangements for the clinician-child 136 
dyad. The two clinicians were unaware of the goals of the study.  137 

2.3 Data Type: The Micro-Movement Spikes Derivation 138 

Scalar values of angular speed from orientation data that the gyroscopes recorded (or acceleration from 139 
the inertial measurement units) were acquired using the Euclidean norm (using Equation 2.1) of the 140 
coordinate components of motion as measured by the sensors: 141 

                                                                   𝑉𝑉 = �𝑉𝑉𝑥𝑥2 + 𝑉𝑉𝑦𝑦2 + 𝑉𝑉𝑧𝑧2                Equation (2.1) 142 

From here onward, all analyses refer to the scalar value V, the angular speed in deg/sec. 143 

Human motion data such as angular speed and acceleration, are inherently biased by allometric effects 144 
and anatomical differences across subjects. To scale out such artifacts, we normalize motion data 145 
fluctuations (peaks and valleys) (using Equation 2.2) as relative deviations from the empirically 146 
estimated Gamma mean. The mean is estimated by fitting the continuous Gamma family of 147 
distributions to the raw peak data. The Gamma family of distributions has been consistently found to 148 
be the best candidate to fit human peak activity motion data, according to Maximum Likelihood 149 
Estimation (MLE). After we shift and center our data around the Gamma mean, we scale and map peak 150 
motion activity to the [0,1] interval according to the local minima average: 151 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝐴𝐴𝐴𝐴𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚

             Equation (2.2) 152 

The normalized peak series, called Micro Movements Spikes (MMS)™ conserve the temporal 153 
structure of the original speed/acceleration time series. They represent “quiet” times interspersed with 154 
bouts of activity away from mean activity.   155 

2.4 The Gamma Process of the MMS 156 

The normalized speed MMS are best fit (in the MLE sense) by the continuous Gamma family of 157 
probability distributions [3; 16]. Furthermore, the parameters of the Gamma distribution, shape k and 158 
scale θ have been found across multiple studies from our laboratory, including the present one (see 159 
Results), to follow a Power Law of the form described in Equation 2.3:  160 

 161 

𝑁𝑁 ≅ 𝑁𝑁𝜃𝜃𝑏𝑏 → 𝑙𝑙𝑁𝑁𝑙𝑙(𝑁𝑁) = 𝑁𝑁 + 𝑏𝑏 𝑙𝑙𝑁𝑁𝑙𝑙(𝜃𝜃) + 𝜀𝜀           Equation (2.3) 162 

 163 
Where ε is a small error term and b < 0. This Power Law for the standardized MMS time series reveals 164 
a maturation process of the motor code for voluntary [3; 17] and involuntary [18] motions. This law is 165 
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very important because it provides us with a quantitative framework to interpret fluctuations in 166 
biorhythmic data that range from random to predictive. 167 

 168 

Importantly, the continuous Gamma family of probability distributions has the first (mean) and second 169 
(variance) moments expressed in terms of the shape and scale described by Equations 2.4)    170 

 171 

𝜇𝜇 = 𝑁𝑁𝜃𝜃,𝜎𝜎2 = 𝑁𝑁𝜃𝜃2         Equation (2.4) 172 

  173 

Then, using Equations 2.4, the Noise-to-Signal Ratio (NSR) of the MMS reduces to the Gamma scale 174 
parameter as in Equation 2.5: 175 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜎𝜎2

𝜇𝜇
= 𝑃𝑃𝜃𝜃2

𝑃𝑃𝜃𝜃
= 𝜃𝜃          Equation (2.5) 176 

 177 

The Gamma scale parameter in Equation 2.5 fully characterizes the noise of the motor patterns of the 178 
interactive dyad (or of the participant), i.e., in relation to the level of fluctuations of angular speed 179 
during the ADOS activities.  180 

 181 

Empirical estimation of these parameters in thousands of participants over a decade of work with 182 
humans along the lifespan, and across disorders of the nervous system, has revealed an interpretation 183 
for the Gamma log-log parameter plane. Distributions that fall along high NSR regimes are also close 184 
to the memoryless random regime of the special exponential distribution case (when k = 1). Points in 185 
mid NSR correspond to heavy-tailed Gamma distributions. Then, low NSR (or high signal = 1/NSR) 186 
are congruent with symmetric shapes (Gaussian-like) distributions. High-signal Gaussian regimens are 187 
highly predictable in contrast to High-noise memoryless random Exponential regimes. As such, this 188 
parameter plane is empirically interpretable. 189 

  190 

2.5 Quantifying Motor Control from the Perspective of an Agent 191 

Noise-to-Signal Ratio measures the degree of motion variability away from mean activity. Small NSR 192 
characterizes steady and smooth motion, akin of goal-oriented behavior, as experienced from the 193 
perspective of the agent/ child. On the other hand, a high NSR indicates unpredictable and random 194 
motion. In that sense, the NSR is a proxy for motor control and quantifies the existence of predictable 195 
motor patterns. Because the NSR is calculated on the standardized MMS, motor noise does not depend 196 
on the anatomy of the individual as it is scaled by the mean amplitude of motion.  197 

 198 

2.6 An Information Theoretic Approach to the Analyses of the MMS  199 
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The presence of MMS peaks indicates an outburst of activity away from baseline. This is informative 200 
of a motor activity. When we also consider the temporal distribution of MMS peaks, a train of such 201 
spikes can be viewed as a representation of information regarding human motion variability through 202 
time. When we consider multiple sensors sampling in synchrony, the MMS spikes carry spatiotemporal 203 
information about the bursts of distributed bodily activity in the motor system.  204 

2.7 Binary Trains of MMS 205 

If we transform the MMS data so that the presence of a peak corresponds to the binary “1” and an 206 
absence of a peak corresponds to the binary “0”, we can represent normalized speed (or acceleration) 207 
as a stochastic binary sequence. An underlying mechanism stochastically generates bursts of activity, 208 
and this is equivalent to randomly generating 0s and 1s from an underlying binary alphabet as in 209 
Equation 2.6. 210 

 211 

                                                    𝐵𝐵𝑡𝑡 = 1, if 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡 > 𝑡𝑡ℎ𝑁𝑁𝑁𝑁𝑟𝑟ℎ𝑁𝑁𝑙𝑙𝑜𝑜              Equation (2.6) 212 

 213 

Let’s assume that 𝐵𝐵𝑡𝑡 is a random sample drawn from an underlying probability distribution at time 𝑡𝑡. 214 

 215 

                               𝐵𝐵𝑡𝑡 = 1  with probability 𝑝𝑝𝑡𝑡, 0 with probability 1 − 𝑝𝑝𝑡𝑡     Equation (2.7) 216 

 217 

Entropy H in Equation 2.8 is an information theoretic measure that quantifies the amount of 218 
information in a random variable that follows a probability distribution 𝑁𝑁𝑥𝑥 [19] and is equal to: 219 

 220 

                                                              𝐻𝐻 =  −∑ 𝑝𝑝𝑥𝑥 𝑥𝑥 𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃 𝑝𝑝𝑥𝑥                                 Equation (2.8)         221 

 222 

In the case of the binary process, the amount of information of the random variable of an activity 223 
outburst (MMS) is given in Equation 2.9: 224 

 225 

                                              𝐻𝐻𝑡𝑡 = −𝑝𝑝𝑡𝑡 𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃(𝑝𝑝𝑡𝑡) − (1 − 𝑝𝑝𝑡𝑡) 𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃(1 − 𝑝𝑝𝑡𝑡)             Equation (2.9) 226 

 227 

Which takes the maximum value of 1 when 𝑝𝑝𝑡𝑡 = 0.5 and the minimum value of 0, when 𝑝𝑝𝑡𝑡 = 0 or 1. 228 
Intuitively, entropy measures either the uncertainty regarding the outcome of a random realization of 229 
the random variable before that variable is measured or equivalently, the amount of information we get 230 
when we observe the variable. If we know for examples, that with a 100 % chance 𝐵𝐵𝑡𝑡 = 1, the entropy 231 
is zero as we have no uncertainty about the outcome of the measurement, and no valuable information 232 
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is provided to us. However, if with a 50 % chance 𝐵𝐵𝑡𝑡 = 1, the entropy is at its maximum because we 233 
are totally uncertain whether the outcome will be 0 or 1 and observing the outcome gives us maximal 234 
information, specifically, 1 bit of information in the case of a base 2 logarithm (𝑁𝑁 = 2). 235 

 236 

2.8 Measuring Randomness vs. Predictability Using Entropy Rate  237 

The definition of entropy can be generalized for the case of multiple random variables 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁, 238 
as in equation 2.10, by considering the joint probability distribution 𝑁𝑁𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑁𝑁: 239 

 240 

𝐻𝐻(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁) = −∑ 𝑁𝑁𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑁𝑁𝑋𝑋1,𝑋𝑋2,…𝑋𝑋𝑁𝑁, loga(𝑁𝑁𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑁𝑁)            Equation (2.10) 241 

             242 

In the case of a stationary stochastic process 𝑋𝑋 (i.e., statistical properties preserved over time) which 243 
takes values from a discrete alphabet 𝐾𝐾 (in the case of the binary MMS), we can define the entropy 244 
rate of the process as in Equation 2.11: 245 

 246 

𝐻𝐻(𝑋𝑋) = 1
𝑇𝑇

lim
𝑇𝑇→∞

𝐻𝐻(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑇𝑇)                       Equation (2.11) 247 

 248 

This quantity measures how much the process changes over time, i.e., the information that is carried 249 
in a new value. It measures the degree of randomness (unpredictability) of the underlying dynamical 250 
system [19; 20; 21; 22]. 251 

 252 

2.9 Randomness for Dynamical Systems  253 

The concept of entropy rate is not limited to random processes, but it can also be defined in the case of 254 
deterministic dynamical systems. Let 𝑥𝑥𝑡𝑡 be a continuous univariate times series. Then we can construct 255 
a state-space representation of the process as in Equation 2.12, if we choose an appropriate dimension 256 
𝑜𝑜 of the presumed underlying dynamical system and an embedding delay 𝜏𝜏 [23; 24]. 257 

 258 

𝑋𝑋𝑡𝑡 =

⎝

⎜⎜
⎛

𝑥𝑥1
𝑥𝑥2
.
.
.
𝑥𝑥𝑑𝑑⎠

⎟⎟
⎞

𝑡𝑡

=

⎝

⎜
⎜
⎛

𝑥𝑥(𝑡𝑡)
𝑥𝑥(𝑡𝑡 + 𝜏𝜏)

.

.

.
𝑥𝑥(𝑡𝑡 + (𝑜𝑜 − 1)𝜏𝜏)⎠

⎟
⎟
⎞

                        Equation (2.12) 259 
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The existence and calculations of the embedding dimension and delay are ensured by Taken’s 260 
embedding theorem [25]. For more information on dynamical systems theory see e.g., [26; 27].  261 
Essentially, any univariate time series can be viewed as being sampled from a high dimensional 262 
dynamical system [28]. The dynamical system follows a trajectory in the d-dimensional space defined 263 
by the d degrees of freedom. All possible states of the dynamical system define the phase space of the 264 
system.  265 

 266 

If we partition the phase space across 𝐹𝐹  dimensions, with 𝐹𝐹 ≤ 𝑜𝑜, we have an F-dimensional grid of 267 
cells of volume 𝑁𝑁𝐹𝐹. Then, we can measure the state of the system at constant time intervals equal to the 268 
embdedding delay 𝜏𝜏. Then we can define the joint probability 𝑝𝑝(𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑑𝑑) that  𝑋𝑋𝜏𝜏 is in cell 𝑖𝑖1, 𝑋𝑋2𝜏𝜏 269 
is in cell 𝑖𝑖2,…., 𝑋𝑋𝑑𝑑𝜏𝜏 is in cell 𝑖𝑖𝑑𝑑.  The degree of “randomness” of the determistic system can then be 270 
calculated using the Kolmogorov-Sinai (KS) entropy[29] using Equation 2.13:   271 

 272 

   𝐾𝐾𝑁𝑁 = − 𝑙𝑙𝑖𝑖𝑁𝑁
𝜏𝜏→0

𝑙𝑙𝑖𝑖𝑁𝑁
𝑟𝑟→0

𝑙𝑙𝑖𝑖𝑁𝑁
𝑑𝑑→ ∞

1
𝑑𝑑𝜏𝜏

 ∑ 𝑝𝑝(𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑑𝑑)𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑑𝑑 𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃   𝑝𝑝(𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑑𝑑)       Equation (2.13) 273 

 274 

The KS entropy is almost always equal to the entropy rate of the original signal 𝑥𝑥𝑡𝑡 and characterizes 275 
the degree of randomness of the system (and subsequently the sampled one-dimensional signal). For 276 
completely deterministic systems it is equal to zero and it is infinite for random systems.  277 

In practice, the entropy rate is approximated using what is known as the correlation integral [30] in 278 
Equation 2.14:  279 

 280 

    𝐶𝐶𝑑𝑑(𝑁𝑁) = 𝑙𝑙𝑖𝑖𝑁𝑁
𝑁𝑁→ ∞

1
𝑁𝑁2

[# (𝑛𝑛,𝑁𝑁), �∑ |𝑋𝑋𝑛𝑛+𝑖𝑖 − 𝑋𝑋𝑚𝑚+𝑖𝑖 |2𝑑𝑑
𝑖𝑖=1 �

1
2 ≤  𝑁𝑁 ]           Equation (2.14) 281 

 282 

i.e., the (#) number of pairs of trajectory points that are close to each within a tolerance threshold 𝑁𝑁 and 283 
measures the regularity (frequency) of patterns like a given template of specific length.  284 

It can be shown that:   285 

 286 

        𝑙𝑙𝑖𝑖𝑁𝑁
𝑑𝑑→ ∞,𝑟𝑟→0

1
𝜏𝜏
𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃

𝐶𝐶𝑑𝑑(𝑟𝑟)
𝐶𝐶𝑑𝑑+1(𝑟𝑟)

 ~ 𝐾𝐾2                                   287 

 288 

Where 𝐾𝐾2 is the Renyi entropy of order 2. The Renyi entropy  𝐾𝐾𝑃𝑃 in Equation 2.15 is a generalized 289 
form of the usual Shannon entropy and is defined as: 290 

    𝐾𝐾𝑃𝑃 = 1
1−𝑃𝑃

𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃 (∑ 𝑝𝑝𝑥𝑥𝑃𝑃𝑥𝑥 )                                          Equation (2.15) 291 
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We leverage these tools to calculate the entropy rate in the case of a discrete time series 𝑢𝑢(𝑛𝑛).  Consider 292 
two different blocks of length 𝑁𝑁 sampled from the time series:  293 

 294 

𝑥𝑥(𝑖𝑖) = {𝑢𝑢(𝑖𝑖),𝑢𝑢(𝑖𝑖 + 1) … ,𝑢𝑢(𝑖𝑖 + 𝑁𝑁 − 1)} 295 

𝑥𝑥(𝑗𝑗) = {𝑢𝑢(𝑗𝑗),𝑢𝑢(𝑗𝑗 + 1), …𝑢𝑢(𝑗𝑗 + 𝑁𝑁− 1)} 296 

And define the distance in Equation 2.16: 297 

 298 

𝑜𝑜[𝑥𝑥(𝑖𝑖),𝑥𝑥(𝑗𝑗)] = 𝑁𝑁𝑁𝑁𝑥𝑥
𝑃𝑃=1,2,…𝑚𝑚

(|𝑢𝑢(𝑖𝑖 + 𝑁𝑁 − 1) − 𝑢𝑢(𝑗𝑗 + 𝑁𝑁 − 1)|)         Equation (2.16) 299 

 300 

i.e., the maximum distance between the two vectors (Chebyshev distance). Then, we can define a 301 
quantity in Equation 2.17 like the correlation integral, for a template of length 𝑁𝑁 at 𝑥𝑥(𝑖𝑖) within a 302 
tolerance threshold r: 303 

 304 

𝐶𝐶𝑖𝑖𝑚𝑚 = # 𝑗𝑗≤𝑁𝑁−𝑚𝑚+1,𝑑𝑑[𝑥𝑥(𝑖𝑖),𝑥𝑥(𝑗𝑗)]≤𝑟𝑟
𝑁𝑁−𝑚𝑚+1

                                 Equation (2.17) 305 

 306 

Then, the entropy rate can be estimated as in Equation 2.18:                                307 

 308 

𝐸𝐸𝑁𝑁 = 𝑙𝑙𝑖𝑖𝑁𝑁
𝑟𝑟→0

𝑙𝑙𝑖𝑖𝑁𝑁
𝑚𝑚→ ∞

𝑙𝑙𝑖𝑖𝑁𝑁
𝑁𝑁→ ∞

[𝜑𝜑𝑚𝑚(𝑁𝑁) − 𝜑𝜑𝑚𝑚−1(𝑁𝑁)]                       Equation (2.18) 309 

                                                           310 

Where as in [31] Equation 2.19 gives: 311 

 312 

𝜑𝜑𝑚𝑚(𝑁𝑁) = 1
𝑁𝑁−𝑚𝑚+1

 ∑ 𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃 𝐶𝐶𝑖𝑖𝑚𝑚(𝑁𝑁)𝑁𝑁−𝑚𝑚+1
𝑖𝑖=1                            Equation (2.19) 313 

 314 

Since 𝐶𝐶𝑖𝑖𝑚𝑚(𝑁𝑁) is essentially the probability that any sequence of length 𝑁𝑁 is very close to the template 315 
sequence at time 𝑖𝑖, and 𝐶𝐶𝑖𝑖𝑚𝑚−1(𝑁𝑁) the probability that the same holds true for sequences of length 𝑁𝑁 −316 
1, then 𝐶𝐶𝑚𝑚

𝑚𝑚(𝑟𝑟)
𝐶𝐶𝑚𝑚
𝑚𝑚−1(𝑟𝑟)

 is the conditional probability that any sequence of length 𝑁𝑁 is very close to the template 317 

of length 𝑁𝑁 at time 𝑖𝑖 given that the same holds true for 𝑁𝑁 − 1. Then 𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃 �
𝐶𝐶𝑚𝑚
𝑚𝑚(𝑟𝑟)

𝐶𝐶𝑚𝑚
𝑚𝑚−1(𝑟𝑟)� = 𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃�𝐶𝐶𝑖𝑖𝑚𝑚(𝑁𝑁)� −318 
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𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃 (𝐶𝐶𝑖𝑖𝑚𝑚−1(𝑁𝑁))  the logarithm of this conditional probability. It is easy to see that 𝜑𝜑𝑚𝑚(𝑁𝑁) − 𝜑𝜑𝑚𝑚−1(𝑁𝑁) 319 
is the average over 𝑖𝑖 of the logarithm of this conditional probability [29].  320 

 321 

However, due to finite sample sizes and stochasticity in time series analysis, the entropy rate can be 322 
estimated by what is known as Approximate Entropy [26] and is given by Equation 2.20: 323 

 324 

𝐴𝐴𝑝𝑝𝐸𝐸𝑛𝑛(𝑁𝑁, 𝑁𝑁,𝑁𝑁)(𝑢𝑢) = 𝜑𝜑𝑚𝑚 − 𝜑𝜑𝑚𝑚−1                                   Equation (2.20) 325 

 326 

 Where 𝑁𝑁 is the length of the time series 𝑢𝑢(𝑛𝑛), 𝑁𝑁 is the choice of the length template and 𝑁𝑁 is the 327 
threshold tolerance choice. Approximate entropy measures the logarithmic frequency with which 328 
segments of length 𝑁𝑁 that very close together (according to the threshold), stay together through time.  329 

 330 

An approximate formula for ApEn, which we implemented in our study is given by Equation 2.21: 331 

 332 

     𝐴𝐴𝑝𝑝𝐸𝐸𝑛𝑛(𝑁𝑁, 𝑁𝑁,𝑁𝑁) ≅ 1
𝛮𝛮−𝑚𝑚

∑ 𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃
∑ [# 𝑗𝑗,𝑑𝑑[|𝑥𝑥𝑚𝑚+1(𝑗𝑗)−𝑥𝑥𝑚𝑚+1 (𝑖𝑖)|]<𝑟𝑟]𝑁𝑁−𝑚𝑚
𝑗𝑗=1

∑ [# 𝑗𝑗,𝑑𝑑[|𝑥𝑥𝑚𝑚(𝑗𝑗)−𝑥𝑥𝑚𝑚 (𝑖𝑖)|]<𝑟𝑟]𝑁𝑁−𝑚𝑚
𝑗𝑗=1

𝑁𝑁−𝑚𝑚
𝑖𝑖=1           Equation (2.21) 333 

 334 

2.10 Entropy Rate estimation for a binary MMS speed sequence  335 

Generally, in the case of discrete alphabet sequences with 𝑁𝑁 symbols,  0 ≤  𝐴𝐴𝑝𝑝𝐸𝐸𝑛𝑛 ≤ 𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃 𝑁𝑁                                   336 
   337 

Where 𝐴𝐴𝑝𝑝𝐸𝐸𝑛𝑛 = 0 for deterministic time series and 𝐴𝐴𝑝𝑝𝐸𝐸𝑛𝑛 = 𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃 𝑁𝑁 for random series. 338 

In our case (binary MM series), 𝑁𝑁 = 2 and  0 ≤ 𝐴𝐴𝑝𝑝𝐸𝐸𝑛𝑛𝑀𝑀𝑀𝑀 ≤ 𝑙𝑙𝑁𝑁𝑙𝑙𝑃𝑃 2                                  339 
  340 

For 𝑁𝑁 = 𝑁𝑁 (natural logarithm choice), the maximum value is 𝑙𝑙𝑛𝑛(2) = 0.69, which the base we use in 341 
this study [29].  342 

 343 

A good choice of 𝑁𝑁 is equal to the embedding dimension, which can be estimated using the False 344 
Nearest Neighbor (FNN) algorithm[32]. Usually, 𝑁𝑁 is of low dimension, in our case the dimension of 345 
the data was estimated to be 2. The threshold 𝑁𝑁 is usually set between 0.1 to 0.25 standard deviations 346 
of the time series [29]. 347 

2.11 Quantifying Information Flow Between Binarized MMS with Local Transfer Entropy 348 
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Local Shannon Entropy is defined in Equation 2.22 as the negative logarithm of the probability of an 349 
outcome 𝑥𝑥 of a random variable [33]: 350 

 351 

                       ℎ(𝑥𝑥) = − 𝑙𝑙𝑁𝑁𝑙𝑙2 𝑝𝑝(𝑥𝑥)                                            Equation (2.22)     352 

 353 

where low probability outcomes carry more information than high probability outcomes. Entropy as 354 
defined in Equation 2.23 can then be expressed as the average value of all such outcomes: 355 

 356 

                                       𝐻𝐻(𝑋𝑋) = 𝐸𝐸[ℎ(𝑥𝑥)] = −∑ 𝑝𝑝(𝑥𝑥) 𝑙𝑙𝑁𝑁𝑙𝑙2 𝑝𝑝(𝑥𝑥)𝑥𝑥                             Equation (2.23) 357 

 358 

Where 𝐸𝐸[. ] is the expectation (average) operator. An estimator based on samples 𝑥𝑥𝑛𝑛 is given by 359 
Equation 2.24: 360 

 361 

𝐻𝐻(𝑥𝑥) ≅ 1
𝑁𝑁
∑ ℎ(𝑥𝑥𝑛𝑛)𝑁𝑁
𝑛𝑛=1                                           Equation (2.24) 362 

 363 

The Local Mutual Information 𝑖𝑖(𝑥𝑥;𝑦𝑦) and Mutual Information (MI) 𝐼𝐼(𝑋𝑋;𝑌𝑌) are respectively defined 364 
in Equations 2.25 and 2.26, [34]: 365 

 366 

𝑖𝑖(𝑥𝑥;𝑦𝑦) = 𝑙𝑙𝑁𝑁𝑙𝑙2
𝑝𝑝�𝑥𝑥�𝑦𝑦�
𝑝𝑝(𝑥𝑥)

= ℎ(𝑥𝑥) − ℎ(𝑥𝑥|𝑦𝑦)                                     Equation (2.25) 367 

 368 

𝐼𝐼(𝑋𝑋;𝑌𝑌) = 𝐸𝐸[𝑖𝑖(𝑥𝑥;𝑦𝑦)]         Equation (2.26) 369 

 370 

Equation 2.26 quantifies the information that we gain when observing 𝑋𝑋 after we have already observed 371 
another variable 𝑌𝑌. 372 

 373 

Similarly, the Local Conditional Mutual Information and Conditional Mutual Information are given by 374 
Equations 2.27 and 2.28 respectively, [34]: 375 

𝑖𝑖(𝑥𝑥;𝑦𝑦|𝑧𝑧) = 𝑙𝑙𝑁𝑁𝑙𝑙2
𝑝𝑝�𝑥𝑥�𝑦𝑦, 𝑧𝑧�
𝑝𝑝(𝑥𝑥|𝑧𝑧) = ℎ(𝑥𝑥|𝑧𝑧) − ℎ(𝑥𝑥|𝑦𝑦, 𝑧𝑧)                          Equation (2.27) 376 
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 377 

𝐼𝐼(𝑋𝑋;𝑌𝑌|𝑍𝑍) = 𝐸𝐸[𝑖𝑖(𝑥𝑥;𝑦𝑦|𝑧𝑧)]        Equation (2.28) 378 

 379 

It quantifies the information that we gain when we observe 𝑋𝑋 after considering both 𝑌𝑌 and 𝑍𝑍 versus 380 
considering only 𝑍𝑍. 381 

Finally, local transfer entropy quantifies the flow of information from Y to X and is defined in Equation 382 
2.29, [35; 36]: 383 

 384 

𝑡𝑡𝑌𝑌→𝑋𝑋(𝑛𝑛 + 1,𝑁𝑁, 𝑙𝑙,𝑢𝑢) = 𝑖𝑖(𝒚𝒚𝑛𝑛+1−𝑢𝑢
(𝑙𝑙) ; 𝑥𝑥𝑛𝑛+1|𝒙𝒙𝑛𝑛

(𝑃𝑃))                             Equation (2.29) 385 

 386 

Where 𝑙𝑙 and 𝑁𝑁 denote the length of the vectors 𝒚𝒚𝑛𝑛+1−𝑢𝑢
(𝑙𝑙) = {𝑦𝑦𝑛𝑛+1−𝑢𝑢−𝑙𝑙+1, … ,𝑦𝑦𝑛𝑛+1−𝑢𝑢−1,𝑦𝑦𝑛𝑛+1−𝑢𝑢} (storing 387 

past information of the process Y with a memory of 𝑙𝑙 samples up to point 𝑛𝑛 + 1 − 𝑢𝑢) and 𝒙𝒙𝑛𝑛
(𝑃𝑃) =388 

{𝑥𝑥𝑛𝑛−𝑃𝑃+1, … , 𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛}.  389 

 390 

The integer 𝑢𝑢 denotes the source-destination lag, i.e., the causal time delay between 𝑌𝑌 and 𝑋𝑋 that we 391 
are interested in when we want to calculate the transfer entropy from 𝑌𝑌 to 𝑋𝑋. For 𝑢𝑢 = 1, a typical choice 392 
of source-destination lag is given by Equation 2.30: 393 

𝑡𝑡𝑌𝑌→𝑋𝑋(𝑛𝑛 + 1,𝑁𝑁, 𝑙𝑙) = 𝑖𝑖(𝒚𝒚𝑛𝑛
(𝑙𝑙); 𝑥𝑥𝑛𝑛+1|𝒙𝒙𝑛𝑛

(𝑃𝑃))                                        Equation (2.30) 394 

 395 

The local transfer entropy is the mutual information between Y and the future state of X, 𝑢𝑢 samples 396 
ahead, conditioned on the history of X. In other words, it measures the information gained that we get 397 
about the future state of X when considering both its own past and the past states of Y versus 398 
considering only its past state.  Transfer entropy is the expected information gain, averaging over all 399 
states given by Equation 2.31, [33; 35]: 400 

𝑇𝑇𝑌𝑌→𝑋𝑋(𝑁𝑁, 𝑙𝑙) = 𝐸𝐸[𝑡𝑡𝑌𝑌→𝑋𝑋(𝑛𝑛 + 1,𝑁𝑁, 𝑙𝑙)]                                           Equation (2.31) 401 

 402 

2.12 Quantifying Autonomy of an Agent from the Perspective of the Observer  403 

For a child/clinician dyad, we obtain the normalized MMS derived from the fluctuations in angular 404 
speed from the right- and left-wrist sensors throughout the course of the dyadic interaction. Then, we 405 
calculate the entropy rate for consecutive non-overlapping time windows, small enough to ensure 406 
stationarity but not too small, as to ensure convergence. We calculate the entropy rate both for the 407 
normalized MMS and for the corresponding binary MMS trains that we obtain by setting peak values 408 
to “1” and zero values to “zero”.  409 
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 410 

To estimate the entropy rate we used Approximate entropy ApEn (developed by Steve M. Pincus [37]), 411 
which measures the amount of regularity or unpredictability of fluctuations over time-series data that 412 
have lengths compatible with experimental settings (unlike other measures of entropy aimed at 413 
measuring regularity but requiring very long times). There are caveats to the use of the ApEn algorithm 414 
[29]:  415 

i. The ApEn algorithms allows self-counting when counting the number of templates that are 416 
similar to a given data segment, which helps avoid the occurrence of log (0) in the calculation.  417 

ii. However, when the self-similarity threshold 𝑁𝑁 is very small, the template vector coincides only 418 
with itself, giving ApEn low values, indicating regularity when the system may in fact, be very 419 
irregular.    420 

iii. ApEn is biased by a factor of 1
𝑁𝑁−𝑚𝑚

, which means that it depends on the template length and data 421 
stream length.  422 

ApEn generally depends on the threshold 𝑁𝑁, and the embedding delay and embedding dimension of the 423 
reconstructed space (which is equal to the template length). It is generally suggested, that in order to 424 
compare the approximate entropies of different time series, all parameters must be equal. However, for 425 
the scope of our study, we chose the threshold parameter 𝑁𝑁 to be equal to 0.2𝜎𝜎, as recommended in the 426 
literature [29]. The embedding delay was chosen according to the minimum Average Mutual 427 
Information criterion, to ensure maximum novelty between consecutive samples in the reconstructed 428 
space. As for the template, we chose it to be 1/𝑁𝑁, where 𝑁𝑁 is the average rate (frequency) of MMS in 429 
the time window of interest. This equals to the average time-distance between two spikes and our 430 
choice ensures that in the reconstructed space, the coordinates of a point in time include both zeros 431 
(“quiet moments”) and spikes and that the system does not bounce back and forth from a single 432 
coordinate of zeros components. In this way, we can minimize any bias introduced by differences in 433 
spike rates, in the computation of self-similarity by the algorithm. Sparser time windows will contain 434 
the same percentage of “active” moments as denser time windows. Since it turns out that, for our 435 
datasets, 0.1 < 𝑁𝑁 < 0.5, we have 2 < 𝑁𝑁 < 10, which according to the literature is within the optimal 436 
range [29]. Moreover, since 𝑁𝑁 = 1000, the bias introduced by 𝑁𝑁 in the prefactor is very small.  437 

ApEn is computationally efficient. One can easily see that the worst-case time complexity of ApEn is 438 
𝑂𝑂(𝑁𝑁2). Furthermore, it has lower effect from noise in the data. If data is noisy, the ApEn measure can 439 
be compared to the noise level in the data to determine what quality of true information may be present 440 
in the data [29]. We here notice the difference between the criterion for randomness in the Gamma 441 
parameter space, when the shape is 1, which is the special case of the memoryless exponential 442 
distribution. In our empirical characterization of the MMS from the peak fluctuations, which follow a 443 
scaling power law, as the shape approaches the value of 1 representing the exponential distribution 444 
case, the 𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑙𝑙𝑁𝑁𝑙𝑙𝜃𝜃 approaches its maximum levels [3]. The differential entropy for the Gamma 445 
distribution has the general form in Equation 2.32, [38]: 446 

 447 

                                      ℎ�𝑋𝑋𝑔𝑔� = 𝑁𝑁 + 𝑙𝑙𝑁𝑁𝑙𝑙𝜃𝜃 + log𝛤𝛤(𝑁𝑁) + (1 − 𝑁𝑁)𝜓𝜓(𝑁𝑁)        Equation (2.32) 448 
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We will show later that discrete samples 𝑋𝑋𝐺𝐺 that follow the Gamma distribution, such as the MMS, 449 
have entropy roughly equal to ℎ�𝑋𝑋𝑔𝑔� − 𝑙𝑙𝑁𝑁𝑙𝑙𝛥𝛥, when 𝛥𝛥, is the discretization step. Because of the Power 450 
Law discussed before, 𝑙𝑙𝑁𝑁𝑙𝑙(𝑁𝑁) = 𝑁𝑁 + 𝑏𝑏 𝑙𝑙𝑁𝑁𝑙𝑙(𝜃𝜃) + 𝜀𝜀, we have in Equation 2.33: 451 

 452 

                 𝐻𝐻(𝑋𝑋𝐺𝐺) ≅ 𝑁𝑁𝑃𝑃+𝜀𝜀𝑁𝑁𝑏𝑏𝑁𝑁𝑏𝑏𝑏𝑏 + 𝑁𝑁𝑁𝑁𝑁𝑁 + log𝛤𝛤(𝑁𝑁) + (1 − 𝑁𝑁)𝜓𝜓(𝑁𝑁) − 𝑙𝑙𝑁𝑁𝑙𝑙𝛥𝛥        Equation (2.33) 453 

 454 

As the NSR increases, 𝑁𝑁 → 1 and thus, 𝐻𝐻(𝑋𝑋𝐺𝐺) → 𝑁𝑁𝑃𝑃+𝜀𝜀𝑁𝑁𝑏𝑏𝑁𝑁𝑏𝑏𝑏𝑏 + 𝑁𝑁𝑁𝑁𝑁𝑁 + 1 − 𝑙𝑙𝑁𝑁𝑙𝑙𝛥𝛥 . In Section 4, we 455 
will experimentally show that, for 𝑙𝑙𝑁𝑁𝑙𝑙𝜃𝜃 < 1 in Equation 2.34: 456 

 457 

                                                 𝐻𝐻(𝑋𝑋𝐺𝐺) = 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁),𝑁𝑁 →  1           Equation (2.34) 458 

 459 

However, in the case of ApEn, we consider a process of the form 𝑋𝑋𝐺𝐺 ∗ 𝑋𝑋𝐵𝐵𝑡𝑡 , where 𝑋𝑋𝐵𝐵𝑡𝑡  is the binary spike 460 
series, determining the temporal distribution of the peaks in time. In fact, we will empirically 461 
demonstrate that 𝑋𝑋𝐵𝐵𝑡𝑡  is almost independent from 𝑋𝑋𝐺𝐺, implying that ApEn measures the information 462 
content of the binary spike time series, characterizing the motor code. On the other hand, randomness 463 
in the sense of 𝑁𝑁𝑁𝑁𝑁𝑁 (or equivalently 𝐻𝐻(𝑋𝑋𝐺𝐺)), refers to the temporal component of the events and 464 
answers the question of predictability in time, whereby predicting future events in time does not benefit 465 
from knowledge of prior or current event times. We will see later that these two elements of the Gamma 466 
distributed MMS are indeed separable and within the current context, tend to be orthogonal.  467 

 468 

In this sense, we propose that the entropy rate (ER) derived from ApEn is a measure to characterize 469 
autonomy in the system. Since ER is a proper way to quantify regularity vs. randomness, we can safely 470 
presume that the information levels that it carries also measures the ability of an observer to predict the 471 
motor behavior of an agent, when the two of them engage in a dyadic social interaction. For example, 472 
when the clinician observes the behavior of a child that engages in repetitive and predictable motions, 473 
they can easily learn their behavioral and motor patterns. This also implies that they can more easily 474 
detect a problem in a child that behaves predictably and set up the context to better control the situation. 475 
In this sense, the more predictable the situation is, the more control it will be afforded by the external 476 
agent.  477 

 478 

Following our argument, we redefine socio-motor agency as the balance between control and 479 
autonomy. Signal-to-Noise ratio characterizes the ability of an agent to (internally) control their own 480 
behavior. Entropy rate characterizes the ability of the agent to act autonomously (while minimizing 481 
external control by another agent) in a social interaction.  482 

 483 
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Finally, using transfer entropy we can quantify the amount of causal influence from the clinician to the 484 
child and vice versa, without the need to use any model or make any other assumptions.    485 

   486 

 487 
Methods Figure. Digitization of the Autism Diagnostic Observation Schedule (ADOS): Angular 488 
speed samples (128 Hz) from wearable sensors on the wrists and torso of the child and clinician 489 
are normalized and binarized to obtain discrete sequences of 0’s and 1’s. Entropy rate estimates 490 
measure the unpredictability of the underlying binary processes to characterize the agents’ 491 
autonomy in the dyadic social interaction. The analysis is performed on data from time windows 492 
of ~7.8 secs which proved optimal to attain high confidence intervals. 493 

 494 

2.13 The Autism Diagnostic Observation Schedule (ADOS-2) Scoring System  495 

The ADOS-2 Modules consist of tasks that the clinician performs with the child to observe behavior 496 
related to the diagnosis of ASD and reach a conclusion. There are different Modules. Each child is 497 
administered a single Module based on their expressive language level, developmental age and their 498 
unique interests and abilities. However, they are designed in such a way that ensures that judgements 499 
about social and communicative abilities are as independent as possible from level of language ability 500 
and chronological age.  501 

 502 

Both Modules (toddler) T and 1 are administrated to non-speaking children, Module T for ages 12-30 503 
months and Module 1 for children over 31 months. Module 2 is administrated to children of all ages 504 
who are using phrase speech but are not yet speaking verbally with fluency. Modules 3 and 4 are 505 
administrated to individuals that are speaking with verbal fluency, with Module 3 specifically designed 506 
for Children / Younger adolescents that can still play with action figure-type toys and Module 4 for 507 
older adults. All Modules are administrated under the assumption that the individual can walk 508 
independently and is free of visual or hearing impairments. This assumption is erroneous, but we use 509 
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the ADOS-2 test not to diagnose but to evoke social situations leading to movement patterns likely 510 
present in such situations.  511 

 512 

Our current analysis focuses on Modules 1,3 and 4. We suggest the following categorization of tasks 513 
to better relate our digital biomarkers to the clinical tasks that evoke some aspect of social interactions 514 
and emotions present in human gestural communication, which is mediated by movements: 515 

 516 

Socio-Motor Tasks:  These are tasks that engage interactive movements within the child, the clinician, 517 
and jointly between the child and clinician. Construction Task, Joint Interactive Play, Demonstration 518 
Task, Cartoons, Conversation and Reporting and Break Tasks all have in common the Child’s Socio-519 
Motor behavior involvement. Construction Task consists of an interaction between the Clinician and 520 
Child that involves reaching over the Clinician’s arm to ask for block pieces that may form a shape. 521 
Joint Interactive Play consists of a Play Sequence between the Child and the Clinician that involves 522 
body movements. During Demonstration Task the Child uses their body to represent objects and mime 523 
the use of each object. During Cartoon Task, the Clinician observes the Child’s gestures and 524 
coordination with speech. Similarly, during Conversation and Reporting body language and facial 525 
expressions / gestures are observed alongside general communicative skills. During Break the Child is 526 
expected to move around the room.  527 

 528 

Emotional Tasks: These are tasks that probe the child’s emotional states. Emotions, Social Difficulties, 529 
Friends, Relationships, and Marriage and Loneliness all evoke strong emotional responses from the 530 
Child. During the Emotions Task, the Child is asked questions about social relationships, different 531 
emotions such as happiness, fear and anxiety and details about the manifestation of these emotions 532 
under different circumstances. Social Difficulties and Annoyance consist of questions related to social 533 
interactions at school or work, such as bullying or teasing. Friends, Relationships, and Marriage are 534 
designed to evaluate the Child’s concepts on topics such as friendship and social relationships and the 535 
questions asked can cause strong emotions in the Child. Similarly, during Loneliness task, questions 536 
are asked about the concept of loneliness, which is a heavy topic, especially for Children on the Autism 537 
Spectrum, that struggle with social rejection and bullying from a young age.  538 

 539 

Abstract Tasks: These are tasks that require higher, abstract-level of cognition. Make-Believe Play, 540 
Description of a Picture, Telling Story from a Book, and Creating a Story all help observe higher 541 
cognitive skills. Make-Believe Play involves the use of dolls an action figures and the Child is tested 542 
for their ability to perceive them as animate beings and produce imaginative sequences of actions that 543 
involve these objects. Perception or the lack of it of objects as animate beings is a concept frequently 544 
encountered within the context of the Theory of Mind. During Description of a Picture Task the 545 
Clinician observes the Child’s use of language/ communication and the level of interest in the picture 546 
presented. Telling a Story from a Book is similar but involves a story from a book instead of a picture 547 
and humor and presumption of the feelings of the characters from the book are evaluated as well.  548 

After the administration of Module 3 a scoring system is used to evaluate the levels of Social Affect 549 
(SA) and Restricted and Repetitive Behavior (RRB). The scores are added up to determine a final 550 
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score, from 0 to 10. A score of 0 or 1 indicates Minimal to No Evidence of ASD related symptoms, 551 
scores between 2 and 4 indicate a Low Level of ASD related symptoms, 5 to 7 Moderate and 8 to 10 552 
High. A score of 9 or more determine that the Child is Autistic whereas a score of 7 of more that the 553 
Child is in the Autism Spectrum.  Furthermore, Social Affect consist of Communication (Reporting of 554 
Events, Conversation and Descriptive, Conventional, Instrumental, or Informational Gestures) and 555 
Reciprocal Social Interaction (Unusual Eye Contact, Facial Expression Directed to Examiner, Shared 556 
Enjoyment in Interaction, Quality of Social Overtures, Amount of Reciprocal Social Communication, 557 
Overall Quality of Rapport) Scorings. RRB consists of scoring Stereotyped/ Idiosyncratic Use of 558 
Words or Phrases, Unusual Sensory Interest in Play Material/ Person, Hand and Finger and Other 559 
Complex Mannerisms and Excessive Interest or Highly Specific Topics/ Objects or Repetitive 560 
Behaviors.  561 

3 Results  562 

3.1 Age-dependent Dyadic Motor Control Separates Neurotypical (NT) from Children on the 563 
Autism Spectrum Disorders (ASD) 564 

The micro-movement spikes (MMS) derived from the biosensors’ signals, offer a standardized time 565 
series that scales out anatomical differences across participating children of diverse ages. This 566 
standardized signal within the ADOS-2 tasks contexts, is well characterized by a continuous Gamma 567 
process. Here (as in prior work involving other biosensors) the Gamma shape 𝒌𝒌 and the Gamma scale 568 
𝜽𝜽 parameters can be empirically estimated from the normalized spikes, using Maximum Likelihood 569 
Estimation (MLE) with 95% confidence [3; 39]. The normalized spikes, which conserve the original 570 
time latencies of the raw peaks, represent a time series of quiet times (at averaged activity) interspersed 571 
with bouts of activity evoked individually for each child and pertinent to the task at hand. We measure 572 
these biorhythms individually for the child’s and clinician’s dominant hand. We also measure them 573 
from the shared, synchronous activities of the social dyad composed by the child and the clinician. 574 

 575 

The empirically estimated Gamma parameters localize each child-clinician’s dyadic interaction for 576 
each task on the Gamma parameter plane with 95% confidence intervals (Figure 2A). These points 577 
represent the empirical probability density function (PDF) of their joint dyadic interaction. When we 578 
plot the full scatter estimated from each task in the ADOS, for all children, a tight linear relation 579 
emerges whereby the log-log plot follows a scaling power law, of the form 𝒌𝒌 ≅ 𝒂𝒂𝜽𝜽𝒃𝒃. (See methods for 580 
a more in-depth analysis of the power law and the micro-movement spikes (MMS) time series 581 
transformation).  582 

 583 

This relationship, first described as a maturation law in humans’ voluntary decision-making, mediated 584 
by pointing motions [3], is reproduced here for gyroscopic data reflecting joint dyadic angular speed, 585 
such that as the Gamma scale value decreases, the Gamma shape value increases. Because knowing 586 
one, we can predict the other with high certainty, we can then reduce these two parameters of interest 587 
to one parameter summarizing these motor signatures of the interacting dyad. We can also do so for 588 
each individual signature, i.e., those of the child and those of the clinician in standalone mode. 589 

 590 
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 591 

Figure 2. Summary stochastic characterization of micro-movement spikes, MMS, derived from 592 
ADOS-driven dyadic interactions, using angular speed registered from the right (dominant) 593 
wrist. Activity encompasses the entire ADOS session. Filled markers represent first visits to the 594 
clinician, unfilled markers are subsequent visits. (A) Empirically estimated Gamma Shape and 595 
Scale (NSR) for each participant using Modules 1, 3 and 4 of the ADOS test as a backdrop 596 
behavioral assay. The size of the marker is proportional to the age of the participants. Empirical 597 
Gamma plane of individual children and clinicians separating young from older children and 598 
adults in an interpretable map of human neuromotor maturation. (B) Child’s negative Gamma 599 
scale parameter (log -NSR = log SNR) denotes control as a function of age. Observe (cyan line) 600 
the decreasing trend of SNR with age for ASD in contrast to the opposite trend for NT (green 601 
line). (C) Parameter space spanned by the empirically estimated Gamma mean (x-axis), standard 602 
deviation (y-axis) and skewness (z-axis) derived in (A). Marker size is proportional to age. (D) 603 
Quantification of Transfer Entropy for social dyads involving clinician and child obtained for 604 
males and females in the NT and the ASD groups, using 6 sensors, 3 on the clinician and 3 on the 605 
child, outputting time series of angular speed motion on the left and right wrists and the trunk 606 
of each social agent in the dyad. Off-diagonal entries represent joint dyadic activities.  607 

Importantly, the continuous Gamma family of probability distributions has the first (mean) and second 608 
(variance) moments expressed in terms of the shape and scale as in Equations 3.1:    609 

 610 

𝜇𝜇 = 𝑁𝑁𝜃𝜃,𝜎𝜎2 = 𝑁𝑁𝜃𝜃2         Equation (3.1) 611 

  612 
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Then, unfolding Equation 3.1, the Noise-to-Signal Ratio (NSR) of the MMS reduces to: 613 

 614 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜎𝜎2

𝜇𝜇
= 𝑃𝑃𝜃𝜃2

𝑃𝑃𝜃𝜃
= 𝜃𝜃          Equation (3.2) 615 

 616 

The Gamma scale parameter in Equation 3.2 fully characterizes the noise of the biorhythmic motor 617 
patterns of the interactive dyad, i.e., in relation to their joint level of fluctuations of angular speed 618 
during the ADOS activities.  619 

 620 

Empirical estimation of these parameters across thousands of participants over a decade of work 621 
involving humans along the lifespan, and across disorders of the nervous system, in voluntary, 622 
involuntary, spontaneous, and autonomic processes, has revealed an interpretation for the Gamma log-623 
log parameter plane. Distributions that fall along high NSR regimes are also close to the memoryless 624 
random regime of the special exponential distribution case (when k = 1). Points in mid NSR correspond 625 
to heavy-tailed Gamma distributions. Then, low NSR (or high signal = 1/NSR) are congruent with 626 
symmetric shapes (Gaussian-like) distributions.  627 

 628 

High-signal Gaussian regimens are highly predictable in contrast to High-noise memoryless random 629 
Exponential regimes. As such, the Gamma parameter plane is empirically interpretable and the 630 
locations of the distributions representing the shape and scale signatures of individual participants 631 
change in an orderly ontogenetic manner whereby a decrease in the NSR is accompanied by a drecrease 632 
in randomness (away from the memoryless exponential distribution at shape = 1). The lack of 633 
maturation of the human nervous system is well characterized by high NSR and random fluctuations 634 
previously found across ASD [3]. In this sense, we equate high SNR=1/NSR with an index of 635 
controllability. As per the scaling power law, high SNR of the MMS is equated with high predictability 636 
of the person’s self-referenced, self-generated motor code. This motor code represents a proxy of 637 
kinesthetic reafference, i.e., the continuous stream of motor activity from the periphery, serving as an 638 
index reflecting the quality of the motor feedback to the central controller of the nervous system. 639 

 640 

Then, as this motor code is shared with another agent during social dyadic interactions, the distributions 641 
of the joint dyadic interactions of the participant and the clinician, for the 26 participants (11 642 
neurotypically developing NT and 15 ASD), can be appreciated in Figure 2A following a power law. 643 
These distributions are derived from the MMS that fluctuations in angular speed produced in the 644 
dominant hand (see Methods Figure).  645 

 646 

Furthermore, Figure 2B shows that the log(SNR)=-log(NSR) (denoted as the index of control) of the 647 
interacting socio-motor dyad has an age-dependent pattern. In NT children, as the age increases, control 648 
tends to slightly increase i.e., a slight positive trend is reflected in the slope of the line fitting the (blue 649 
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NT scatter), NT: intercept = 3.0271 p = 0.0067, slope = 0.0786, p = 0.362. In contrast, as ASD children 650 
age, control tends to decrease, i.e., a strong negative trend is quantified in the slope of the line best 651 
fitting the red ASD scatter, intercept = 5.5317 p = 5.65 x 10-12, slope = -0.1074, p = 0.0463.  652 

 653 

In Figure 2C we compare the two groups by localizing each participant on the Gamma moments space 654 
spanned by the empirical mean, variance, and skewness, whereby each point represents the empirically 655 
estimated moments of the Gamma PDF of joint dyadic activity for each child-clinician pair. This result 656 
demonstrates a tendency of the joint dyad moments to separate NTs from ASD participants, as they 657 
interact with an adult clinician, expressing marked differences between males and females.  658 

 659 

To better appreciate the sex differences, we obtain pairwise the Transfer Entropy (TE) from child to 660 
clinician and from clinician to child. See methods for an extended definition, but recall that TE is the 661 
reduction in uncertainty of predicting the future of X when we consider the process Y. In Figure 2D, 662 
we can see for each matrix the pattern that emerges when considering the time series data from each 663 
of the 6 sensors attached to the child’s and clinician’s two hands and trunk. The cross terms in the off-664 
diagonal entries of the matrix (top right-hand entries 1,4 to 1,6; 2,4 to 2,6; 3,4 to 3,6; and bottom left-665 
hand entries 4,1 to 6,1; 4,2 to 6,2 and 4,3 to 6,3) represent the dyadic cases of child  clinician and 666 
clinician  child, respectively. There, in the shared entries of the matrix we see that in ASD, males 667 
show a decrease in TE values while females show an increase. In the context of the ADOS, females 668 
evoke a reduction in the clinician’s uncertainty predicting the impending females’ motions, i.e., 669 
perhaps an inherent bias that partly accounts for the disparate ratio of 4-5 males per each female 670 
diagnosed with ASD. We will further explore these differences to try and understand the interplay 671 
between the NSR as an index of controllability (predictability) and the overall sense of socio-motor 672 
agency in each of the ADOS tasks, for males and for females.  673 

 674 

In the diagonal sub-matrices (top left-hand entries 1,1 to 1,3; 2,1 to 2,3; 3,1 to 3,3; and bottom right-675 
hand entries 4,4 to 4,6; 5,4 to 5,6 and 6,4 to 6,6) we represent the patterns within the individual’s body 676 
parts. There we appreciate higher values of TE from child  child in both ASD males and females, 677 
with ASD females having higher TE than ASD males. As with the shared dyadic activity, here in the 678 
individual patters, the highest differences for clinician  clinician can be appreciated in the ASD 679 
females. 680 

 681 

3.2 Quantifying Dyadic Social Agency Reveals Differences Between NT and ASD  682 

High levels of NSR in the MMS fluctuations from the angular speed coincide with memoryless random 683 
regimes of motor patterns - well characterized by the exponential distribution previously found in 684 
autistic individuals [3; 40]. It has been proposed that under such random and noisy motor code, it is 685 
difficult to have high quality motor feedback contributing to a predictive code. Such predictive code 686 
would be necessary to compensate for sensory-motor and inertial time delays inherent in the nervous 687 
system [3; 14; 40; 41; 42].  688 

 689 
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In a dynamic dyadic social interaction such as that taking place during the ADOS, it is then difficult to 690 
exert control over the interaction because presses by the clinician and overtures by the child are not 691 
occurring at the expected timely rates. This temporal mismatch in autism alone can bias the rating by 692 
the clinician in ways that differ between NT and ASD, but also differ between males and females. Here 693 
we equate high NSR with low predictive control and posit that the type of socio-motor agency required 694 
in a naturalistic social interaction will be impacted by poor controllability levels on one side of the 695 
dyad. We then question whether dyadic-based control (i.e., shared by the child and clinician) is 696 
differentially impacted in ASD participants. 697 

 698 

Another aspect of dyadic social agency is autonomy. As mentioned earlier, autonomy is the ability of 699 
the child to lead the conversation as much as the clinician does, rather than always following the lead 700 
of the clinician. An obvious way to quantify the degree to which the clinician is leading would be by 701 
using some form of causal analysis between data recorded on the clinician and data recorded on the 702 
child. As our main approach however, we choose to quantify autonomy in ways that depend on data 703 
recorded from wearable sensors on a single agent which as we will show, is intuitive and can be applied 704 
in a clinical setting, to help digitize the ADOS.  705 

 706 

We introduce (behavioral) spike trains from the MMS derived from the time series of angular speed. 707 
We use entropy metrics to examine the degree to which the spikes behave randomly or 708 
deterministically (i.e., containing periodic, systematic patterns.) To that end, we use entropy rate, a 709 
metric well suited to interrogate the stochastic regimes of spike trains [26; 27].  710 

 711 

From the MMS derived from time series of angular speed, recorded either from the left or the right 712 
hand of the child, we derive binary sequences whereby a sequence of 1’s corresponds to sudden bouts 713 
of activity and 0’s to “quiet” sampling periods, when no significant change above the person’s average 714 
activity occurs in the angular speed profile. Another way to view these binary sequences is as the 715 
manifestation of an underlying “alphabet” that characterizes the predictability of the motor code. Zeros 716 
and ones will appear with some probability, which we expect to change at some time scale, due to the 717 
non-stationary nature of human motion. But if we restrict ourselves to small time windows (~7.8 718 
seconds, determined as optimal for empirically estimated confidence intervals, upon sampling different 719 
sizes), this time widow is small enough that the process can be viewed as stationary, yet large enough 720 
to contain a satisfactory number of samples lending statistical power to our empirical estimation per 721 
window. As such, 7.8 seconds is our unit of time for the spike trains that we derived. Using this MMS 722 
per unit of time as our data type, we can then measure the degree of randomness of the child’s motions, 723 
by estimating the entropy rate (see Methods).  Furthermore, we then compare it to transfer entropy 724 
(TE) obtained from the child and clinician, a causal metric that can inform us of who leads the 725 
interaction for any given task. 726 

 727 

We argue that a suitable scale of autonomy is one in which, at one extreme, a high degree of 728 
randomness is a measure of a system at its highest degree of autonomy. This is the type of state where 729 
the system is uncontrollably “hidden” from the controller. There is no opportunity to control the person. 730 
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At the other end, the lowest degree of randomness leads to a systematic, deterministic pattern, highly 731 
controllable. While in the former, the child’s system with excessive autonomy prevents social exchange 732 
with the clinician in that the clinician cannot control the child, in the latter, the clinician can absolutely 733 
control the child. Either extreme is detrimental to the development of rapport or turn-taking in a social 734 
exchange. A happy medium is one in which while the child preserves a degree of autonomy that enables 735 
a balanced social exchange, the clinician also partakes in a give-and-take interaction, rather than 736 
leading the child most of the time.  737 

 738 

Figure 3. Scales of socio-motor agency according to index of autonomy. (A) Average transfer 739 
entropies between childclinician taken over windows of ~7.8 secs duration, per participant 740 
(filled in markers are first visit to the clinician, unfilled markers are subsequent visits) vs. 741 
autonomy (Ap Ent) reveal higher autonomy index in NT, a trend that is also quantified in (B). 742 
As the child autonomy decreases, the CLCH TE (left hand) decreases. Adding the CL past 743 
activity does not contribute more information about the CH state than looking at the CH past 744 
activity alone. (C) This is also the case for the right hand. (D) Autonomy variability (variance 745 
over the mean) throughout a session, is higher for the ASD group, both for the child and the 746 
clinician involved.   747 

 748 

We test our new hypothesis that motor autonomy relates to measures of entropy by comparing TE (a 749 
measure of causality) from the child to the clinician, with entropy rate, a measure spanning a scale 750 
from totally random to totally deterministic states of the spike-based code. We show in Figure 3A an 751 
age-dependent trend spanning two scatters. In older neurotypical children, the scatter aligns such that 752 
as the child’s entropy rate (denoting a scale of autonomy) increases, so does the TE denoting a causal 753 
lead of the child over the clinician. In contrast a second scatter emerges for younger children whereby 754 
the trend is less visible, indicating that these children’s index of autonomy is not as evident during the 755 
exchange and the causal lead (TE) denoting the child’s lead over the clinician’s lead, is less evident. 756 
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We can appreciate the shift in this metric of autonomy in Figure 3B where the histogram of the ASD 757 
children is shifted to the left, indicating lower density values than NT children. 758 

Since the left hand is not the dominant hand in these children, we plotted the histograms pertaining to 759 
the left hand as well, to see if these effects consistently emerged. We see in Figure 3C that across 760 
multiple time windows, the pdf for the neurotypical group is shifted to the right, meaning that on 761 
average, NTs have higher values of autonomy than ASDs. Since autonomy also varies throughout 762 
sessions, plotting the autonomy variability (variance of this index over the mean of this index) for 763 
different participants in Figure 3D shows that for ASDs, child and clinician variability is higher than 764 
most NTs.  This variability index tends to separate ASD from NT participants, particularly for later 765 
visits (as the child aged, over 2 years and a half that the study spanned.) 766 

3.3 Age-Dependent Autonomy Across Children vs. Clinician’s Autonomy Robustness  767 

As we saw earlier, the SNR (1/NSR) of the control index, has trend with age that differs between the 768 
two groups. NT children show increasing control with age, whereas ASD children show a decreasing 769 
trend. Likewise, here we ask if the index of autonomy also changes with age. To that end, we examine 770 
this index as a function of age across the children. We also examine it for the clinician across the 771 
children’s ages. 772 

 773 

Figure 4. Non-equivalence of the index of autonomy and the index of control. Plots reflect the 774 
average child and clinician index of autonomy for left hand motions vs. age as well as right vs. 775 
left hand index of autonomy, index of autonomy variability and index of control. (A) Child index 776 
of autonomy is positively and linearly correlated with age. (B) There is no trend between the 777 
clinician index of autonomy across children’s ages. (C) Equivalence of index of autonomy derived 778 
from the left hand vs. the right-hand motions. (D) Index of autonomy variability also correlates 779 
between the two hands and separates NT (blue) vs. ASD (red). (E) No definite relationship 780 
between index of control and index of autonomy is observed, however for small values of control 781 
index there seems to be a positive trend which then becomes negative for high values. (F) Left 782 
hand motions have higher variability in the index of control than do right hand motions. 783 

 784 
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We find that the child’s index of autonomy for both NT and ASD increases with age in all cases (Figure 785 
4A). This result reveals that the ability of the ASD child to actively participate in a dyadic interaction 786 
is a human socio-motor developmental trait that improves with age. In contrast, Figure 4B shows that 787 
the clinician’s autonomy is independent of the child’s age. In this case, the adult clinician shows no 788 
discernable trend.  789 

 790 

3.4 Indexes of Autonomy and Control are Not Equivalent 791 

The child’s index of autonomy and the variability of this index extracted from the sensors in both 792 
hands, are linearly correlated (Figure 4C). In the case of the index of control however, there is higher 793 
variability of the mean autonomy index across subjects when we use data from the left-hand sensor (as 794 
shown in Figure 4D, where separation of the NT from ASD is evident). For this reason, we focused 795 
our analysis on the non-dominant, left-hand motions. Furthermore, the index of autonomy derived from 796 
the left-hand motions as well as its index of control, are positively correlated for small values of control 797 
index, but negatively correlated for higher values. This is shown in Figure 4E. In other words, 798 
autonomy and control are not equivalent metrics. This can be further appreciated in Figures 4D 799 
(autonomy variability) vs. Figure 4F (index of control.) 800 

 801 

3.5 Male vs. Females Respond Different to ADOS Tasks - The case of ASD Females 802 

Besides the quantification of indexes of control and autonomy as components of socio-motor agency, 803 
we rendered important to consider the heterogeneity of tasks in the ADOS’ modules 1, 3 and 4 used 804 
here across children with different levels of spoken language. We grouped tasks into three main 805 
categories: Socio-Motor, requiring high motoric components (frequent movements and gestures); 806 
Abstract, tasks more “mental” in nature, requiring abstraction, theory of mind, and other cognitive 807 
components; Emotional, tasks that elicit feelings and emotional reactions, strongly visibly impacting 808 
the child’s emotional states.  809 

 810 

We calculated the average indexes of autonomy and control across all participants, derived from 811 
samples corresponding to the different ADOS tasks. Then, we assessed potential differences between 812 
ASD and NT participants, focusing on the comparison of males vs. females. We found that ASD males 813 
respond with lower index of autonomy than do NT males. In contrast, ASD females vs. NT females, 814 
manifest very modest differences, inclusive of three tasks with no significant differences (Social 815 
Difficulties and Annoyance, Loneliness (both Emotional type tasks) and Construction Task (Socio-816 
motor type task)).  817 

 818 

It is therefore clear, that ADOS tasks inherently bear a lack of differentiation between NT and ASD 819 
females, unlike their male counterparts for which the differences are large. This can be appreciated in 820 
Figure 5AB (males) and Figure 5CD (females) where we color code the task type and code it 821 
numerically according to the name of the task (Methods describe the ADOS tasks included from each 822 
module.) Modest differences were observed between females. Tasks with nonsignificant differences in 823 
females were Social Difficulties and Annoyance, Loneliness (both Emotional type tasks) and 824 
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Construction Task (Socio-motor type task). Notice that despite the non-significance, emotional tasks 825 
have broader spread in ASD females along the index of control than do NT females. In contrast, the 826 
index of autonomy has comparable spread for both. As socio-motor agency is defined as the ratio of 827 
index of autonomy/ index of control, this implies that across these ADOS emotional tasks, NT females 828 
have more social agency than ASD females. In contrast to females, a statistically significant difference 829 
between the two male groups was observed for all tasks. ASD males shift significantly to lower values 830 
of the index of autonomy across all tasks, but visibly socio-motor tasks are deeply affected. 831 

 832 
Figure 5. Differences between males and females in average index of autonomy vs. control. Filled 833 
circles code non-significant differences at the .05 level, while non-filled circles denote significant 834 
differences between NT and ASD participants. (A) NT females. (B) ASD females. (C) NT males. 835 
(D) ASD males.  836 

 837 

4 Theoretical Considerations at the Intersection of Stochastic Analyses and Information 838 
Theoretical Metrics 839 

The following section of the paper aims at exploring the relationship between the temporal code of the 840 
binary spikes embedded in the Gamma process, and the Gamma process itself, spanning information 841 
about the fluctuations in spike amplitude and inter-peak-timings. The latter follows a Poisson process, 842 
while the former is more generally revealing of multiple overlapping processes. Part of our quest is to 843 
try and deconvolve these overlapping processes in physiological data that contains multiple afferent 844 
streams from different levels of functionality. These levels may span from autonomic (pacemaker like 845 
regularities) to reflexive, to involuntary, to spontaneous and automatic, to voluntary levels of control 846 
previously proposed {Torres, 2011 #241}. At the core of our proposed measure of socio-motor agency 847 
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lies the balance between bottom-up autonomy and top-down control, which we track through the 848 
spatio-temporal code of the time series of spikes.  849 

 850 

4.1 Entropy-Spike rate and NSR relationship in the case of standardized biometric data 851 
sampled from child-clinician dyadic interactions. 852 

Recall that the entropy rate of a discrete process is defined as: 853 

 854 

  𝐻𝐻(𝑋𝑋) = lim
𝑛𝑛→∞

1
𝑛𝑛
𝐻𝐻(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛)           Equation (4.1) 855 

 856 

The case in Equation 4.2 is when all 𝑋𝑋𝑖𝑖 are independently identically distributed (i.i.d.) [43]: 857 

 858 

𝐻𝐻(𝑋𝑋) = lim
𝑛𝑛→∞

1
𝑛𝑛
𝐻𝐻(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) = lim

𝑛𝑛→∞

1
𝑛𝑛
�𝐻𝐻(𝑋𝑋1) + 𝐻𝐻(𝑋𝑋2) + ⋯𝐻𝐻(𝑋𝑋𝑛𝑛)� = 859 

                           lim
𝑛𝑛→∞

1
𝑛𝑛
�𝑛𝑛𝐻𝐻(𝑋𝑋1)� =𝐻𝐻(𝑋𝑋1)         Equation (4.2) 860 

 861 

 862 

If 𝑋𝑋𝑖𝑖 have identical entropies but are not independent, the following inequality holds in Equation 4.3 863 
[43]: 864 

 865 

   𝐻𝐻(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) ≤ 𝑛𝑛𝐻𝐻(𝑋𝑋1) ⇒  1
𝑛𝑛
𝐻𝐻(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛)  ≤ 𝐻𝐻(𝑋𝑋1)  ⇒ 𝐻𝐻(𝑥𝑥) ≤ 𝐻𝐻(𝑋𝑋1)      Equation (4.3) 866 

 867 

The standardized MMS processes that we extract from the wearable sensors consist of non-zero values 868 
(“peaks” that are gamma distributed) and zero values (“quiet moments” at the person’s average level 869 
of activity) and can be treated as the product between two processes. A gamma distributed process 𝑋𝑋𝐺𝐺𝑡𝑡  870 
and a binary process 𝑋𝑋𝐵𝐵𝑡𝑡 , where t denotes discrete time. If for small time windows the process is roughly 871 
stationary, then at each point in time we have the processes 𝑋𝑋𝐺𝐺 and 𝑋𝑋𝐵𝐵, respectively. Then, from 872 
Equation (4.3) we have the upper bound for the entropy rate expressed in Equation 4.4: 873 

 874 

𝐻𝐻(𝑋𝑋𝑡𝑡) ≤ 𝐻𝐻(𝑋𝑋𝐺𝐺𝑋𝑋𝐵𝐵)             Equation (4.4) 875 

 876 
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If 𝐻𝐻(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) is the joint entropy, because 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑦𝑦 is a measurable function, we have Equation 877 
4.5 [43]: 878 

 879 

𝐻𝐻(𝑋𝑋𝐺𝐺𝑋𝑋𝐵𝐵) ≤ 𝐻𝐻(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵)           Equation (4.5) 880 

 881 

The upper bound for the joint entropy is expressed in Equation 4.6, [43]: 882 

 883 

𝐻𝐻(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) ≤ 𝐻𝐻(𝑋𝑋𝐺𝐺) + 𝐻𝐻(𝑋𝑋𝐵𝐵)        Equation (4.6) 884 

 885 

Equality holds true if and only if 𝑋𝑋𝐺𝐺 and 𝑋𝑋𝐵𝐵 are independent. Ultimately, from Equations (4.4) - (4.6): 886 

 887 

𝐻𝐻(𝑋𝑋𝑡𝑡) ≤ 𝐻𝐻(𝑋𝑋𝐺𝐺) + 𝐻𝐻(𝑋𝑋𝐵𝐵)         Equation (4.7) 888 

 889 

In practice, 𝑋𝑋𝐺𝐺 is a discrete approximation of a continuous gamma variable 𝑋𝑋𝑔𝑔. If ∆ is the size of the 890 
bin used in the approximation and ℎ(𝑋𝑋𝑔𝑔) the differential (continuous) entropy of 𝑋𝑋𝑔𝑔, it can be shown 891 
that [43]:  892 

 893 

ℎ�𝑋𝑋𝑔𝑔� = lim
∆→0

(𝐻𝐻(𝑋𝑋𝐺𝐺 ,∆) + 𝑙𝑙𝑁𝑁𝑙𝑙∆)        Equation (4.8) 894 

 895 

Therefore, for small ∆ we can write: 896 

 897 

ℎ�𝑋𝑋𝑔𝑔� ≅ 𝐻𝐻(𝑋𝑋𝐺𝐺 ,∆) + 𝑙𝑙𝑁𝑁𝑙𝑙∆           Equation (4.9) 898 

 899 

Equivalently: 900 

 901 

𝐻𝐻(𝑋𝑋𝐺𝐺) ≅ ℎ�𝑋𝑋𝑔𝑔� − 𝑙𝑙𝑁𝑁𝑙𝑙∆          Equation (4.10) 902 

 903 
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We mentioned earlier that the differential entropy of the gamma distribution (with shape 𝑁𝑁 and scale 904 
𝜃𝜃) has the closed form: 905 

 906 

ℎ�𝑋𝑋𝑔𝑔� = 𝑁𝑁 + 𝑙𝑙𝑛𝑛𝜃𝜃 + ln𝛤𝛤(𝑁𝑁) + (1 − 𝑁𝑁)𝜓𝜓(𝑁𝑁)       Equation (4.11) 907 

 908 

where 𝛤𝛤(𝑁𝑁) is the gamma function and 𝜓𝜓(𝑁𝑁) is the digamma function.  909 

 910 

Because of the power law between shape and scale that we discovered from analyzing human motion 911 
data: 912 

 913 

𝑙𝑙𝑁𝑁𝑙𝑙𝑁𝑁 ≅ 𝑁𝑁𝑙𝑙𝑁𝑁𝑙𝑙𝜃𝜃 + 𝑏𝑏          Equation (4.12) 914 

 915 

Where 𝑁𝑁 ≤ 0 and b are parameters that are determined by fitting a regression model on the population 916 
of interest.  Because of this, differential entropy ends up being a univariate function of 𝜃𝜃, for a specific 917 
set of parameters. 918 

 919 

For the ranges of values typically found in the MMS, we see that Differential Entropy has almost a 920 
positive linear relationship with the natural logarithm of the scale, which is equivalent to the Noise-to-921 
Signal Ratio of the gamma process. For greater values, that are not usually encountered in human data, 922 
the Differential entropy diverges. (Here the calculation of differential entropy for smaller values failed 923 
due to numerical instability). Figure 6A shows these results. 924 

 925 

Because of Equation (4.10), we expect the empirical discrete entropy to also behave linearly with 926 
respect to the log-NSR, which turned out to be the case. For the range of physiological values, we 927 
found a slope of 0.4694 nats (p<0.01) for the differential entropy and a slope of 0.2606 nats (p<0.01) 928 
for the empirical entropy.  929 

 930 

Moving on to the process  𝐻𝐻(𝑋𝑋𝐵𝐵), the theoretical entropy (if probabilities do not change within a time 931 
window, i.e., spike process is Bernoulli) is equal to [44]: 932 

 933 
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 934 
Figure 6. Theoretical considerations of relationships between NSR and Entropy metrics. (A) 935 
Near positive linear relationship between Differential Entropy and the natural logarithm of the 936 
Gamma scale, the NSR of the gamma process. (B) The empirically estimated entropy is the same 937 
as the equivalent Poisson process. Within the range of physiological data from the ADOS dyadic 938 
interaction, the entropy of the gamma component increases with the NSR, and the entropy of the 939 
binary component increases with the Spike Rate. (C) Sampling the empirical ranges across the 940 
entropy of the gamma component and the entropy of the binary component of the MMS yields 941 
the theoretical maximal entropy defining the upper bound (green). Their ratio (blue) indicates 942 
that the maximum entropy is greater than the empirical entropy by a quantity that is increasing 943 
as the binary entropy drops (i.e., as the spike rate decreases) and it increases as the gamma 944 
entropy increases. (D) The binary spike process has a relatively small dependence from the 945 
gamma process, suggesting that in human motion timing and amplitude (spatial) aspects of these 946 
motions are independent. 947 

 948 

𝐻𝐻(𝑋𝑋𝐵𝐵) = −𝑝𝑝 log𝑝𝑝 − (1 − 𝑝𝑝)log(1 − 𝑝𝑝)           Equation (4.13) 949 

 950 

Where 𝑝𝑝 is the probability of a spike occurring. We approximate it in Equation 4.14 as: 951 

 952 

𝐻𝐻(𝑋𝑋𝐵𝐵) = −𝑁𝑁 log𝑁𝑁 − (1 − 𝑁𝑁)log(1 − 𝑁𝑁)           Equation (4.14) 953 

 954 

Where 𝑁𝑁 is the spike rate measured as “number of spikes” per “number of samples”. 955 
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 956 

As we see, the empirically estimated entropy is the same as the equivalent Poisson process. As a 957 
conclusion, for the range of physiological data from the ADOS dyadic interaction, the entropy of the 958 
gamma component is increasing with the NSR, and the entropy of the binary component is increasing 959 
with the Spike Rate.  960 

 961 

4.2 The Separability of Peak Activity from Standardized Angular Speed.   962 

If we plot the entropy of the process 𝐻𝐻(𝑋𝑋𝐺𝐺𝑋𝑋𝐵𝐵) and the maximum theoretical entropy defining the upper 963 
bound, 𝐻𝐻(𝑋𝑋𝐺𝐺) + 𝐻𝐻(𝑋𝑋𝐵𝐵), we see that the maximum entropy is greater than the empirical entropy by a 964 
quantity that is increasing as the binary entropy drops, or equivalently (by the previous finding) as the 965 
spike rate decreases. It increases as the gamma entropy increases. Fitting a surface function, we find 966 
that: 967 

 968 

𝐻𝐻𝑚𝑚𝑃𝑃𝑥𝑥(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) − 𝐻𝐻(𝑋𝑋𝐺𝐺𝑋𝑋𝐵𝐵) = −2.368𝐻𝐻(𝑋𝑋𝐵𝐵) + 0.8141𝐻𝐻(𝑋𝑋𝐺𝐺) + 1.114,    𝑁𝑁𝑅𝑅𝑁𝑁𝐸𝐸 = 0.04857 969 

 970 

Then, we get an approximate relation: 971 

 972 

𝐻𝐻(𝑋𝑋𝐺𝐺𝑋𝑋𝐵𝐵) = 3.368𝐻𝐻(𝑋𝑋𝐵𝐵) + 0.1859𝐻𝐻(𝑋𝑋𝐺𝐺) − 1.114 973 

 974 

Recall that the following inequality holds: 975 

 976 

𝐻𝐻(𝑋𝑋𝐺𝐺𝑋𝑋𝐵𝐵) ≤ 𝐻𝐻(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) ≤ 𝐻𝐻(𝑋𝑋𝐺𝐺) + 𝐻𝐻(𝑋𝑋𝐵𝐵) 977 

 978 

Which yields: 979 

 980 

3.368𝐻𝐻(𝑋𝑋𝐵𝐵) + 0.1859𝐻𝐻(𝑋𝑋𝐺𝐺) − 1.114 ≤ 𝐻𝐻(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) ≤ 𝐻𝐻(𝑋𝑋𝐺𝐺) + 𝐻𝐻(𝑋𝑋𝐵𝐵) 981 

 982 

Or: 983 

                               984 
3.368[𝐻𝐻(𝑋𝑋𝐵𝐵) + 𝐻𝐻(𝑋𝑋𝐺𝐺)] − 3.1821𝐻𝐻(𝑋𝑋𝐺𝐺) − 1.114 ≤ 𝐻𝐻(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) ≤ 𝐻𝐻(𝑋𝑋𝐺𝐺) + 𝐻𝐻(𝑋𝑋𝐵𝐵) 985 
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 986 

Finally: 987 

 988 

3.368𝐻𝐻𝑚𝑚𝑃𝑃𝑥𝑥(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) − 3.1821(𝑋𝑋𝐺𝐺) − 1.114 ≤ 𝐻𝐻(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) ≤ 𝐻𝐻𝑚𝑚𝑃𝑃𝑥𝑥(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) 989 

 990 

If 𝑋𝑋𝐺𝐺 and 𝑋𝑋𝐵𝐵 were to be independent, we can see that: 991 

 992 

3.368𝐻𝐻𝑚𝑚𝑃𝑃𝑥𝑥(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) − 3.1821𝐻𝐻(𝑋𝑋𝐺𝐺) − 1.114 = 𝐻𝐻𝑚𝑚𝑃𝑃𝑥𝑥(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) 993 

 994 

Or:                                            𝐻𝐻𝑚𝑚𝑃𝑃𝑥𝑥(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) = 1.34𝐻𝐻(𝑋𝑋𝐺𝐺) + 0.47 995 

 996 

This independence criterion, is obviously data dependent. In the general case where we can fit a surface 997 
of the form:  998 

𝐻𝐻𝑚𝑚𝑃𝑃𝑥𝑥(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) −𝐻𝐻(𝑋𝑋𝐺𝐺𝑋𝑋𝐵𝐵) = 𝑁𝑁𝐻𝐻(𝑋𝑋𝐵𝐵) + 𝑏𝑏𝐻𝐻(𝑋𝑋𝐺𝐺) + 𝑐𝑐 999 

 The condition for independence is: 1000 

𝐻𝐻𝑚𝑚𝑃𝑃𝑥𝑥(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) = �1 −
𝑏𝑏
𝑁𝑁
�𝐻𝐻(𝑋𝑋𝐵𝐵) −

𝑐𝑐
𝑁𝑁

 1001 

If the actual data can be well fit by a linear model with slope 𝐴𝐴 and we ignore small differences between 1002 
the intercepts of the two linear models, an easy way to quantify departure from independence is by 1003 
computing the angle 𝜃𝜃 between the two lines: 1004 

                                                                      𝜃𝜃 = tan−1
𝐴𝐴−𝑎𝑎−𝑏𝑏𝑎𝑎
1+𝑎𝑎−𝑏𝑏𝑎𝑎 𝐴𝐴

  1005 

Then, we define the degree of departure from independence as the ratio between the 𝜃𝜃 and 𝜋𝜋
2
. If the 1006 

data cannot be well fit by a linear model, it’s best to perform a standard goodness-of-fit test and/or 1007 
measure the mean error between the model and the data. If 𝜃𝜃 > 0, the rate of maximum joint entropy 1008 
increase over the gamma entropy is bigger than in the case of independence, if  𝜃𝜃 < 0 it’s smaller.   1009 

From our data, we see that this condition holds pretty well, with 9.93 % departure from independence 1010 
for the ASD group and 11.55 % for the NT group. This implies that: 1011 

 1012 

𝐻𝐻(𝑋𝑋𝐺𝐺 ,𝑋𝑋𝐵𝐵) ≅ 𝐻𝐻(𝑋𝑋𝐺𝐺) + 𝐻𝐻(𝑋𝑋𝐵𝐵)       Equation (4.15) 1013 
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 1014 

We just showed that the binary spike process is not very dependent from the gamma process. This 1015 
supports the independence of time and space in human motion, previously proposed for intentional, 1016 
goal-directed movements at a behavioral level of kinematic analyses [16; 45; 46; 47; 48] under a 1017 
geometric modeling approach to address the brain control and coordination of the bodily degrees of 1018 
freedom problem [49; 50]. 1019 

 1020 

4.3 Controllability of an Agent in a Dyadic Social Interaction is Inversely Proportional to 1021 
Autonomy: Leveraging Sociomotor Agency to Protect the Agent 1022 

 1023 

In the methods section we defined what Transfer Entropy 𝑇𝑇𝑌𝑌→𝑋𝑋(𝑁𝑁, 𝑙𝑙)  between two processes X and Y 1024 
is: 1025 

 1026 

𝑇𝑇𝑌𝑌→𝑋𝑋(𝑁𝑁, 𝑙𝑙) = 𝐸𝐸[𝑡𝑡𝑌𝑌→𝑋𝑋(𝑛𝑛 + 1,𝑁𝑁, 𝑙𝑙)]                          Equation (4.16)                  1027 

 1028 

 𝑡𝑡𝑌𝑌→𝑋𝑋(𝑛𝑛 + 1,𝑁𝑁, 𝑙𝑙) = 𝑖𝑖(𝒚𝒚𝑛𝑛
(𝑙𝑙); 𝑥𝑥𝑛𝑛+1|𝒙𝒙𝑛𝑛

(𝑃𝑃)) 1029 

 1030 

Equivalently, TE can be seen as the difference between the conditional entropy rate (which is equal to 1031 
entropy rate for stationary processes) ℎ𝑋𝑋 of process X and the generalized entropy rate ℎ𝑋𝑋,𝑌𝑌 of X 1032 
conditioning on the source Y [51]: 1033 

𝑇𝑇𝑌𝑌→𝑋𝑋(𝑁𝑁, 𝑙𝑙) = ℎ𝑋𝑋 − ℎ𝑋𝑋,𝑌𝑌        Equation (4.17) 1034 

 1035 

With:  1036 

ℎ𝑋𝑋 = −�𝑝𝑝�𝑥𝑥𝑛𝑛+1, 𝑥𝑥𝑛𝑛
(𝑃𝑃)� log 𝑝𝑝(𝑥𝑥𝑛𝑛+1|𝑥𝑥𝑛𝑛𝑃𝑃) 1037 

 1038 

                                                             1039 

ℎ𝑋𝑋,𝑌𝑌 = −�𝑝𝑝�𝑥𝑥𝑛𝑛+1, 𝑥𝑥𝑛𝑛
(𝑃𝑃), 𝑦𝑦𝑛𝑛

(𝑙𝑙)� log𝑝𝑝(𝑥𝑥𝑛𝑛+1|𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛
(𝑙𝑙)) 1040 

 1041 

The generalized entropy rate measures the uncertainty in predicting the future values of X, given its 1042 
history and the past values of Y.  Transfer Entropy is the reduction in uncertainty of predicting the 1043 
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future of X when we consider the process Y. If we call ℎ𝑌𝑌,𝑋𝑋 uncertainty, then ℎ𝑌𝑌 is what we already 1044 
defined as autonomy and 𝑇𝑇𝑋𝑋→𝑌𝑌 is the transfer entropy.  1045 

 1046 

We chose embedded history of length 20 for TE and for the entropy rate of our processes we used a 1047 
template (embedding) length equal to the average distance between two spikes, to ensure that in the 1048 
reconstructed space, the coordinates of a point in time include both zeros (“quiet moments”) and spikes 1049 
and that the system doesn’t bounce back and forth from a single coordinate of zeros components. The 1050 
embedding delay was chosen using Average Mutual Information. 1051 

 1052 

If we plot the Child or Clinician Autonomy with respect to the log(NSR) and the Spike Rate, we see 1053 
in Figure 7 that the relationship between entropy rate, noise and spike rate is rather complex. It also 1054 
differs between NT and ASD, more data are needed to get a clear picture but we can definitely see that 1055 
there is a small positive trend with respect to noise and spike rate. Nonetheless, this shows that the 1056 
processes cannot be treated as i.i.d.  1057 

 1058 

 1059 
Figure 7. Non i.i.d. process revealed by the relationship between autonomy, NSR and spike rate 1060 
for clinician (A) and child (B) for the gamma and binary components of the MMS, relative to the 1061 
process entropy. 1062 

 1063 
Now that we have established the speed/peak activity independence and the positive correlation 1064 
between entropy rate and NSR or Spike Rate, we are ready to study how TE behaves in the shared 1065 
space of the child-clinician dyad. 1066 
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 1067 
Figure 8. Linear relationships between transfer entropy and the entropy rates (autonomies) for 1068 
child and clinician differentiating between NT and ASD participants. 1069 

 1070 

We find that 𝑇𝑇𝐸𝐸𝐶𝐶𝐶𝐶→𝐶𝐶𝐶𝐶 decreases when the child exhibits high autonomy and increases when the 1071 
clinician has higher autonomy and vice versa for 𝑇𝑇𝐸𝐸𝐶𝐶𝐶𝐶→𝐶𝐶𝐶𝐶. In fact, this relationship is well 1072 
characterized by linear relationships between transfer entropy and the entropy rates (autonomies), as 1073 
the fitted linear surfaces indicate in Figure 8.  1074 

 1075 

In this sense, we can safely conclude that by manipulating standardized human biorhythmic time series 1076 
either by increasing the NSR or by increasing peak activity, we can increase autonomy and reduce the 1077 
controllability of human agents by other human or by artificial agents, including those potentially 1078 
created by AI.  1079 

 1080 

4.4 Validation of the Digitization of the ADOS: Automated, Streamlined and Scalable Screener 1081 
of Socio-Motor Agency 1082 

To make our basic scientific results actionable, we need to validate our digital data with the clinical 1083 
criteria, a paradigm that we have coined clinically interpretable digital biomarkers. In this model, the 1084 
objective digital indexes that we used to define socio-motor agency as the autonomy-to-control ratio, 1085 
are examined in relation to the ADOS clinical scores that a trained human rated during the session. We 1086 
employ a machine learning technique, Support Vector Machine (SVM) to classify the digital data as a 1087 
function of the clinical score. Then we apply tools from signal detection theory, specifically the 1088 
receiving operating characteristic curve, ROC, to assess the validity of our classifier. 1089 

 1090 

Each of 26 participants with the full ADOS session (digital and clinical) produces on average between 1091 
50 – 60 minutes of time series digital data from biosensors registering motion at 128Hz. We used the 1092 
left-hand wrist sensor in these analyses, as we showed that it is highly correlated with the right wrist, 1093 
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yet more variable, thus expanding our sampling space. Upon exploration of several time windows to 1094 
segment the data, sweeping across the time series and tasks, while maximizing statistical power in each 1095 
locally stationary segment, we arrived at 7.8 second windows as optimal.  1096 

 1097 

The data were validated using the Leave-one-person-out cross-validation (LOOCV) method. As 1098 
features for our classifier, we used autonomy (entropy rate), NSR and the embedding delay of the data, 1099 
which is the time scale at which deterministic properties arise and characterize the dynamical behavior 1100 
of motion (for more information, see Methods). Two classifiers were used, one trained on female 1101 
subjects and the second one trained exclusively on male participants. When trying to digitally diagnose 1102 
autism in one participant, we trained our classifier on the data from the remaining male or female 1103 
participants and then tested how accurately the trained model predicts the participant class (NT vs. 1104 
ASD). This method avoids overfitting and trains models that can diagnose autism in novel participants, 1105 
thus automating the screening process. Digitizing the ADOS in this way makes the diagnosis of autism 1106 
more inclusive of females, historically underdiagnosed by a test that we objectively showed has biases 1107 
towards males across all tasks [10]. A larger sample size and a longitudinal study are required to 1108 
validate our model at scale. Yet, as shown in Figure 9A, there is no confusion of our biometrics about 1109 
the clinician ADOS scores, which classify ASD males with 100% accuracy and performs remarkably 1110 
well for ASD vs. NT females. Indeed, Figure 9B confirms the validity of these biometrics for clinical 1111 
use with an area under the ROC curve of 95.76%. 1112 

 1113 
Figure 9. (A) Support Vector Machines (SVM) classifiers were trained on all subjects except one 1114 
and tested on the remaining subjects of the same sex (Leave-one-person-out cross-validation 1115 
(LOOCV)). Therefore, each of the 26 subjects was digitally diagnosed with a classifier trained 1116 
on a different dataset, which ensured zero overfitting and bias. Training and testing features 1117 
were the entropy rate, the signal-to-noise ratio, and the embedding delay (the time scale at which 1118 
a dynamical system behaves in the most deterministic way) calculated on normalized speed 1119 
samples of ~7.8 secs duration windows. Here, we report the percentage of time windows per 1120 
subject that gave a positive diagnostic label and plot them versus the ADOS scores, as determined 1121 
by the clinicians. (B) We use the positive rate scores as a metric used to diagnose ASD and report 1122 
the Receiver Operating Characteristic curve (ROC curve), which shows the true positive and 1123 
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false positive rates of the digital diagnostic tool we developed for different thresholds. The Area 1124 
Under the Curve (AUC) is 0.9576, which indicates great performance.  1125 

 1126 

5 Discussion 1127 

In this work, we use the ADOS test as a backdrop to study social interactions between children and 1128 
adult clinicians with the purpose of defining new ways to automate and speed up the autism screening 1129 
process, while leveraging the clinical validity of this test. To that end, we explored anew the concept 1130 
of socio-motor agency by defining a ratio of two indexes of autonomy and control. Autonomy was 1131 
defined as the non-parametric entropy rate spanning from totally random to totally deterministic 1132 
behavior of standardized micro-movements spike trains. These were derived from nuanced fluctuations 1133 
in motion data that contains goal-directed segments of behavior interspersed with spontaneously 1134 
occurring, more ambiguous, transient segments that are known to interconnect the goal-directed ones 1135 
[16; 52]. Control was defined in terms of the NSR, empirically estimated from such spike trains as 1136 
well, such that high regimes of NSR correspond to the memoryless regimes denoting high uncertainty 1137 
(poor predictability and randomness) in the motor code. We took a step further to examine the 1138 
parameterization of the MMS as a binary-spike and a Gamma process and demonstrated the 1139 
independence between them.  1140 

 1141 

We reasoned that these binarized sequences of spikes bear a motor code whereby the observer may or 1142 
may not be able to predict and therefore control the observed agent. At high randomness, the observed 1143 
agent affords more autonomy than at deterministic ranges. At deterministic ranges, with high 1144 
regularity, the observer can predict and control the actions of the observed agent. At higher NSR, the 1145 
agent has lower self-control. This is so because the kinesthetic reafferent feedback from the motions is 1146 
noisy and with such poor signal quality it is difficult to predict a desired outcome and plan the action 1147 
consequences to compensate for sensory transduction, transmission, and motor integration delays 1148 
inherent in the person’s system. As predicting his/her/their motor actions consequences can then be 1149 
compromised by noise in the motor code, the child is more controllable by the clinician. The observer 1150 
clinician can exert higher control over the observed agent. In this sense, the child’s socio-motor agency 1151 
may also be compromised. This is the case whether the child / adult is autistic. 1152 

 1153 

Underlying both indexes and the ratio of autonomy to control are then discrete pockets of information 1154 
making up a continuous stream of dyadic motor code, contributed by both social agents. Thus, we can 1155 
infer the existence of an underlying shared alphabet in the motor code that manifests during dyadic 1156 
social interactions of the type studied here. Agents with discrete motor signatures that appear more 1157 
random are thus harder to control and behave more autonomously and independently than agents with 1158 
systematically predictable motions sharing their codes.  1159 

 1160 

Besides describing new biometrics of shared socio-motor agency in dyadic social interactions, our 1161 
analyses showed ways to streamline the ADOS test, thus making it less taxing on the child and the 1162 
clinician. A handful of tasks affording more socio-motor agency to the child can indeed uncover the 1163 
social readiness potential of the child rather than biasing the diagnosis by the clinician towards a deficit 1164 
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model. Along those lines, using these newly defined indexes of dyadic autonomy and control, we 1165 
demonstrated fundamental differences across the tasks for males and females, thus confirming that 1166 
despite previously quantified differences in motor control separating males and females at the 1167 
voluntary [4] and involuntary [12; 13] levels, the ADOS remains biased towards males. These digital 1168 
indexes of shared socio-motor agency, nevertheless, used within the context of an unbiased ML 1169 
classifier, could detect the differences between males and females for both the NT and ASD randomly 1170 
chosen participants. This digitized automated version of the test resembles the type of scenario that a 1171 
clinician faces at the clinic, any given day. Namely, a random arrival of a case that the clinician may 1172 
see for the first time. In that sense, the leave-one-person-out classifier provides robust digital screening 1173 
of autism and may be a way to scale our pilot study to encompass larger numbers of NT, ASD 1174 
participants across ages, sexes, and do so longitudinally as well. 1175 

 1176 

Future longitudinal studies of autism with an eye for the evolution of the neuromotor code and its 1177 
impact on social perception and cognition, will require the type of normalization that we introduced 1178 
earlier with the MMS [3] and further used here, namely, scaling out allometric effects due to anatomical 1179 
differences across participants (see also [17; 18; 53; 54]). This step is crucial in any study that involves 1180 
biorhythmic motions whereby kinematic analyses will be impacted by such anatomical differences. 1181 
This is so because kinematic parameters such as speed, acceleration, distance, etc. are impacted by the 1182 
limb sizes and masses in ways that confound results and interpretation of such studies [55]. It will be 1183 
particularly important to consider these caveats present in all current studies that do not account for 1184 
allometric differences during the very early neurodevelopment when the rate of bodily growth is highly 1185 
non-linear and accelerated [54]. These rates of changes in anatomical growth produce different ranges 1186 
of values in such kinematic parameters and impact the empirical distributions of the values associated 1187 
with natural behaviors such as those examined here. 1188 

5.1 Implications of Socio-Motor Agency Metrics for AI and Privacy Protection 1189 

The theoretical considerations at the intersection of stochastic analyses and information theoretic 1190 
approaches with non-linear dynamics offers the MMS and analyses as a viable way to obtain the 1191 
personalized signatures of autonomy and control and tweak the NSR to mask the spike trains derived 1192 
from the person’s physiological biorhythmic activity. This ability to separate the binary spike rate code 1193 
from the gamma process denoting levels of randomness vs. predictability, offers the possibility of 1194 
creating a device that alerts the persons involved in the dyadic exchange to balance their autonomy and 1195 
control, to attain socio-motor agency. By enhancing autonomy and avoiding excessive external control 1196 
by the other agent, be that agent another human or an AI-driven one, the person can be protected from 1197 
excess control. This approach will be critical to revamp autism therapies with an emphasis to respect 1198 
the child’s autonomy and support the bottom-up development of autonomous motor control. The 1199 
maturation of bottom-up autonomous motor control (building blocks of autonomy) is a necessary pre-1200 
requisite for the further neurodevelopment of top-down control. Without considering and balancing the 1201 
orderly maturation rates of these two building blocks of socio-motor behavior, therapies in autism will 1202 
cause trauma to the nervous system. 1203 

We propose that this methodology can also be used to protect our privacy more generally from 1204 
surveillance systems, as ultimately these systems rely on biometric data, which we can now, using the 1205 
present personalized methods, manipulate to hide our fingerprint-like signatures from an external agent 1206 
trying to control us. This solution to the controllability issue can then be extended from individuals to 1207 
dyads, from dyads to social groups and from social groups to society. In this sense, socio-motor agency 1208 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.25.23297428doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.25.23297428


 
40 

This is a provisional file, not the final typeset article 

can serve as a foundation for societal agency, now quantifiable using the methods that we offer in this 1209 
work. 1210 

 1211 

6 Conclusions  1212 

In summary, we found that variability in the dyadic index of autonomy is more pronounced in ASD 1213 
than in NTs, across a broad range of ages from 4-15 years old. Furthermore, we found that the dyadic 1214 
NSR, indicative of socio-motor control, increases with age. This result is consistent with prior work on 1215 
individuals across ages and sex [3; 4]. In contrast, both ASD and NT showed increases of the autonomy 1216 
index with age, an indicator that regardless of the human condition, whether developing along a 1217 
neurotypical trajectory, or along the trajectory of autism spectrum disorders, respecting the child’s 1218 
autonomy will be necessarily our best ally when designing future treatments that unveil the child social 1219 
readiness potential. We would not have known this had we treated the ADOS as the criterion test that 1220 
it is (i.e., based off children with neurodevelopmental issues only), rather than treating it as a normative 1221 
test (i.e., including NT controls as well, to define normative ranges and quantify similarities and 1222 
departures from it.)  1223 

We have uncovered new indexes of shared, dyadic autonomy and control, objectively defined socio-1224 
motor agency and provided new means to automate its digital screening with already routinely used 1225 
clinical tools. This works offers novel ways to scale our clinical science and make it actionable, diverse, 1226 
and inclusive at more than one level. 1227 
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